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Quantum critical effects on transition temperature of magnetically
mediated p-wave superconductivity
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We determine the behavior of the critical temperature of magnetically mediatexe superconductivity
near a ferromagnetic quantum critical point in three dimensions, distinguishing universal and nonuniversal
aspects of the result. We find that the transition temperature is nonzero at the critical point, raising the
possibility of superconductivity in the ferromagnetic phase.
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Recent experiments have shown that superconductivity imomentum and\ ~vgpg is an energy scale of the order of
strongly correlated electron systems is closely associatetthe Fermi energy. We assunf®llowing Refs. 5, 6, 9, and
with proximity to magnetic quantum critical points® sug-  11) that the coupling of spin fluctuations to the electron sys-
gesting it is mediated by critical spin fluctuatichas indi-  tem is given by the Eliashberg equations for the electron
cated by theoretical calculation§ However, the interplay of self-energy 2 (p,iw)=iw[1-Zy(w)] and the anomalous
superconductivity and criticality is not yet understood. In thisself-energyW(p,iw). We find T, by solving the linearized
paper we study the theoretically simplest case, namel§liashberg equations, which are
p-wave superconductivity near a ferromagnetic quantum
critical point in dimensiord=3. Our work is complimentary
to that of Ref. 7 which studied pairing near a two-
dimensional antiferromagnetic quantum critical point.

We have two motivations. One is to know whether the
superconducting . vanishes as the magnetic critical point is
approachedlas shown, for example, in Fig(d) and as found
in Refs. 7 and § or whether it does ndtas shown in Fig. 1
1(b)]. This question has not been definitively theoretically %
settled, because numerical difficulties have prevented a
straightforward attack.The latter scenario raises the inter-
esting possibility of the coexistence of superconductivity and
magnetism noted by Fagt al®, who suggested a third sce-
nario shown in Fig. (c).

Our second motivation is theoretical. Studies of magneti-
cally mediated superconductivity have almost uniformly
been based on the Eliashberg equatiatefined beloy®°
which are believett to give the leading contributions to the
low-energy behavior of systems near critical points. We wish
to know which aspects of the observ&gd are controlled by
low-energy physics.

We consider a three-dimensional metal with uniaxial an-

N o
iw[l—Zp(w)]=TGﬂ_2f N(Qpr)dﬂprf_ocdépr 2)

X’TTTE Trx(p—p'iio—iw)

P
lw

0'Zy(0")—¢€,

A o0
W(p,lw):Wf N(Qp/)dﬂp/fimdé'pr (3)

XWTE Xu(p—p'ivo—io’)

iw’
~W(p',in")

[i0'Zy(w)]? e,

isotropy near a ferromagnetic quantum critical point. The a B °)
magnetic susceptibility 1§13 . o em | T -
FM
0 0 0 FM\/\ FM . \
| v pe Aq SC .\ 8C SC SC
-1
x (q,v)= 0 A O fo r r, r r, r
o 0 A Aq |v|pe
FIG. 1. Possible scenarios for the emergence of a superconduct-
q 2 ing state near a quantum critical point of a magnetic systanthe
+|=—| +r|8pt+ ..., (1) superconducting . is zero in the quantum critical poitQCP and
2pg the superconducting phase does not extend into the magnetically

) ) ordered phasegp) T, is finite in QCP and there is a coexistence of
wherer is a parameter that measures the distance of thghe superconducting and ferromagnetic statg;as in (b) but the
system from its quantum critical poiliEig. 1); a andb are  superconducting, vanishes in QCP. The parameteneasures the
Cartesian coordinatedy measures deviations from Heisen- distance from the quantum critical poing (Refs. 12 and 18 In
berg symmetry, and the ellipsis denotes less singular termgxperimental realizations corresponds to hydrostatic pressure
Here pr is a momentum scale of the order of the Fermi(Ref. 1).
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Here the momentum integration has been separated into i®s Dy=\[dg(r,0)+2dg(r,A)], D;=Ady(r,0) with

tegration in a direction perpendicular to the Fermi surfaceU, ,=[(|v|/Ax)tan Y(Ax/|v])+x2+r+A]Y2 v=0—w'.

