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We study the critical behavior of frustrated spin models with noncollinear order, including stacked triangular
antiferromagnets and helimagnets. For this purpose we compute the field-theoretic expansions at a fixed
dimension to six loops and determine their large-order behavior. For the physically relevant cases of two and
three components, we show the existence of a stable fixed point that corresponds to the conjectured chiral
universality class. This contradicts previous three-loop field-theoretical results but is in agreement with experi-
ments.
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The critical behavior of frustrated spin systems with non-with a second-order phase transition which should belong to
collinear or canted order has been the object of intensive new(chiral) universality class. As shown experimentally in
theoretical and experimental studisge, e.g., Refs. 1 and.2  Ref. 3 for anXY STA, chiral and spin order occurs simulta-

In spite of these efforts, the critical behavior of these systemgaeously. On the other hand, the most recent FT calculations
is still unclear, with field-theoretidFT) renormalization-  suggest that these systems undefgeak) first-order transi-
group (RG) methods, Monte Carlo simulations, and experi-tions that effectively appear as second-order ones in experi-
ments obtaining different results. mental work. Three-loop perturbative calculations at fixed

In physical magnets noncollinear order is due to frustradimensiond= 3 (Ref. 4 and within the framework of the
tion that may arise either because of the special geometry @fxpansion indicate a first-order transition, since no stable
the lattice, or from the competition of different kinds of in- chiral fixed points are found foN=2 and N=3. These
teractions. Typical examples of systems of the first type arg¢nhree-loop analyses show the presence of a stable chiral fixed
three-dimensional stacked triangular  antiferromagnetgoint only for N>N, with N.>3: N.=3.91 (Ref. 4 and
(STA), where magnetic ions are located at each site of &_.=3.39 (Ref. 5. However, one may think that the ob-
three-dimensional stacked triangular lattice. Examples argerved disagreement is due to the shortness of the available
ABXs-type compounds, wherA denotes elements such as serijes.

Cs and RbB stands for magnetic ions such as Mn, Cu, Ni,  Similar conclusions are reached in studies based on the
and Co, andX for halogens as ClI, Br, and I. At the chiral continuous RG approachNote, however, that the practical
transition, they may be modeled by using short-rangedmplementation of this method requires an approximation
Hamiltonians forN-component spin variables defined on aand/or truncations of the effective action, such as the local

stacked triangular lattice as potential approximation or the first few terms of the deriva-
tive expansion, which are expected to be effective when the
__ 221 2 critical exponentpy<<1.
Hsta J<%y Si-8—J mz)z S8y @ Monte Carlo simulations apparently give contradicting

resultst’® Simulations ofHgra (see, e.g., Ref. 1, and refer-

where J<0, the first sum is over nearest-neighbor pairsences thereinsupport a second-order phase transition with
within triangular layers Xy planeg, and the second one is different critical exponents, although the numerical results
over orthogonal interlayer nearest neighbors. The conditiomre not in quantitative agreement among the different au-
N=2 is essential to have noncollinear ordering. In these spitthors. Simulations of modified lattice spin systémshich,
systems the Hamiltonian is minimized by noncollinear con-according to general universality ideas, should belong to the
figurations, showing a 120° spin structure. Frustration is parsame universality class of the Hamiltoniél), show instead
tially released by mutual spin canting, and the degeneracy ™ first-order transition.
the ground-state is limited to global @ spin rotations and For sufficiently large values of\, all theoretical ap-
reflections. As a consequence, at criticality there is a breaksroaches predict a second-order phase transition, but there
down of the symmetry from @) in the high-temperature are still substantial discrepancies between Monte Carlo and
phase to O —2) in the low-temperature phase, implying a three-loop FT calculationésee the discussion of Ref. 9 for
matrixlike order parameter. Frustration due to the competiN=6).
tion of interactions may be realized in helimagnets where a All these considerations show that a satisfactory theoreti-
magnetic spiral is formed along a certain direction of thecal understanding has not yet been reached. It is not clear
lattice (see, e.g., Ref.)L The rare-earth metals Ho, Dy, and whether experiments are observing first-order transitions in
Tb provide examples of such systems. disguise or field theory is unable to describe these rather

The critical behavior of two- and three-component frus-complex systems.
trated spin models with noncollinear order is controversial. FT studies of systems with noncollinear order are based
Many experimentgsee, e.g., Refs. 1 and 2re consistent on the ON)x O(M) symmetric Hamiltoniatf*
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where ¢, (1<a<M) are M sets ofN-component vectors. 48
We will consider the cas# =2, that, forv,>0, describes 36 L
frustrated systems with noncollinear ordering such as STA'’s. E
Negative values o, correspond to simple ferromagnetic or 24 i 1
antiferromagnetic ordering, and to magnets with sinusoidal 12 E
spin structured® 0o F ' 3
For N=2, which is the case relevant for frustrated two- Lo b b oo b

6123 01 2 3

component spin models, astexpansion analysis indicates u

the presence of four fixed points: the Gaussian oneX¥n
fixed point, an @4)-symmetric, and a mixed fixed point. g, 1. Zeroes of the functions forN=2 in the {U,v) plane.

