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This paper is concerned with the idea that the electron is fractionalized in the cupraf,hitdterials. We

show how the notion of topological order may be used to develop a precise theoretical characterization of a
fractionalized phase in spatial dimension higher than 1. Apart from the fractional particles into which the
electron breaks apart, there are nontrivial gapped topological excitations—dubbed “visons.” A cylindrical
sample that is fractionalized exhibits two disconnected topological sectors depending on whether a vison is
trapped in the “hole” or not. Indeed, “vison expulsion” is to fractionalization what the Meissner efféaix
expulsion”) is to superconductivity. This understanding enables us to address a number of conceptual issues
that need to be confronted by any theory of the cuprates based on fractionalization ideas. We argue that
whether or not the electron fractionalizes in the cuprates is a sharp and well-posed question with a definite
answer. We elaborate on our recent proposal for an experiment to unambiguously settle this issue.
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[. INTRODUCTION to argue that a weak attractive interaction between the elec-
trons (or more precisely between Landau quasipartjcles
The cuprate high-. materials are among the most com- binds them into pairs, which condense as a chargbdson.
plicated systems studied extensively in solid-state physics. IBut fractionalization describes an altogether differemite
addition to the high-temperature superconductivity itself,to superconductivity, within which the electron splinters into
they display a wide variety of novel phenomena. Perhaps thiwo pieces, one carrying the Fermi statistiesxd spin—a
most puzzling is the behavior in the “normal” nonsupercon-direct condensation of the remaining chamg®oson leads
ducting state above the transition temperature which, beindirectly to superconductivity. Remarkably, although the frac-
anything but normal, is difficult to understand within Fermi tionalizationroute to superconductivity is so very different
liquid theory. The superconductivity is obtained by dopingfrom that in BCS theory, the resulting superconducting phase
“parent” compounds that are Mott insulators—rendered in-itself has identical qualitative propertiés.Furthermore, the
sulating by strong electron-electron interactions. These paffractionalization idea provides appealing explanations of
ent compounds also display “Bleantiferromagnetism. A several of the unusual “normal’-state phenomena, most no-
number of other interesting phases and broken symmetrigably the photoemission spectra.
are also often observed, including charge and spin ordering In this paper, we show how a precise meaning may be
into stripes. In addition, some regions of the phase diagramgiven to the statement that the electron is fractionalized.
are very sensitive to the presence of disorder—particularly aBased on this, we argue that whether or not the electron
low doping and low temperature. Indeed, even a casudractionalizes in the cuprates is a sharp theoretical question
glance at the phase diagram is sufficient to realize the richthat is independent of all kinds of unavoidable material com-
ness of phenomena displayed by these materials. plications. Further, we show how this sharp theoretical ques-
It is hoped by many that underlying this remarkably com-tion may be answered unambiguously by experimenite
plex behavior might lie a simple explanation which will give idea that the electron is fractionalized thus provides a non-
insight into the mechanism of superconductivity. The chal-pairing route to superconductivity which is directly testable
lenge is to identify any kegualitativefeatures of the system We begin by developing a precise theoretical character-
which can be sharply characterized and detected experimeiration of a phase in which the electron is fractionalized. As
tally. In this paper, we pursue an elegant and simple explaanticipated in Ref. 5, this is through the notion of “topologi-
nation of superconductivity and other properties that is basedal order’—a concept that has been elucidated clearly by
on the idea that the electron is splintered aieet fraction- Wen and Nid® in the context of the quantum Hall effect.
alized in these materials. The genesis of this idea can b&his enables us to address a number of conceptual issues that
traced back to the original resonant valence b&RWB) need to be confronted by any theory of the cuprates based on
theories: 3 but recent theoretical wofk® has led to a unified fractionalization ideas. The crucial property of the fraction-
theoretical framework for electron fractionalization abovealized phase is the existence of excitations which are frac-
one spatial dimensiofmost readily expressed in terms of a tions of the electron. While various such phases with differ-
Z, gauge theor$®. Remarkably, this points to a novel route ent fractionalization patterns are theoretically possiblie
to superconductivity which dispenses entirely with the notionphase that is of the most interest in the context of the cu-
of electron pairing. Quite generally, to obtain superconducprates is one in which the electron breaks into a charged
tivity in a many-body system it is necessary to condense #oson and a neutral spin carrying fermion. An equally cru-
charged particle. In an electronic system the naive routeial property of the fractionalized phase is the emergence of
would be to condense the electron, but this is of course naa gapped topological excitation—dubbed the vi§dh pair
possible as the electron is a fermion. The BCS solution wasf visons can annihilate each other, so that they carry only a
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Z, (topologica) quantum number. The existence of this to- alized at zero temperaturlf.the electron is indeed fraction-
pological excitation is conceptually very important to the alized in the underdoped cuprates, the conventional ordered
“fractionalization” route to superconductivity. The super- states seen in that region are complications that distract
conductor obtained by condensing ttlgargeof an electron from the hidden zero-temperature topological order that is
(once having shed its Fermi statisfiés in the same phase as ultimately responsible for the superconductivity.
the one obtained by condensing Cooper pairs of electrons. In Historically, theoretical attempts to access fractionalized
particular, despite the condensation of a chageson, flux  phases above one dimension have focused on “quantum dis-
quantization is in units ohc/2e—this surprising result”  ordering” various states with conventional well-understood
requires the presence of topological vison excitations in thgyroken symmetries, most frequently antiferromagnets and
fractionalized phase. Indeed, the visons bind thef2e unit  superconductors. This has led to a misconception that frac-
of electromagnetic flux once the system becomes supercoffonalizationrequiresthe close proximity to a “parent” con-
ducting. ventional broken symmetry state. This, however, is both
Any complete theory of the cuprates must necessarily payroblematic and incorrect. Clearly there can be “quantum-
attention to their layered quasi-two-dimensiof@liasi-2D  disordered” magnets or superconductors whichraefrac-
structure. Motivated by this, we consider the possible fractionalized. Moreover, ordered phases which are fractional-
tionalized phases in such a geometry. Interestingly, tWqzed are certainly possible, at least in principle. As we
qualitatively distinct kinds of fractionalized phases are posemphasize in this paper, the correct way to characterize any
sible. In one, the system behaves as a full three-dimenSiOﬂmactiona|ized phase is by Specifying itepo]ogica| order
solid, and the fractions into which the electron decays camHowever, the fractionalized phase does often contain in it the
freely propagate in all three directions. In the other, the dif-seed of broken symmetry, particularly in electronic systems.
ferent layers decouple from each other—the fractions of thg=or example, once the electron charge spin has been
electron can now propagate freely within each layer but caniperated from its Fermi statistics, a direct condensation leads
not do so in the direction perpendicular to the layers. A numnaturally to superconductivitfor magnetism But note that
ber of experiments suggest that this decoupled quasi-2Rere the broken symmetry emerges from the
fractionalized phase is the one more likely relevant to theractionalization—the latter being the higher energy phe-
cuprates. nomenon. For instance, if fractionalization occurs at all in
Another important issue is the fate of the fractionalizationthe cuprates, the energy scale is presumab]y Comparab|e to
at finite temperaturé One normally associates fractionaliza- the pseudogap temperatteand the superconductivity is an
tion with a property of the spectrum of the system’s emergent low-energy phenomenon. Thus it is more correct to
Hamiltonian—it is therefore nat priori clear whether it has view the fractionalized phase as the “parent” phase to the
any meaning at finite temperature. However, having charagroken symmetry state—rather than the other way around.
terized the fractionalized phase by itspological order While the underdoped cuprates are possibly fractional-
(rather than by its spectrunwe are able to address this issue. jzed, the empirical evidence seems to suggest that when
For the quasi-2D fractionalized phase, the topological ordereavily overdoped they are not. As we have detailed edllier,
in fact does not survive at finite temperature, so theh@ap  the quantum confinement transition where the fractions of
distinction between fractionalized and unfractionalizedthe electron get glued back together might well account for
phases is only possible at zero temperature. Nevertheless, e properties in the region between the underdoped and
low temperature above the fractionalized phase, the System éﬁ/erdoped regimes_ A Comp|ete theory of this novel quantum
“almost” topologically ordered. In the cuprates, we have phase transition is unfortunately unavailable at present—we
suggestetithat the crossover towards tiie=0 fractionaliza-  instead will briefly discuss some much simpler quantum con-
tion occurs at a temperature comparable to the pseudogdimement transitions.
temperature. As we will see, this may be exploited to probe Most importantly, the theoretical understanding of frac-
the hidden zero-temperature order in the systéfor the tionalization developed in this paper enables us to describe
fully three-dimensional fractionalized phase, on the otheian experimental setup which should enable a direct detection
hand, the topological order survives up to a finite nonzeraf the topological order. As we shall see, the hallmark of
temperaturé) fractionalization is the expulsion of visons—analogous to the
If fractionalization occurs at all in the cuprates, it is most Meissner effect being the hallmark of superconductivity. We
likely in the underdoped regime. This might appear to raiselescribe a way to prepare and detect a vison in the hole of a
serious problems for the fractionalization idea, since it iscylindrical sample. If the “normal state” of the underdoped
precisely in the heavily underdoped region at low temperacuprates is fractionalized, and hence topologically ordered,
ture that a variety of conventional broken symmetry stateshe trapped vison will be unable to escape, and can be de-
(Neel magnetism or charge and spin stripase observed. tected at a later time. This signature of fractionalization in
Furthermore, this region tends to be very sensitive to disorthe “normal state” is directly analogous to fluxoid trapping
der effects. We argue that this is a nonissue. Theoreticallyin a superconductor. Some of the results of this paper,
the topological order that characterizes fractionalization camainly the proposal for the experiment described above,
happily coexist with Nel magnetisnt or stripes, or other were briefly presented in a recent short pafer.
broken symmetry states. Moreover, it is unaffected by disor- In the rest of the paper, we elaborate on the ideas and
der. Thus, the presence of a conventional broken symmetmesults described above. The theoretical formulation we use
tells us nothing about whether or not the system is fractionto describe fractionalization is&, gauge theory. While this
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is mathematically and physically closely related to severabriginal electronic system. However, this reformulation is an
other formulations, it has several advantages. It works diextremely useful starting point to discuss phases of the sys-
rectly with the physical excitations in the fractionalized tem where the electron is fractionalized. Both the chargons
phase. Moreover, the topological order characterizing th%nd Spinons carry a unit dfz gauge Charge while the vison
fractionalized phases is most simply discussed in Zhe  carries a unit o, gauge flux. Thus, upon encircling a vison,
gauge theory framework. It also has the advantage that e chargon and spinon each acquire a phaser.ofhis

