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Supersymmetric Hubbard operators
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We develop a supersymmetric representation of the Hubbard operator which unifies the slave boson and
slave fermion representations into a singleU(1)3SU(1u1) gauge theory, a group with larger symmetry than
the product of twoU(1) gauge groups. These representations of the Hubbard operator can be used to incor-
porate strong Hund’s interactions in multielectron atoms as a constraint. We show how this method can be
combined with theSP(N) group to yield a locally supersymmetric large-N formulation of thet-J model.
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One of the fascinating aspects of strongly correlated m
terials is their propensity to develop novel metallic phase
situations where local moments interact strongly with mob
electrons. Examples of such situations include metals ne
metal insulator transition,1 metals at an antiferromagnet
quantum critical point,2 and antiferromagnetic heavy fermio
superconductors.3 These discoveries challenge our und
standing of how spin and charge interact at the brink of m
netism.

Theoretical approaches to these problems are hindere
the difficulty of capturing the profound transformation
spin correlations that develops at the boundary between
tiferromagnetism and paramagnetism. Usually we mo
these features by representing the spin as a boson in a
netic phase,4 or as a fermion in a paramagnetic phase,5 but
by making this choice, the character of spin and charge
citations which appear in an approximate field theory is
stricted and lacks the flexibility to describe the coexisten
of strong magnetic correlations within a paramagnetic pha

These considerations have motivated the developmen
new methods to describe the spin and charge excitations
strongly correlated material which avoid making the cho
between a bosonic or fermionic spin.6–9 This paper attempts
to stimulate further progress in this direction by introduci
a supersymmetric representation of Hubbard operators.10 The
method used here is an extension of the supersymmetric
representation introduced by Coleman, Pe´pin, and
Tsvelik11,12 ~CPT!. Remarkably, the supersymmetry in th
CPT spin representation survives the introduction of cha
degrees of freedom, opening the method to a wider rang
models.

Hubbard operators10 provide a way to describe atoms
which Coulomb repulsion prevents double-occupancy o
given orbital. Supposeua&P$u0&,us&% describes a set o
atomic states involving a charged ‘‘hole’’u0& or a neutral
spin stateus& with spin componentsP$1 . . .N% which for
generality can have one ofN possible values. The Hubbar
operators are written

Xab5ua&^bu, ~1!

wherea,bP$0,N%, represent an atomic state withN possible
spin configurations. The operatorsXss8 are bosonic spin op
erators whereas theXs0 and X0s are fermionic operators
0163-1829/2001/63~14!/140411~4!/$20.00 63 1404
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that, respectively, create and annihilate a single electron.
spin operatorsXss8 are the generators of the groupSU(N).
The additional operators expand the group to a supergr
SU(Nu1)13 that describes the physical spin and charge
grees of freedom of the atom. These operators satisf
graded Lie algebra

@Xab ,Xcd#65dbcXad6dadXcb , ~2!

where the plus sign is only used for fermionic operators. T
absence of a Wick’s theorem for these operators is norm
overcome by factorizing the fermionic Hubbard operators
a product of canonical creation and annihilation operato
This can be done by representing the empty state by a ‘‘s
boson’’ and the spin by a fermion5 or alternatively, by rep-
resenting the empty state as a ‘‘slave fermion’’ and the s
by a Schwinger boson.14

We now generalize this approach, introducing

Fa5~ f 1 , . . . f N ,f!,

Ba5~b1 , . . .bN ,x! ~3!

wherebs and f s denote a Schwinger boson4 and Abrikosov
pseudofermion,17 respectively, whilef and x are slave
bosons5 and fermions,14 respectively. In terms of these op
erators, the supersymmetric representation of the Hubb
operators is written

Xab5Ba
†Bb1Fa

†Fb . ~4!

Written out explicitly, this is

Xss85bs
†bs81 f s

† f s8 ,

Xs05bs
†x1 f s

†f, X0s5x†bs1f†f s ,

X005x†x1f†f. ~5!