Usin_g nonpt_artu_rbative argumerifspne can show that the Pluses () and crossesx) correspond to zeros gx(u.p) and
XY fixed point is the only stable ofeamong them. How- — .
B,(u,v), respectively.

ever, the region relevant for frustrated modelg>0, is out-
side the domain of attraction of theY fixed point, which

would imply a first-order transition. Nevertheless, it is still iz —aR for AR,u>27>0 &)
possible that other fixed points are present in the regipn up 2N 2N ’

>0, although they are not predicted by thexpansion. For

N=3, one may easily show the existence of a{®)dixed 1

point forvo=0, which is expected to be unstaBléccord- ==-a
ing to the three-loop analyses of Refs. 4 and 5 no other fixed Ub

points are found foN=3, which would imply that the tran- \where a=0.1477742 ... and R«=9/(8+K). Moreover,
sition is of first order as well. we find that forz> 2R,y the Borel transform has a singular-
In order to investigate the existence of new fixed pointsjty on the positive real axis, which, however, is not the clos-
we have considered the fixed-dimension perturbative apest one forz<4R,y. Thus, forz>2R,y the series is not
proach, extending the three-loop series of Ref. 4 to six I00pRorel summable.
As we shall see, the results of our six-loop analysis are some- |n order to determine the fixed points we use the same
how surprising, contradicting most of the earlier FT works.method applied in Ref. 13 to the analysis of the RG functions
Indeed, the analysis of the longer series provides a rathejf the cubic model. We resume the perturbative series by
robust evidence for the existence of a different stable fixegnheans of an appropriate conformal mappfhthat takes into
point in the XY and Heisenberg cases, with critical expo- account the large-order behavior of the perturbative series at
nents that are in agreement with the eXperimental results. fixed z and turns the 0rigina| series into a convergent se-
In the fixed-dimension FT approach one expands in powguence of approximations. To understand the systematic er-
ers of the quartic couplings and renormalizes the theory bygrs we vary two different parametetsanda, in the analy-
introducing a set of zero-momentum conditions for the two-sjs. We apply this method also for those valueszadir
point and four-point correlation functions. All perturbative \which the series is not Borel summable. Although in this
series are finally expressed in terms of the zero-momenturgase the sequence of approximations is only asymptotic, it
four-point renormalized couplings and v normalized S0  should provide reasonable estimates as long<agR,y
that, at tree levelu~uy andv~uv,. The fixed points of the  since we are taking into account the leading large-order be-
theory are given by the common zeros of tAefunctions  havior.
Bu(u,v) andB,(u,v). In the case of a continuous transition,  |n Figs. 1 and 2 we report our results for the zeros of the
when {—, the couplingsu,v are driven toward an g functions, obtained from the analysis of thiwop series,
infrared-stable zero™,v* of the 8 functions. On the other |=3456. For eacl® function we consider 18 different ap-
hand, the absence of stable fixed points is usually considerqﬂoximants withb=3,6, . ..,18 andv=0,2,4 and we deter-

as an indication of aweak first-order transition. mine the lines in the W,v) plane on which they vanish.
Since FT perturbative expansions are asymptotic, the rz — —

2

1
Ron— —z) for z<O, Z>4R,y

summation of the series is essential to obtain accurate est hen, we divide the domainQu<4 and O<v<5 into

mates of the physical quantities. For this purpose we studie OX‘}O rectangles, markir_lg thosg in Whic.h at 'e‘.‘“".ap'
— proximants of eactB function vanish. No fixed point is ob-

the  large-order behavior of the exBansion i served at three loops, consistently with Ref. 4. As the num-
=3u/(167Ryy), whereR¢=9/(8+K), andv=3v/(16m)  ber| of loops increases, a fixed point—quite stable with
at fixedz=v/u. Forz=v/u fixed andM =2, the singularity = respect td—clearly appears. This is related to the appear-

of the Borel transform closest to the origﬁ,, is given by  ance of a second upper branch of zeros@g(?,v_). ForN

140414-2



RAPID COMMUNICATIONS

CRITICAL BEHAVIOR OF FRUSTRATED SPIN MODES.. .. PHYSICAL REVIEW B 63 140414R)