generalizes readily to a variety of relevant situations, such agng-range interaction has crucial implications for the phys-
layered systems or a system with broken spin rotation invarizeg

ance. There are two qualitatively different phases that are de-
scribed by theZ, gauge theory action. In one, the visons are
Il. FRACTIONALIZATION AND TOPOLOGICAL ORDER gapped excitations. In such a phase, the electron splits into

two independent excitations—the chargons and the spinons.
To see this simply, consider the limit when the vison gap is
In our recent work we demonstrated that a general classyery large so that they may be safely ignoi@e., K— ).
of strongly interacting electron models could be recast in therhus, when the visons are absent, all the plaquette products
form of aZ, gauge theory, which then enabled us to provideof the z, gauge field equal plus one. One can therefore put
a reliable discussion of issues of electron fractionalization. Irb.”. =1 on every link. In this case the chargon and spinon can
particular, we demonstrated the possibility of obtaining frac-propagaténdependentlyand the electron ifractionalized
tionalized phases in two or higher spatial dimensions. We The other qualitatively different kind of phase is obtained

A. Review of Z, formulation

begin with a quick review of this formulation. if the visons are condensed. The long-range interaction be-
The action for theZ, gauge theory is tween the visons and the chargdps the spinonsfrustrates
the motion of the latter. The result is that they are confined
S=S,+ S+ Sc+ Sg, (1) y

together to form electrongor other composite excitations
made out of electronsIn such a phase, the electron is not
Se=—te >, oij(bfb;+c.c), (2)  fractionalized. Further, once the vison is condensed, it loses
(D) its legitimacy as an excitation in the system.
Thus the really crucial property of the fractionalized
_ st A N7 phase is the presence of the gapped topological vison exci-
Ss= % 7ij (i fiaf o+ i Tigfy 0.0 z. fiafia tations. The full excitation spectrum in the fractionalized
(3) phase decomposes into different topological sectors. The
fractionalized phase is therefore characterized by the emer-
_ gence of a topological quantum number which labels the
k= K% 1;[ Tij - @ spectrum of states. Topological excitations are also well
+ ) _ o known to occur in states with a broken symmetry—for in-
Here,b; creates a spinless, charg@osonic excitation—the  gtance, vortices in superconductors. However, the topologi-
chargon—and creates the spinon, a fermion carrying spincal excitations in the fractionalized phase occur despite the
1/2 but no charge. When created together, these two excitabsence of any obvious broken symmetry.
tions comprise the electron. The fielg is a gauge field that ~ Nevertheless, the fractionalized phase contains in it the
lives on the links of the space-time latti¢eaken as cubic seed of broken symmetry. Once the electron is splintered
when in 2+ 1 dimensiong and takes on two possible values into the chargon and the spinon, its electric charge is no
oij=*1. The kinetic term for the gauge fiel@ , is ex-  longer tied to its Fermi statistics. Instead, the charge is now
pressed in terms of plaquette products. H&gis a Berry’'s  carried by the bosonic chargons. The chargons can now di-
phasé term which depends on the doping rectly condense, leading to a superconducting state. Surpris-
At a formal level, the action above reformulates a systeningly, this superconductor is in the same phase as that ob-
of interacting charge; spin-1/2 electrons as a system of tained by the condensation of Cooper pairs of electrons. In
spinless, charge-bosons(the chargonsand neutral, spin- particular, the superconductor has flux quantization in units
1/2 fermions (the spinony both of which are minimally of hc/2e despite its description as a condensate of charge
coupled to a fluctuating, gauge field. The physical content chargons. This remarkable feature is due to the presence of
of any gauge field is in its vortex excitations that carry thethe topological excitations—the visons—in the fractionalized
gauge flux. We are therefore led to consider vortices in thghase. Indeed, upon condensing the chargon to form the su-
Z, gauge field—dubbed the “vison.” Specifically, consider perconductor, the vison also acquites/2e of electromag-
the product of the gauge field- around an elementary netic flux.
plaquette, which can take on two values, plus or minus one. We also remark that the spinons of the fractionalized in-
When this product is negative, a vison excitation is presensulator go over into the fermionic quasiparticles of the super-
on that plaquette. conductor once the chargon is condensed. The action de-
We may therefore regard the action in Ef)) above as a scribing the spinons is identical to that of the usual BCS
reformulation of an interacting electron system as a theory ofjuasiparticles—in particular, the spinons are always paired.
interacting chargons, spinons, and visons. At this stage, thiShus, the spin physics of the fractionalized insulator is iden-
is essentially nothing more than a change of variables on thecal to that of the superconductor that derives from it.
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In the rest of this section, we will develop a precise the- |
oretical characterization of the fractionalized phase using the /’H\
notion of topological order. Q \Jl‘/
B. Topological order in the pure gauge theory

