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Inhomogeneous superconducting state in quasi-one-dimensional systems

Kun Yang
National High Magnetic Field Laboratory and Department of Physics, Florida State University, Tallahassee, Florida 32306

~Received 20 December 2000; published 23 March 2001!

We report on results of theoretical study of nonuniform superconducting states in quasi-one-dimensional
systems, with attractive interactions and Zeeman splitting between electron spins. Using bosonization to treat
intrachain electron-electron interactions, and a combination of renormalization group and mean-field approxi-
mation to tackle interchain couplings, we obtain the phase diagram of the system, and show that the transition
between the uniform and nonuniform superconducting phases is a continuous transition of the commensurate-
incommensurate type.
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The possibility of a superconducting state with inhom
geneous order parameter, stabilized by a sufficiently la
Zeeman splitting between electrons with opposite spin or
tations due to either an external magnetic or internal
change field, was suggested more than thirty years ago
Fulde and Ferrell1 and Larkin and Ovchinnikov.2 Since then
this Fulde-Ferrell-Larkin-Ovchinnikov~FFLO! state has
been the subject of a number of theoretical studies, bu
direct evidence of its existence has ever been found in c
ventional superconductors. More recently it has attracted
newed interest in the context of organic, heavy-fermion, a
high-Tc cuprate superconductors,3–22 as these new classes
superconductors are believed to provide conditions that
favorable to the formation of the FFLO state due to th
quasi-one- or quasi-two-dimensionality as well as unconv
tional pairing symmetry. Indeed, some experimental e
dence of its existence has been reported.3,10,12,21

The following picture emerged from the early theoretic
studies~mostly of mean-field type! of conventionals-wave
superconductors subject to a Zeeman fieldB. For a suffi-
ciently high field, the system is in the normal state. As
field strength decreases, at low temperatures the system
dergoes a second-order phase transition atB5Bc2(T) into
the FFLO superconducting state. As the field strength furt
decreases, another phase boundary is encountered atBc1(T),
and the system goes through another phase transition int
usual BCS superconducting state with uniform superc
ducting order parameter. While it is much more difficult
locate the position ofBc1(T) thanBc2(T) ~even in the mean-
field theory!, as well as to address the nature of the transit
there, it has been widely assumed23 that this is a first-order-
phase boundary, across which the momentum of the o
parameter and the magnetization change discontinuou
This viewpoint was disputed in Ref. 6, in which the autho
argue that the transition atBc1(T) is of second order. Thus
the nature of this transition is an unsettled issue.

In this paper we study quasi-one-dimensional~Q1D! su-
perconductors subject to a Zeeman field, and the possib
of the formation of FFLO states in these systems. Our m
vation comes from two considerations. First of all, some
the experimental candidates for FFLO state are made
weakly coupled chains and are therefore Q1D. Secondly,
known that the fluctuations are much stronger in lo
dimensional systems than in three-dimensional~3D! systems,
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and mean-field theories are much less reliable there.24 On the
other hand, the nonperturbative machinery developed
studying one-dimensional interacting electron systems~espe-
cially bosonization25! allows us to go beyond the mean-fie
theory and treat the intrachain electron-electron correla
exactly in Q1D systems. In this paper we will take an a
proach that is similar to the one used in Ref. 26, namely
treat the intrachain electron-electron interaction exactly
ing bosonization, and tackle the interchain couplings usin
combination of renormalization group~RG! analysis and
mean-field approximation. Using this approach we are a
to make a number of quantitative and reliable predictio
about the FFLO state in these systems. In particular, we
show that the phase transition atBc1 is continuousin these
systems, and work out its critical properties. For the sake
simplicity and concreteness, we restrict our discussion
zero temperature throughout the paper.

We start by considering a one-dimensional electron
with attractive interactions. In the bosonized form, t
Hamiltonian reads

H5Hc1Hs1Hz , ~1!

whereHc andHs are the Hamiltonian for the charge and sp
sectors ~which are decoupled, signaling the spin-char
separation!:26

Ha5E dxH va

2 FKa~]xua!21
~]xfa!2

Ka
G1Va cos~A8pfa!J ,

~2!
wherea5c or s, andHz is the Zeeman coupling:

Hz5gmBBSz
tot5A 1

2p
gmBBE dx]xfs~x!. ~3!