By summing the slave fermion and slave boson represe
tions we are guaranteed that the representation satisfie
correct commutation algebra. The novelty of our approa
lies in the two unique constraints which make the repres
tation irreducible, which we show to be

Q5nb1nf1nf1nx , ~6!
©2001 The American Physical Society11-1
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the total number of particles and

Y5nf1nf2~nb1nx!1
1

Q
@u,u†#, ~7!

the ‘‘asymmetry’’ of the representation, whereu5(sbs
† f s

2x†f and its conjugateu† are fermionic operators which
satisfy the algebra$u,u†%5Q. The u operators interconver
bosons and fermions.

bs

u

u†

f s , 2x

u

u†

f.

The special feature of this representation is thatu andu†

commute with the constraints@u (†),Q#5@u (†),Y#50, the
bosonic Hubbard operators

@u (†),Xss8#5@u (†),X00#50,

and they also anticommute with the fermionic Hubbard o
erators

$u (†),Xs0%5$u (†),X0s%50,

so that there is alocal supersymmetry which underlies th
constraint. The operatorsQ, u, andu† are the generators o
the simplest supergroupSU(1u1);13 the operatorY generates
an additionalU(1) symmetry. Remarkably, by combinin
the slave boson and slave fermion representations, the
lian gauge groups of the starting representation ‘‘fuse’’ int
supergroup with greater symmetryUSB(1)3USF(1)
→U(1)3SU(1u1). If we introduce the operatorÂ5@h̄u

2u†h#, whereh and h̄ are Grassman numbers, then und
an SU(1u1) rotation, the fieldsca5(Fa

Ba) transform as

ca→eAcae2A5ca1@A,ca#1
1

2
@A,@A,ca##, ~8!

where the Grassman coefficients truncate the expansio
second-order. Expanding this expression givesca→hca ,
cb

†→cb
†h† where

h5S A12h̄h 2h̄

h A12hh̄
D

is an SU(1u1) matrix, satisfyingh†h51. The X operators
~4! can be written asXab5ca

†cb . Under the action of the
SU(1u1) group, Xab→ca

†h†hcb5Xab , explicitly demon-
strating the local gauge invariance.

To guarantee that the Hubbard operator representatio
irreducible, we need to set the values of the linear and q
dratic Casimirs of theSU(Nu1) group. Under theSU(Nu1)
group, the spinorsB andF transform according toB→BŨ,
F→FŨ,15 whereŨ[Ust denotes the supertranspose of t
unitary SU(Nu1) matrix, U.16 The Hubbard operatorsXab

5Ba
†Bb1Fa

†Fa thus transform according to Xab

→(Ũ†XŨ)ab . SinceU†U51, it follows thatUst(U†)st51.
However, the supertranspose and hermitian conjugate do
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commute and are related by (U†)st5g(Ust)†g, where g
5Diag@1 . . . 1,21# is the invariant metric tensor o
SU(Nu1). Thus theŨ are not unitary, but satisfyŨgŨ†

5g. Using the property that Tr@AB#5Tr@BgAg#, it follows
that

C(1)5Tr@X#, C(2)5Tr@XgX#, ~9!

are invariant under the transformationX→Ũ†XŨ. These are
the linear and quadratic Casimirs of theSU(Nu1) group.
Inserting Eq.~5! into Eq.~9!, we find thatC(1)5Q, while the
quadratic Casimir is

C(2)5Xss8Xs8s2Xs0X0s1X0s8Xs802X00
2 , ~10!

where summation overs,s8P$1,N% is implied. When we
expand the Casimir in terms of the canonical creation a
annihilation operators, we find that

C(2)5Q̂~N212Ŷ!, ~11!

with Q andY as given in Eqs.~6! and ~7!. So by definingY
andQ, we uniquely set the representation.