We begin by considering the pure gauge theory in the
absence of any matter coupliige., coupling to the char-
gons or the spinonsThis is described by the action

SK=—K% ];[ aij - (5)

For concreteness, we specialize to a two-dimensional spatie
square lattice, plus one time dimension. It will often also be\_/ \_/
convenient to consider the equivalent quantum i
Hamiltoniart® in two spatial dimensions:
FIG. 1. The two degenerate states in a cylinder. The right one
H=— KE H O-fr’_ h E O')r(r/ . 6) has a vison threading the “hole.”
o o rr’
, . i . deconfined(large K) phase, as we discuss at length below,
Here r,r label the sites of the 2D square lattice ande ground state has a degenerdiry the thermodynamic
o020y, are Pauli matrices that reside on the bonds of theimit) which depends on the topology of the manifold. In the
lattice. The first term involves products over spatial confined phase, on the other hand, there is a unique ground
plaquettes only. The second term is a “transverse field” thaktate independent of the topology of the manifold. This is a
provides quantum dynamics to the variabdn@f;, . This term  precise and, as we shall see, powerful distinction between the
generates the coupling along the temporal direction in théwo phases. Such a distinction was originally pointed out for
equivalent classical action aboj€q. 5]. pure (non-Abeliar) gauge theories in pioneering work by 't
It is well known'® that this pureZ, gauge theory has two Hooft.'’
phases. FoK small, there is a phase where static test charges This topological characterization of the phases of the
that couple to the gauge field are confined. Rolarge, on  gauge theory can be traced to the existence of symmetry
the other hand, there is a different phase where such tesperations specific to the topology of the manifold. These
charges are allowed to be deconfined. This distinction majopological symmetries are preserved by the ground state in
be quantified by the behavior of the “Wilson loop” the confined phase. In the deconfined phase, these topologi-
correlatot>—this decays exponentially with the area of the cal symmetries are spontaneously broken—this immediately
loop in the smalK phase, but only with the perimeter in the leads to the ground-state degeneracy on nontrivial manifolds.
largeK phase. Such a breaking of topological symmetries also characterizes
A different, but equivalent, view of these two phases is inthe fractional quantum Hall fluids, as expounded in a beau-
terms of the vison excitation i.e, the vortex of tAe gauge tiful paper® by Wen and Niu. Following the terminology
field. In the perimeter law phase, the vison is a gapped excidsed in that context, we will refer to the breaking of the
tation. In the area law phase, on the other hand, the vison ®pological symmetry as “topological order.”
condensed. This can be understood very explicitly by means To fix these ideas, consider a cylindrical geometry. In the
of a duality transformatiof?'®to the global Ising model de- deconfined phase of the gauge theory, there are two degen-

scribed by the Hamiltonian erate ground states. They correspond to whether or not a
vison has “threaded the hole of the cylinde(8ee Fig. 1
Deep within the deconfined phase, wiKh—«, the two cor-
_ z
H——h? U?Ur/_KZ vy (7) responding gauge field configurations are very simple. Set-

ting all of the link fieldso?=1 is clearly a ground state in

This global Ising model is defined on the lattice dual to thethis limit, and corresponds to the absence of threaded vison,
original square lattice. The?,v} are also Pauli matrices. since the flux of th&, gauge field through any cun@ that
The dual Ising spinv? has the physical interpretation of be- encircles the cylinder,
ing the vison creation operatbt! For smallK, the global
Ising model is in its ordered state, and the visons are there- ®[C]=Ilcof, (8)
fore condensed. For large, on the other hand, the global
Ising model is in its disordered phase, and the visons arequals unity(HereL labels the bonds that belong @) The
gapped. ground statewith a threaded vison can be obtained, for ex-

The two phases of the gauge theory Hamiltonian in Eqample, by changing the sign ef on a column of horizontal
(6) may be distinguished in yet another way—this is throughbonds that runs the length of the cylindeee Fig. 2—in
the notion of “topological order.” Consider the gauge theory this stated®[C]=—1. Similar reasoning implies that on a
Hamiltonian on a manifold with a nontrivial topology. In the torus there are four degenerate ground states corresponding
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/\ with r=(x,y,). The operatofP changes the sign of all the
operators(rf iy that reside on the bondsee Fig. 2 along

\ / they direction between some chosgrslicesyy andyg+ 1.

