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Devonshire-Landau free energy of BaTiO3 from first principles
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We have studied the Devonshire-Landau potential underlying the phase transition sequence of BaTiO3 using
the first-principles effective Hamiltonian of Zhong, Vanderbilt, and Rabe@Phys. Rev. Lett.73, 1861~1994!#,
which has been very successful in reproducing the phase transitions and the dielectric and piezoelectric
properties of this compound. The configuration space~determined by the polarizationP as order parameter!
was explored with the help of auxiliary electric fields. We show that the typically assumed form of the
potential, a sixth-order expansion inP around the paraelectric cubic phase, properly accounts for the behavior
of the system, but we find a nontrivial temperature dependence for all the coefficients in the expansion,
including the quadratic one, which is shown to behave nonlinearly. Our results also prove that the sixth-order
terms in the free-energy expansion~needed to account for the first-order character of the transitions and the
occurrence of an orthorhombic phase! emerge from an interaction model that only includes terms up to the
fourth order.

DOI: 10.1103/PhysRevB.63.144103 PACS number~s!: 77.80.Bh, 77.84.Dy, 05.10.2a
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I. INTRODUCTION

From a phenomenological point of view, the behavior o
system in the vicinity of a phase transition can be descri
in the framework of Landau theory.1 In this scheme, one
begins by identifying the so-called order parameter, a~in
general multidimensional! variableQ that characterizes th
symmetry change in the transition, and then constructs
Landau free-energy functionF(Q;T), with the property that
the equilibrium value ofQ as a function of temperature i
that which minimizesF. Formally, the Landau free energy
an incomplete thermodynamic potential, which in princip
could be calculated as:

F~Q;T!52kBT ln (
j /Q

e2U j /kBT, ~1!

in analogy with the procedure to obtain the standard f
energy in terms of the partition function. Here, the sum
only over those states with the given value ofQ. In a Landau
phenomenological treatment, one just assumes thatF(Q;T)
exists, and that it can be represented as a simple power s
in Q in the vicinity of the transition:

F~Q;T!5F0~T!1A~T!Q21B(
b

f b
(4)~Q!1 . . . , ~2!

where f b
( j ) are invariants of orderj constructed fromQ. The

quadratic coefficientA is assumed to vary linearly with tem
perature in the formA(T)5a(T2T0), in such a way thatT0
is the transition temperature~for a second-order transition! or
the lower metastability limit of the upper phase~for a first-
order one!. These assumptions are known to break down
the critical region close to the transition point of continuo
phase transformations, but they are valid when describing
approximate behavior of the system in wider temperat
intervals around the transition temperature. Classical Lan
theory ignores any temperature variation of the higher-or
0163-1829/2001/63~14!/144103~8!/$20.00 63 1441
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coefficients in the expansion. Nevertheless, it has been
plied quite successfully to the analysis of many materials
wide temperature ranges.2 Nowadays, Landau theory is th
most common approach to study the phenomenology of
symmetry-breaking structural phase transition.

One of the early successes of this phenomenological
proach to phase transitions was the description
Devonshire3 of the sequence of transitions in barium titana
~BaTiO3), a sequence that spans a temperature interva
more than 200 degrees. This material exhibits, at high te
peratures, a paraelectric cubic perovskite structure and
temperature decreases, it undergoes three successive
order transitions to ferroelectric phases with tetragon
orthorhombic, and rhombohedral symmetries. In the
phases, the polarizationP points along one of thê1,0,0&,
^1,1,0&, and^1,1,1& cubic directions, respectively.4 The po-
larizationP can be identified as the~three-dimensional! order
parameter, and the Devonshire-Landau potential~per unit
volume! written as:

F5F01 1
2 aP21uP41v~Px

41Py
41Pz

4!1h1P6

1h2~Px
61Py

61Pz
6!1h3@Px

4~Py
21Pz

2!1Py
4~Pz

21Px
2!

