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NMR relaxation rates in a spin-; antiferromagnetic chain
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We consider the low-temperature behavior of NMR relaxation r&teand T, in the spin-1/2 antiferro-
magnetic chain. We find that, «cconst andT o /T, with logarithmic corrections. We determine both con-
stants and logarithmic terms by matching perturbative renormalization-group with exact results, so that the
final expressions for the relaxation rates do not contain any free parameters. Our theoretical results are in
excellent agreement with NMR experiments inGuO;.
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There has been significant interest in the low-dimensionahutocorrelation function are other well-known consequences
quantum spin systems and quantum critical phenomena iof the marginally irrelevant operatdt. Finite-size scaling
recent years due to the discovery of high-temperature supecorrections to the staggered spin susceptibility were found in
conductivity in layered cuprates. Nuclear magnetic resoRef. 12.
nance(NMR) has been a powerful tool in studying the spin  In what follows we determine the logarithmic behavior of
dynamics of the cuprate compournid§he measurements of the nuclear magnetic resonan@MR) relaxation ratesT,
the longitudinal relaxation rate T{, the spin echo decay rate andT,5. The measurement and interpretation of the NMR
1/T,¢, and the Knight shift over a wide temperature rangerelaxation rates in spin-1/2 has a long history as well. First
define the spectrum of antiferromagnetic fluctuations in theNMR experiments were performed more than 20 years
high-T, cuprates. These NMR experiments have been theago®°on CuSeQ-5H,0 and CuS@-5H,0, where, sur-
basis of the phenomenological spin-fluctuation mddel, prisingly, it was found thal; was almost temperature inde-
which exhibits quantum critical behavibrbecause the pendent. Later this fact was explained in a rather simple
system always remains close to the antiferromagnetiashion by Sachdet’ who, however, did not find parameter-
instability. free expressions foff; and T,g. Recent experiments by

A quantum spin-1/2 spin chain is another example of arakigawaet al?® have confirmed that botfi, and T,g/\T
quantum critical system with novel properties. The physicalare almost temperature independent in spin-1/2 chains.
properties of this system are well understood theoretically. Nuclear spins probe local spin environment. The Knight
The XXZ spin-1/2 quantum spin chain is described by theshift provides a measure of the uniform magnetic suscepti-

Hamiltonian bility at a particular nuclear site, while the experiments on
the spin-lattice relaxation rate yield information on the
H:Jzi [, + 9, + SIS ] 1) imaginary and real parts of the dynamic spin susceptibility

x(q,w). The analysis of the NMR experiments begins with

) . . ) the magnetic hyperfine Hamiltonian, which couples nuclear
This model exhibits quantum critical behavior ferl<y  gpins and conduction electron spins:

=<1, with asymptotic correlation functions vanishing with
distance as a power law. Inverse temperatuffeabts essen- .
tially as a finite system size, so that the power law for the Hup= Z AlliaSias 2
correlation function crosses over to exponential decay at dis- o
tances r>¢&r=Ac/T. For |y|>1 the spin-1/2 chain is wherel is the nuclear spin, anflis the electron spin, and
equivalent to a model of massive free fermions, and the corenumerates spin projections for siteandj. The following
relation functions decay exponentially with distance. Exactlyexpressions can be obtairtédor T, and T,g:
at the Heisenberg point;=1, logarithmic corrections to the
correlation functions appear as a result of the presence of the 1 2kgT (dq ,  Imx(d,wo)
leading marginally irrelevant operator. T_1: 42 fﬁAi(q) wo : )
Logarithmic corrections in the S@)-invariant models are

well known. For example, a calculation of the logarithmic / 1 \2 .68 [ dq . dg 2
corrections up to two loops was done for the fermion modeI(T—) ZW“ Z—A(Q)XZ(Q)—: J Z—A(CI)X(CI)] }
with backward scatterinjthe sine-Gordon modéland the 26 m m

4)

SU(2) Gross-Neveu mod@l.Logarithms appear in every
physical property of the spin-1/2 Heisenberg chain. For ex-

ample, 1/Inti) dependence of magnetization on magneticHere Aj(q) andA, (q) are the hyperfine couplings parallel
field was found in Ref. 7 and in Refs. 8 and 9. Theand perpendicu|ar to the easy axis of the Crys}'_%”s the
temperature-dependent 17M(corrections to the bulk spin nuyclear resonance frequency, which is much smaller than
susceptibility'® logarithmic behavior of the structure factor any other electron energy scale. The magnetic field is di-
at low frequency, and logarithmic divergence of the spinrected along the axis. Theq dependence is smooth and
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arises from appropriate form factors. The susceptibijity 9%0(g']
should, in principle, include contributions from both the uni- D« Zf ——dg' |, (12
form and staggered spin fluctuations. However, simple o B(g")

power countind® shows that the staggered component is
dominant at small. Indeed, the contribution of the uniform ,
0 9aMylg']
component scales asTLA T, 1/T,g T, while for the stag- Z(g)= ex _2f ——dg’' |, (13
gered component TfocTO, 1/T,goc T2 o B(g")
For the purpose of comparison of theory with experiment,
it is convenient to define normalized dimensionless NMRwhere go=g(A) is the “bare” coupling—the coupling at

relaxation rates: the energy cutoff scald.
The leading behavior af(g) is easily seen from pertur-
( 1 ) . ) bative expressions foB(g) and y(g) given above?® Z(g)
Ti) o AZT,’ «1/\/g. Integrating Eq(9) gives
12 1
(ﬁ) :(kB_T) M © > Z(@M)[1+ayg(T)+ag(T)+ -],
Tae norm pJ AH(W)TZG !
The calculation of the NMR relaxation rates are based on 1 Z(@g(T))

the continuum limit bosonized approximation to the Heisen- T~ N [1+byg(T)+byg(T)%+---1. (14