Consider now the flux of th&, gauge field through any
curve C that encircles the cylinder, as defined in E§):
Clearly, P changes the sign of this flux. Thiisis an opera-
tor that adds or removes a vison from the hole of the cylin-
der.
X It is straightforward to see thgP commutes with the
Hamiltonian Eq.(6) of the gauge theory. Thus, it is a sym-
metry of the theory. Further, as it corresponds to the opera-
tion of adding a vison through the hole, it is a topological
symmetry. Now consider the limit,—. As argued earlier,
in the deconfined phase a vison that is trapped in the hole
stays there forever. Consider the ground state with a vison
\ / trapped in the hole. Upon acting on this state with the opera-
T tor P, it becomes the ground state in the sector with no vison
trapped. Thus, the ground state is not invariant under the
y action of the operatdgP. The topological symmetry has been
- broken spontaneously. Note that the ground states in the two
FIG. 2. Changing the sign af? on all the dark bonds addsr sectors(with or without a vison are guaranteed to have ex-
removes a vison from the hole of the cylinder. actly the same energy &commutes with the Hamiltonian.
Thus, the gauge theory in it's deconfining phase has two
to the vison threading or not threading each of the two holesdegenerate ground states on the cylinder.
In what follows, we will analyze the cylinder in several ways ~ Further insight into the ground-state degeneracy and the
to get a deep understanding of this phenomenon_ broken topological symmetry is obtained by the following
Assume that a vison is initially trapped in the hole of the considerations. Imagine changing the valu&db someK,,
cylinder when the gauge theory is in its deconfining phasealong all plaquettes at sonyeslice, sayy=y,. Assume that
We take thex axis of space to be along the length of the the gauge theory in the bulk is in its deconfining phase,
cylinder and they axis to be along the circumference. Let the the bulk value ofK is very largg. In the limit thatK in the
length of the cylinder be., and its circumferencé, . For ~ bulkis =, there can be no gauge flux penetrating the bulk of
the vison to tunnel out, th&, flux tube must penetrate the the system. We may then set=1 for all bonds except
cylinder in at least two place@n general some even num- those along the “cut.” The remaining degrees of freedom
ben, and these two points of penetration must move aparive on the cut(the dark bonds in Fig.)2 The Hamiltonian
(see Fig. 3until they drop out of the edge of the system. As describing them is clearly just a one dimensional transverse
there is a finite energy cost for the vison to penetrate thdield Ising model:
sample in the deconfined phase, the amplitude for this pro-
cess will be exponentially small ib,. Thus the vison tun-
neling rate varies a§~e‘°LX,. which goes to zero aky H=—K,>, dZ0%,,—h>, o, (10)
—o0, Thus, once trapped, a vison in the hole of the cylinder x x
lives forever(in the thermodynamic limjt
Consider the situation with finite, andL, . An operator
that addgor removes a vison from the hole can be readily
constructed as follows:

whereo? is theZ, gauge field on the bond at sitealong the
cut. For smalK,, this Ising model is in its disordered phase.
The ground state is therefore unique. With increasigghis
edge global Ising model undergoes a phase transition to an
ordered state witfo%)#0. The ground state is therefore
twofold degenerate. The two degenerate ground states corre-
spond precisely to whether or not a vison is trapped in the
________________ P S N hole of the cylinder. This can be seen in several ways—for
y instance, by noting that the operatBrintroduced above is
precisely the global spin flip operator of the edge Ising
model. Further, the domain walls in the ordered state of the
L edge Ising model correspond to plaquettes where a vison has
penetrated the cylinder. In the ordered phase, such domain
FIG. 3. Vison tunneling out of the cylinder. The dashed line Walls, and hence the visons, cost finite energy. In the disor-
represents th&, flux line inside the hole. The points of penetration dered state, the domain walls have proliferated—this may be
are where the line becomes solid. It is assumed that there are peiterpreted as a proliferation and condensation of visons
odic boundary conditions along tlyedirection. along the edge.

P=I0 5, (9)
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T

FIG. 4. TheZ, gauge theory on an annulus with a hole at the 1 T
center. This corresponds to settifg=0 for the “hole” plaquette
and for all the plaquettes outside the disk radius. T

The phase transition discussed above is thus an edge con- FIG. 5. The dual global Ising model on the annulus. The Ising
finement transition. The topology of the manifold in which spins outside the disk radius are frozen in the up direction. The
the deconfined phase “resides” changes from a rectangle tt§ing spin in the hole has no transverse field on it.

a cylinder as the coupling,, is increased. We will discuss . n .
such topology-changing phase transitions further in Sec. VII. Now consider the deconfining phase. This corresponds to

Yet another route to understanding the topologicalthe paramagnetlc_ phase of the dual global Ising model. The
ground-state degeneracy of the deconfined phase is to erfual spin correlanons decay exponentlally. Thus the order.mg
ploy the duality transformation of the full gauge theory to the©f the boundary spins has little influence on the “hole” spin
global Ising model as discussed in the beginning of this sub?‘t the ce_nte(. The Igtter is therefore essentially free to point
section. For this purpose, it is convenient to consider an aril’ @ny direction. This then corresponds to the expected two
nulus(see Fig. 4 which is topologically equivalent to a cyl- d_egenerate _ground states. To make this more precise, con-
inder. This can be obtained from the gauge theory defined ifider modeling the bulk system by a continuum scalar field
infinite two-dimensional space by simply setting some of theheory with a Gaussian action,
plaguette strengths to zero. First, imagine setkng0 for a
single plaqugtte in the center. This creates a “hole” in th(—? S:f drd2X[(V )2+ (d,)2+m2p?]. (12)
system. Similarly, at the outer boundary of the sample, again
setK=0 for all plaquettes. This captures the finiteness of th
sample. For concreteness, we consider a circular disk of r
diusR.

Now we employ the duality transformation to get a rep'change term
resentation of the system as a global Ising model. The hole in '
the center of the sample goes over into a single site of the
dual lattice. The restriction th&t=0 at the hole then implies Shme:f drvZp(0,7). (12
that the transverse field at this site on the dual spin is exactly

zero. Similarly, at the outer boundary of the samle;0  Here v represents the “hole” spin and we have taken the
implies that the transverse field on the dual Ising spins outiocation of the hole to be at the origin. Note that the “hole”
side the disk radius is zero. This implies that these dual spingpin has no dynamics—this is due to the absence of any
outside the disk radius are all lined up togettfer. transverse field on that spin in the lattice model.

Before continuing, It Is necessary to take note of one other The action above must be supp|emented with a boundary
subtle feature of the duality transformation. Two states of theondition arising from the fixed direction of the spins outside

dual global Ising model that only differ by an overall spin the disk radius. This is simply the condition that
flip are not to be counted as two distinct states of the gauge

theory (as may be seen from, for instance, the treatment of H(X,7)= o (13)
the duality transformation in Ref,)7This can be taken care ’ ’
of simply by fixing the direction of the frozen spins outside fqr |)Z| =R with ¢, a positive constant.

the disk radius to be, say, upee Fig. 5. _ As the field¢ is massive, it can be safely integrated out to
We may now discuss the ground-state degeneracies of thgst an effective action fos2. The result for largeR is, sim-
gauge theory using the dual global Ising model. First cony

sider the confining phase of the gauge theory. This is the

ferromagnetic phase of the dual global Ising model. The di-

rection of the boundary spins fixes the direction of the ferro- Seff= ZWRJ drx(R)v?, (14)
magnetic ordering. Thus, all the spins in the interior, includ-

ing the one corresponding to the hole, point in the upwherey(R) is the static susceptibility of the Ising paramag-
direction. There is no ground-state degeneracy. net. This is readily computed to be

eI:his Gaussian theory is expected to correctly describe the
aphysics of the paramagnetic phase of the global Ising model.
The coupling to the “hole” spin is through an Ising ex-
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d2q elq R To put some meat into these observations, we restrict at-
(R)—f I (15)  tention to the ground states in the two topological sectors
4w q°+m with or without a vison in the hole, and denote thesé{as
and ||), respectively. The Hamiltonian when projected to
=iK0(mR) (16) this subspace may be written
2
Hproj=I' 7+ h7?, (19
. 1 o~ MR (17) where|1) and||) are the two eigenstates of the Pauli matrix
8mmR ' 7. Clearly, the Pauli matrix* is the operatdf that adds or