1Pz
4~Px

21Py
2!#, ~3!

whereF0 is the free energy of the reference cubic phase
P2 stands forPx

21Py
21Pz

2 ~the notation is taken from the
review paper by Cowley5!. This is the complete expansion o
F up to the sixth order, and its relatively simple form is d
to the high symmetry of the system. The sixth-order terms
P in the expansion are needed to account for the first-or
character of the transitions~to model nonequivalent coexist
ing free-energy minima!. Moreover, it can be seen that on
needs anisotropic sixth-order terms inF to account for the
orthorhombic phase of BaTiO3.6 Devonshire showed that b
assuming a linear temperature dependence fora and suitable
©2001 The American Physical Society03-1
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constantvalues for the rest of the coefficients, it is possib
to qualitatively reproduce the transition sequence, as we
the dielectric properties of the system.7

After Devonshire’s work, the use of an expansion like th
of Eq. ~3! has become the standard way to model the th
modynamic properties of ferroelectric perovskites, ev
though the correctness of the assumption of constant h
order coefficients was questioned early on. Drougardet al.
and Huibregtse and Young8 studied BaTiO3 at temperatures
just above the cubic to tetragonal transition and in the ort
rhombic phase, respectively; they assumed the existence
Devonshire-Landau potential but showed that there sho
be a significant temperature dependence of the fourth-o
terms.9 It has since been shown that there is a relatively la
latitude to produce Devonshire-like models that lead
qualitatively sensible predictions for the transition sequen
divergence of the dielectric constants, etc., even though th
models may not berealistic when confronted with other ex
perimental evidence.10 On the other hand, it could be que
tioned whether such a relatively simple free-energy exp
sion as that in Eq.~3! exists at all. For instance, Nakamu
and Kinase have worked on a different approach to the p
lem in which a nonpolynomical form of the free energy
used; they also discuss the connection of their work to
Devonshire theory.11

In the past decade, first-principles methods based
density-functional theory have demonstrated to be accu
enough to reproduce and predict structural phase transit
in perovskite oxides.12 In particular, the phase-transition s
quence and other properties of BaTiO3,13,14 PbTiO3,15 and
KNbO3 ~Ref. 16! have been studied using the so-calledef-
fective Hamiltonianapproach. Anab initio effective Hamil-
tonianHeff is a mechanical model that includes the relev
microscopic degrees of freedom of the system and is c
structed on the basis of first-principles calculations. T
model can then be analyzed by statistical methods~typically,
Monte Carlo or molecular dynamics! to explore the finite-
temperature behavior of the system. Monte-Carlo simu
tions with an ab initio effective Hamiltonian for BaTiO3
have been extremely successful, replicating approxima
the experimental transition sequence13 and succeeding in re
producing the main features of the dielectric and piezoe
tric properties of the real system.14

A natural question to ask then, is to what extent the th
mal behavior resulting from theseab initio effective Hamil-
tonians is compatible with the Devonshire-Landau fram
work. In this paper we show that a Devonshire-Land
expansion of the form of Eq.~3! does indeed emerge from
detailed Monte Carlo simulations with theab initio effective
Hamiltonian for BaTiO3 of Ref. 13, with the important
qualification that the coefficients in the expansion have
nontrivial temperature dependence. In particular, we sh
that the sixth-order terms inF(P;T) are nonzero only in the
temperature range in which the transitions occur. Moreo
it becomes clear that these sixth-order coefficients appea
products of the statistical fluctuations of a Hamiltonian th
only includes terms up to the fourth order in the polar d
grees of freedom.
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II. METHOD AND TECHNICAL DETAILS

Zhong, Vanderbilt, and Rabe13 constructed their effective
Hamiltonian for BaTiO3 retaining as relevant degrees
freedom of the system a local polar distortionui in each cell,
the homogeneous strainh, and an inhomogeneous strain re
resented by a second set of local vectorsvi . TheHeff has the
form:

