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Effects of ground-state degeneracy on the:J spin glass
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We perform Monte Carlo simulations of the Ising spin glass at low temperature in three dimensions with a
+J distribution of couplings. Our results display crossover scaling betwee@ behavior, where the order
parameter distributiof(q) becomes trivial foL. — o, and finiteT behavior, where the nontrivial part 8f(q)
has a much weaker dependencelorand is possibly size independent.
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I. INTRODUCTION KM argument to the droplet model, in which case there is
still a crossover, betwedn™ **? behavior at smallet and
Several papets* have recently studied the Ising spin L~ ¢ behavior at larget.. Overall, in the KM scenario, the

glass in three dimensions with a Gaussian distribution obnly difference between the continuous and thé distribu-

bonds at low and zero temperatuFgom data obtained on tjons forL>L(T) is that the position of the peaks R(q)

small sizeshese papers deduce that the order parameter digye different forT— 0. Denoting the peak positions byd,,

tribution function,P(q), is nontrivial at finiteT, i.e., in ad-  then one hasjo<1 for the +J distribution whereasj,=1

dition to two peaks, symmetric abogt=0, there is also a {4 5 continuous distribution.

continuous part between the peaks whose weight does not Here we display the crossover betwekn 0 and finiteT

decrease with size.This indicates the existence of a non- behaviors. Further motivation for our work is to clarify con-

trivial energy landscape, i.e., of macroscopic excitations, in. .. . :
. o) U ’ . ' “licting numerical results for ground-state properties. Ber
volving a finite fraction of the system, that cost a finite en- g g prop 9

10 ; ; i -
ergy in the thermodynamic limit. This aspect of the results iset al. ~ used a multicanonical Monte Carlo technique to de

consistent with the replica symmetry breaking picture Oftermlne P(qg) at T=0 finding results consistent with trivial

s . behavior withA=0.72+0.12 (but also not ruling out the
Parisi® By contrast, the droplet theot§ predicts that the Y o . .
weight inythe continuous parltoof the di?tr?bution should van-pOSSIbIIIty of nontrivial behavior Hartmani” used a genetic

ish like L~¢ as the(linean size of the systenh. increases, optimization algorithm_ finding initially a nontriviaP(q),
where# is a positive exponent. In both theories, because thgm the results were bmséd)_ ecause the de_g_enerate ground
ground state is uniqu@part from inverting all the spinsit States W(?Jlrse not sampled wrgh equal probability. Subsequently
follows that the weight in the “tail” of the distribution tends Hartmann™ developed an improved method and found a

to zero(proportional toT) asT—0 and the positions of the trivial P(q) with )\:1'254:0'05’ and suggested that this
peaks tend tar 1. The purpose of this paper is to see hOWsupports the droplet picture. Very recently Hatano and

. 4 o . .
these results are modified for a spin glass with a bimoda?ljberm’Itlé (referred to as HEGhave performed a “bivari-

distribution (also called the+J distribution, where the in- ate multicanonical” Monte Carlo study, finding th&(0)

teractions have values 1, where there is a large ground- drops dramatically at low asL increases. Though they do

state degeneracy and a finite around-state entro er s innot extract the exponent, from the figures in their paper, it
9 Y 9 Py PET Sp ippears thak is significantly larger than Hartmann'’s value.

. . . . . ...al
O+ne ”.“ght p_ossmly Imagine that, since the SySte’.“ WlthThey too argue that their results provide evidence for the
the = J distribution has a finite ground-state entropy, its be_droplet picture. However, Marinarét al2® have recently

havior at zero temperature would be similar to that of a_ . . : : :
. . S e . claimed, on the basis of their own simulations, that the re-
model with continuous distribution at finit€. If this were

true then, according to the numerical resaitsP(q) would sults of H_G are not equilibrated and their conclusipns are
o : therefore invalid. Finally, recent wotk finds a nontrivial

be nontrivial atT—IO. whereas according to the droplet theory energy landscape and also, apparentipoatrivial P(q) at

P(qH)O\\:va\l'/'g btﬁiglxg:;)n has been contested by Krzakala anT=O. It therefore seems useful to try to decide between

