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Supersymmetric Hubbard operators
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We develop a supersymmetric representation of the Hubbard operator which unifies the slave boson and
slave fermion representations into a singlél) X SU(1|1) gauge theory, a group with larger symmetry than
the product of twaJ (1) gauge groups. These representations of the Hubbard operator can be used to incor-
porate strong Hund’s interactions in multielectron atoms as a constraint. We show how this method can be
combined with theSP(N) group to yield a locally supersymmetric lardeformulation of thet-J model.
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One of the fascinating aspects of strongly correlated mathat, respectively, create and annihilate a single electron. The
terials is their propensity to develop novel metallic phases irspin operator¥,,. are the generators of the grogtJ(N).
situations where local moments interact strongly with mobileThe additional operators expand the group to a supergroup
electrons. Examples of such situations include metals near @U(N|1)*® that describes the physical spin and charge de-
metal insulator transitioh,metals at an antiferromagnetic grees of freedom of the atom. These operators satisfy a
quantum critical poinf,and antiferromagnetic heavy fermion graded Lie algebra
superconductors. These discoveries challenge our under-
standing of how spin and charge interact at the brink of mag- [Xab: Xcdl+ = 6bcXad™ SadXch 2

netism. S S
. . where the plus sign is only used for fermionic operators. The
Theoretical approaches to these problems are hindered l%?f)sence of a Wick’s theorem for these operators is normally

tsheind(lglr(r:lejllgioor:scti%ugg\?eltges gf{ﬁgnt;jojrnadn:rforgg?xggn'r;o_vercome by factorizing the fermionic Hubbard operators as
P P Y product of canonical creation and annihilation operators.

tiferromagnetism and paramagnetism. Usually we mod his can be done by representing the empty state by a “slave

the_se featLges by fepfes‘?”“”.g the spin as a posoréin a M§550n” and the spin by a fermidror alternatively, by rep-
netic phas ,orasa fermion in a paramagnetic phadayt resenting the empty state as a “slave fermion” and the spin
by making this choice, the character of spin and charge e by a Schwinger bosolf

citations which appear in an approximate field theory is re- : . . .
stricted and lacks the flexibility to describe the coexistence We now generalize this approach, introducing

of strong magnetic correlations within a paramagnetic phase. Fo=(fy,...fn. )
These considerations have motivated the development of é ' '
new methods to describe the spin and charge excitations of a B.=(by,...by.x) 3)

strongly correlated material which avoid making the choice

between a bosonic or fermionic sgiff This paper attempts whereb,, andf,, denote a Schwinger bosband Abrikosov

to stimulate further progress in this direction by introducingpseudofermior’l,7 respectively, while¢ and y are slave

a supersymmetric representation of Hubbard operafdrke bosons and fermions? respectively. In terms of these op-
method used here is an extension of the supersymmetric spétators, the supersymmetric representation of the Hubbard
representation introduced by Coleman, pide and operators is written

Tsvelik!'? (CPT). Remarkably, the supersymmetry in the

CPT spin representation survives the introduction of charge Xap=BBp+FFyp. 4)
degrees of freedom, opening the method to a wider range . - .
models. %rltten out explicitly, this is

Hubbard operatot§ provide a way to describe atoms in X . =b'b.,+flf

which Coulomb repulsion prevents double-occupancy of a
given orbital. Supposéa)e{|0),|o)} describes a set of
atomic states involving a charged “hold0) or a neutral
spin statglo) with spin componentre {1...N} which for

XUO:bZ-X+fZ¢! XO(T:XTb0'+ d)Tfo”

_ ot t
generality can have one ®f possible values. The Hubbard Xoo=X'x+ ¢ . ®)
operators are written By summing the slave fermion and slave boson representa-
tions we are guaranteed that the representation satisfies the
Xap=|a)(bl, (1) correct commutation algebra. The novelty of our approach

lies in the two unique constraints which make the represen-
wherea,b € {ON}, represent an atomic state withpossible  tation irreducible, which we show to be

spin configurations. The operatoXs,,, are bosonic spin op-
erators whereas th¥,, and Xy, are fermionic operators Q=np+n,+ni+n,, (6)
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the total number of particles and (a) 1 (c)
1 _-—— - W —
Y=, 0 (nytn) + 516,67, @1 1 $ITTTIT]
the “asymmetry” of the representation, whete= X,bf,f(,
—x"¢ and its conjugated’ are fermionic operators which (b)
satisfy the algebrdd, #'}=Q. The 0 operators interconvert - W
bosons and fermions. f ]
" i ! h
bO"_fO'Y X:¢ -
4 4
The special feature of this representation is thaind 6" h
commute with the constraintgdM,Q]=[6M,Y]=0, the l @

bosonic Hubbard operators
1 1 FIG. 1. (8 Fundamental representatiorQ,Y)=(1,0), (b
[0, X 1=[6"", X00] =0, L-shaped Young tableau corresponding to the spin representation
and they also anticommute with the fermionic Hubbard Op_generated by supersymmetric Hubbard operators. The asymmetry
erators Y=h-w andQ is the number of boxes¢) Young tableau for fully
symmetric representation corresponding to Slave fermion lifjt,
{G(T)'Xao}:{f)myxoo}zoi Fully antisymmetric, slave boson limit.

