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We have studied the Devonshire-Landau potential underlying the phase transition sequence @uBaitioO
the first-principles effective Hamiltonian of Zhong, Vanderbilt, and Raeys. Rev. Lett73, 1861(1994],
which has been very successful in reproducing the phase transitions and the dielectric and piezoelectric
properties of this compound. The configuration spéatatermined by the polarizatioR as order parameter
was explored with the help of auxiliary electric fields. We show that the typically assumed form of the
potential, a sixth-order expansion fharound the paraelectric cubic phase, properly accounts for the behavior
of the system, but we find a nontrivial temperature dependence for all the coefficients in the expansion,
including the quadratic one, which is shown to behave nonlinearly. Our results also prove that the sixth-order
terms in the free-energy expansi@meeded to account for the first-order character of the transitions and the
occurrence of an orthorhombic phasamerge from an interaction model that only includes terms up to the
fourth order.
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[. INTRODUCTION coefficients in the expansion. Nevertheless, it has been ap-
plied quite successfully to the analysis of many materials in
From a phenomenological point of view, the behavior of awide temperature rangésNowadays, Landau theory is the

system in the vicinity of a phase transition can be describedhost common approach to study the phenomenology of any
in the framework of Landau theotyln this scheme, one symmetry-breaking structural phase transition.
begins by identifying the so-called order parameteriina One of the early successes of this phenomenological ap-
general multidimensionalvariable Q that characterizes the proach to phase transitions was the description by
symmetry change in the transition, and then constructs thBevonshiré of the sequence of transitions in barium titanate
Landau free-energy functioR(Q;T), with the property that (BaTiO3z), a sequence that spans a temperature interval of
the equilibrium value ofQ as a function of temperature is more than 200 degrees. This material exhibits, at high tem-
that which minimizes=. Formally, the Landau free energy is peratures, a paraelectric cubic perovskite structure and, as
an incomplete thermodynamic potential, which in principle,temperature decreases, it undergoes three successive first-
could be calculated as: order transitions to ferroelectric phases with tetragonal,
orthorhombic, and rhombohedral symmetries. In these
phases, the polarizatioR points along one of thé1,0,0),
(1,1,0), and(1,1,1) cubic directions, respectivefyThe po-
larizationP can be identified as thghree-dimensionalorder
in analogy with the procedure to obtain the standard fregparameter, and the Devonshire-Landau poter{p&r unit
energy in terms of the partition function. Here, the sum isvolume written as:
only over those states with the given valueQfin a Landau
phenomenological treatment, one just assumesR(&; T)
exists, and that it can be represented as a simple power series=Fq+ 3 aP?+uP*+v(Pg+Py+P;)+h;P®
in Q in the vicinity of the transition:

F(Q;T)=—kBTIn% e Vj/keT (1)
]

+hy(PR+PY+P2) +ha[ PR(PS+P2) + Py(P2+ P)

FQT=FoM+AMQ+BS Q)+, @ +Py(PX+P)], )

wheref%) are invariants of ordejr constructed fronQ. The  whereF, is the free energy of the reference cubic phase and
quadratic coefficien is assumed to vary linearly with tem- P? stands forPZ+ P+ PZ (the notation is taken from the
perature in the fornd\(T) = a(T—T,), in such a way thal,  review paper by Cowley. This is the complete expansion of
is the transition temperatutéor a second-order transitipor ~ F up to the sixth order, and its relatively simple form is due
the lower metastability limit of the upper phader a first-  to the high symmetry of the system. The sixth-order terms in
order ong. These assumptions are known to break down irP in the expansion are needed to account for the first-order
the critical region close to the transition point of continuouscharacter of the transition$o model nonequivalent coexist-
phase transformations, but they are valid when describing thimg free-energy minima Moreover, it can be seen that one
approximate behavior of the system in wider temperatureneeds anisotropic sixth-order termsFhnto account for the
intervals around the transition temperature. Classical Landaarthorhombic phase of BaTi§f Devonshire showed that by
theory ignores any temperature variation of the higher-ordeassuming a linear temperature dependence famd suitable
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constantvalues for the rest of the coefficients, it is possible II. METHOD AND TECHNICAL DETAILS
to qualitatively reproduce the transition sequence, as well as

the dielectric properties of the systém. Hamiltonian for BaTiQ retaining as relevant degrees of