(€p integration) and integration over angle3, of the Fermi  P|(x) is a basis function of thith irreducible representation

surface;N(€),) is the angle-dependent density of states ofof the lattice symmetry group and the cutoff tef@Z|/A in

the quasiparticles on the Fermi surface divided by its averEq.(8) comes from theSp? correction ing?. For definiteness

age. All three spin components contribute &&; but as  we assume a spherical Fermi surface with a constant density

stressed by Monthoux and Lonzaridor spin triplet pairing  of stated No(x)—1] in which caseP|(x) become Legendre

only one combination can contribute to any given componenpolynomials but most of our results depend only on

of the gap function and is maximized if we pick the one lim,_, P(x).

for which A=0. A may be experimentally defined from the  In K, the off-diagonal terms are frof, and give pair-

singular(asr—0) behavior of the specific heat coefficient ing; the diagonal terms come mainly froeZ| and repre-
sent depairing corresponding to scattering. At high tempera-

. C_ tures the eigenvalues,(T) are negative; aT. the leading
Y_T“Lno T _j d2pN(€p) Zp(7T) eigenvalue crosses 0. We solve the matrix system numeri-
cally; the size of the kernel iss A/(27T,).
1 1 1 For p-wave pairing in systems with Heisenberg symmetry
=No| 1+ E)\ In T +2 Inm : @ the critical temperatures are typicallyT.~10 °A which

translates into numerically unmanageable kernel sizeN of

Equations(2) and (3) apply only for frequencies much ~50000. We therefore use two alternative numerical ap-
less than the electron bandwidth and only if the momentunproximations; a down-folding procedure and variants of the
dependence oZ, and W is negligible relative to the fre- adaptive discretization proposed by Bickéfdn the down-
quency dependence, conditions which are satisfied for thfolding procedure we separadg (w,) in Eq. (5) into a low-
leading singular behavior as—0. We therefore em- frequency part®°“(w,) with 0<|n|<N_ow and high-
ploy the Migdal approximatioff Z,(w)—Z(w), W(p,w)  frequency par®™'®™(w,) with N, ow<|n|<N. Then Eq.
—W(Q,,iw) and perform the integral over the magnitude (5) can be written as a block linear system and formally
of the momentum. To perform the remaining integration oversplved ford'¢H, yielding K-OW. LOW= ,dLOW yyith
angles we note thatwZ(w) has the full symmetry of the
lattice, while forp-wave superconductivityV corresponds to
the =1 irreducible representation of the lattice group
[Wi(ap)=a'Wi(Qp)]. | o T

The momentum transfeq carried by the spin fluctua- This transformation is exact. The simplification is that for
tions in Eqg. (1) is given by g?=(p—p’)?=2p2(1 largeN ow K is nearly diagonal st may easily be com-
—(p-p’)/|p||p’|)+e,2;,/v,2:. The first term ing? is obtained puted in the “high” subspace. In physical terms, e.g., in the

by placing both moment@ and p’ on the Fermi surface ;ier';ef;k;elrg t(;\?aSAd; Ooarl]r;? fsg;;e?i,ntﬁljommg?gm re-
while the last term is a small correctiofp? taking into y 9 9 i

: . . =—(2\I3)In(A/=T)—(2n+1)1+2\+2\ In(A/27Tn)] and
account the fact that intermediate states can explore region tops all off-diagonal pairing termsK,.~ (\/3)In(A/

| he Fermi surf nd will be importan ff. . .
close to the Fermi surface and be important as a cuto 2 TIn—m|) for n,m>N_q in the high-frequency kernel.

We perform thee,, integral, use the angle dependence of In the adaotive di tizat imati th
andW and then follow Bergmann and Rain@rdefining an nthe adaptive discretization approximation we rearrange the
high-frequency elements of the kern€l,,, (n,m=Now)

order parametetb(w) =W(iw)/|0Z(w)| and casting Eqs. into rectangular blocks of quadratically or exponentially in-

(2) and(3) into an eigenvalue problem for an eigenvajue creasing size and represent each block by its average in the
reduced kerneK'°W. We have verified that both approxi-

KES‘IWI Knmt E Kni(P_Kij)ilij-

[il,li[>NLow

2 Koo ®@i(0)=p®(o). (5)  mations(where the matrix can be diagonalized exactiy-
o' produce faithfully the eigenvalues of E¢p) for large tem-
T, corresponds to the solutign(T,)=0. Here peratures, and that our results are insensitive to the choice of
NLOW-
|omZ(®m)| Results forT.(r,A) are shown in Fig. 2. The inset of the