Heff5 (
i , j ;a,b

J~ i , j ;a,b!uiauj b1 (
i ;a,b

G~a,b!uia
2 uib

2

1 (
i ;a,b; l

B~ i ;a,b; l !uiauibh l1(
l ,h

B~ l ,h!h lhh ,

~4!

where, for clarity, we have not written the terms associa
to the inhomogeneous strain. Here,i and j range over the
cells in the system,a andb are cartesian indexes, andl and
h refer to tensor components in Voigt notation. For the lo
polar modes, the Heff contains harmonic coupling
J( i , j ;a,b) ~on site, i 5 j , and between modes in differen
cells up to the third nearest neighbors! that reproduce the
instabilities of the cubic phase of BaTiO3,17 and fourth-order
on-site termsG(a,b) that define the low-symmetry minim
and stabilize the system. The effect of strain is includ
through the standard elastic energy and through the coup
coefficientsB( i ;a,b; l ), which account for the spontaneou
strain in the low-symmetry phases. This model is proba
the simplest one that captures the essential physics of
system. As mentioned in the Introduction,Heff is fourth-
order in the$ui% variables, whose simulation-box averageu
51/N(ui determines the polarization throughVP5Z* u,
whereV is the cell volume andZ* the local-mode effective
charge~see Ref. 13!.

A direct link between thisHeff and the phenomenologica
potential of Eq. ~3! can be established in the very low
temperature limitT→0. Eq. ~1! shows thatF(P;0) is just
the energy of the lowest-lying state with polarizationP. In
BaTiO3, for P around the equilibrium value, this state exhi
its homogeneously polarized cells with the global strain
justed so as to minimize the energy~the inhomogeneous
strain is zero!. HenceF(P;0) can be identified in this region
with the energyU(P) resulting fromHeff for such a homo-
geneous configuration. As the homogeneous strain is pro
tional to the square of the polarization~see Ref. 18!, this
energy is fourth-order in the polarization, and can be
scribed, in principle, by an expansion of the type of Eq.~3!.
This means thath15h25h350 in the low-temperature
limit. Using the Heff parameters, we obtain the rest of th
coefficients ofF(P;0): a524/3, u50.094, andv50.051.
Here, units have been chosen so that the first-octant rhom
hedral ground state minimum is located atP5(1,1,1) and its
energy per unit volume with respect to the cubic phase
21. ~This election fixes the value ofa and the relation 9u
13v51; i.e.,F(P;0) is determined only by one coefficient!
We have plotted this 0 K free-energy map in Fig. 1~h!, which
shows the cubic phase as a local free-energy maximum
3-2
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FIG. 1. Free-energy maps of BaTiO3 at several temperatures. Panel~a!: 300 K, ~b!: 290 K, ~c!: 250 K, ~d!: 220 K, ~e!: 210 K, ~f!: 190

K, ~g!: 100 K, and~h!: 0 K. For each temperature we show the~010! and (11̄0) planes of the order-parameter configuration space, w
contour lines depicted only in the low free-energy regions. Symbols characterize the relative stability of the critical points with re
displacements within a given plane: circles for free-energy minima~a bigger circle corresponds to the stable-equilibrium state!, squares for
free-energy maxima, and triangles for saddle points@‘‘up’’ ~resp. ‘‘down’’! triangles for points that are maxima~resp. minima! along the
radial direction#. Note that critical points with orthorhombic symmetry may need to be represented by two different symbols in the~010! and

(11̄0) planes@see panel~b!#.
144103-3
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FIG. 1. ~Continued!.
r-
nt

rob-
tragonal, and orthorhombic saddle points~both stable in the
radial direction!, and the rhombohedral global minima.