4.8 3l
3.6
24

12

[ A A
RARARRANRRRNRARE
'“." =

.
o,
%;%

%]
—

4.8
3.6
24
1.2

)]
p=

4,
",
',
",
’1;"
,

u

¥

01 2 3 01 2 3 FIG. 3. RG flow in the @,v) plane forN=2,3.
u

__ v*/u* <4R,y. Thus, we expect our resummations to be re-
FIG. 2. Zeroes of thg functions forN=3 in the (U,v) plane.  |igble, and the stability of the results with respect toon-
Pluses () and crossesX) correspond to zeros g8 (u,v) and  firms it.
B,(u,v), respectively. We then compute the eigenvalues of the stability matrix.
They vary significantly with the two parametersandb and
=2 (resp.,N=23) such zeroes appear in 15, 45, 80, and 95 %urn out to be complex in most of the cases. Nonetheless, the
(resp. 45, 70, 95, and 100)%f the approximants we con- sign of the real part of the eigenvalues is always positive,
sider forl=3,4,5,6. Clearly, the set of zeros is increasinglyimplying the stability of the fixed points. A reasonable esti-

stable ad increases. We obtain a fixed point for mate of the exponenb is, however, impossible.
Figures 1 and 2 suggest ilso trf presence of a second
u*=1.91), v*=4.10115), for N=2, (4) fixed point for smaller values af, sayu~1, and thus, a RG

flow diagram of the form reported in Fig. 3. Beside the stable
chiral fixed pointC, an additional unstabl@ntichira) one A
should be present. In our graphs, its position is rather impre-

where the error bars have been set quite conservatively: ise, likely due to the fact that the relevanandv belong to
zeros of the approximants with<8o=<18 and Gsa<4 lie  the regionv/u>4R,y, where resummation methods should
within the reported confidence interval. We stress again thdbe less effective.

for =6 essentially all approximants show the presence of Having established the existence of a stable fixed point,
such fixed point. Its position is also stable with respect to thave compute the critical exponents from the corresponding
number of loops: an equivalent estimate is obtainedlfor six-loops series, following Ref. 13. The results are in sub-
=5. Notice that the fixed points belong to the region instantial agreement with the experimental estimates, see Table
which the series are not Borel summable, but still satisfyl.

u*=1.801), v*=3.0015), for N=3, (5

TABLE I. Critical exponents foN=2 andN=3. Our results are labeled by FT. Experimental results are reviewed, e.g., in Ref. 1.

N b% v B 12
2  CsMnBg 1.105) (Ref. 15 0.573) (Ref. 15 0.251) (Ref. 15 0.399) (Ref. 16
1.01(8) (Ref. 179 0.543) (Ref. 17 0.222) (Ref. 17 0.405) (Ref. 18
0.242) (Ref. 19
CsNiClk 0.2435) (Ref. 20 0.3718) (Ref. 2)
0.3425) (Ref. 22
CsMnk 0.346) (Ref. 2]
FT 1.104) 0.573) 0.31(2) 0.299)
3 VCl 1.053) (Ref. 23 0.625) (Ref. 23 0.202) (Ref. 23
VBr, 0.305) (Ref. 29
RbNiCl, 0.281) (Ref. 25
CsNiCl 0.2893) (Ref. 20 0.258) (Ref. 2)

0.234) (Ref. 22
0.296) (Ref. 26
FT 1.065) 0.553) 0.302) 0.359)
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We also compare the six-loop results with the critical ex-order transition is usually expected. However, our results for
ponents that we computed @(1/N?) in the framework of N=2,3 indicate that the situation is more complicated and

the largeN expansion. For example, that a second value<8N.,<N, may exist such that foN
<N, the system shows again a chiral critical behavior with
p=1— 161 (56 _640) 1 +0 ! 6 @ fixcéd poin¥[ unrelate\élvto t?leI smailel:hiral Ifilxed poin'xI "
7N \ 72 37% N? N3/

In conclusion, the extension to six loops of the FT expan-
We find »=0.858(4) forN=16 and »=0.936(2) forN  Sions solves the apparent contradictions between field theory
=32, which compare reasonably with the estimates that onand experiments. We find that different stable chiral fixed
obtains from Eq.(6), i.e., »=0.885 for N=16 and » points exist for two- and three-component systems. The es-
=0.946 forN=32. timated exponents are in substantial agreement with experi-
For 5=N=<7 the picture obtained from the analysis of the ments, whose conclusions on the nature of the phase transi-
6-loop series is less clear. We do not find fixed points thations are thus confirmed. However, we note that first-order
are sufficiently stable with respect to the number of loopstransitions are still possible for systems that are outside the
These results may be explained by the traditional picture irattraction domain of the chiral fixed point. In this case, the
which there is a particular value &f, N.~6, such that for RG flow runs away to a first-order transition. This may ex-
N>N, there is a stable fixed point smoothly related to theplain the Monte Carlo results of Ref. 7 where a first-order
largeN and smalle chiral fixed point. FOrN<N. a first-  transition was clearly found for modified lattice systems.
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