S 9 ' ﬁwese different results. Our data at the lowest temperatures

Martin” (referred to henceforth as KMvho argue that en- imply a trivial P(q) at T=0 and our estimate fox is con-

tropy effects cause one "valley” in th&=0 energy land- sistent with that of Bergetall® but not with that of

scape of thetJ model to dominate and consequently the Hartmant® or HG '

weight in the tail vanishes liké ~*, where\ is a positive The Hamiltonia{n is given b

exponent(discussed beloyy even if the energy landscape is g y

nontrivial. At finite T, KM argue that the weight is finite for

largeL, so, by implication, there must be a crossover at some

scaleL((T) from theL ~* behavior forL<L(T) to a value H=— 2 Ji;SS;, (1)

independent of. at larger sizes. One can also generalize the {0
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FIG. 1. An equilibration plot fot. =8, T=0.20, for the second a I
and fourth moment oP(q), and forx(1/2), the average oP(q) i T=0.20
over the interva|q|<1/2. For better viewing, the data f6q*) and | ’ ]
X(1/2) have been shifted upwards by 0.14 and 0.67, respectively.
For each value 0N the averages were measured over the last 0.01 111 I AR B
Nsweef3 MC sweeps. -1 —-0.5 0 0.5 1

q

where the site$ lie on a simple cubic lattice in dimension o
d=3 with N=L2 sites (<10), S==1, and theJ;; are F_IG. 2. Da_ta for the oyerlap dlstrlbutldﬁ(g)_ atT=0.20. The
nearest-neighbor interactions taking valued with equal vertical scale. is Iogarlthnilc to better maI.<e visible the peak at large

. . - g and the tail down tag=0. We only displaysomeof the data
prqbat?llle. We d.o not apply the constraili; ;J;; =0, oints as symbols, for clarity, but the lines connadt the data
which is imposed in some related. vyork. Howeyer, We eXpecgoints. This accounts for the curvature between neighboring sym-
that the crossover fronf=0 to finite T behavior will be
similar in the two models. Periodic boundary conditions are
applied. We focus on the distribution of the spin overlap,

where independent of simulation time when plotted on a logarith-
mic scale. Figure 1 shows an example for8, T=0.20
1 N indicating that the data seems to have saturated.
0= E shs@), 2) In Table |, we show the simulation parameters. The low-

est temperature simulated,;,, has to be compared with

in which “(1)” and “ (2)" refer to two independent copies Tcmlf'15' For each .S'(Zje the _Iar%est temp_e_ratu[]e |sh2.0. The

(replicas of the system with identical bonds set of temperatures is determined by requiring that the accep-
: tance ratio for global moves is 0.3 or larger.

Simulations of spin glasses at very low temperatures are Figures 2 and 3 show data féX(q) for different sizes at

now possible, at least for modest sizes, using the paraIIeIL S .
: 18 : =0.2 andT=0.35. One can see that the weight in the tail
tempering Monte Carlo methdd:”® where one simulates tends to decrease initially with increasig especially at

replicas of the system &l different temperatures. Here, we lower T, but for T=0.35 the data seems to saturate at larger

need two copies of the system at each temperature to calcu- = ; S .
late g, so we actually ran two sets o replicas. We also L For T=0.5 (not displayed the weight in the tail saturates

gain a large speed-up by using multispin codftp store
each spin or bond as a single bit rather than a whole word. L e L e L L
In earlier work for the Gaussian distribution we were
able to use a special relationship between certain variables to
check for equilibration, but this is not applicable here. We
therefore investigate whether various quantities have become

TABLE I. Parameters of the simulation¥g,,is the number of
samples(i.e. sets of bonds NgyeepiS the total number of sweeps
simulated for each of theNg; replicas for a single samplBl; is the
number of temperatures used in the parallel tempering method, and
Tmin iS the lowest temperature simulate)Ng,y= 6336 for L
=8 andT=0.35.

L Nsamp Nsweep NT Tmin
4 9600 16 15 005 1 | 1 1 | 1 1 1 1 I 1 1 1 1 I 1 1 1 1
6 6400 16 15 0.05 0.01
-1 -0.5 0 0.5 1
8 3904*) 3 X10° 21 0.2 q
10 1408 10 19 0.35

FIG. 3. Same as for Fig. 2 but @t=0.35.
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FIG. 4. Log-log plot ofx(1/2), the average oP(q) over |q|

=<1/2, againsL.

tures, wherex(q):f‘qu(q’)dq’ so x(1/2) is theaverage
of P(q) from —1/2 to 1/2. We give data fox(1/2) rather
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FIG. 5. The scaling behavior of(1/2) expected from Eq4)

with #=0. ForL>L(T)~T *, x(1/2) is independent of size,

) . . while for L<L(T),x(1/2) varies ad ~*. The dashed line has a
already atL=4. This can be seen more clearly in Fig. 4, giope of—0.9.

which showsx(1/2) as a function oL for different tempera-

thanP(0) because the statistics are better and also so we cavorse.

compare directly with other work. Fdr=4 andL=6, the

sibility, though we note that =0.35 is quite far fronT . and
that a scaling plot as in Fig. 5 but with= 0.2 is significantly