Knm=D1(@n—om)— T Snm. (6) figure demonstrates the convergence of the scaling procedure
with reduced kernel sizB o\, for the numerically most dif-
® ficult case,A=0. Reduced kernel size, o,w=500 show
Do(0)+2 >, Do(w—w')|. (7)  satisfactory convergence, so we have used si¥egy
®'=0 =500 in the cases wheN=A/(27T;)>1000 and the full
kernelK otherwise.
As previously noteli T, is very low in the Heisenberg
case, howeveiT .(r—0)>0, raising the interesting possibil-
L %P/ (1—2x2)dx ity (z_alregdy noted by Fagt al®) of superconductivity ex-
d|(f,A):J No(X) ! (g)  tending into the magnetic phase, however, we do not agree
Uy a(Urpa+ o' Z(o0")|IA) with Ref. 8's claim thatT,(r=0)=0. The key point is the

|oZ(w)|=|w|+ 7T

The kerneldD,, D, are defined in terms of the fundamental
integrals
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N ' 25 ' be seen from E(8) to be infrared dominated, so the leading
10 1 ' singular behavior may be expressed in terms of a scaling
~i ~~_. ., 3 function:
~. ~. o
~ <~ T~ X 25
NS F(rA, opm) = — | —m £0
) ~o E 2 (r; ywnm)_ r+A (r+A)3/2 y Wnm
o 15
X 6
§ _ 1 ‘ 1 o0,
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wheref (x) = [5ydy/(x/y+y?+1)?. [Notef(0)=1/2 and as
, x—o f(x)—(2m/9y/3)x 23] Substituting, we find
] dT, & 2F(r,A00 & "I [2F(r A 0p— o
e O Ol il
0k " 1 L L N dl’ n=0 (2n+1) n=1 m=0 (2n+1)
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FIG. 2. Main figure: Superconducting transition temperature as (2n+1)? (2m+1)(2n+1) |

ron Ul Rl 18 M0 her (1,5 s 1 come o i ctatons
from the bottom curve up and coupling constant 1.5. For the in the two “hard” spin d'reCt'OTS arld are palrb_reakmg and
A=0.7;0.8;0.9;1.0 curve&ashed lineswe have plotted /10 for the A=0 terms come from the “soft” spin direction and are
better visual comparison with the Heisenbery=0) case.A  POth depairindthe third term in Eq(10)] and pairing[the
~2peur is the characteristic spin-fluctuation frequency; the dottedlast term in Eq.(10)]. For largeA (strong Ising anisotropy
line is 2 T.=r32 Inset:T (r,A=0) for different values of down- We may setF(A#0)=0; there are nav,=wp, terms; the
folding scaleN, oy - off-diagonal terms are negative Tg/dr <0). The physical
interpretation is that the pairing and depairing effects of qua-

cutoff |wZ|/A in Eq. (8) which leads to the leadingdepen-  Sistatic (<T) spin fluctuations approximately candek in
denceDo(0)~3D;(0)~3\ In 1/(ﬁ+|wz|/A). If the cut-  the swave caséS)_ Wh|le_ at o>T the pairing effect wins.
off is neglectedas in Ref. § the divergence oK., drives Thus TC_ monotonically increases as—0 because thg/sspm
T.—0 and produces the phase diagram shown in Fig. 1 fluctuations become strongsgr. AE0, dic/dr~-—T %,
Reference 7, which studied a two-dimensional antiferromagl-€- Tc(r) IS linear; forr=>Tc* the derivative— (In 1/r)/r,
netic problem, argued that the divergent mass enhanceme$f W€ expect .~ In? 1ir. .
associated with the critical fluctuation would drive the super- As A decreases, the,=wy terms increase and as
fluid stiffness and thug to zero. In their case the divergent —0 dominate at smalt. In this limit quasistatic spin fluc-
mass occurs only at one point on the Fermi surface, so fuations are strongly pairbreaking, andrat0 T, is set by
seems to us the considerations of Hlubina and Biskould the temperature at which the effect of these fluctuations be-
imply a nonzero superfluid stiffness in the problem theycomes small enough to allow pairing. Fomr
studied. In any event, in the ferromagnetic problem of inter-<<\*(7Tc)? In> A/T;, the wZ term in F is important and
est here the critical fluctuations have long wavelengths, andTc/dr~1/(\VraaTs INA/T).  For AN3(wT.)? In2A/T<r
thus do not lead to divergences in the “transport mass” con-<(7T)*?% dT./dr~1f.
trolling the superfluid stiffness. We now consider the variation df,(r =0) with A (this

