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We report on results of theoretical study of nonuniform superconducting states in quasi-one-dimensional
systems, with attractive interactions and Zeeman splitting between electron spins. Using bosonization to treat
intrachain electron-electron interactions, and a combination of renormalization group and mean-field approxi-
mation to tackle interchain couplings, we obtain the phase diagram of the system, and show that the transition
between the uniform and nonuniform superconducting phases is a continuous transition of the commensurate-
incommensurate type.
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The possibility of a superconducting state with inhomo-and mean-field theories are much less reliable tHb@n the
geneous order parameter, stabilized by a sufficiently largether hand, the nonperturbative machinery developed for
Zeeman splitting between electrons with opposite spin orienstudying one-dimensional interacting electron systésspe-
tations due to either an external magnetic or internal excially bosonizatiof?) allows us to go beyond the mean-field
change field, was suggested more than thirty years ago Bjieory and treat the intrachain electron-electron correlation
Fulde and Ferrelland Larkin and Ovchinniko?.Since then — exactly in Q1D systems. In this paper we will take an ap-
this Fulde-Ferrell-Larkin-Ovchinnikov(FFLO) state has proach that is similar to the one used in Ref. 26, namely to
been the subject of a number of theoretical studies, but ngeat the intrachain electron-electron interaction exactly us-
direct evidence of its existence has ever been found in coring bosonization, and tackle the interchain couplings using a
ventional superconductors. More recently it has attracted recombination of renormalization groufRG) analysis and
newed interest in the context of organic, heavy-fermion, andnean-field approximation. Using this approach we are able
high-T,. cuprate superconductots22as these new classes of 10 make a number of quantitative and reliable predictions
superconductors are believed to provide conditions that ar@bout the FFLO state in these systems. In particular, we will
favorable to the formation of the FFLO state due to theirshow that the phase transition Bf; is continuousin these
quasi-one- or quasi-two-dimensionality as well as unconvensystems, and work out its critical properties. For the sake of
tional pairing symmetry. Indeed, some experimental evi-Simplicity and concreteness, we restrict our discussion to
dence of its existence has been report&tf?2! zero temperature throughout the paper.

The following picture emerged from the early theoretical We start by considering a one-dimensional electron gas
studies(mostly of mean-field typeof conventionalswave  With attractive interactions. In the bosonized form, the
superconductors subject to a Zeeman fiBldFor a suffi- ~Hamiltonian reads
ciently high field, the system is in the normal state. As the
field strength decreases, at low temperatures the system un- H=Hc+Hs+Hg, @)

dergoes a second-order phase transitioBatBc,(T) into  whereH, andH, are the Hamiltonian for the charge and spin

the FFLO superconducting state. As the field strength furthegectors (which are decoupled, signaling the spin-charge

decreases, another phase boundary is encounteBd(at), separation?®

and the system goes through another phase transition into the

usual BCS superconducting state with uniform supercon- J' dx( U,
“ 2

2
Ko (o024 2Pa)

ducting order parameter. While it is much more difficult to H K,

+V,cog \/8w¢a)] ,
locate the position 0B.1(T) thanB.,(T) (even in the mean- 5
field theory, as well as to address the nature of the transition ) o @
there, it has been widely assurd@that this is a first-order- Wherea=c ors, andH, is the Zeeman coupling:

phase boundary, across which the momentum of the order

o : . [1
parameter and the magnetization change discontinuously. H.= BSot— [/ _— Bf dxg X). 3
This viewpoint was disputed in Ref. 6, in which the authors = OreBS; 27Tg'uB xds(X) ®

argue that the transition &, (T) is of second order. Thus | ase equationss, and &, are bosonic charge and spin

the natyre of this transition is an unsejttled ISSue. fields which are related to theoarse-grainedcharge and
In this paper we study quasi-one-dimensiof@lLD) su- spin densities:

perconductors subject to a Zeeman field, and the possibility
of the formation of FFLO states in these systems. Our moti- 2 1

vation comes from two considerations. First of all, some of p(X)= \/:&X¢C(x), S,(X)=\/5—dxds(X);  (4)
the experimental candidates for FFLO state are made of . 2m

weakly coupled chains and are therefore Q1D. Secondly, it igvhile ¢, are their dual fields satisfying

known that the fluctuations are much stronger in low-
dimensional systems than in three-dimensidB8)) systems, [Pa(X),05 0, (X" )]=16(x—X"). 5)
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For attractive interactions, we typically have the Luttingertinger liquid with its own bosonized Hamiltonian, which de-

liquid parameter& .>1 andK <1 (for noninteracting elec-

trons, we haveK =K =1). If the 1D electron gas is suffi-
ciently far away from lattice commensuration, which we as-
sume to be the case hekg, (which measures the strength of