¢ éfter sDivonzhlre’s wor:k, the L('jsedOf an expans(;orr I|hke tEatfreedom of the system a local polar distortignin each cell,
of Eq. (3) has become the standard way to model the t €the homogeneous straip and an inhomogeneous strain rep-

modynamic properties of ferroelectric perovskites, evenaganted by a second set of local vectgrsTheH o« has the
though the correctness of the assumption of constant highg -

order coefficients was questioned early on. Drougatrdl.
and Huibregtse and YouRgtudied BaTiQ at temperatures
just above the cubic to tetragonal transition and in the ortho- Hefr= Eﬁ J(isj ;a'ﬂ)uia“JB”Lizﬁ F(avﬁ)uizauizﬁ

Zhong, Vanderbilt, and Rab&constructed their effective

rhombic phase, respectively; they assumed the existence of a ijia,

Devonshire-Landau potential but showed that there should

be a significant temperature dependence of the fourth-order + E B(i;a,ﬂ;l)uiauiﬂﬂﬁz B(I,h) n 7,
terms® It has since been shown that there is a relatively large ia,pBil Lh

latitude to produce Devonshire-like models that lead to (4)

gualitatively sensible predictions for the transition sequence,

divergence of the dielectric constants, etc., even though thesgnere for clarity, we have not written the terms associated
models may not beealistic when confronted with other ex- g the inhomogeneous strain. Heieand j range over the
perimental evidenc¥. On the other hand, it could be ques- celis in the systemy and g are cartesian indexes, ahdnd
tioned whether such a relatively simple free-energy expanh refer to tensor components in Voigt notation. For the local
sion as that in Eq(3) exists at all. For instance, Nakamura polar modes, theH. contains harmonic couplings
and Kinase have worked on a different approach to the probj(i,j;«, ) (on site,i=j, and between modes in different
lem in which a nonpolynomical form of the free energy is cells up to the third nearest neighbptsat reproduce the
used; they also discuss the connection of their work to thénstabilities of the cubic phase of BaTi(3’ and fourth-order
Devonshire theory! on-site termd’(«, B) that define the low-symmetry minima
In the past decade, first-principles methods based oand stabilize the system. The effect of strain is included
density-functional theory have demonstrated to be accuratdrough the standard elastic energy and through the coupling
enough to reproduce and predict structural phase transitiorgoefficientsB(i; «, 8;1), which account for the spontaneous
in perovskite oxides? In particular, the phase-transition se- Strain in the low-symmetry phases. This model is probably
quence and other properties of Bagjt* PbTi0,,° and  the simplest one that captures the essential physics of the
KNbO; (Ref. 16 have been studied using the so-caliefd ~ system. As mentioned in the IntroductioH,. is fourth-
fective Hamiltoniarepproach. Amab initio effective Hamil- ~ order in the{u;} variables, whose simulation-box average
tonianH is a mechanical model that includes the relevant=21/NXu; determines the polarization throughP=Z*u,
microscopic degrees of freedom of the system and is corwhere(} is the cell volume an@* the local-mode effective
structed on the basis of first-principles calculations. Thischarge(see Ref. 13
model can then be analyzed by statistical methogsically, A direct link between thidd . and the phenomenological
Monte Carlo or molecular dynamicso explore the finite- potential of Eq.(3) can be established in the very low-
temperature behavior of the system. Monte-Carlo simulatemperature limitT—0. Eq. (1) shows thatF(P;0) is just
tions with anab initio effective Hamiltonian for BaTiQ the energy of the lowest-lying state with polarizatienIn
have been extremely successful, replicating approximatel3aTiOg, for P around the equilibrium value, this state exhib-
the experimental transition sequetitand succeeding in re- its homogeneously polarized cells with the global strain ad-
producing the main features of the dielectric and piezoelecjusted so as to minimize the energthe inhomogeneous

tric properties of the real systetf\. strain is zerp. HenceF (P;0) can be identified in this region
A natural question to ask then, is to what extent the therwith the energyU(P) resulting fromH  for such a homo-
mal behavior resulting from thesab initio effective Hamil-  geneous configuration. As the homogeneous strain is propor-

