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NMR relaxation rates in a spin-1
2 antiferromagnetic chain

Victor Barzykin
National High Magnetic Field Laboratory, Florida State University, 1800 East Paul Dirac Drive, Tallahassee, Florida 32310

~Received 26 November 2000; published 21 March 2001!

We consider the low-temperature behavior of NMR relaxation ratesT1 andT2G in the spin-1/2 antiferro-
magnetic chain. We find thatT1}const andT2G}AT, with logarithmic corrections. We determine both con-
stants and logarithmic terms by matching perturbative renormalization-group with exact results, so that the
final expressions for the relaxation rates do not contain any free parameters. Our theoretical results are in
excellent agreement with NMR experiments in Sr2CuO3.
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There has been significant interest in the low-dimensio
quantum spin systems and quantum critical phenomen
recent years due to the discovery of high-temperature su
conductivity in layered cuprates. Nuclear magnetic re
nance~NMR! has been a powerful tool in studying the sp
dynamics of the cuprate compounds.1 The measurements o
the longitudinal relaxation rate 1/T1, the spin echo decay rat
1/T2G , and the Knight shift over a wide temperature ran
define the spectrum of antiferromagnetic fluctuations in
high-Tc cuprates.2 These NMR experiments have been t
basis of the phenomenological spin-fluctuation mod3

which exhibits quantum critical behavior,1 because the
system always remains close to the antiferromagn
instability.

A quantum spin-1/2 spin chain is another example o
quantum critical system with novel properties. The physi
properties of this system are well understood theoretica
The XXZ spin-1/2 quantum spin chain is described by t
Hamiltonian

H5J(
i

@Si
xSi 11

x 1Si
ySi 11

y 1gSi
zSi 11

z #. ~1!

This model exhibits quantum critical behavior for21<g
<1, with asymptotic correlation functions vanishing wi
distance as a power law. Inverse temperature 1/T acts essen-
tially as a finite system size, so that the power law for
correlation function crosses over to exponential decay at
tances r .jT.\c/T. For ugu.1 the spin-1/2 chain is
equivalent to a model of massive free fermions, and the c
relation functions decay exponentially with distance. Exac
at the Heisenberg point,g51, logarithmic corrections to the
correlation functions appear as a result of the presence o
leading marginally irrelevant operator.

Logarithmic corrections in the SU~2!-invariant models are
well known. For example, a calculation of the logarithm
corrections up to two loops was done for the fermion mo
with backward scattering,4 the sine-Gordon model,5 and the
SU~2! Gross-Neveu model.6 Logarithms appear in ever
physical property of the spin-1/2 Heisenberg chain. For
ample, 1/ln(H) dependence of magnetization on magne
field was found in Ref. 7 and in Refs. 8 and 9. T
temperature-dependent 1/ln(T) corrections to the bulk spin
susceptibility,10 logarithmic behavior of the structure facto
at low frequency, and logarithmic divergence of the sp
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autocorrelation function are other well-known consequen
of the marginally irrelevant operator.11 Finite-size scaling
corrections to the staggered spin susceptibility were foun
Ref. 12.

In what follows we determine the logarithmic behavior
the nuclear magnetic resonance~NMR! relaxation ratesT1
and T2G . The measurement and interpretation of the NM
relaxation rates in spin-1/2 has a long history as well. F
NMR experiments were performed more than 20 ye
ago13–15 on CuSeO4•5H2O and CuSO4•5H2O, where, sur-
prisingly, it was found thatT1 was almost temperature inde
pendent. Later this fact was explained in a rather sim
fashion by Sachdev,16 who, however, did not find paramete
free expressions forT1 and T2G . Recent experiments by
Takigawaet al.23 have confirmed that bothT1 andT2G /AT
are almost temperature independent in spin-1/2 chains.

Nuclear spins probe local spin environment. The Knig
shift provides a measure of the uniform magnetic susce
bility at a particular nuclear site, while the experiments
the spin-lattice relaxation rate yield information on th
imaginary and real parts of the dynamic spin susceptibi
x(q,v). The analysis of the NMR experiments begins w
the magnetic hyperfine Hamiltonian, which couples nucl
spins and conduction electron spins:

HHF5 (
a,i , j

Aa
i j I iaSj a , ~2!

whereI is the nuclear spin, andS is the electron spin, anda
enumerates spin projections for sitesi and j. The following
expressions can be obtained17 for T1 andT2G :

1

T1
5

2kBT

\2 E dq

2p
A'

2 ~q!
Im x~q,v0!

v0
, ~3!

S 1

T2G
D 2

5
0.68

8\2 F E dq

2p
Ai

4~q!x2~q!2H E dq

2p
Ai

2~q!x~q!J 2G .
~4!

Here Ai(q) and A'(q) are the hyperfine couplings paralle
and perpendicular to the easy axis of the crystal,v0 is the
nuclear resonance frequency, which is much smaller t
any other electron energy scale. The magnetic field is
rected along thec axis. Theq dependence is smooth an
©2001 The American Physical Society12-1
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arises from appropriate form factors. The susceptibilityx
should, in principle, include contributions from both the un
form and staggered spin fluctuations. However, sim
power counting16 shows that the staggered component
dominant at smallT. Indeed, the contribution of the uniform
component scales as 1/T1}T, 1/T2G}T0, while for the stag-
gered component 1/T1}T0, 1/T2G}T21/2.