removes a vison from the hole. The first term therefore cor-
responds to the tunneling of the vison, with tunneling rate
I'~e ™ °tx as established in the previous subsection. The term
proportional tor* comes from the difference in energy be-
H...=Tp? (18) tween periodic and antiperiodic boundary conditions for the
eff ' chargons and spinons. The dependence of the splittiog
with T'~ ¢o(VR/m)e™ ™R Thus there are two low-energy the dimensions of the system is determined by the properties
states with a splitting- VyRe ™R—0 asR— . of the spectrum of the chargons and the spinons. In the in-
For large but finiteR, the energy eigenstates are eigen-sulating phases of interest, the chargon is always gapped. If
states obZ. But if the system is prepared in one eigenstate ohe spinon is also gapped, then it is easily seen that
v*, it takes a very long timéof order 1I') to tunnel to the ~e Ly, Note that this splitting vanishes exponentially in the
other eigenstate. cylinder circumferencewhile the vison tunneling rate van-
Physically, the operatar” adds or removes a vison from ishes exponentially in the cylindéength In a fractionalized
the hole of the annulus. The two eigenstates’oforrespond  phase with linearly dispersing gapless spin@shappens in
to a vison being either present or absent from the hole. In théhe nodal liquid or thed-RVB statg, the splitting vanishes
confined phase, the “hole” spin is frozen in the up direction.only ash~L, Ly /L3 The inverse dependence on the linear
The vison is therefore condensed in the hole, as it is in thgystem size may be guessed by scaling considerations: In-
rest of the sample. In the deconfined phase, a trapped visafeed the low-energy theory is simply a Dirac theory for the
(the “hole” spin in an eigenstate af*) stays in the hole for nodal spinons. This theory is critical with a dynamic critical
a time that diverges exponentially as the sample ra8us exponentz=1. Consequently, the enerdy vanishes in-
goes to infinity. versely with the linear system size. This argument may also
be verified by an explicit tedious computatfdron a repre-
C. Effect of matter fields sentative lattice model.
The projected Hamiltonian has two eigenvalues

where the last expression is valid fBr>>1/m. The effec-
tive action above for the “hole” spin may be readily con-
verted into an effective Hamiltonian

In the discussion above, we considered the phases of the
pureZ, gauge theory and the topological distinction between % R2iT72
them. We now put back the coupling to the chargons and ===Vh I 20
spinon fields. In the presence of such “matter” coupling, Clearly, the splitting between these two levels goes to zero in
there continues to be a sharp distinction between the decothe thermodynamic limit leading to two degenerate ground
fined and confined phases. However, as is well knGthe  states.
behavior of the Wilson loop is no longer sufficient to distin- It is important to note that the terim* which arises due
guish the two phases once matter coupling is included. Aso the presence of matter coupling explicitly breaks the to-
we will see below, there is nevertheless a topological distincpological symmetry discussed in the previous subsection. In-
tion between the two phasés. deed, in the restricted space above, the topological symmetry

Consider the properties of the system in a cylindrical ge-4s implemented by the operatet. This no longer commutes
ometry. Assume that the system is in its deconfined phasevith the Hamiltonian when matter fields are present. How-
This implies that the vison is a gapped excitation. Conseever, the commutator goes to zero as the system size goes to
quently, a vison, once trapped in the hole of the cylinderjnfinity. Thus, we may view the operation of threading a
will stay there for a long timeof order ex) as argued vison through the hole as becoming a go@dpologica)
previously. In the state with no vison threading the hole ofsymmetry in the thermodynamic limit, which is then sponta-
the cylinder, the chargons and spinons are subject to periodizeously broken. While this is, in principle, a correct point of
boundary conditions on encircling the cylinder. If, on the view, it is not entirely satisfying.
other hand, a single vison threads the cylinder, the chargons The more crucial point to note is that there are two dis-
and spinons are subject to antiperiodic boundary conditionginct topological sectors in the cylindéwith or without a
This difference in the boundary conditions leads tslight  vison) in the deconfined phase even in the presence of the
difference between the energies of the two stdt@th or  chargons and spinons. This is simply the statement that a
without a vison threading the hgleHowever, this energy trapped vison stays there forever in the deconfined phase. In
difference vanishesin the thermodynamic limit. Thus, the the confined phases, on the other hand, a trapped vison is
ground state is twofold degenerate in the thermodynami@absorbed by the vison condensate, and is very quickly lost.
limit. Therefore, there is no topological quantum number labeling
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the stategother than those associated with any conventional Quasi-2d
broken symmetry that may be present

It is also useful to consider the system in an annulus ge- dec/onfined
ometry with a finite-sized hole at the center. Here again, in o /
the deconfined phase, a vison that is trapped in the hole stays
there foreveriwhen the outer radius of the annulus goes to 3d
infinity). However, now there is a finite energy difference deconfined
between the states with and without a trapped vison due to
the change in the boundary conditions on the chargons and
spinons upon encircling the hole. Thus the inability of the ny
trapped vison to escape is really the hallmark of the fraction-
alized phase. The experiment proposed in Ref. 14 that we Confined
elaborate on in Sec. VIl probes precisely this property.

Before concluding this section, we note that a ground- 0
state degeneracy of 4 on a torus was sugg&stedexist for 0 o
certain states described by specific RVB wave functions. The Kl
same result was showito obtain in the phases of frustrated
spin models that show fractionalization. In these fractional- FIG- 6. Schematic phase diagram of the gauge theory in a
ized phases, there are neutral spin-1/2 excitations that ha\l/%yered geometry. The solid line is a first-order phase transition.
Bosestatistics. Evidently, in this case, fractionalization has

liberated the spin from the Fermi statistics of the electron. _ z z X
Despite the similarity in the ground-state degeneracy, the H= KXyszy L:Iy Trer Kigz l;lz Trer h<§1> Trer -
topological order that characterizes this phasedistinct (21