In these equationsfc and fs are bosonic charge and sp
fields which are related to the~coarse-grained! charge and
spin densities:

r~x!5A2

p
]xfc~x!, Sz~x!5A 1

2p
]xfs~x!; ~4!

while ua are their dual fields satisfying

@fa~x!,]x8ua~x8!#5 id~x2x8!. ~5!
©2001 The American Physical Society11-1
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For attractive interactions, we typically have the Lutting
liquid parametersKc.1 andKs,1 ~for noninteracting elec-
trons, we haveKc5Ks51). If the 1D electron gas is suffi
ciently far away from lattice commensuration, which we a
sume to be the case here,Vc ~which measures the strength
4kf Umklapp scattering! may be set to zero. ThusHc takes
the form of free massless bosons. On the other hand, in
spin sectorHs has the form of 111D quantum sine-Gordon
model, and forKs,1, Vs ~which measures the strength
back scattering between electrons with opposite spins! is rel-
evant in the RG sense; at low energies it opens up a
Ds;vsL@Vs /vsL

2#1/(222Ks) (L is the ultraviolet cutoff! for
spin excitations.26 The elementary spin excitations are ma
sive solitons~kinks and antikinks! of the fs field, which
carry spin61/2.27 This spin gapDs is the analog of quasi
particle gap in the BCS theory of higher dimensional sup
conductors. The fundamental difference here, however
that in 1D there isno long-range superconducting order; i
stead the correlation function of the Cooper pair opera
decays with a power law. The power-law exponent can
calculated using the explicit representation of electron op
tors in terms of boson fields:

cl,s5Ns exp@ ilkfx2 iFl,s~x!#, ~6!

where l561 represents left/right movers,s561 repre-
sents up/down spin particles,Ns is the Klein factor that also
includes a normalization constant, and

Fl,s5Ap/2@~uc2lfc!1s~us2lfs!#. ~7!

Thus the singlet pair correlation function~at T50)

^c1111
† ~x!c2121

† ~x!c2121~x8!c1111~x8!&

}^exp†iA2p@uc~x!2uc~x8!#‡&

3^exp†iA2p@fs~x!2fs~x8!#‡&

}ux2x8u22jsc, ~8!

where the scaling dimension

jsc5
1

2Kc
. ~9!

Here we have used the fact that the spin fieldfs(x) is long-
range ordered in the spin-gapped phase.

Let us now consider the effect ofHZ . In HZ the Zee-
man field couples to the soliton density and plays the r
of the chemical potential of spin solitons. In fact,Hs
1HZ takes exactly the form of the Pokrovsky-Talap
model28,29 which was introduced to study the two
dimensional classical commensurate-incommensurate~CIC!
transition. In our context, we thus expect acontinuousCIC
transition at

B5Bc152Ds /gmB , ~10!

beyond which spin solitons start to proliferate in the grou
state. Equation~10! is an exact result because the Zeema
field couples toSz

tot which is a conserved quantity.30 In the
incommensurate phase, the spin solitons form a spinless
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tinger liquid with its own bosonized Hamiltonian, which de
scribes the low-energy spin excitations of the system:

Hsol5E dx
vsol

2
@Ksol~]xusol!

21~]xfsol!
2/Ksol#.

~11!

In the long-wave length limit, the soliton density fiel
fsol(x) is related to the spin fieldfs through

fs~x!5fsol~x!/A21Ap/2nsol~B!x1const, ~12!

wherensol is the soliton density of the ground state. In th
limit B→Bc101, the solitons become extremely dilute an
the repulsive interaction among them becomes irrelev
they can be treated as spinless free fermions.29 As a conse-
quence of this we have~i! Ksol51 and ~ii ! nsol(B)}(B
2Bc)

1/2 in this limit. Using these results we find in the in
commensurate phase the superconducting correlation f
tion

^c1111
† ~x!c2121

† ~x!c2121~x8!c1111~x8!&

}exp@ iQ~B!~x2x8!#ux2x8u22jsc8 , ~13!

where Q(B)5pnsol(B); approaching the phase boundar
B→Bc101, we haveQ(B)}(B2Bc)

1/2 and

jsc8 5
1

2Kc
1

1

4
5jsc1

1

4
. ~14!

This incommensurate phase~in the spin sector! is the 1D
analog of the FFLO phase in higher dimensional system
the appearance of the spin solitons in the ground state
duces an oscillatory phase in the superconducting correla
function, Eq. ~13!. Also the ground state now has a fini
magnetization as in the FFLO phase, and the additional fl
tuation due to the soliton liquid makes the superconduct
correlation function decay faster in the incommensur
phase in an~loose! analogy to the fact that the appearance
unpaired quasiparticles reduces the size of the supercond
ing order parameter in the FFLO phase. We emphasize a
here that there isno long-range superconducting order
either the commensurate or incommensurate phases; als
CIC transition is continuous asnsol increases continuously
from zero asB crossesBc1; both the magnetization and wav
vector of oscillationQ are proportional tonsol .

We now turn to the discussion of interchain coupling
The three leading potentially relevant perturbations to
decoupled Luttinger liquid~dLL! fixed point are single elec
tron hoppingHe , Cooper pair hopping~or Josephson tunnel
ing! HJ , and interchain 2kf back scatteringsHC/SDW.31 For
attractive interactions (Kc.1), HC/SDW is less relevant than
HJ in both the commensurate and incommensurate pha
He is irrelevant in the commensurate phase due to the p
ence of a spin gap. Since in this case the scaling dimen
for HJ is

jJ52jsc51/Kc,2, ~15!

we conclude that Cooper pair hopping is the leading relev
perturbation at the dLL fixed point, and the system flo
1-2
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toward a superconducting phase with long-range super
ducting order once interchain coupling is turned on in
commensurate phase.

