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Quantum critical effects on transition temperature of magnetically
mediated p-wave superconductivity
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We determine the behavior of the critical temperature of magnetically mediatedp-wave superconductivity
near a ferromagnetic quantum critical point in three dimensions, distinguishing universal and nonuniversal
aspects of the result. We find that the transition temperature is nonzero at the critical point, raising the
possibility of superconductivity in the ferromagnetic phase.
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Recent experiments have shown that superconductivit
strongly correlated electron systems is closely associ
with proximity to magnetic quantum critical points,1–3 sug-
gesting it is mediated by critical spin fluctuations,4 as indi-
cated by theoretical calculations.5,6 However, the interplay of
superconductivity and criticality is not yet understood. In th
paper we study the theoretically simplest case, nam
p-wave superconductivity near a ferromagnetic quant
critical point in dimensiond53. Our work is complimentary
to that of Ref. 7 which studied pairing near a tw
dimensional antiferromagnetic quantum critical point.

We have two motivations. One is to know whether t
superconductingTc vanishes as the magnetic critical point
approached@as shown, for example, in Fig. 1~a! and as found
in Refs. 7 and 8#, or whether it does not@as shown in Fig.
1~b!#. This question has not been definitively theoretica
settled, because numerical difficulties have prevente
straightforward attack.6 The latter scenario raises the inte
esting possibility of the coexistence of superconductivity a
magnetism noted by Fayet al.8, who suggested a third sce
nario shown in Fig. 1~c!.

Our second motivation is theoretical. Studies of magn
cally mediated superconductivity have almost uniform
been based on the Eliashberg equations~defined below!,9,10

which are believed11 to give the leading contributions to th
low-energy behavior of systems near critical points. We w
to know which aspects of the observedTc are controlled by
low-energy physics.

We consider a three-dimensional metal with uniaxial a
isotropy near a ferromagnetic quantum critical point. T
magnetic susceptibility is12,13

x21~q,n!5S 0 0 0

0 D 0

0 0 D
D 1F unupF

Lq
tan21S Lq

unupF
D

1S q

2pF
D 2

1r Gdab1 . . . , ~1!

where r is a parameter that measures the distance of
system from its quantum critical point~Fig. 1!; a andb are
Cartesian coordinates,D measures deviations from Heise
berg symmetry, and the ellipsis denotes less singular te
Here pF is a momentum scale of the order of the Fer
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momentum andL;vFpF is an energy scale of the order o
the Fermi energy. We assume~following Refs. 5, 6, 9, and
11! that the coupling of spin fluctuations to the electron s
tem is given by the Eliashberg equations for the elect
self-energy S(p,iv)5 iv@12Zp(v)# and the anomalous
self-energyW(p,iv). We find Tc by solving the linearized
Eliashberg equations, which are

iv@12Zp~v!#5
l

16p2E N~Vp8!dVp8E
2`

`

dep8 ~2!

3pT(
iv8

Tr x~p2p8,iv2 iv8!

3
1

iv8Zp~v8!2ep8
,

W~p,iv!5
l

16p2E N~Vp8!dVp8E
2`

`

dep8 ~3!

3pT(
iv8

x11~p2p8,iv2 iv8!

3
2W~p8,iv8!

@ iv8Zp~v8!#22ep8
2 .

FIG. 1. Possible scenarios for the emergence of a supercond
ing state near a quantum critical point of a magnetic system:~a! the
superconductingTc is zero in the quantum critical point~QCP! and
the superconducting phase does not extend into the magneti
ordered phase;~b! Tc is finite in QCP and there is a coexistence
the superconducting and ferromagnetic state;~c! as in ~b! but the
superconductingTc vanishes in QCP. The parameterr measures the
distance from the quantum critical pointr c ~Refs. 12 and 13!. In
experimental realizationsr corresponds to hydrostatic pressu
~Ref. 1!.
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Here the momentum integration has been separated into
tegration in a direction perpendicular to the Fermi surfa
(ep integration! and integration over anglesVp of the Fermi
surface;N(Vp) is the angle-dependent density of states
the quasiparticles on the Fermi surface divided by its av
age. All three spin components contribute tovZ; but as
stressed by Monthoux and Lonzarich6 for spin triplet pairing
only one combination can contribute to any given compon
of the gap function andTc is maximized if we pick the one
for which D50. l may be experimentally defined from th
singular~as r→0) behavior of the specific heat coefficien

g5 lim
T→0

C

T
5E dVpN~Vp!Zp~pT!