Each conserved value of (Q,Y) describes an irreducible
representation of theSU(Nu1) group; the fundamental rep
resentation, (Q,Y)5(1,0) corresponds to an atomic orbit
with no double occupancy@Fig. 1~a!#. More general repre-
sentations involve spin wave functions with symmetric a
antisymmetric correlations, denoted by an ‘‘L-shaped’’
Young tableau18 with Q boxes, whereY5h2w is the differ-
ence between the height and width@Fig. 1~b!–1~d!#. These
representations describe the physics of multielectron at
where the spins are Hund’s coupled, and in this way stro
Hund’s couplings can be incorporated into an infiniteU
Anderson model using the constraints~6! and ~7!. As an
example, the material LiV2O4 develops a paramagneti
heavy fermion ground-state19 in which vanadium ions form a

FIG. 1. ~a! Fundamental representation (Q,Y)5(1,0), ~b!
L-shaped Young tableau corresponding to the spin represent
generated by supersymmetric Hubbard operators. The asymm
Y5h2w andQ is the number of boxes,~c! Young tableau for fully
symmetric representation corresponding to Slave fermion limit,~d!
Fully antisymmetric, slave boson limit.
1-2
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mixed valence admixture of ad1(S51/2) and a Hund’s
coupledd2(S51) state. Since the electrons in thed2 con-
figuration are in a symmetric wave function, correspond
to a row tableau, this situation is described by Hubbard
erators in the representation (Q,Y)5(2,21):

As a second example, considerUPd2Al3 in which uranium
atoms fluctuate between anf 2 and anf 3 configuration. Sur-
prisingly, part of the spin magnetically orders, while the
mainder forms a singlet superconductor with the conduc
electrons.3 In this case, thef electrons are spin-orbit coupled
with j 55/2, forming anSU(N) multiplet with N52 j 11
56. In practice, crystal field effects break this large deg
eracy, but a toy model for the physics can be obtained us
SU(N) Hubbard operators to describe the charge fluct
tions, subject to the constraint (Q,Y)5(3,0). This leads to
valence fluctuations involving anL-shaped spinf 3 spin con-
figuration:

In this scheme the vertical leg of the representation can f
a singlet with conduction electrons, leaving a single resid
spin free to magnetically order.12

In many problems we are interested in interacting ato
containing either one, or zero electrons. Physical states
responding to this situation haveQ51,Y50:

Q̂uc&5uc&, Ŷuc&50. ~12!

These conditions do not force the representation into a s
boson, or slave fermion representation. Here, it is usefu
note thatu andu† behave as lowering, and raising operato
In fact, because$u,u†%5Q,

t15
1

AQ
u†, t25

1

AQ
u, tz5@t1 ,t2#5

1

Q
@u†,u#,

behave as the raising, lowering andz components of a ‘‘su-
perspin’’ operator. If we take the sum and difference of t
constraints~6! and ~7!, we find that forQ51

nf1nf5
1

2
~11tz!,

nb1nx5
1

2
~12tz!. ~13!

For tz51 these equations revert to the constraints for a sl
boson representation, whentz521, they revert to those of a
slave fermion representation, i.e., an ‘‘up’’ superspin cor
sponds to a slave boson state,1

2 (11tz)uc&5ucF&, a
‘‘down’’ superspin corresponds to a slave-fermion sta
14041
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2 (12tz)uc&5ucB&. In the supersymmetric approach, a pa
tition function of a HamiltonianH, involves tracing over
both slave boson and slave fermion representations,

Z5 (
lPF,B

^clue2bHucl&.

The trace over both subspaces means that the derived
integral has aU(1)3SU(1u1) symmetry and new dynami
cal degrees of freedom. In the slave fermion and slave bo
schemes, Fermi liquid and magnetic phases are manifeste
‘‘Higgs phases’’ of theU(1) gauge group.20 The enlarged
U(1)3SU(1u1) gauge group unifies the slave boson a
slave fermion schemes, but also extends beyond it to furn
a potentially wider class of Higgs phases. For instance, s
poseH is a Hamiltonian, such as thet-J model with both
magnetic and paramagnetic phases, then we expect^tz&5
21 in the antiferromagnetic~insulating! ground state and
^tz&511 in the paramagnetic ground state, but in additio
there is the possibility of new saddle-points, where^tz& lies
between these two extreme values.