Now we tackle the calculation ofF at finite
temperatures.19 A straightforward approach to obtain info
mation about the Landau potential from the results of Mo
14410
e

Carlo20 simulations was presented by Radescuet al.2 in the
context of a three dimensionalF4 model. From Eq.~1! it is
easy to show that there exists a relation between the p
ability distribution of the order parameterP(Q;T) and the
corresponding Landau potentialF(Q;T):
3-4
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F~Q;T!2Feq~T!52kBT ln@P~Q;T!#, ~5!

whereFeq(T) is the equilibrium free energy of the system
the temperature considered. This procedure, which can
quite efficiently applied to relatively simple cases such as
F4 model ~one-dimensional order parameter, a sing
second-order phase transition!, is not well suited for our
problem. We have to study a three-dimensional free-ene
map with coexisting nonequivalent minima. A typical Mon
Carlo simulation gives information only about one fre
energy minimum~usually, the one corresponding to th
stable-equilibrium state of the system!, with a poor sampling
of the order-parameter probability-distribution function
other regions. On the other hand, more sophisticated s
pling strategies would be very demanding from the com
tational point of view.

This problem can be overcome, andF(P;T) computed in
an efficient manner, by modifying the effective Hamiltonia
so as to include the effect of an external electric fieldE:14

Heff8 5Heff2E•Z* (
i

ui , ~6!

whereZ* is the Born effective charge associated to the lo
polar distortions. As the quantity multiplying the electr
field is just the total dipole moment of the system, the n
Landau potential is simplyF8(P;T,E)5F(P;T)2EP. An
applied electric field changes the location~and possibly the
symmetry! of the stable-equilibrium state. The new locatio
can be determined by a Monte Carlo~MC! simulation of the
modified effective Hamiltonian (Peq5^P&) and also com-
puted directly fromF8. The idea can be mathematically e
pressed as:

F]F8~P;T,E!

]P G
Peq(T,E)

50. ~7!

The left-hand side of this equation depends linearly on
coefficients ofF and on the electric field. Thus, for a give
temperature, we can consider several electric fields, perf
MC runs to obtain the equilibrium valuesPeq ,21 and then
find the best solution of an overdetermined set of lin
equations of the form of Eq.~7! to get the coefficients of the
expansion ofF.

For each temperature, we first performed a zero-field
culation to obtain a snapshot of the stable-equilibrium c
figuration. We then used this configuration as the start
point for the runs with electric field applied. In order to i
lustrate the kind of information we were pursuing, consideT
such that the stable-equilibrium state of the system is or
rhombic with Peq5Peq(1,1,0). In this case, we would firs
use fields of the form (E,E,0) to obtain information abou
the response of the system within the orthorhombic pha
Fields of the forms (E,0,0), (0,0,E), and (E,E,E) would
probe the relative stability of minima with different symm
tries. Finally, general fields leading toPx,eqÞPy,eqÞPz,eq
ÞPx,eq , would explore in detail the intermediate regions
the configuration space. In our Monte Carlo simulations
used a 14314314 supercell~which corresponds to 13 72
14410
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atoms! with periodic boundary conditions; we typically pe
formed 15 000 MC sweeps for the thermalization of the s
tem and 35 000 more to calculate the averages of the po
ization ~these are very well-converged calculatio
conditions, as can be checked in Refs. 13–15!. For each
temperature, we considered around one hundred diffe
electric fields and constructed a largely overdetermined s
tem of equations for the coefficients inF, which could then
be reliably fitted.

III. RESULTS AND DISCUSSION

The data from our Monte Carlo simulations can indeed
represented by a Landau free energy in the form of Eq.~3! in
a wide-temperature interval that includes all the transitio
@The transition temperatures predicted by the effect
Hamiltonian are Tc15297 K ~cubic to tetragonal!, Tc2
5230 K ~tetragonal to orthorhombic!, and Tc35200 K
~orthorhombic to rhombohedral!, respectively.22# Our results
show that the coefficients in the expansion ofF have a sig-
nificant and nontrivial temperature dependence.