tonians is compatible with the Devonshire-Landau framedtional to the square of the polarizatiqgee Ref. 1§ this
work. In this paper we show that a Devonshire-Landauenergy is fourth-order in the polarization, and can be de-
expansion of the form of Eq3) does indeed emerge from scribed, in principle, by an expansion of the type of &).
detailed Monte Carlo simulations with tlad initio effective  This means thath;=h,=h;=0 in the low-temperature
Hamiltonian for BaTiQ, of Ref. 13, with the important limit. Using the Ho¢ parameters, we obtain the rest of the
gualification that the coefficients in the expansion have aoefficients ofF(P;0): a=—4/3, u=0.094, andv =0.051.
nontrivial temperature dependence. In particular, we showiere, units have been chosen so that the first-octant rhombo-
that the sixth-order terms iR(P;T) are nonzero only in the hedral ground state minimum is locatedPat (1,1,1) and its
temperature range in which the transitions occur. Moreoverenergy per unit volume with respect to the cubic phase is
it becomes clear that these sixth-order coefficients appear asl. (This election fixes the value & and the relation
products of the statistical fluctuations of a Hamiltonian that+3v=1; i.e.,F(P;0) is determined only by one coefficient.
only includes terms up to the fourth order in the polar de-We have plotted tlsi O K free-energy map in Fig(i), which
grees of freedom. shows the cubic phase as a local free-energy maximum, te-
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FIG. 1. Free-energy maps of BaTj@t several temperatures. Paf@t 300 K, (b): 290 K, (c): 250 K, (d): 220 K, (e): 210 K, (f): 190
K, (9): 100 K, and(h): 0 K. For each temperature we show #t40) and (11) planes of the order-parameter configuration space, with
contour lines depicted only in the low free-energy regions. Symbols characterize the relative stability of the critical points with respect to
displacements within a given plane: circles for free-energy mir(enlaigger circle corresponds to the stable-equilibrium stamuares for
free-energy maxima, and triangles for saddle pojititg” (resp. “down”) triangles for points that are maxinfeesp. minima along the
radial directior}. Note that critical points with orthorhombic symmetry may need to be represented by two different symbol®iOttzand

(110) planegsee panelb)].
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FIG. 1. (Continued.

tragonal, and orthorhombic saddle poifi®th stable in the Carlc®® simulations was presented by Radestwal? in the
radial direction, and the rhombohedral global minima. context of a three dimensiondl* model. From Eq(1) it is

Now we tackle the calculation ofF at finite easy to show that there exists a relation between the prob-
temperature$’ A straightforward approach to obtain infor- ability distribution of the order parameté(Q;T) and the

mation about the Landau potential from the results of Montecorresponding Landau potentia(Q;T):
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F(Q;T)—Fey(T)=—kgTIN[P(Q;T)], (5) atomg with periodic boundary conditions; we typically per-
formed 15000 MC sweeps for the thermalization of the sys-
whereF¢((T) is the equilibrium free energy of the system at tem and 35000 more to calculate the averages of the polar-
the temperature considered. This procedure, which can bgation (these are very well-converged calculation
quite efficiently applied to relatively simple cases such as theonditions, as can be checked in Refs. 13-For each
®* model (one-dimensional order parameter, a singletemperature, we considered around one hundred different
second-order phase transitjpris not well suited for our electric fields and constructed a largely overdetermined sys-

problem. We have to study a three-dimensional free-energsem of equations for the coefficients Fy which could then
map with coexisting nonequivalent minima. A typical Monte pe reliably fitted.

Carlo simulation gives information only about one free-
energy minimum (usually, the one corresponding to the
stable-equilibrium state of the systgmwith a poor sampling lll. RESULTS AND DISCUSSION

of the order-parameter probability-distribution function in The data from our Monte Carlo simulations can indeed be

rTPépresented by a Landau free energy in the form of(Bgn

pllng strat§g|es W.OUId be very demanding from the compuy wide-temperature interval that includes all the transitions.
tational point of view.

This problem can be overcome, aR@P;T) computed in [The transition temperatures predicted by the effective

o o . -~ . Hamiltonian are T.;=297 K (cubic to tetragona T,
an Eff'f'e.nt Imgnrlﬁr, b]{’f mtod;fylng ﬂse efflecltlv? Hig;gfman =230 K (tetragonal to orthorhombjic and T.3=200 K
S0 as lo Include the efiect of an external electric (orthorhombic to rhombohedpalrespectively??] Our results

show that the coefficients in the expansionFohave a sig-
Hig=Hes—E-Z* 2 Ui, (6) nificant and nontrivial temperature dependence.
[ Before discussing in detail the behavior of the coeffi-

. . . ients, it is helpful to present the shape of the free energy
WhereZ. IS the Born effective charge as.socllated to the cha hey determine at a few temperatures in the range of the
polar distortions. As the quantity multiplying the electric

SO . hase transitions. Figurgd (300 K) shows how tetragonal
field is just the total dipole moment of the system, the neV\P - 4 . . :
Landau potential is simphE’(P;T,E)=F(P:T)— EP. An local minima appear just above the first transition, while the

applied electric field changes the locatiGamd possibly the absolute minimum oF is is still located aP=0 in the cubic

symmetry of the stable-equilibrium state. The new location well. Panels(b) and (c) correspond to 290 and 250 K, re-
can be determined by a Monte CatMC) simulation of the spectively, i.e., temperatures in the range of stability of the

modified effective Hamiltonian Req=(P)) and also com- tetragonal phase. We see that the tetragonal wells are indeed