In the Ising case, as fa-wave pairing,D,(0)~D,(0),  could be varied experimentally, e.g., with uniaxial pressure
the quasistatic depairing and pairing contributions&tean- ~ The arguments leading tord/dr yield
cel and T, is substantially higher than in the Heisenberg " no1
case. The crossover to full Ising behavior has not been pre- dT » F(0A,0) 4SS F(OA,wp— o)
viously studied; we findT, increases rapidly as the Ising dA S (2n+1)? - & (2n+1)?2
anisotropy is increased. (12)

We see from the inset of Fig. 2 that the Heisenberg case h itive: the fi is domi leadi
T (r) displays a maximum at a small nONZars r ., but Both terms are positive; the first term is dominant leading to

for Ising anisotropiesh greater than~r32,, T, decreases a0 @pproximatelA In(1/A) behavior at small. -
g P 9 max ¢ Finally, we consider which frequencies are important for

monotonically ag increases. To understand this behavior Wepairin918 Figure 3 shows results obtained by simply truncat-
compute @ /dr using the Feynman-Hellman theorém: ing the pairing kemelsetting K..—0 for n],|m|>Nyyno

dT. [dp)| tdp dp | “H(®|dK/dr|P) for values ofNy,c between 50 and 500. We have chosen to
?:(ﬁ E:(F> W ©) plot the data in scaled form, as relative changeTinvs

¢ ¢ energy of upper cutoff. The reasonable data colldgdsspite
where @ is the eigenvector defined in E¢5) and up to two order of magnitude variations ifi;) indicates that for
logarithms® (w)~ 1/|w|. The terms occurring inkl/dr may  the parameters considered, pairing comes basically from a

oo
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FIG. 3. TI'", scaled by the tru@, vs the truncation energy
NtI’UI’ICTC .

fixed, small energy range o=0.02A) which does not

change much withT., anisotropy or coupling constant.
(Note that for the values considered the energy scale set bfe

3/2

r, o, =r>4 is much less than the critical energy scale.

Belitz, Kirkpatrick, and Voijta® have argued that the gen-

erally accepted quantum critical form(q,0) *=g%+r is
not correct, and ird=3 should bey " 1(q,0)=Ad? In(qe/q)

+r with A an unknown coefficient. We find that this form

(with A=1) leads to substantially lower.'s (factor of 20
and shrinks the dependence towards=0. The same effect
can be achieved by absorbing the singajalependence into
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the coefficientA: A In(qr/q)—A=In(1/T¥3), and thus rescal-
ing the parameters of the model—r/A, A\—NA, o
—wlA.

Fay and Appef, used a BCS approximation with a pairing
interaction determined by the static susceptibility and found
T (r=0)=0. Our more complete Eliashberg treatment
shows that this is an artifact of their approximation. How-
ever, their important predictions of|g>0 in the ferromag-
netic state and of a minimuitin the Heisenberg casef T,
in the vicinity of r=0 seem consistent with our results.

To summarize, we have presented a theory of the varia-
tion of a p-wave superconductind@. near a ferromagnetic
quantum critical point. We have shown that within the model
the value ofT, is determined by low but fixed energy spin
fluctuations and the variation df, with distance from criti-
cality is controlled by spin fluctuations on the scaleTaf.

We have also demonstrated the crucial role played by the
symmetry of the magnetic fluctuations. We have found ge-
nerically thatT.>0 at the magnetic critical point, raising the
interesting possibility of superconductivity within the or-
dered phase. From this analysis we see thptto an overall
amplitude the smallr behavior of T, is universal, in the
sense that it is determined only by the long-wavelength sus-
ptibility and coupling constant.

Note addedAs the revised version of this manuscript was
in preparation we became aware of a publication reporting
superconductivity in the ferromagnetic phase of a heavy fer-
mion material® however, a direct application of our theory
is not possible because the magnetic transition in this mate-
rial is first order.
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