Before discussing in detail the behavior of the coe
cients, it is helpful to present the shape of the free ene
they determine at a few temperatures in the range of
phase transitions. Figure 1~a! ~300 K! shows how tetragona
local minima appear just above the first transition, while t
absolute minimum ofF is is still located atP50 in the cubic
well. Panels~b! and ~c! correspond to 290 and 250 K, re
spectively, i.e., temperatures in the range of stability of
tetragonal phase. We see that the tetragonal wells are in
the global free-energy minima, and that the orthorhom
and rhombohedral wells nucleate in the form of saddle po
that are unstable with respect to a tetragonal distortion~in the
rhombohedral case, the saddle points are unstable with
spect to an orthorhombic distortion also!. Panels~d! and ~e!
refer to 220 and 210 K, respectively, i.e., temperatures in
orthorhombic range. The tetragonal wells become metast
with respect to the orthorhombic ones, which are now
free-energy global minima. At the same time, rhombohed
local minima appear. Finally, panels~f! and ~g! correspond
to 190 and 100 K, respectively, both in the rhombohed
temperature range. Here we see that the rhombohe
minima have finally become the deepest ones. It is clear
the sequence converges to the free-energy map given by
effective Hamiltonian itself@panel ~h!#. For all the transi-
tions, the coexistence of different free-energy minima in
figures evidences their first-order character.

Our method to explore theF landscape has a limitation
when probing the vicinity of the cubic phase. After the po
P50 becomes a local free-energy maximum a few degr
below Tc1, it is no longer possible to sample the regio
around it using auxiliary electric fields: the cubic structure
already unstable and thus no longer useful as a starting p
for the simulations, and attempts to steer a system in a
tragonal, orthorhombic, or rhombohedral well towardsP50
only succeed in landing it in the corresponding symmet
inverted domain. As the behavior ofF aroundP50 is basi-
cally determined by the quadratic coefficienta of the
Devonshire-Landau expansion, the value assigned to this
3-5
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efficient by a fit of the simulation data should be conside
suspect.~This problem pertains only to the region ne
P50!. Information about the relative stability of tetragona
orthorhombic, and rhombohedral phases is available at
temperature, since it is always possible to apply fields t
lead the system to each of these symmetries.!

As shown in Fig. 2, at temperatures around and ab
Tc1, the behavior ofa is fairly reasonable. It is positive a
high temperatures, becoming negative a few degrees be
Tc1, as corresponds to a first-order transition. For very l
temperatures,a also behaves well, tending smoothly to its
K value. This is because, in this region, the underlying La
dau potential is simple~the thermal fluctuations are relative
small and the sixth-order terms almost negligible!. However,
in the intermediate region~from 150 to 250 K!, a turns posi-
tive again, which would mean that the cubic phase beco
metastable in a wide temperature interval. This metastab
is explicitly ruled out within our model by zero-field MC
simulations starting from a cubic phase, in which we fou
no trace of it, which illustrates the fact that the fitteda is not
guaranteed to be valid within the unexplored region close
P50. We thus reconsidered the fitting of our data, impos
a smooth temperature evolution ofa: we assumed that in th
intermediate-temperature rangea(T) is given by a simple
interpolation~Fig. 2! between the high-temperature regio
where we can reliably sample it, and the low-temperat
limit determined directly by the convergence to the effect
Hamiltonian ~a third-order polynomial suffices for our pu
poses!. With this from fora(T) fixed, our MC data are still
well fitted to the Landau potential of Eq.~3!. For instance, at
190 K, the relative error obtained whena(T) is freely fitted
is 2.2%, and whena(T) is fixed by the interpolation, the
error is still very small: 3.6%. This clearly shows that, in t
intermediate-temperature region, our Monte Carlo data c
tain little information about the value ofa. Higher-order
terms were tried but found to play no role in the fit, so th
can be excluded from the potential. Our final results
shown in Fig. 3.