. ) : ) the global free-energy minima, and that the orthorhombic
Erézge(grzg_tly fromF". The idea can be mathematically ex- and rhombohedral wells nucleate in the form of saddle points

that are unstable with respect to a tetragonal distoffiothe
rhombohedral case, the saddle points are unstable with re-
=0. 7 spect to an orthorhombic distortion alJs@anels(d) and (e)

Ped(T.E) refer to 220 and 210 K, respectively, i.e., temperatures in the

orthorhombic range. The tetragonal wells become metastable
The left-hand side of this equation depends linearly on thevith respect to the orthorhombic ones, which are now the
coefficients ofF and on the electric field. Thus, for a given free-energy global minima. At the same time, rhombohedral
temperature, we can consider several electric fields, perforiocal minima appear. Finally, panel® and (g) correspond
MC runs to obtain the equilibrium value®,,,** and then to 190 and 100 K, respectively, both in the rhombohedral
find the best solution of an overdetermined set of lineatemperature range. Here we see that the rhombohedral
equations of the form of Ed7) to get the coefficients of the minima have finally become the deepest ones. It is clear that
expansion ofF. the sequence converges to the free-energy map given by the

For each temperature, we first performed a zero-field caleffective Hamiltonian itselfpanel (h)]. For all the transi-

culation to obtain a snapshot of the stable-equilibrium contions, the coexistence of different free-energy minima in the
figuration. We then used this configuration as the startingigures evidences their first-order character.
point for the runs with electric field applied. In order to il Our method to explore thE landscape has a limitation
lustrate the kind of information we were pursuing, consitler when probing the vicinity of the cubic phase. After the point
such that the stable-equilibrium state of the system is orthoP=0 becomes a local free-energy maximum a few degrees
rhombic with Peq=P¢4(1,1,0). In this case, we would first below T, it is no longer possible to sample the region
use fields of the formE,E,0) to obtain information about around it using auxiliary electric fields: the cubic structure is
the response of the system within the orthorhombic phasealready unstable and thus no longer useful as a starting point
Fields of the forms E,0,0), (0,0F), and E,E,E) would for the simulations, and attempts to steer a system in a te-
probe the relative stability of minima with different symme- tragonal, orthorhombic, or rhombohedral well towaR¥s0
tries. Finally, general fields leading 1, oq# Py ¢q#P,eq  ONly succeed in landing it in the corresponding symmetry-
# Py eq» Would explore in detail the intermediate regions of inverted domain. As the behavior &faroundP=0 is basi-
the configuration space. In our Monte Carlo simulations wecally determined by the quadratic coefficieat of the
used a 1% 14x 14 supercell(which corresponds to 13720 Devonshire-Landau expansion, the value assigned to this co-

JF'(P;T,E)
aP
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FIG. 2. Temperature behavior of the quadratic coefficianbf FIG. 3. Free-energy coefficients fitted to MC data assuming

the Devonshire-Landau potential: The dashed line connects the va&(T) is given by the solid line in Fig. 2. The transition temperatures

ues obtained from a direct fit to MC data, the solid line shows theare marked with vertical lines.

interpolateda(T), and the solid circles are the points used to fit the

interpolating polynomialsee text The transition temperatures are

marked with vertical lines. At very low temperatures, u, andv tend to their 0 K
values and the sixth-order terms go to zero. On the other
hand, at temperatures well above the first transitidn (

efficient by a fit of the simulation data should be considered™ 350 K) we find the MC data are properly fitted to a fourth-

suspect.(This problem pertains only to the region near Order Landau potential, so the sixth-order terms can again be
P=0). Information about the relative stability of tetragonal, €xcluded from the model. The sixth-order terms then occur

orthorhombic, and rhombohedral phases is available at an%f"y in the temperature range in which the transitions take

temperature, since it is always possible to apply fields tha! lace(as plainly shown in '.:'9' B It is also remarkable that
the fourth-order terms exhibit a very strong temperature de-

gendence. Particularly, the anisotropic tesnthanges sign
at around 90 K and takes large negative values all through

:;Flh tthe behatwor Of‘g 'S falrly reasopable.flt |sdp03|t|ve batl the intermediate-temperature range. So, apart from the influ-
Igh temperatures, becoming negative a few degrees DEIoW, - j; has, together with, andh,, in determining the tran-