so that there is docal supersymmetry which underlies the commute and are related byJ{)S'=g(U%)'g, where g
constraint. The operato®, ¢, and 6" are the generators of =Diag[1...1~1] is the invariant metric tensor of

the simplest supergrouU(1|1);** the operatolY generates SU(N|1). Thus theU are not unitary, but satisfJgU"

an additionalU(1) symmetry. Remarkably, by combining —g. Using the property that TAB]=Tr{BgAg], it follows
the slave boson and slave fermion representations, the abgpt

lian gauge groups of the starting representation “fuse” into a
supergroup with greater symmetryUsg(1)X Ugg(1) CW=TrX], C@=TrXgX], 9

—>L{r(1)><SU(1|1). If we introduce the operatoh=[70 .00t under the transformatintUTXU. These are

— 6 7], wherez and # are Grassmgm numbers, then undefine jinear and quadratic Casimirs of t1sU(N|1) group.

an SU(11) rotation, the fieldsj, = (¢?) transform as Inserting Eq(5) into Eq.(9), we find thatC'®=Q, while the
quadratic Casimir is

1
waHEAlpae_A: ¢a+ [A, ¢a] * E[A’[A' wa]], (8) C(Z): Xo’o”xo"o'_ XcrOX00'+ XOo"Xcr’O_XgO! (10)
where the Grassman coefficients truncate the expansion ¥here summation oves,o’ e {1Nj} is implied. When we
second-order. Expanding this expression gives—hiy,, expand the Casimir in terms of the canonical creation and
i — yint where annihilation operators, we find that

— — @A=O(N=1-VY

/1_7]77 ~7 C Q(N—=1-Y), (11

h= \/1—— with Q andY as given in Eqs(6) and(7). So by definingY
K A andQ, we uniquely set the representation.
is an SU(1|1) matrix, satisfyinghThzll The X operators Each conserved value of)(Y) describes an irreducible
(4) can be written a,,= .4, . Under the action of the representation of th&U(N|1) group; the fundamental rep-
SU(1|1) group, Xap— ¢rihThyn=X,,, explicitly demon- — resentation, Q.,Y)=(1,0) corresponds to an atomic orbital
strating the local gauge invariance. with no doyble occupanc};ﬁ:|g. 1(a)].. More_ general repre-
To guarantee that the Hubbard operator representation f€ntations involve spin wave functions with symmetric and

irreducible, we need to set the values of the linear and que@ntisymmetric _correlations, denoted by arl-Shaped”
dratic Casimirs of th&U(N|1) group. Under th&U(N|1)  Young tableatf with Q boxes, wheré&/=h—w is the differ-

. . ~ ence between the height and widtkig. 1(b)—1(d)]. These
group, the spinor8 andF transform according t8—BU, ! . . .

s . representations describe the physics of multielectron atoms
F—FU,” whereU=U delréotes the supertranspose of theyyhere the spins are Hund’s coupled, and in this way strong
un|t?rySU§rN|1) matrix, U.”> The Hubbard operatorXa,  Hund's couplings can be incorporated into an infinite
=B Bp+FzFa thus transform according toXa,  Anderson model using the constrain® and (7). As an
—(U'™U),p. SinceUTU=1, it follows thatUs{(U™)s'=1.  example, the material LiYO, develops a paramagnetic
However, the supertranspose and hermitian conjugate do nbeavy fermion ground-staftéin which vanadium ions form a
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mixed valence admixture of d'(S=1/2) and a Hund’'s 3(1—17,)|¢)=|¢g). In the supersymmetric approach, a par-
coupledd?(S=1) state. Since the electrons in tHé con- tition function of a HamiltonianH, involves tracing over
figuration are in a symmetric wave function, correspondingboth slave boson and slave fermion representations,

to a row tableau, this situation is described by Hubbard op-

erators in the representatio®(Y)=(2,—1): —BH
Z= e .
(2 (e )