from that of the phases of primary interest in this paper. This
may be seen by usingedankerflux-trapping experiments of Here the first term is a sum over all plaquettes in xhg
the kind discussed in Ref. 14ee also Ref. 1)1 plane(normals along the axis) and the second term is a sum
over all other plaquettg®ormals lying in thex-y plane, with
m=X,y). For simplicity we have taken the transverse field
IIl. LAYERED SYSTEMS strength to be the same for all links of the 3D spatial lattice.
As defined, this Hamiltonian depends on just two dimen-
Among the many unusual properties of the cuprate matesionless parameter§,, and K, measured in units of the
rials is the stark difference between the in-plane afakis  transverse fielch. The ground-state phase diagram in this
transport. Both at optimally doped and in the slightly under-two-dimensional space of couplings can be readily inferred
doped regime, the normal state often exhibits “metallic” in by considering various simplifying limits. For example,
plane transport—with the resistance dropping uponwhenK, =0 the trace over™ on the interlayer links can be
cooling—which coexists with insulating-axis transport. As trivially performed, and the model reduces to a set of decou-
emphasized by Andersdn this behavior is difficult to rec- pled (2+1)-dimensional gauge theories, one for each layer.
oncile with a conventional Fermi liquid picture of the normal Then, each layer has two phases—a confined phase for small
state, particularly in the low-temperature linfiiccessed by Ky, and a deconfined phase for lar§g, , as depicted sche-
suppressing the superconductivity with strong fielthere  matically in Fig. 6. Away from the intervening transition,
in-plane coherence of Landau quasiparticles would be exone expects the distinction between these two phases to sur-
pected to eventually lead to cohereréixis motion as well.  vive for small nonzerd, . In both phases, vison loops pro-
Motivated by this puzzling behavior, we consider in this sec-liferate betweerthe layers, so that the spinons and chargons
tion issues of fractionalization in an anisotropic layered syswhich carry theZ, charge cannot move coherently along the
tem. Quite strikingly, we argue that two distinct fractional- ¢ axis. For smallK,, the vison loops can also freely pen-
ized phases are possible—one which exhibits deconfinemeetrate the layers, so that spinons and chargons are confined in
of spinons and chargons in all three spatial directions, andll spatial directions. But the phase with largg, (and small
another quasi-two-dimensional fractionalized phase in whichK, ) is most unsual: Since the interlayer vison loops are ex-
the spinons and chargons are deconfined within each laygelled from the layers, the in-plane motion of the spinons
but cannot propagate coherently between layers. In this se@nd chargons is coherent, but they are nevertheless confined
tion we restrict attention to zero temperature, turning brieflyalong thec axis.
to the effects of thermal fluctuations in Sec. IV. To see how this unusual quasi-two-dimensional decon-
For simplicity, we will follow the strategy adopted in Sec. fined phase survives with small nonzekg , we consider
II, and initially consider the pureZ, gauge theory— other limiting regimes of the phase diagram. Along the diag-
appropriate to the layered geometry—before incorporatingnal with K, =K, =K, the Z, gauge theory Hamiltonian
the spinons and chargons into the theory. To this end, cordescribes an isotropic three-dimensional situation whose
sider the Hamiltonian for &, gauge theory defined on a 3D phase diagram is well understood—there is a first-order tran-
cubic lattice appropriate to an anisotropic layered system: sition atk =K, of order 1 separating the fully confined phase
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at smallK from a three-dimensional deconfined phase. In thevison loop threading the “hole” in the cylinder. When the
deconfined phase all large vison loops are expelled, and theansverse linear dimensidnis finite, there will be a small
spinons and chargons can propagate coherently in all thresplitting of order exp{-cL?), due to the tunneling of an in-
directions. terlayer vison loop. More generally, inddimensional de-
Now consider the limit of infinitely largeK,,. When  confined phase, one expects a tunnel splitting varying as
Kyy=, the Z, flux is forbidden from penetrating they  exp(-cL91). As emphasized by Weh'° the power in the
plaquettegthereby restricting the vison loops to lie betweenexponent is particular to topological ordering, and should be
successive layerslt is therefore possible to choose a gaugecontrasted to the exp(cLY) splitting between the two states
in which =1 on all links lying in thexy plane. The system of a model with a local order parameter such as the
then decouples into a set of 2D subsystems, which residgdimensional transverse field quantum Ising model. When
between adjacent layers. Consider specifically the Hamilperiodic boundary conditions are taken along all three spatial
tonian for a single such 2D subsystem, which depends on thgmensions, the ground-state degeneracy in the 3D decon-
gauge fields residing on the interlayer links which can befined phase is of course’2 8.
labeled conveniently by a 2D square lattice of sites denoted |n the confined phase of the 3D gauge theory the ground
r: state is uniquely independent of the boundary conditions,
indicative of the absence of any topological ordering. But the
_ z 7 X topological ordering that characterizes the quasi-2D decon-
Hag=~ Ki<§‘> i hzr Ir- (22 fined phase is somewhat subtle. With periodic boundary con-
ditions only along thes axis the ground state is unique, due
Notice that the plaquette product term has reduced to a neato the proliferation and condensation of interlayer visons in
neighbor Ising coupling in this subsystem Hamiltonian. In-this phase. This can also be understood more formally as
deed,H,q is precisely a 2D transverse field quantum Isingfollows: Consider the operation?— — ¢, which changes
model, which exhibits two phases as the rd€ip/h is var-  the sign of all the interlayer bonds betwe@my) two adja-
ied. The two phases are separated b{2#1)-dimensional cent layers. This is the precise equivalent for ¢hdirection
Ising phase transition. It is clear that the interlayer visonof the operatofP introduced in Eq(9) of Sec. Il, and clearly
loops of the original anisotropic gauge theory are simplychanges the sign of th&, flux enclosed by any curve that
domain walls separating regions with positive and negativencircles the cylinder. Thus this operation adds or removes a
Ising ordering,o*=*1. In the ferromagnetically ordered vison from the hole of the cylinder. As before, it commutes
phase of the transverse field Ising model with lakgethe  with the full Hamiltonian. But notice that in th&,,— o
interfacial energy is nonvanishing. It follows that large inter-limit, this transformation is simply a global Ising spin flip for
layer vison loops are excluded—this is the 3D deconfinedhe 2D interlayer Hamiltonian given in Ed22). In the
phase as depicted in Fig. 6. But for smill in the paramag- quasi-2D deconfined phase, the interlayer quantum Ising
netic phase of the Ising model, the interfacial energy vanmodels are disordered. This implies that the ground state is
ishes. In this case, the interlayer vison loops unbind andhvariant under the operation of threading a vison through
proliferate. This is the anisotropic quasi-2D deconfinedthe hole of the cylinder, and is hence unique.
phase(discussed above at lardg,, andK, —0). For large Next consider the topological order in the quasi-2D de-
but finite K,, both deconfined phases will continue to exist. confined phase when periodic boundary conditions are im-
Piecing together the above results, one arrives at the finglosed in the plane, say, just along thdirection. To under-
phase diagram for the anisotropic layeiZg gauge theory, stand the resulting ground-state degeneracy, it is simplest to
as drawn schematically in Fig. 6. first consider a model witltwo layers only, which can be
In passing we note that phases very similar to the decouconveniently visualized as two concentric cylinders with
pled layered phase discussed above have been consideredyiperiodic boundary conditions around the cylinder. More-
other contexts in the literature. For a(1) lattice gauge over, we specialize to th&,,—co limit which precludes
theory, precisely such a phase was argued to exist when thesons loops from penetrating either layer. One then expects
spatial dimension of each layer is at least 3 in Ref. 24. In d@hat there should be’2 4 low-energy states which belong to
different context, recent wofR has examined the stability of topologically distinct sectors. These are distinguished by the
“decoupled Luttinger liquid” phases in quasi-one- presence or absence of a vison loop threading through the
dimensional systems. In the context of cuprate physics, thbore of either concentric cylindrical shell. To establish that
possibility of such decoupling of the layers has been emphathese four states are in fact degeneratethe thermody-
sized by AndersofR® namic limit) first note that the symmetry operation which
It is illuminating to briefly consider the topological order- adds a vison to both shells simultaneougtyplemented in
ing that characterizes the three phases. In the 3D deconfinach layer as in Eq9) of Sec. I, commutes with the two-
phase, since the vison loops are fully expelled, one expectslayer gauge theory Hamiltonian. This implies that these four
twofold ground-state degeneracy when periodic boundargtates are in any case pairwise degenerate. It remains to es-
conditions are imposed in any one of the three spatial directablish, though, that the state with no visons has the same
tions, say, along the axis (with open boundary conditions energy as the state in whighnly) one of the two cylindrical
along the other two directionsAs discussed for the 2D shells has a threading vison. To see this, note that the opera-
gauge theory in Sec. Il above, in the thermodynamic limittion which threads a vison through one layer only is equiva-
the two states correspond to the presence or absence oflent (atK,,==) to changing fromy-periodic to antiperiodic
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boundary conditions in the interlayer 2D quantum Isingthermally excited visons is perhaps easiest to understand in
model of Eq.(22). Since this Ising model is in its disordered the 2D annulus geometry. There, at zero temperature the two
phase in the quasi-2D deconfined phase, the energy chant@pologically ordered sectors correspond to the presence or
will clearly be exponentially small in the cylinder diameter absence of a vison trapped in the hole of the annulus.
[exp(—cLy)]. This vanishes in the thermodynamic limit, Clearly, at finite temperature a vison tyapped in the hole of
thereby establishing the degeneracy of all four states. For &€ annulus can be thermally excited into the bulk, and can
layered system wittN layers, the ground-state degeneracythe” Iea\_/e the sample at the outer edge Qf the annulus—this
with y-periodic boundary conditions in the quasi-2D decon-Process interconnects the tWe=0 states with broken topo-
fined phase is simply "2 logical symmetry. . .