4k; Umklapp scatteringmay be set to zero. Thud, takes

scribes the low-energy spin excitations of the system:

vSO| 2 2
HsoI:f dXT[KsoI(&xasol) +(‘9x¢so|) /Ksol]-
(1)

thg form of free massless bosons. On the othgr hand, in thg, the long-wave length limit, the soliton density field
spin sectoH ¢ has the form of +1D quantum sine-Gordon beoi(x) is related to the spin field, through

model, and forK <1, V, (which measures the strength of

back scattering between electrons with opposite $psnl-

Bs(X) = bso(X)/\2+ \[m2ngo(B)x+const,  (12)

evant in the RG sense; at low energies it opens up a gap

As~vA[VslvAZ]Y272K9 (A s the ultraviolet cutoff for

spin excitation® The elementary spin excitations are mas-

sive solitons(kinks and antikinks of the ¢ field, which
carry spin+1/22" This spin gapA, is the analog of quasi-

whereng,, is the soliton density of the ground state. In the
limit B—B,+0", the solitons become extremely dilute and
the repulsive interaction among them becomes irrelevant;
they can be treated as spinless free fermfdnss a conse-

particle gap in the BCS theory of higher dimensional superduence of this we havei) Kso=1 and (i) nso(B)>(B

conductors. The fundamental difference here, however, IS

B.)¥2in this limit. Using these results we find in the in-

that in 1D there igi0 long-range superconducting order; in- qommensurate phase the superconducting correlation func-
stead the correlation function of the Cooper pair operatof'on

decays with a power law. The power-law exponent can be
calculated using the explicit representation of electron opera-

tors in terms of boson fields:
‘ﬂx,o: Naean\kfx_iq))\,a(x)]! (6)

where A=*1 represents left/right movergr=*1 repre-
sents up/down spin particleN,; is the Klein factor that also
includes a normalization constant, and

O o= VT2 (6= Nbo) + 0 (65— N9l (7)
Thus the singlet pair correlation functigat T=0)
(120090100 Y 1 (X )i 141 (X))
o (exi 2 6o(x) — 0c(x) 1)
X (exdiv2al ¢o(x) = bs(x')]])
o |x— x|~ 2 ®
where the scaling dimension

1
é:SC_ 2Kc .
Here we have used the fact that the spin figldx) is long-

range ordered in the spin-gapped phase.
Let us now consider the effect ¢i1,. In H, the Zee-

9

(W (09T 001X ) i gaa (X))
ocexiQ(B)(x—x')]|x—x'| s, (13)

where Q(B) = mng,(B); approaching the phase boundary:
B—B.+0", we haveQ(B)x(B—B.)? and

1 1

géc:Z_K(:+ 4 Esct 4 (14)
This incommensurate phagm the spin sectoris the 1D
analog of the FFLO phase in higher dimensional systems as
the appearance of the spin solitons in the ground state in-
duces an oscillatory phase in the superconducting correlation
function, Eq.(13). Also the ground state now has a finite
magnetization as in the FFLO phase, and the additional fluc-
tuation due to the soliton liquid makes the superconducting
correlation function decay faster in the incommensurate
phase in arfloose analogy to the fact that the appearance of
unpaired quasiparticles reduces the size of the superconduct-
ing order parameter in the FFLO phase. We emphasize again
here that there isi0 long-range superconducting order in
either the commensurate or incommensurate phases; also the
CIC transition is continuous ass,, increases continuously
from zero asB crosseBq; both the magnetization and wave
vector of oscillationQ are proportional tang,.

We now turn to the discussion of interchain couplings.

man field couples to the soliton density and plays the roléThe three leading potentially relevant perturbations to the

of the chemical potential of spin solitons. In fadt

decoupled Luttinger liquiddLL) fixed point are single elec-

+H, takes exactly the form of the Pokrovsky-Talapov tron hoppingH., Cooper pair hoppingor Josephson tunnel-
modef®?° which was introduced to study the two- ing) H;, and interchain B; back scatteringsic;spw.>* For

dimensional classical commensurate-incommensuate)
transition. In our context, we thus expectantinuousCIC
transition at

B=Bc1=2As/gus, (10

beyond which spin solitons start to proliferate in the ground
state. Equatior(10) is an exactresult because the Zeeman

field couples toS\°' which is a conserved quantit{.in the

attractive interactions,>1), Hg/spw IS less relevant than

H; in both the commensurate and incommensurate phases.
H. is irrelevant in the commensurate phase due to the pres-
ence of a spin gap. Since in this case the scaling dimension
for H; is

E1=2&,.= 1K <2, (15

we conclude that Cooper pair hopping is the leading relevant

incommensurate phase, the spin solitons form a spinless Luperturbation at the dLL fixed point, and the system flows

140511-2



RAPID COMMUNICATIONS

INHOMOGENEOUS SUPERCONDUCTING STATE IN.. .. PHYSICAL REVIEW &3 140511R)
Nonunifrom (FFLO) - _F i i j j
Superconductor - H; tJ<i2_> A i1 11 P
Fermi Liquid :
e Y gl Y+ HC]
B o