5N0F11
1

2
lS ln

1

r
12 ln

1

r 1D D G . ~4!

Equations~2! and ~3! apply only for frequencies much
less than the electron bandwidth and only if the moment
dependence ofZp and W is negligible relative to the fre-
quency dependence, conditions which are satisfied for
leading singular behavior asr→0. We therefore em-
ploy the Migdal approximation14 Zp(v)→Z(v), W(p,v)
→W(Vp ,iv) and perform the integral over the magnitu
of the momentum. To perform the remaining integration o
angles we note thativZ(v) has the full symmetry of the
lattice, while forp-wave superconductivityW corresponds to
the l 51 irreducible representation of the lattice gro
@Wl(aVp)5a lWl(Vp)#.

The momentum transferq carried by the spin fluctua
tions in Eq. ~1! is given by q25(p2p8)252pF

2(1
2(p•p8)/upuup8u)1ep8

2 /vF
2 . The first term inq2 is obtained

by placing both momentap and p8 on the Fermi surface
while the last term is a small correctiondp2 taking into
account the fact that intermediate states can explore reg
close to the Fermi surface and will be important as a cut
We perform theep integral, use the angle dependences oZ
andW and then follow Bergmann and Rainer,15 defining an
order parameterF l(v)5Wl( iv)/uvZ(v)u and casting Eqs
~2! and ~3! into an eigenvalue problem for an eigenvaluer

(
v8

Kvv8F l~v8!5rF l~v!. ~5!

Tc corresponds to the solutionr(Tc)50. Here

Knm5D1~vn2vm!2
uvmZ~vm!u

pT
dnm , ~6!

uvZ~v!u5uvu1pTS D0~0!12 (
v850

v

D0~v2v8!D . ~7!

The kernelsD0 , D1 are defined in terms of the fundament
integrals

dl~r ,D!5E
0

1

N0~x!
xPl~122x2!dx

Ur ,D~Ur ,D1uv8Z~v8!u/L!
~8!
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as D05l@d0(r ,0)12d0(r ,D)#, D15ld1(r ,0) with
Ur ,D5@(unu/Lx)tan21(Lx/unu)1x21r 1D#1/2, n5v2v8.
Pl(x) is a basis function of thel th irreducible representation
of the lattice symmetry group and the cutoff termuvZu/L in
Eq. ~8! comes from thedp2 correction inq2. For definiteness
we assume a spherical Fermi surface with a constant den
of states@N0(x)→1# in which casePl(x) become Legendre
polynomials but most of our results depend only
limx→0 Pl(x).

In K , the off-diagonal terms are fromD1 and give pair-
ing; the diagonal terms come mainly fromuvZu and repre-
sent depairing corresponding to scattering. At high tempe
tures the eigenvaluesrn(T) are negative; atTc the leading
eigenvalue crosses 0. We solve the matrix system num
cally; the size of the kernel is;L/(2pTc).

For p-wave pairing in systems with Heisenberg symme
the critical temperatures are typicallypTc;1025L which
translates into numerically unmanageable kernel sizes oN
;50 000. We therefore use two alternative numerical
proximations; a down-folding procedure and variants of
adaptive discretization proposed by Bickers.17 In the down-
folding procedure we separateF l(vn) in Eq. ~5! into a low-
frequency partF l

LOW(vn) with 0<unu<NLOW and high-
frequency partF l

HIGH(vn) with NLOW,unu<N. Then Eq.
~5! can be written as a block linear system and forma
solved forFHIGH, yielding KLOW

•FLOW5rFLOW with

Knm
LOW5Knm1 (

u i u,u j u.NLOW

Kni~r2Ki j !
21K jm .

This transformation is exact. The simplification is that f
largeNLOW K is nearly diagonal soK21 may easily be com-
puted in the ‘‘high’’ subspace. In physical terms, e.g., in t
Heisenberg caseD50 and forr 50, this approximation re-
tains only the diagonal scattering-dominated termsKnn
.2(2l/3)ln(L/pT)2(2n11)@112l12l ln(L/2pTn)# and
drops all off-diagonal pairing termsKnm.(l/3)ln(L/
2pTun2mu) for n,m.NLOW in the high-frequency kernel
In the adaptive discretization approximation we rearrange
high-frequency elements of the kernelKnm (n,m>NLOW)
into rectangular blocks of quadratically or exponentially i
creasing size and represent each block by its average in
reduced kernelKLOW. We have verified that both approx
mations~where the matrix can be diagonalized exactly! re-
produce faithfully the eigenvalues of Eq.~5! for large tem-
peratures, and that our results are insensitive to the choic
NLOW .