Now let us consider the incommensurate phase. Righ
ter the system enters the incommensurate phase (B→Bc1
101), we have

jJ852jsc8 51/Kc11/2,2, ~16!

thusHJ is still relevant, albeit having a higher scaling dime
sion than that in the commensurate phase. However, in
caseHe may also be relevant, as there is no longer a spin
in this case. We find in this case the scaling dimension ofHe
to be

je85
1

4
~Kc11/Kc!1

5

8
. ~17!

We thus find that forKc.3/2, we havejJ8,je8 , andHJ is
the leading relevant perturbation at the dLL fixed po
which drives the system to the Q1D superconducting FF
phase once interchain coupling is turned on. On the o
hand, for 1,Kc,3/2, we haveje8,jJ8,2, andHe is the
leading relevant perturbation at the dLL fixed point; in th
case the system flows toward the high-dimensional Fer
liquid fixed point.32 These results are summarized in a sc
matic phase diagram~Fig. 1!. The phase boundary separatin
the Fermi liquid and the two superconducting phases
likely to be first order since they are determined by the cro
ing of the scaling dimensions of two different relevant o
erators at the dLL fixed point; on the other hand, as we w
argue below, the transition from uniform to FFLO superco
ducting phases is continuous. We emphasize in this ph
diagram we assume the Zeeman fieldB is not too strong; if
the Zeeman splitting is so strong as to be comparable to,
the Fermi energy, the continuum Luttinger liquid descripti
of Q1D systems breaks down.

To address the nature of the transition between the
form and FFLO superconducting phases, we focus on
pair-hopping process and neglect other perturbations tha
less relevant:

FIG. 1. Schematic phase diagram of coupled Luttinger liqu
subject to a Zeeman field. The solid lines are first-order-ph
boundaries while the dashed line is a second-order-phase boun
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HJ52 t̃ J(̂
i j &

E dx@c i
1111c i

2121c2121
j c1111

j

1c i
1121c i

2111c2111
j c1121

j 1H.c.#

52tJ(̂
i j &

E dx cos@A2p~uc
i 2uc

j !#cos@A2p~fs
i 2fs

j !#,

~18!

wherei and j are chain indices,t̃ J is the pair hopping matrix
element ~or Josephson coupling strength!, ^ i j & stands for
neighboring chains,tJ} t̃ J , and H.c. stands for Hermitian
conjugate. In the case of decoupled Luttinger liquids, ther
spin-charge separation and the CIC transition occurs in
spin sector. As we see in Eq.~18!, interchain pair hopping
couples the spin and charge fields. On the other hand, s
the system is in the superconducting phase~uniform or non-
uniform! in which the charge fielduc is long-range ordered
in studying the transition driven byB we may use a mean
field approximation and replace cos@A2p(uc

i 2uc
j )# in Eq.

~18! by its expectation value:̂ cos@A2p(uc
i 2uc

j )#&5C.
Clearly this expectation value depends onB and it will also
develop a dependence onx in the incommensurate phas
however, as long as the dependence is smooth across
transition~which would be the case if the transition is co
tinuous as we will show to be the case!, we can treat it as a
constant. Thus in the mean-field approximationHJ becomes

HJ
MF52CtJ(̂

i j &
E dx cos@A2p~fs

i 2fs
j !#. ~19!

Equation~19! can also be obtained more formally by int
grating out the fluctuations of theuc field on top of its ex-
pectation value in the Lagrangian formalism, which w
yield a slightly renormalized couplingC. The quantum
Hamiltonian of Hs1HZ1HJ

MF can be mapped onto th
problem of classical CIC transition driven byB at finite tem-
peratures, ind11 dimensions (d is the physical dimension
of the quantum problem we study here!. It is known that the
CIC transition in higher dimensions is still continuous, b
the critical behavior is very different from thed51 case
considered earlier; in this case the density of domain w
~that consist of solitons of individual chains aligned with tr
long-range order! depends logarithmically on the distanc
from criticality:33

nwall}1/log~ uB2Bcu21!, ~20!

asB→Bc101. The wave vector of the inhomogeneous s
perconducting order parameterQ and the magnetization ar
both proportional tonwall and thus have the same depe
dence onB near criticality. We note that while we obtaine
these results by making a mean-field approximation to
~long-range ordered! charge fields, the main conclusion th
the transition is continuous should be robust; this follo
simply from the fact that the domain walls~whose appear-
ance drives the transition! repel each other, which is clearl
the case here. The logarithmic dependence ofnwall on B

s
e
ry.
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2Bc then follows from the exponentially weak repulsion b
tween the domain walls. These in turn justify the validity
the mean-field approximation employed.

To summarize, we studied the formation of the nonu
form superconducting state in quasi-one-dimensional s
tems. Among our results include a phase diagram in term
the Zeeman field and Luttinger liquid parameter. We a
r-

.

die
the
.
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showed that the transition between the uniform and nonu
form superconducting states is continuous.
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