1 2
/d\ ,_L The trace over both subspaces means that the derived path
e+ ]=11 . integral has aJ(1)xSU(1|1) symmetry and new dynami-
_ ) _ _ cal degrees of freedom. In the slave fermion and slave boson
As a second example, considePdAl3 in which uranium  gchemes, Fermi liquid and magnetic phases are manifested as
atoms fluctuate between dA and anf® configuration. Sur- “Higgs phases” of theU(1) gauge group’ The enlarged
prisingly, part of the spin magnetically orders, while the ré-y(1)xSU(1|1) gauge group unifies the slave boson and
mainder forms a singlet superconductor with the conductionyjayve fermion schemes, but also extends beyond it to furnish
electrons’ In this case, thé electrons are spin-orbit coupled, 4 potentially wider class of Higgs phases. For instance, sup-
with j=5/2, forming anSU(N) multiplet with N=2j+1  poseH is a Hamiltonian, such as theJ model with both
=6. In practice, crystal field effects break this large degen‘magnetic and paramagnetic phases, then we expept
eracy, but a toy model for the physics can be obtained using. 1 iy the antiferromagneti¢insulating ground state and
SU(N) Hubbard operators to describe the charge fluctuay - \= 41 in the paramagnetic ground state, but in addition,

tions, subject to the constrainQ(Y)=(3,0). 'Tr31is leads 10 there is the possibility of new saddle-points, whérg) lies
valence fluctuations involving an-shaped spirf® spin con-  petween these two extreme values.

figuration: We end with a discussion on the formulation of thé
model as a supersymmetric larfjeexpansion. To handle
f2 f3 antiferromagnetic interactions and electron hopping in a
~= large N expansion, we adopt the Read-Sachdev scheme, us-
e + = | ) ing Hamiltonians that are globally invariant under the unitary
N symplectic groupSP(N).?! This group is asubgroup of

. . . SU(N) (defined only for even values &f=2n), so its gen-
In this scheme the vertical leg of the representation can form o/« 2re a subset of the Hubbard operators. Moreover, the
a singlet with conduction electrons, leaving a single residu roupsSP(2) andSU(2) are equivalent. I8 P(N), the spin

spin free to magnetically ordé_?. o . components are divided into an equal number of “up” and
In many problems we are interested in interacting atoms, y,\vn” values o e (x1 +N/2): the unitary matrices of

containing either one, or zero electrons. Physical states CO§P(N) satisfy the condition UTeU=¢, where e,
responding to this situation haw@=1,Y=0: —sgn ()5, .. The SAN) t-J model is writteR2
Qlvy=lw). Yly=o0. (12

These conditions do not force the representation into a sIav'é| -
boson, or slave fermion representation. Here, it is useful to

t
=N 2 [Xoo(D)Xos(j) +H.c]
(.1

note thatd and " behave as lowering, and raising operators. i . N
In fact, becauséd, 6"} =Q, N .2,: €oo €y Koy (11 Xor(}) MEJ: M (149
1. 1 1. where Nj=2,X,,(j) is the number of particles. In the su-
T, =—=0", 7_=—0, 7,=[7,,7_]=x[0",0], ersymmetric representation, this model becomess K
\/6 \/6 7 Q persy p PN
behave as the raising, lowering andomponents of a “su- H=— l tf d+b v bt +vTb Y+ H.C
perspin” operator. If we take the sum and difference of the N (lzj) [(fiodi T Dioxi) (0t X Bjo) +H-C.]

constraintg6) and(7), we find that forQ=1 3
1 - 2 TIAGA =12 A, (15
ni+ng=>(1+7,), . )
where K;j=X\;(Q;—Qq)+¢;(Y;—Yo) describes the con-

1 straints at sitg, Vj=n¢(j)+ny(j) and
N+, =5(1-7,). (13
fiocfior  Tighjor
For 7,=1 these equations revert to the constraints for a slave Aij = €gor Biofior  Digbjor

boson representation, whep= — 1, they revert to those of a
slave fermion representation, i.e., an “up” superspin corre-describes the singlet valence bonds betweeni sited sitej.
sponds to a slave boson stat¢(1+7,)|¢)=|4), a  This Hamiltonian is invariant under the glob&P(N) trans-
“down” superspin corresponds to a slave-fermion stateformation and the local(1)x SU(1|1) gauge group. The
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family of models with Qq,Yo)=(N/2,0), (N even are of interaction H,=—(2{;/Q) 0?01, resembling recent ap-
particular interest. Two points deserve special mention:  proaches to the Hubbard model in which spin interactions
(i) In a path integral treatment, by carrying out a local self-consistently renormalize to enforce local constraifts.