Results forTc(r ,D) are shown in Fig. 2. The inset of th
figure demonstrates the convergence of the scaling proce
with reduced kernel sizeNLOW for the numerically most dif-
ficult case,D50. Reduced kernel sizesNLOW>500 show
satisfactory convergence, so we have used sizesNLOW
5500 in the cases whenN5L/(2pTc).1000 and the full
kernelK otherwise.

As previously noted6 Tc is very low in the Heisenberg
case, however,Tc(r→0).0, raising the interesting possibil
ity ~already noted by Fayet al.8! of superconductivity ex-
tending into the magnetic phase, however, we do not ag
with Ref. 8’s claim thatTc(r 50)50. The key point is the
4-2
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cutoff uvZu/L in Eq. ~8! which leads to the leadingr depen-
denceD0(0);3D1(0);3l ln 1/(Ar 1uvZu/L). If the cut-
off is neglected~as in Ref. 8! the divergence ofKnn drives
Tc→0 and produces the phase diagram shown in Fig. 1~c!.
Reference 7, which studied a two-dimensional antiferrom
netic problem, argued that the divergent mass enhancem
associated with the critical fluctuation would drive the sup
fluid stiffness and thusTc to zero. In their case the divergen
mass occurs only at one point on the Fermi surface, s
seems to us the considerations of Hlubina and Rice16 should
imply a nonzero superfluid stiffness in the problem th
studied. In any event, in the ferromagnetic problem of int
est here the critical fluctuations have long wavelengths,
thus do not lead to divergences in the ‘‘transport mass’’ c
trolling the superfluid stiffness.

In the Ising case, as fors-wave pairing,D0(0);D1(0),
the quasistatic depairing and pairing contributions toK can-
cel and Tc is substantially higher than in the Heisenbe
case. The crossover to full Ising behavior has not been
viously studied; we findTc increases rapidly as the Isin
anisotropy is increased.

We see from the inset of Fig. 2 that the Heisenberg c
Tc(r ) displays a maximum at a small nonzeror 5r max, but
for Ising anisotropiesD greater than;r max

3/2 , Tc decreases
monotonically asr increases. To understand this behavior
compute dTc /dr using the Feynman-Hellman theorem:15

dTc

dr
5S dr

dTc
D 21 dr

dr
5S dr

dTc
D 21 ^FudK /dr uF&

^FuF&
, ~9!

where F is the eigenvector defined in Eq.~5! and up to
logarithmsF(v);1/uvu. The terms occurring in dK /dr may

FIG. 2. Main figure: Superconducting transition temperature
a function of quantum critical control parameterr for Ising anisotro-
pies D50;0.0003;0.001;0.002;0.005;0.01;0.7;0.8;0.9;1.0 go
from the bottom curve up and coupling constantl51.5. For the
D50.7;0.8;0.9;1.0 curves~dashed lines! we have plottedTc/10 for
better visual comparison with the Heisenberg (D50) case.L
;2pFvF is the characteristic spin-fluctuation frequency; the dot
line is 2pTc5r 3/2. Inset:Tc(r ,D50) for different values of down-
folding scaleNLOW .
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be seen from Eq.~8! to be infrared dominated, so the leadin
singular behavior may be expressed in terms of a sca
function:

F~r ,D,vnm!5
1

r 1D
f S vnm

~r 1D!3/2D , vnmÞ0

5
1

Ar 1D
•

1

Ar 1D1uvZu/L
, vnm50,

wheref (x)5*0
`ydy/(x/y1y211)2. @Note f (0)51/2 and as

x→` f (x)→(2p/9A3)x22/3.] Substituting, we find

dTc

dr
5 (

n50

`
2F~r ,D,0!

~2n11!2 12(
n51

`

(
m50

n21 F2F~r ,D,vn2vm!

~2n11!2

1
F~r ,0,vn2vm!

~2n11!2 2
F~r ,0,vn2vm!