FIG. 2. Temperature behavior of the quadratic coefficient~a! of
the Devonshire-Landau potential: The dashed line connects the
ues obtained from a direct fit to MC data, the solid line shows
interpolateda(T), and the solid circles are the points used to fit t
interpolating polynomial~see text!. The transition temperatures ar
marked with vertical lines.
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At very low temperaturesa, u, and v tend to their 0 K
values and the sixth-order terms go to zero. On the ot
hand, at temperatures well above the first transitionT
.350 K) we find the MC data are properly fitted to a fourt
order Landau potential, so the sixth-order terms can again
excluded from the model. The sixth-order terms then oc
only in the temperature range in which the transitions ta
place~as plainly shown in Fig. 3!. It is also remarkable tha
the fourth-order terms exhibit a very strong temperature
pendence. Particularly, the anisotropic termv changes sign
at around 90 K and takes large negative values all thro
the intermediate-temperature range. So, apart from the in
ence it has, together withh2 andh3, in determining the tran-
sition sequence, we find that a negativev is responsible for
the first-order character of the cubic to tetragonal transiti

In Fig. 4 we have plotted our coefficients near the cubic
tetragonal transition temperature together with the availa
experimental results.8,9 ~We have changed the temperatu
scale to make the experimentalTc1 coincide with the theo-
retical one.! The agreement is only qualitative, but as go
as could be expected given the simplifying assumptions
volved in the experimental work of Ref. 8~the coefficients
are restricted to be constant or to depend linearly on temp

al-
e

FIG. 3. Free-energy coefficients fitted to MC data assum
a(T) is given by the solid line in Fig. 2. The transition temperatur
are marked with vertical lines.

FIG. 4. Comparison of our free-energy coefficients~lines! with
the experimental values of Refs. 8~open symbols! and 9 ~solid
symbols!: solid line and circles fora, dotted line and squares fo
u1v, dashed line and ‘‘up’’ triangles forh11h2, and dash-dotted
line and ‘‘down’’ triangles forh3. The vertical line marks the cubic
tetragonal transition temperature.
3-6
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ture! and the fact that the differences among the two exp
ments are comparable to those between experiment
theory.

Our work strongly suggests that the phase transitions
BaTiO3 can be described in terms of a single Landau pot
tial F with the form of Eq.~3!. Despite what is assumed i
most of the previous work on this problem, the quadra
parametera is found to exhibit a strongly nonlinear temper
ture dependence. This is clear because we can reliably
culatea at high ~over Tc1) and very low temperatures, an
the two regions cannot be joined linearly. We show that
the high-order terms inF present a very significant evolutio
with temperature. This conclusion is essentially opposed
the temperature-independent behavior that is still assume
some authors~see, for example, Ref. 10!. It is also very
remarkable that the two features of BaTiO3 that require the
inclusion of sixth-order terms in the Landau potential, i.
the first-order character of the transitions and the occurre
of an orthorhombic phase, have been reproduced usin
fourth-order effective Hamiltonian.23 This piece of informa-
tion should be taken into account when constructing m
chanical models to study the finite-temperature behavio
BaTiO3 or similar compounds. For instance, the authors
Ref. 11 included sixth-order terms in the underlying intera
tion model for BaTiO3 with the explicit aim to account for
the first-order character of the transitions; our results indic
that those terms should be unnecessary.
y
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IV. SUMMARY

We have studied the Devonshire-Landau potential und
lying the phase transition sequence of BaTiO3 using the first-
principles effective Hamiltonian parametrized by Zhon
Vanderbilt, and Rabe. The order-parameter configura
space was explored with the help of auxiliary electric fie
that change the location and relative stability of the fre
energy minima. Our results show that the typically assum
form of the potential, an expansion up to the sixth order
the polarization from the paraelectric cubic phase, prope
accounts for the behavior of the system. But, despite wha
usually presumed, we find a nontrivial temperature dep
dence for all the coefficients in the expansion, including
quadratic terma, which is shown to behave nonlinearly. Ou
work also shows that the sixth-order terms in polarizat
needed to explain basic features of BaTiO3 in a Devonshire-
Landau approach~the first-order character of the transition
and the occurrence of an orthorhombic phase! are properly
accounted for by an interaction model that only includ
terms up to the fourth order.
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