Upon inclusion of the spinon and chargon matter fields In the presence of chargon and spinon matter fields the

. ; . energy cost of a vison is still finite, so quite generally the 2D
which carryZ, charge, the nature of the topological Ordenngtopo%éical order will be destroyed at;eqo. N(gvertheleyss as

gffectsf.th((aj mtherlay(;r] an?} intralayer ((j:onf[nement. In the 3D iscussed in Ref. 14 and Sec. VIII, by performing measure-
econfinéd phase the chargons and spinons can propagglia s 4t “short” enough time scales it should be possible to

c_ohgrently in all threg _spatial directions. '.A‘.S before, with P€-detect the presence of tiie= 0 topological order at tempera-
riodic boundary qondltlons, they are sensitive to the Presenc o5 well below the vison gap.
or absence of visons trapped in the holes. In the confined remarkably, the topological order in the deconfined phase
phase free spinons and chargons cannot exist. But in thg three spatial dimensions survives thermal fluctuations
quasi-2D deconfined phase, although the spinons and chaftact” Since the gapped vison excitations wepsin this
gons can propagate coherently in plane, they are confined iase, they are much more difficult to thermally excite. In-
reside in one layer only. The interlayeaxis transport of the  deed, the energy cost of a loop grows linearly with its length
chargons and spinons is fully incoherent. In this quasi-20_, as does the entropy associated with the loop. Thus, at low
phase it is possible to integrate out the gauge fields residingnough temperatures the free energy tension of the loop will
on the vertical links(trivially so whenK, —0). At second be positive, effectively suppressing long unbound loops.
order in the ratio of the interlayer spinon and chargon hopAgain, this reasoning remains valid in the presence of cou-
ping amplitudes to the transverse fielg,one generates in- pling to matter fields. As the temperature is raised eventually
terlayer electron and pair hopping terms as well as inter-layeihe vison loop entropy will dominate, and the system will
magnetic exchange interactions. As the chargons cannédergo a true finite-temperature phase transitiof =aff
propagate along the axis, one would expect qualitatively # O that restores the topological symmetry. et T in this
different interlayer and intralayer charge transport at finite3D topologically ordered phase, the free energy of hefPe
temperatures in this novel quasi-2D fractionalized phase. WEagnetic monopole “test” charges will grow linearly with
now turn to a brief discussion of finite-temperature effects. their separation-kc/2e magnetic monopoles are thus con-
fined. However, arevennumber of magnetic monopoles—
with flux an integer multiple ofhc/e—is not a source of

IV. FINITE-TEMPERATURE EFFECTS vison flux and so costs only a finite energy. Thus, it is only a

&2 Magnetic charge which is confined in the 3D topologi-

In previous sections, we have discussed a precise theor : . .
ical characterization of quantum phagsd=2) where the cally ordered state. This should be contrasted with the situa-
tion in a 3D superconductor, which confines magnetic mono-

electron is fractionalized. There is a sharp distinction be | ith i h "
tween fractionalized and unfractionalized phases at zero tenegniisner\’:ﬂant any magnetic charge—a (1) magnetic

erature. Does this sharp distinction survive at finite nonzerG°"" . .
P P Finally, we address the effects of thermal fluctuations in

temperatures? One normally thinks of fractionalization in ; . s
P y the quasi-2D deconfined phase that can occur in a layered

terms of the spectrum of excitations of the Hamiltonian de- ‘ h as th tod] the tonoloaical order i
scribing the system. It is then not clear what meaning it hasy® em(such as the cupratesHere, the topological order is

at finite temperature. However, characterizing the fractionalfjue to the suppression of vison loops penetrating through the

ized phase by its topological order enables us to address thl@yer;. BUt the energy cost for a vison loop to pass thrqugh a
: layer is finite, and so will occur with nonvanishing density at

any finite temperature. Thus, strictly speaking, quasi-2D to-
_pological order in a layered system will be destroyed at any
non-zero temperature, just as in the 2D case.

_ In Ref. 14, we described in detail an experimental signa-
ure of this quasi-2D topological order, which should allow
or its detection if present in the underdoped cuprates. We
elaborate on this further in Sec. VIII. The presenceTof
=0 quasi-2D topological order should also lead to dramatic
differences between the low-temperature in-plane @agis
fransports.