T.1, as corresponds to a first-order transition. For very IOWsition sequence, we find that a negativés responsible for

temperaturesa also behaves well, tending smoothly to its O 6 first-order character of the cubic to tetragonal transition.
K value. This is because, in this region, the underlying Lan- |, Fig. 4 we have plotted our coefficients near the cubic to
dau potential is simpléthe thermal fluctuations are relatively tetragonal transition temperature together with the available
small and the sixth-order terms almost negligibléowever,  experimental resul® (We have changed the temperature
in the intermediate regioffrom 150 to 250 K, a turns posi-  scale to make the experimentgl; coincide with the theo-
tive again, which would mean that the cubic phase becomegtical one) The agreement is only qualitative, but as good
metastable in a wide temperature interval. This metastabiliths could be expected given the simplifying assumptions in-
is explicitly ruled out within our model by zero-field MC volved in the experimental work of Ref. @he coefficients
simulations starting from a cubic phase, in which we foundare restricted to be constant or to depend linearly on tempera
no trace of it, which illustrates the fact that the fitieds not

guaranteed to be valid within the unexplored region close to 004
P=0. We thus reconsidered the fitting of our data, imposing 008 |-
a smooth temperature evolution @fwe assumed that in the
intermediate-temperature rang€T) is given by a simple
interpolation(Fig. 2) between the high-temperature region,
where we can reliably sample it, and the low-temperature
limit determined directly by the convergence to the effective
Hamiltonian (a third-order polynomial suffices for our pur-
pose$. With this from fora(T) fixed, our MC data are still
well fitted to the Landau potential of E). For instance, at

190 K, the relative error obtained wheiT) is freely fitted % e w0 @m0 sw a0 a0
is 2.2%, and whera(T) is fixed by the interpolation, the Temperaturs (K)

error is still very small: 3.6%. This clearly shows that, in the £ 4. comparison of our free-energy coefficietitses with
intermediate-temperature region, our Monte Carlo data conmne experimental values of Refs. ®pen symbolsand 9 (solid
tain little information about the value od. Higher-order  symbols: solid line and circles fom, dotted line and squares for
terms were tried but found to play no role in the fit, so theyu+y, dashed line and “up” triangles fon,+h,, and dash-dotted
can be excluded from the potential. Our final results ardine and “down” triangles forh,. The vertical line marks the cubic-
shown in Fig. 3. tetragonal transition temperature.

lead the system to each of these symmeiries.
As shown in Fig. 2, at temperatures around and abov

0.02 |

-0.01

-0.02

Free-energy coefficients
o

-0.08 |
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ture) and the fact that the differences among the two experi- IV. SUMMARY
tmhg?):f/ are comparable to those between experiment and We have studied the Devonshire-Landau potential under-

9] Kk | hat the oh . lying the phase transition sequence of BaJi@ing the first-
ur-work strongly suggests that the phase transitions 0grinciples effective Hamiltonian parametrized by Zhong,

BaTiO; can be described in terms of a single Landau poteny/anqerpil, and Rabe. The order-parameter configuration
tial F with the form of Eq.(3). Despite what is assumed in gpace was explored with the help of auxiliary electric fields
most of the previous work on this problem, the quadraticinat change the location and relative stability of the free-
parameten is found to exhibit a strongly nonlinear tempera- energy minima. Our results show that the typically assumed
ture dependence. This is clear because we can reliably corm of the potential, an expansion up to the sixth order in
culatea at high (over T¢;) and very low temperatures, and the polarization from the paraelectric cubic phase, properly
the two regions cannot be joined linearly. We show that allaccounts for the behavior of the system. But, despite what is
the high-order terms iff present a very significant evolution usually presumed, we find a nontrivial temperature depen-
with temperature. This conclusion is essentially opposed tdence for all the coefficients in the expansion, including the
the temperature-independent behavior that is still assumed yuadratic terna, which is shown to behave nonlinearly. Our
some authorgsee, for example, Ref. 10lt is also very work also shows that the sixth-order terms in polarization
remarkable that the two features of Baifhat require the needed to explain basic features of BaJi® a Devonshire-
inclusion of sixth-order terms in the Landau potential, i.e.,Landau approackthe first-order character of the transitions
the first-order character of the transitions and the occurrenc@nd the occurrence of an orthorhombic phaae properly

of an orthorhombic phase, have been reproduced using @counted for by an interaction model that only includes
fourth-order effective Hamiltoniaf® This piece of informa-  €rms up to the fourth order.

tion should be taken into account when constructing me-
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