
RAPID COMMUNICATIONS

PHYSICAL REVIEW B, VOLUME 63, 140415~R!
Classical correlation-length exponent in the nonuniversal quantum phase transition
of a diluted Heisenberg antiferromagnet
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Critical behavior of the quantum phase transition of a site-diluted Heisenberg antiferromagnet on a square
lattice is investigated by means of the quantum Monte Carlo simulation with the continuous-imaginary-time
loop algorithm. Although the staggered spin-correlation function decays in a power law with the exponent
definitely depending on the spin sizeS, the correlation-length exponent is classical, i.e.,n54/3. This implies
that the length scale characterizing the nonuniversal quantum phase transition is nothing but the mean size of
connected spin clusters.
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Ground-state phase transitions in two-dimensional~2D!
diluted quantum Heisenberg antiferromagnets~HAF’s! have
attracted much interest because they are caused by the
istence of quantum fluctuations and randomness.1–7 Numeri-
cal works8,9 and theoretical works10,11 have given various
estimates of the critical concentration of the system withS
51/2. All of them are above the purely-geometrical perco
tion threshold on a square lattice,pcl50.5927460(5).12 This
suggests that the phase transition could be seriously affe
by quantum fluctuations.

Recently, Katoet al.13 have investigated the diluted 2D
HAF with S51/2, 1, 3/2, and 2 by means of the quantu
Monte Carlo~QMC! method with the continuous-imaginary
time loop algorithm.14–17 Their conclusion is qualitatively
different from the above mentioned results: the critical co
centration coincides withpcl and does not depend onS. The
coincidence of the critical concentration withpcl has also
been reported on the bond-diluted HAF.18

The critical exponents of the phase transition atpcl have
also been estimated. Katoet al. have obtained the critica
exponentb of the zero-temperature staggered magnetizat
Interestingly, the value ofb is different from that of the
classical (S5`) exponent and depends onS. They have also
estimated other critical exponents by the finite-size sca
~FSS! analysis assuming the following form for the sta
staggered structure factor at zero temperature:

Ss~L,0,p!;LCS̃s@L1/n~p2pcl!#, ~1!

whereL is the system size and

Ss~L,T,p![
1

Ld (
i , j

eikW•(rW i2rW j )^Si
zSj

z& ~2!

with kW5(p,p) andd52. The bracket̂ •••& in Eq. ~2! de-
notes both the thermal and random averages. The sca
function S̃s(x) in Eq. ~1! has the following asymptotic form
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S̃s~x!;H x2b for x@1

uxu2nC for x!21,
~3!

where the exponentb is related toC and n by the scaling
relation

2b5~d2C!n. ~4!

They have estimated the critical exponentC by the FSS
analysis exactly atp5pcl and have found that it depends o
S.

Kato et al. have attributed theS dependence in exponen
b or C to quantum fluctuations, while the length exponenn
is assumed to be given by the classical one,ncl54/3,19 which
governs a power-law divergence of the mean size of c
nected spin clusters asl(p)}up2pclu2ncl. Namely, they
have assumed that the staggered spin correlation func
between two spins in a cluster is described by the sca
expression

C~ i , j ;p!;r i , j
2aC̃@r i , j /l~p!#, ~5!

with C̃(x);const. atx!1. The power-law decay of the cor
relation function is due to quantum fluctuations and
S-dependent exponenta is related toC by

C52D2d2a, ~6!

whereD is the fractal dimension (91/48 ford52). Kato et
al. have checked this scenario simply by evaluatingn
through Eq.~4! usingb andC obtained by their simulation

In the present paper, we perform the FSS analysis
Ss(L,0,p) of systems withS51/2 and 1 more systematicall
by carrying out the QMC simulation at various concent
tions not only atpcl . It is found, as we see below, that ou
QMC data are well described by the FSS form of Eq.~1! in
a whole range ofp studied, which includes the asymptot
rangesx@1 andx!21 in Eq. ~3!. Within numerical accu-
racy of our analysis, exponentC turns out to definitely de-
pend on the spin sizeS, while exponentn does not. The latter
©2001 The American Physical Society15-1



e
th
n
th

ea

ar

t
ai

by
us

ag

00

gap
era-

ard
be

2,
ue

and
-

nt

-

t
The
es

RAPID COMMUNICATIONS

C. YASUDA et al. PHYSICAL REVIEW B 63 140415~R!
S-independent value ofn coincides with the classical on
~54/3! within the error bar. These results further support
above mentioned scenario of the quantum phase transitio
the diluted 2D HAF, particularly, the ansatz that the leng
scale characterizing the transition is nothing but the m
size of connected spin clusters.