gauge transformatiogh;—g;(7)¢; and integrating oveg;,  The Gaussian fluctuations of tifields associated with this
one obtains a supersymmetric LagrangiarC=_Ls,s;+H,  spin interaction play a crucial role in enforcing the con-
where straints between slave boson and slave fermion fields, and
1 nontrivial results depend on the inclusion of these fluctua-
Esusy=2 lﬂjTa[(?ﬁ' N — ¢ Ta]tja— _g;r(aﬁ 2¢)6; . tions in the effective action. _
ja Qo In conclusion, we have presented a supersymmetric rep-

This is the starting point for the study of the various Higgsresentation of Hubbard operators in which both the operators

phases of the model. In each of these phases, one of the ferﬁ{i]d the constraints are invariant under the action of the su-

fields is absorbed into the fluctuations of the gauge field. FOpergroupU(l)XSU(lll).. Th's approach_avmds the ne(_ed to
@gose between a fermionic, or bosonic representation for

inst i tic ph the slave b dené . :
Instance, In paramagnetic pnases e Slave poson conaen Spins. The underlylngJ(l)XSU(1|1) gauge group is Iarger

and by fixin
y g than the simple product of twd (1) gauge groups. Broken
bj'g - -b,—'g 0 symmetry saddle points of this enlarged group provide the
=g ! N , opportunity to study the interplay between magnetism and
e fioy Ty 1] paramagnetism.

the slave fermiong; are absorbed into the gauge field. Simi-
larly, the Schwinger boson field,, condenses in an ordered  This work was supported in part by the National Science
antiferromagnetic phase, absorbing a component offthe Foundation under Grant Nos. DMR 998318&C. and J.H.
fields. More complex Higgs phases, in which fermi fields ofand PHY 99-07947(P.C. and C.B.and research funds
the bond variables are absorbed into plaquet fermions alsibom the EPSRC, UK(C.P). P.C. and C.P. would like
become possible. to thank the Isaac Newton Institute and the Institute for
(i) The Lagrange multiplieZ; which imposes the con- Theoretical Physics, Santa Barbara, where part of this work
straint onY; gives rise to a self-consistently determined spinwas carried out.

1See J. Orenstein and A. J. Millis, Scier2®8 468(2000; P. W. Phys. Rev. B41, 2653(1990.
Anderson,ibid. 288 480 (2000, and references therein. 5The transpose matrices must be used, becausebatid F are

°N. D. Mathuret al, Nature(London 394, 39 (1998. column supervectors.

SR. Feyerhernet al, Phys. Rev. Lett73, 1849(1994). 165ee, for example, J. F. Cornwaliroup Theory in PhysicéAca-

4D. P. Arovas and A. Auerbach, Phys. Rev3B, 316(1988. demic Press, London, 1989/0l. 3, p. 18.

5P. Coleman, Phys. Rev. P, 3035(1984: A. J. Millisand P. A.  '’A. A. Abrikosov, Physics(Long Island City, N.Y) 2, 5
Lee, ibid. 35, 3394(1987). (1965.

63. Gan, P. Coleman, and N. Andrei, Phys. Rev. Lé8. 3476 18For a reference on Young tableaux, see, e.g., M. Hamermesh,
(1992; J. Gan and P. Coleman, PhysicalBl, 3 (1991). Group Theory and its Application to Physical ProbleAgldi-

C. Pein and M. Lavagna, Phys. Rev. B9, 12 180(1999; Z. son Wesley, Reading, MA, 1952p. 198.
Phys. B: Condens. Matter03 259 (1997). 19C. Uranoet al, Phys. Rev. Lett85, 1052 (2000.

80. Parcollet and A. Georges, Phys. Rev. L&8, 4665(1997). 2In these phases, Elitzur's theorem assures that the ld¢a)

9T. K. Ng and C. H. Cheng, Phys. Rev.3®, R6616(1999. gauge group is not actually broken, but the slave fields at each

103, Hubbard, Proc. R. Sot.ondon), Ser. A277, 237 (1964). site develop power-law correlations in time and may in this

11p. Coleman, C. RBn, A. M. Tsvelik, Phys. Rev. B62, 3852 sense be said to have developed long-range order in time.
(2000. 2IN. Read and Subir Sachdev, Phys. Rev. L&€. 1773 (1991);

12p_Coleman, C. Ren, and A. M. Tsvelik, Nucl. Phys. B86, 641 Subir Sachdev and Ziquiang Wang, Phys. Rev4® 10 229
(2000. (1991.

13|, Bars, Physica 015, 42 (1985. 22Mathias Vojta, Ying Zhang, and Subir Sachdev, Phys. Re62B

1c. Jayaprakashet al, Phys. Rev. B40, 2610 (1989; D. 6721(2000.

Yoshioka, J. Phys. Soc. Jpb8, 1516(1989; C. L. Kaneet al, 23y, Vilk and A. M. Tremblay, J Phys. 17, 1339(1997.

140411-4