Hartmanr® computedx(1/2) as a function oL at zero

data atT=0.05, not showed in Fig. 4, are superimposed ontemperature and found that a power law fits well the data
the data aff=0.2, indicating that we have reached the truewith an exponend =1.25+0.05, which disagrees with our
T=0 behavior. FolL=8, the data have a residual tempera-estimate. Our value fox does, however, agree with that of

ture dependence down f6=0.2. Hence, extrapolating to
T=0, we cannot exclude that thE=0 value is up to two

Berg et al1° who find A=0.72+0.
data for x(1/2) is consistent withthough more accurate

12. In addition, our raw

standard deviations lower than tie=0.2 value. The aver- than that of Berget al,'° but is inconsistent with that of

age energy, instead, is saturatedthin the error barsfor all

Hartmani® for L>4. For example, forL=6 we find

L and forT=<0.35, and is irmgreement with the ground state x(1/2)=0.095*+0.002, while Hartmann finds(1/2)=0.083

results by P&t for all L. From a power-law fit of the data in

Fig. 4 atT=0.2 we estimate

A=0.9x0.1.

an exponentd, we expect that at finitd there will be a
crossover between the”**9 behavior forL smaller than
some length scal&(T), and theL ~? behavior (or, for ¢

=0, anL-independent value proportional D), at scales

+0.005. We note, however, that Hartmann’s method, unlike

(properly equilibratefiMonte Carlo simulations, is ngfuar-

anteedto sample all the ground states with equal probability.
(3 Our results forP(q) at low T are also in marked disagree-

ment with HG. For example, HG report R(q) which is
Generalizing the KM argument to a scenario described byower than 0.03 in the intervalg|<0.1 for L=8 and T

=0.3, while our average oP(q)

crease oP(q) with L even afT=0

over this interval is be-

tween 0.066:0.004 (our value atT=0.275) and 0.081
+0.004 (our valueT=0.35). HG observe a pronounced de-
.5, where our data clearly

larger thanL.(T). In the more general case, assuming scal-saturate. We also computed the Binder cumulant, which
agrees with Ref. 15 but disagrees with HG. This suggests
that the simulations of HG are not correctly equilibrated, as

ing one had .(T)~T ** and
x(1/2)=TL™%F(LT™),

wheref is a scaling function.

A scaling plot appropriate to this behavior, fé=0 and

(4) discussed in detail in Ref. 15.

KM give arguments thak should equally/2 whered; is
the fractal dimension of the surface of the large-scale low-

energy excitations which give rise to a nontrivial energy

A=0.9, is shown in Fig. 5, where one can see that the datlandscape. However, one expects thged—1 which is

collapse fairly well. The data in Fig. éhcreasewith increas-
ing L for T=0.8, due to the vicinity ofT., wherex(1/2)
~LP" and® B/v=0.3. One may therefore argifehat the
observed saturation betwe&r-0.35 andT =0.65 is a finite-
size effect and that at larger sizes there will besecond

d; is significantly larger than this

different for the Gaussian andJ

barely satisfied by the estimate in E§) which corresponds
to dg=1.8+0.2. Furthermore, for the Gaussian distribution,

value. For example, Ref. 2

finds dg=2.58+0.02. While it is possible thads could be

models, our results sug-

crossover to thé ~? behavior. We cannot exclude this pos- gest that\ #d¢/2, and that there may be corrections to the
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argument of KM. It is also possible that the observed smalbdoesnot, in itself, imply evidence for the droplet model since

value of\ is due to finite-size corrections. this is also expected iP(q) is nontrivial at finite T, as
To conclude, our results indicate that the order parametgsointed out in Ref. 9.
distribution of the=J Ising spin glass is trivial al=0 but, After this work was submitted we received a paper by

at least for quite small sizes, is nontrivial at finften agree-  Hed et al,?® in which, based on a different analysis from

ment with the conclusions of KM. We have also demon-gyys; they claim thaP(q) is nontrivial atT=0.

strated crossover scaling between the zZ€rand finite T

behaviors. We expect similar results in other models with a  This work was supported by the National Science Foun-
discrete disorder distribution, and indeed this is what we findlation under Grant No. DMR 0086287. The numerical cal-
in preliminary unpublished data for theJ Ising spin glass ~culations were made possible by a grant of time from the
in d=4. Whether these conclusions are still valid in theNational Partnership for Advanced Computational Infra-
thermodynamic limit remains an open question. Howeverstructure. We should also like to thank A. Hartmann for
we emphasize, quite generally, that a trivi{q) at T=0  helpful correspondence.
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