The system we study is the site-diluted HAF on a squ
lattice described by the Hamiltonian

H5J(
^ i , j &

e ie jSi•Sj , ~7!

where J(.0) is the antiferromagnetic coupling constan
(^ i , j & denotes the summation over all nearest-neighbor p
andSi is the quantum spin operator at sitei. The quenched
magnetic occupation factors$e i% independently take 1 or 0
with probability p and 12p, respectively. We simulateL
3L square lattices with the periodic boundary condition
means of the same QMC method with the continuo
imaginary-time loop algorithm as that adopted by Katoet al.
An improved estimator is used to calculate the static st
gered structure factor. At each parameter set (L,T,p) physi-
cal quantities of interest are averaged over 1000–3
samples. At each sample, 103–104 Monte Carlo steps~MCS!
are spent for measurement after 500–103 MCS for thermal-
ization.

FIG. 1. Scaling plot ofSs(L,0,p) for ~a! S51/2 and~b! S51.

The dashed line representsS̃s(x), which is approximated by a poly
nomial of order 2.
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In a finite system,Ss(L,T,p) converges rapidly to its
zero-temperature values at temperatures lower than the
due to the finiteness of the system. The saturation temp
ture turns out to be smaller for smallerup2pclu. In the
present workSs(L,0,p) close to pcl is approximated by
Ss(L,T,p) at the following temperatures: for theS51/2 sys-
temT50.002J for L524 andT50.001J for L532, 40, and
48, and for theS51 systemT50.01J for L524 and T
50.005J for L532, 40, and 48.

Let us first examine the FSS analysis ofSs(L,0,p) at p
close to pcl . The results of theS51/2 (S51) system at
0.580<p<0.605 (0.585<p<0.600) are shown in Figs. 1~a!
and 1~b!. The error bars in the figures represent the stand
deviation. In the FSS fit the critical concentration is set to
pcl (.0.5927460), and the scaling functionS̃s(x) is approxi-
mated by a polynomial of order 2. As seen in Fig. 1~a!, the
QMC data forS51/2 are well scaled withC51.192 andn
51.23. The statistical accuracy of the fit is shown in Fig.
where we draw the confidence region within which the tr
values ofC andn fall with probability 68.3%~1-s), 95.3%
~2-s), or 99.7%~3-s). Similarly, the data forS51 are well
scaled withC51.555 andn51.09, as seen in Figs. 1~b! and
2. From these results we can conclude that exponentC defi-
nitely depends on the spin sizeS. The exponentsn of S
51/2 and 1, on the other hand, coincide with each other
with its classical value (54/3) within the numerical accu
racy of the present analysis. The obtained values ofC, n, a,
andb are summarized in Table I. The exponentsa andb are
calculated by the scaling relations, Eqs.~4! and ~6!.

The value ofC for S51/2 obtained above is consiste

TABLE I. Summary of critical exponentsC, n, a, andb for
S51/2, 1 and the classical case (S5`). The values ofC andn are
obtained by the FSS analysis shown in Figs. 1~a! and 1~b!, anda is
calculated asa52D2d2C, andb asb5(d2C)n/2.

S C n a b

1/2 1.192~9! 1.23~16! 0.600~9! 0.50~7!

1 1.555~8! 1.09~14! 0.237~8! 0.24~4!