2G

berg model. The Hamiltonian density can be written as

H=HO_27ngLjR- @ The nonunivgrsal constangs, bi , the cutoffA, and com-
mon factorD in these expressions can be fixed using exact
HereH, is the Hamiltonian density for a free boson of com- Bethe ansatz results on the correlation functions. The value
pactification radiusR=1/\27, J, and Jg are the left and ©f D=1/(2m)¥* was determined in Refs. 21 and 22.
right moving currents. The coupling constant obeys the A complete calculation of the NMR relaxation rates gives
renormalization-group equations known for the Kosterlitz-

Thouless or the Kondo problem with ferromagnetic A 1 A
interactions'® (LT ) norm=2D \/In—+—ln In=|| 1+0 ,
T 2 T , A
In“ =
1 T
p=dg/dinA=—g*->g°, 8 (15)

as the energy cutoff varies.

The low-temperature asymptotics for NMR relaxation (\/T/Tze)norm:@\/mﬁJrEm(mﬁ)
rates are determined by the staggered component of the dy- 4m T 2 T
namic spin correlator, which has the following general
form:1°

x| 1+0| —- (16)

2
Xs(r.t,T,00)=DZ((T)F[g(T),rT/ctT]. (9 In® =
Here Z(g(T)) is a cutoff-dependent renormalization factor,

_ 2o : -
C is a nonuniversal constant. This scaling form can be easiljér¢ D= 1/(27_7)3 : IS the nonuniversal amplitudeC
obtained from the Callan-Symanzik renormalization group™0-577 2157 is Euler's constant, while the integrajsand

equations: |, are given by
[—aldInT+B(g)dldg+2y(g)]xs(r,rT/c,tT,g)=0, 0.4 r . , ' . O Hlla
(10 ’ X Hllb
. . . g03F 1 e Hic
where 8(g) is the beta function for the coupling constant e theo
in Eq. (7): —02r ] v
= 0.1} 4
dg 2_ 3 4 = 7
== B(9)=9°—g°/2+ 0(g") (11 0.0 - ! s ! :
dinT 0.00 0.04 0.08

andy(g) = 1/2— g/4+ O(g?) is the anomalous dimension. In ™

Eqg. (10) the T derivative acts only on the first argument of ~ FIG. 1. NMR 11T, for magnetic fields along different crystal
Xs; I'T andtT are held fixed. The solution of Eq10) can  axes in SCuQ; from Takigawaet al. (Ref. 23 compared to our
then be written in the form Eq9) with theoretical expression with no adjustable parameters.
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0.20 — ® J=2850K JT/T,s is actually given by the square root of the log and
£ - . O J=2200K loglog terms in the numerator of E(L7). The cutoff param-
£0.15 - %353 X = X No corr. etersA can be determined using exact methods:
':80.10 . —— theory A=22meS+11=24.27, (18)
Y 0.05} -
= ! ] Alzﬁef'ﬂz'oazs.zn (19
~0.00 L1 8
0.00 0.04 0.08 0.12 . . .
T/J The ratio of the relaxation rates, however, is only weakly
temperature dependent,
FIG. 2. NMR TY¥T,; from Takigawaet al. (Ref. 23 vs our T 0.7632
low-temperature result. The data show different assumptions for the (i) ~ 1.684 1+ —— . (20)
value ofJ (fitted from the spin susceptibility datarhe crosses are Tlﬁ norm In(A/T)
the data forJ=2850 K not corrected for thk, fluctuations.
In summary, | have presented theoretical low-temperature
1+ix) |4 results for NMR rate§'; andT,¢. The temperature depen-
" r dence of 1T is logarithmic, which is expected in the pres-
|0=f dx| ————| =71.2766, ence of the leading irrelevant operator. The main improve-
0 T 3+ix ment over past theories is that the amplitude and the cutoffs
4 were also calculated, so our expressions do not contain any
_ . free parameters. This has been a matter of confusion in the
F(l+|x) past® In particular, cutoffs have been fitted and used to-
o 4 1+ix 3+ix gether with 1/log terms which redefine them. Presumably,
hh= JO dx 3+ix Re{\y( 4 ( 4 this explains the difference of our cutoff with a fitted value
F( 2 ) of 4.5] used in Ref. 23. Our theoretical results agree reason-
ably well with experimental data of Takigawet al?® on
=—259.94, 17 Sr,CuQ;, as shown in Figs. 1 and 2.

whereW (x) is digamma function. The 1/IA(T) term is in- This work was supported by the National High Magnetic
corporated in the cutoff as in Ref. 19. Thus, up to termsField Laboratory through NSF cooperative agreement No.
O(1/In’(A/T)) the temperature dependence forTd/or DMR-9527035 and the State of Florida.
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