For the purpose of comparison of theory with experime
it is convenient to define normalized dimensionless NM
relaxation rates:

S 1

T1
D

norm

5
\J

A'
2 T1

, ~5!

S A2

T2G
D

norm

5S kBT

pJ D 1/2 \J

Ai
2~p!T2G

. ~6!

The calculation of the NMR relaxation rates are based
the continuum limit bosonized approximation to the Heise
berg model. The Hamiltonian density can be written as

H5H022pgJWLJWR . ~7!

HereH0 is the Hamiltonian density for a free boson of com
pactification radiusR51/A2p, JWL and JWR are the left and
right moving currents. The coupling constant obeys
renormalization-group equations known for the Kosterli
Thouless or the Kondo problem with ferromagne
interactions:18

b[dg/d ln L52g22
1

2
g3, ~8!

as the energy cutoffL varies.
The low-temperature asymptotics for NMR relaxati

rates are determined by the staggered component of the
namic spin correlator, which has the following gene
form:19

xs~r ,t,T,g0!5DZ„g~T!…F@g~T!,rT/c,tT#. ~9!

Here Z„g(T)… is a cutoff-dependent renormalization facto
C is a nonuniversal constant. This scaling form can be ea
obtained from the Callan-Symanzik renormalization gro
equations:

@2]/] ln T1b~g!]/]g12g~g!#xs~r ,rT/c,tT,g!50,
~10!

whereb(g) is the beta function for the coupling constantg
in Eq. ~7!:

dg

d ln T
52b~g!5g22g3/21O~g4! ~11!

andg(g).1/22g/41O(g2) is the anomalous dimension. I
Eq. ~10! the T derivative acts only on the first argument
xs ; rT and tT are held fixed. The solution of Eq.~10! can
then be written in the form Eq.~9! with
14041
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D} expS 2E
0

g0g@g8#

b~g8!
dg8D , ~12!

Z~g!5 expS 22E
0

g(T)g@g8#

b~g8!
dg8D , ~13!

where g0[g(L) is the ‘‘bare’’ coupling—the coupling at
the energy cutoff scaleL.

The leading behavior ofZ(g) is easily seen from pertur
bative expressions forb(g) and g(g) given above,20 Z(g)
}1/Ag. Integrating Eq.~9! gives

1

T1
}Z„g~T!…@11a1g~T!1a2g~T!21•••#,

1

T2G
}

Z„g~T!…

AT
@11b1g~T!1b2g~T!21•••#. ~14!

The nonuniversal constantsai , bi , the cutoffL, and com-
mon factorD in these expressions can be fixed using ex
Bethe ansatz results on the correlation functions. The va
of D51/(2p)3/2 was determined in Refs. 21 and 22.

A complete calculation of the NMR relaxation rates giv

~1/T1!norm52DAln
L

T
1

1

2
lnS ln

L

T D S 11OF 1

ln2
L

T
G D ,

~15!

~AT/T2G!norm5
AI 0D

4Ap
Aln

L1

T
1

1

2
lnS ln

L1

T D
3S 11OF 1

ln2
L1

T
G D . ~16!

Here D51/(2p)3/2 is the nonuniversal amplitude,C
.0.577 215 7 is Euler’s constant, while the integralsI 0 and
I 1 are given by

FIG. 1. NMR 1/T1 for magnetic fields along different crysta
axes in Sr2CuO3 from Takigawaet al. ~Ref. 23! compared to our
theoretical expression with no adjustable parameters.
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I 05E
0

`

dxUGS 11 ix

4 D
GS 31 ix

4 DU
4

.71.2766,

I 15E
0

`

dxUGS 11 ix

4 D
GS 31 ix

4 DU
4

ReFCS 11 ix

4 D1CS 31 ix

4 D G
.2259.94, ~17!

whereC(x) is digamma function. The 1/ln(L/T) term is in-
corporated in the cutoff as in Ref. 19. Thus, up to ter
O„1/ln2(L/T)… the temperature dependence for 1/T1 or

FIG. 2. NMR T1/2/T2G from Takigawaet al. ~Ref. 23! vs our
low-temperature result. The data show different assumptions fo
value ofJ ~fitted from the spin susceptibility data!. The crosses are
the data forJ52850 K not corrected for theI z fluctuations.
14041
s

AT/T2G is actually given by the square root of the log a
loglog terms in the numerator of Eq.~17!. The cutoff param-
etersL can be determined using exact methods:

L52A2peC11J.24.27J, ~18!

L15
A2pe

8
e2I 1/2I 0J.5.27J. ~19!

The ratio of the relaxation rates, however, is only wea
temperature dependent,

S T2G

T1ATD
norm

.1.680S 11
0.7632

ln~L/T! D . ~20!

In summary, I have presented theoretical low-temperat
results for NMR ratesT1 andT2G . The temperature depen
dence of 1/T1 is logarithmic, which is expected in the pre
ence of the leading irrelevant operator. The main impro
ment over past theories is that the amplitude and the cut
were also calculated, so our expressions do not contain
free parameters. This has been a matter of confusion in
past.23 In particular, cutoffs have been fitted and used
gether with 1/log terms which redefine them. Presumab
this explains the difference of our cutoffL with a fitted value
of 4.5J used in Ref. 23. Our theoretical results agree reas
ably well with experimental data of Takigawaet al.23 on
Sr2CuO3, as shown in Figs. 1 and 2.

This work was supported by the National High Magne
Field Laboratory through NSF cooperative agreement N
DMR-9527035 and the State of Florida.
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