` 1.79167 1.33333 0. 0.13889

FIG. 2. Confidence region ofC andn. The percentages 68.3%
~1-s), 95.4%~2-s), and 99.7%~3-s) represent the probability tha
the true parameter values fall within the confidence regions.
classical value ofC is 1.79167. The vertical dashed line indicat
the classical value ofn, 4/3.
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with the one@51.17(6)# that has been estimated by Katoet
al. from Ss(L,0,p) at p5pcl . In their analysisSs(L,0,pcl) is
approximated bySs(L,T,pcl) at low temperatures where itsT
dependence becomes nondiscernible within the error b
Kato et al. have also performed the FSS analysis making
of the data at all temperatures they have simulated. T
analysis yieldsC51.27(2) which differs distinctly from the
present result listed in Table I. This discrepancy may be
to the systematic error in our estimates whereSs(L,0,p) is
approximated bySs(L,T,p) at a small but finite temperatur
as described before. It should be remedied when the fin
temperature FSS analysis is carried out as done by Katet
al.

From Fig. 2 one sees that the accuracy ofn is signifi-
cantly poorer than that ofC, which is interpreted as follows
The value ofC can be essentially extracted solely fro
Ss(L,0,pcl), while to evaluaten we needSs(L,0,p) at p other
thanpcl , or dSs(L,0,p)/dp at p5pcl . Naturally, the statisti-
cal error ofn is expected to be larger than that ofC. Con-
cerned with the systematic error inn arising from finite-
temperature corrections, on the other hand, the satura
temperature ofSs(L,T,p) becomes smaller for smalle
up2pclu, i.e., the effect of finite-temperature corrections
Ss(L,T,p) becomes maximal exactly atp5pcl . This implies
that the leading order finite-temperature correction
dSs(L,0,p)/dp at p5pcl disappears, and so the systema
error in n is much smaller than that inC.

Next let us discussSs(L,0,p) in the full range ofp we
have simulated, i.e., 0.2<p<1, which is much wider than
that in Fig. 1. As shown in Figs. 3~a! and 3~b!, respectively,
for S51/2 and 1, all QMC data turn out to lie on a univers
curve whenL2CSs(L,0,p) are plotted againstL1/nup2pclu by
using the exponentsC and n listed in Table I. For
L1/nup2pclu.1, the data points merge to the dashed li
which representsax2b for p.pcl and buxu2nC for p,pcl ,
whereb, n, andC are those listed in Table I, anda andb
are arbitrary constants adjusted to fix the position of
asymptotic lines. At much largerL1/nup2pclu the scaling fit
becomes deteriorated, indicating that the correspondingp is
out of the scaling region. The results shown in Fig. 3 a
support the scenario due to Katoet al. on the nonuniversa
quantum phase transition.

In summary, in order to establish nature of the nonuniv
sal quantum phase transition of 2D site-diluted HAF’s
S51/2 and 1, we have performed the QMC simulation in
relatively wider region of concentration than that of Katoet
al. and have estimated the critical exponentn more system-
atically. We have observed that the static staggered struc
factor is well described by the scaling form of Eq.~1! with
Eq. ~3!. In particular, the exponentn is confirmed to coincide
with the classical one. These results support the follow
R
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arguments by Katoet al.: ~1! there exists no other macro
scopic characteristic lengths thanl(p), the mean size of
connected spin clusters at concentrationp, and~2! the stag-
gered spin correlation function between two sites on a fra
cluster decays in a power law asC( i , j ;p);r i , j

2a , wherea
depends on the strength of quantum fluctuations specifie
the spin sizeS.

Most of the numerical calculations for the present wo
have been performed on the CP-PACS at the University
Tsukuba, the Hitachi SR-2201 at the Supercomputer Cen
University of Tokyo, and the SGI2800 at the Institute f
Solid State Physics, University of Tokyo. The present wo
was supported by the ‘‘Large-scale Numerical Simulati
Program’’ of the Center for Computational Physics, Unive
sity of Tsukuba, and also by the ‘‘Research for the Futu
Program’’ ~JSPS-RFTF97P01103! of the Japan Society fo
the Promotion of Science.

FIG. 3. The double-logarithmic plot ofL2CSs(L,0,p) against
L1/nup2pclu for ~a! S51/2 and ~b! S51. Dashed lines represen
ax2b andbuxu2nC.
.
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