- . f dxcog \2m( 6~ 6l)]cog \2m( $— b1,
(ij)

Uniform Superconductor

(18)

. wherei andj are chain indicest is the pair hopping matrix
10 & 20 element(or Josephson coupling strengtKij) stands for
¢ neighboring chainst,xt;, and H.c. stands for Hermitian
FIG. 1. Schematic phase diagram of coupled Luttinger liquidsconjugate. In the case of decoupled Luttinger liquids, there is
subject to a Zeeman field. The solid lines are first-order-phasgpin-charge separation and the CIC transition occurs in the
boundaries while the dashed line is a second-order-phase boundagpin sector. As we see in EL8), interchain pair hopping
couples the spin and charge fields. On the other hand, since
toward a superconducting phase with long-range supercorthe system is in the superconducting phasgform or non-
ducting order once interchain coupling is turned on in theuniform) in which the charge field,. is long-range ordered,
commensurate phase. in studying the transition driven bl we may use a mean-
Now let us consider the incommensurate phase. Right afield approximation and replace ¢Q@(0'C— 64)] in Eq.
ter the system enters the incommensurate ph8seB.;  (18) by its expectation value{cogy2m(6.—6.)])=C.
+07), we have Clearly this expectation value dependsBmnd it will also
develop a dependence onin the incommensurate phase;
E)=2¢L = 1K +1/2<2, (16) however, as long as the dependence is smooth across the
transition (which would be the case if the transition is con-
thusH is still relevant, albeit having a higher scaling dimen- tinuous as we will show to be the caswe can treat it as a
sion than that in the commensurate phase. However, in thigonstant. Thus in the mean-field approximattdnbecomes
caseH, may also be relevant, as there is no longer a spin gap
irc; ttr)is case. We find in this case the scaling dimensioH of H‘I;/IF: —CtJE dx cog \/;( ¢is_ js)]. (19)
0y

1 5 Equation(19) can also be obtained more formally by inte-
gézz(Kch 1K)+ 3 (170  grating out the fluctuations of thé, field on top of its ex-
pectation value in the Lagrangian formalism, which will
yield a slightly renormalized couplingC. The quantum
_ \ ( ___Hamiltonian of Hg+H,+HY'F can be mapped onto the
the leading relevant perturbation at the dLL fixed pointy qpiem of classical CIC transition driven Byat finite tem-
which drives the system to the Q1D superconducting FFL eratures, ird+1 dimensions d is the physical dimension
phase once interchain coupling is turned on. On_ the othe(5f the que{ntum problem we study hré is known that the
hand, for :<K:<3/2, we have{,<¢;<2, andH, is the ¢ transition in higher dimensions is still continuous, but
leading relevant perturbation at the QLL f|?<ed ppmt; in thIS'the critical behavior is very different from thé=1 case
case the systv_amazflows toward the high-dimensional Fermiggnsidered earlier; in this case the density of domain walls
liquid fixed point™ These results are summarized in a sche-hat consist of solitons of individual chains aligned with true

matic phase diagraiirig. 1). The phase boundary separating long-range orderdepends logarithmically on the distance
the Fermi liquid and the two superconducting phases argqm criticality:>®

likely to be first order since they are determined by the cross-
ing of the scaling dimensions of two different relevant op- Nyan 1/log(|B—B¢| 1), (20
erators at the dLL fixed point; on the other hand, as we will
argue below, the transition from uniform to FFLO supercon-asB—B.+0". The wave vector of the inhomogeneous su-
ducting phases is continuous. We emphasize in this phaggerconducting order paramet@and the magnetization are
diagram we assume the Zeeman fiBlds not too strong; if  both proportional ton,,,; and thus have the same depen-
the Zeeman splitting is so strong as to be comparable to, sajence orB near criticality. We note that while we obtained
the Fermi energy, the continuum Luttinger liquid descriptionthese results by making a mean-field approximation to the
of Q1D systems breaks down. (long-range orderedcharge fields, the main conclusion that
To address the nature of the transition between the unithe transition is continuous should be robust; this follows
form and FFLO superconducting phases, we focus on theimply from the fact that the domain wallgshose appear-
pair-hopping process and neglect other perturbations that aence drives the transitipmepel each other, which is clearly
less relevant: the case here. The logarithmic dependencengf;, on B

We thus find that folK.>3/2, we havet);<¢., andHj; is
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—B. then follows from the exponentially weak repulsion be- showed that the transition between the uniform and nonuni-
tween the domain walls. These in turn justify the validity of form superconducting states is continuous.

the mean-field approximation employed.
To summarize, we studied the formation of the nonuni-

form superconducting state in quasi-one-dimensional sys- The author has benefited greatly from discussions with
tems. Among our results include a phase diagram in terms dbavid Huse. This work was supported by NSF DMR-
the Zeeman field and Luttinger liquid parameter. We als®971541 and the A. P. Sloan Foundation.
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