~2m11!~2n11!G , ~10!

where theF(r ,DÞ0,vnm) terms come from spin fluctuation
in the two ‘‘hard’’ spin directions and are pairbreaking an
theD50 terms come from the ‘‘soft’’ spin direction and ar
both depairing@the third term in Eq.~10!# and pairing@the
last term in Eq.~10!#. For largeD ~strong Ising anisotropy!
we may setF(DÞ0)50; there are novn5vm terms; the
off-diagonal terms are negative (dTc /dr ,0). The physical
interpretation is that the pairing and depairing effects of q
sistatic (v,T) spin fluctuations approximately cancel~as in
the s-wave case15! while at v.T the pairing effect wins.
Thus Tc monotonically increases asr→0 because the spin
fluctuations become stronger. Atr 50, dTc /dr;2T22/3,
i.e., Tc(r ) is linear; for r .Tc

3/2 the derivative→(ln 1/r )/r ,
so we expectTc; ln2 1/r .

As D decreases, thevn5vm terms increase and asD
→0 dominate at smallr. In this limit quasistatic spin fluc-
tuations are strongly pairbreaking, and atr 50 Tc is set by
the temperature at which the effect of these fluctuations
comes small enough to allow pairing. Forr
,l2(pTc)

2 ln2 L/Tc , the vZ term in F is important and
dTc /dr;1/(ArlpTc ln L/Tc). For l2(pTc)

2 ln2 L/Tc,r
,(pTc)

3/2; dTc /dr;1/r .
We now consider the variation ofTc(r 50) with D ~this

could be varied experimentally, e.g., with uniaxial pressur!.
The arguments leading to dTc /dr yield

dTc

dD
;2(

n50

`
F~0,D,0!

~2n11!2 14(
n51

`

(
m50

n21
F~0,D,vn2vm!

~2n11!2 .

~11!

Both terms are positive; the first term is dominant leading
an approximatelyD ln(1/D) behavior at smallD.

Finally, we consider which frequencies are important
pairing.18 Figure 3 shows results obtained by simply trunc
ing the pairing kernel~setting Knm50 for unu,umu.Ntrunc)
for values ofNtrunc between 50 and 500. We have chosen
plot the data in scaled form, as relative change inTc vs
energy of upper cutoff. The reasonable data collapse~despite
two order of magnitude variations inTc) indicates that for
the parameters considered, pairing comes basically fro
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fixed, small energy range (v&0.02L) which does not
change much withTc , anisotropy or coupling constan
~Note that for ther values considered the energy scale set
r, v r5r 3/2, is much less than the critical energy scale.!

Belitz, Kirkpatrick, and Vojta19 have argued that the gen
erally accepted quantum critical formx(q,0)215q21r is
not correct, and ind53 should bex21(q,0)5Aq2 ln(qF /q)
1r with A an unknown coefficient. We find that this form
~with A51) leads to substantially lowerTc’s ~factor of 20!
and shrinks ther dependence towardsr 50. The same effec
can be achieved by absorbing the singularq dependence into

FIG. 3. Tc
trunc, scaled by the trueTc , vs the truncation energy

NtruncTc .
,

14050
y

the coefficientA: A ln(qF /q)→A5ln(1/T1/3), and thus rescal-
ing the parameters of the model:r→r /A, l→l/A, v
→v/A.

Fay and Appel,8 used a BCS approximation with a pairin
interaction determined by the static susceptibility and fou
Tc(r 50)50. Our more complete Eliashberg treatme
shows that this is an artifact of their approximation. Ho
ever, their important predictions of aTc.0 in the ferromag-
netic state and of a minimum~in the Heisenberg case! of Tc
in the vicinity of r 50 seem consistent with our results.

To summarize, we have presented a theory of the va
tion of a p-wave superconductingTc near a ferromagnetic
quantum critical point. We have shown that within the mod
the value ofTc is determined by low but fixed energy sp
fluctuations and the variation ofTc with distance from criti-
cality is controlled by spin fluctuations on the scale ofTc .
We have also demonstrated the crucial role played by
symmetry of the magnetic fluctuations. We have found
nerically thatTc.0 at the magnetic critical point, raising th
interesting possibility of superconductivity within the o
dered phase. From this analysis we see that~up to an overall
amplitude! the small r behavior ofTc is universal, in the
sense that it is determined only by the long-wavelength s
ceptibility and coupling constant.

Note added: As the revised version of this manuscript w
in preparation we became aware of a publication report
superconductivity in the ferromagnetic phase of a heavy
mion material,20 however, a direct application of our theor
is not possible because the magnetic transition in this m
rial is first order.
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