We end with a discussion on the formulation of thet-J
model as a supersymmetric large-N expansion. To handle
antiferromagnetic interactions and electron hopping in
largeN expansion, we adopt the Read-Sachdev scheme
ing Hamiltonians that are globally invariant under the unita
symplectic groupSP(N).21 This group is asubgroup of
SU(N) ~defined only for even values ofN52n), so its gen-
erators are a subset of the Hubbard operators. Moreover
groupsSP(2) andSU(2) are equivalent. InSP(N), the spin
components are divided into an equal number of ‘‘up’’ a
‘‘down’’ values sP(61, . . .6N/2); the unitary matrices of
SP(N) satisfy the condition UTeU5e, where ess8
5sgn (s)ds,2s8 . TheSP(N) t-J model is written22

H52
t

N (
( i , j )

@Xs0~ i !X0s~ j !1H.c#

1
J

N (
i , j

ess8ehh8Xsh8~ i !Xs8h~ j !2m(
j

Nj , ~14!

whereNj5(sXss( j ) is the number of particles. In the su
persymmetric representation, this model becomesH1( jK j

H52
t

N (
( i , j )

@~ f is
† f i1bis

† x i !~f j
†f j s1x j

†bj s!1H.c. #

2
J

N (
( i , j )

Tr@L i j
† L i j #2m(

j
Nj , ~15!

where K j5l j (Q̂j2Q0)1z j (Yj2Y0) describes the con
straints at sitej, Nj5nf( j )1nb( j ) and

L i j 5ess8F f is f j s8 f isbj s8

bis f j s8 bisbj s8
G

describes the singlet valence bonds between sitei and sitej.
This Hamiltonian is invariant under the globalSP(N) trans-
formation and the localU(1)3SU(1u1) gauge group. The
1-3
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family of models with (Q0 ,Y0)5(N/2,0), (N even! are of
particular interest. Two points deserve special mention:

~i! In a path integral treatment, by carrying out a loc
gauge transformationc j→gi(t)c i and integrating overgj ,
one obtains a supersymmetric Lagrangian,11 L5Lsusy1H,
where

Lsusy5(
j ,a

c ja
† @]t1l j2z jt3#c ja2

1

Qo
u j

†~]t12z j !u j .

This is the starting point for the study of the various Hig
phases of the model. In each of these phases, one of the
fields is absorbed into the fluctuations of the gauge field.
instance, in paramagnetic phases the slave boson cond
and by fixing

c j5gjS bj s1
8 . . . bj sN

8 0

f j s1
8 . . . f j sN

8 r j
D ,

the slave fermionsx j are absorbed into the gauge field. Sim
larly, the Schwinger boson fieldbs condenses in an ordere
antiferromagnetic phase, absorbing a component of thef s

fields. More complex Higgs phases, in which fermi fields
the bond variables are absorbed into plaquet fermions
become possible.

~ii ! The Lagrange multiplierz j which imposes the con
straint onYj gives rise to a self-consistently determined sp
14041
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interaction HI52(2z j /Q)u j
†u j , resembling recent ap

proaches to the Hubbard model in which spin interactio
self-consistently renormalize to enforce local constraint23

The Gaussian fluctuations of theu fields associated with this
spin interaction play a crucial role in enforcing the co
straints between slave boson and slave fermion fields,
nontrivial results depend on the inclusion of these fluct
tions in the effective action.

In conclusion, we have presented a supersymmetric
resentation of Hubbard operators in which both the opera
and the constraints are invariant under the action of the
pergroupU(1)3SU(1u1). This approach avoids the need
choose between a fermionic, or bosonic representation
spins. The underlyingU(1)3SU(1u1) gauge group is large
than the simple product of twoU(1) gauge groups. Broken
symmetry saddle points of this enlarged group provide
opportunity to study the interplay between magnetism a
paramagnetism.
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