We again start by considering the putg gauge theory in
two spatial dimensions. As with conventional broken sym
metries, thermal fluctuations play an important role in sym-
metry restoration when a topological symmetry is spontane
ously broken. Moreover, broken topological symmetries ar%
likewise less robust against thermal fluctuations in low di-
mensions. Since the visons dgapped pointlike excitations
in the topologically ordered 2D deconfined phase witfi-a
nite energy gap, there will be a nonvanishing density of vi-
sons created thermally at any nonzero temperature. This wi
immediately destroy the topological _order. The_ situation 1S\, ey |STENCE WITH OTHER BROKEN SYMMETRIES
loosely analogous to the quantum Ising model in 1D, which
breaks the Ising spin-flip symmetry only exactly at zero tem- If fractionalization of the electron occurs at all in the cu-
perature. The topological symmetry restoration due to theprates, it does so in the underdoped portion of the phase
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diagram. Furthermore, the fractionalized phase is presumesults in a difference~e° between the energies of states
ably of the quaSi-ZD kind discussed at |ength in Sec. lll. ThlSV\”th and without a vison trapped in a hole. ThUS, as ex-
implies that the associated topological order, strictly speakpjained in Sec. II, there are four states with a splitting that
ing, exists only at zero temperature. On the other hand, eny;anishesexponentiallywith L. This is to be contrasted with
pirically, it is precisely in the heavily underdoped region atthe tower of states above which approach zero b&. Fur-

low temperature that a variety of conventional brokep SyM+thermore, all these four states will hage=0.

metry states are observed. The undoped cuprates sheW Ne Ag noted above, the heavily underdoped cuprates exhibit
antiferromagnetism. At intermediate doping, charge and spiReyeral kinds of conventional broken symmetry—including
s’gripg instabilities have been reported. Further'more, this rehe Neel ordering at zero doping, and charge and spin stripes
gion is often also thought to be disorder dominated. Thesgt finite doping. The discussion above shows that it is theo-
observations raise the following conceptual questions: Cafetically possible that the fractionalization and the associated
fractionalization coexist with conventional broken symme-topological order coexist with these coventional broken sym-
try? Is fractionalization possible in a disordered system3netries. This is conceptually very important—the fractional-
Armed with the precise theoretical characterization of thezation of the electron provides a direct route to supercon-
fractionalized phase expounded in this paper, we now disgyctivity that does not invoke ideas of pairing. If the heavily
cuss the former question. The effect of disorder is consideregnderdoped cuprates are fractionalized, then thel hietifer-

in the following section. romagnetism and the striping, while interesting phenomena,

Once the electron has splintered into the chargons and thge side issues not directly related to the origin of the super-
spinons, various kinds of charge ordering determined by th@onductivity.

strong Coulomb interactions between the chargons are cer-
tainly possible. Away from a doping level that is commen-
surate with the underlying lattice, such a charge-ordered in-

sulating _state will prgak Ia_ttice translatipnal _anq rotational  gpe of the remarkable aspects of superconductivity is the
symmetries. Thus, it is obvious that fractionalization can coyg|ative insensitivity of the Meissner effect to microscopic
exist with charge order. _ _ . details, such as the symmetry of the underlying crystal struc-
A more interesting issue, first raised by Baleetsl.” is  tyre or the presence of impurities and defects. Provided the
the possibility of the coexistence of fractionalization and an-syperfluid density is nonvanishing, expulsion of magnetic
tiferromagnetism or other kinds of magnetic order. In prin-f,x (and of vorticity persists. As we now discuss, the topo-
ciple, this can be induced by interactions between the gaplesggical order that characterizes a fractionalized phase is like-
spinons in the nodal liquid or d-RVB state. If such a frac-yse insensitive to impurity scattering. Since the essence of
tionalized antiferromagnétiubbed AF) does exist, what is  fractionalization is the expulsion of topological visons, just
its precise distinction with the conventional &leantiferro- a5 the essence of superconductivity is the expulsion of vor-
magnet(dubbed AF? Consider, in particular, the situation ticity, this insensitivity to dirt is perhaps not surprising.
where the antiferromagnetic ordering wave vector connects \we focus our discussion on the deconfined phase in two
two antipodal nod_al points o_f the spinons. Then, in the PréSgpatial dimensions. To address the issue of the stability of
ence of Nel ordering, the spinons acquire an energy gap. 'rlopological order to dirt we consider the pufs gauge
this case, there would seem to be no distinction between Aﬁweory in Eq.(5), since coupling in the chargons and spinons
and AF* at low energies. Indeed, both phases would haveyj|| not change the essential energetics of the visons. In a
gapless s.pl_n-vv.ave.excnatlons with a [lnear dispersion. spatially inhomogeneous system with impurities present, the
The distinction is actually topological—the phase *AF  coypling constantk andh in the Z, gauge Hamiltonian will
has a topological ordefand the related. vison exci'tatio)ns vary randomly. The dual global Ising model in Eg) like-
that is not shared by the phase AF. This may again be segpise becomes random—a two-dimensional transverse field
by asking for the ground-state degeneracy on, say, a torus gf,antum Ising model with quenched random bond strengths.
size L L. (For simplicity, we specialize to two spatial di- ypon inclusion of a doping-dependent Berry’s phase term in
mensions. Due to the long-range N order, there will be  the gauge theory, the Ising bond strengths can be negative,
the usual tower of statésscaling as which leads to frustration. With one electron per site the dual
global Ising model is actually fully frustrated, and with ran-
domness present will effectively be a two-dimensional quan-
tum Ising spin glasé’ But recall that the deconfined phase
actually corresponds to thearamagneticphase of the dual
where S is the total spin of the state, andis a constant. global Ising model—the phase in which the visdti® Ising
These states should exist in both AF and*ABut the phase sping are gapped out rather than condensed. The Ising para-
AF* must have an additional fourfold degeneracy corre-magnetic phase is clearly stable in the presence of random
sponding to trapping or not trapping a vison in each hole obonds. Frustration from the negative Ising bonds will like-
the torus. Once a vison is trapped in a hole of the torus, itvise not destroy the paramagnet, and might in fact actually
tunnels out at a ratE~e ™ °L. The presence of a vison in the enhance it’s stability. As mentioned above, inclusion of mat-
hole does not affect the magnons at any endegythey are ter couplings will not modify this. We thereby establish the
created by operators bilinear in the spingrimut it does af- important conclusion: Topological order that characterizes
fect the boundary conditions of the gapped spinons. Thiglectron fractionalization in two dimensions is robust and

VI. DISORDER
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survives in the presence of impurity scattering. The 3D and1+1)-dimensional quantum Ising model to the spinon hop-

quasi-2D deconfined phases considered in earlier sections gong across the cut. Schematically, the effective action

likewise stable to dirt. This fact is critical when one consid- should take the form

ers searching for signatures of topological order in the very

underdoped cuprates, which are often riddled with defects _

and charge inhomogeneiti¢s.g., stripes S‘f dxdydr Lspinont Lising ™ Lint, (24)
with a 2+1 Dirac form for the spinon&

VII. TOPOLOGY-CHANGING PHASE TRANSITIONS

_ T T

In recent work we have suggested that the unusual Lspinorn=O () 1941+ O (~y) Y2042, @9
normal-state properties of theptimally doped cuprates wherey; and i, are nodal spinors on the two sides of the
might possibly be due to a direct quantum phase transitioBoundary, and
between ad-wave superconductor and a Fermi liquid. As
discussed in Ref. 9, this strong coupling phase transition Lising= a(y)[(&ﬂ¢)2+r¢2+ ued?] (26)
should be thought of as a “guantum confinement critical ] )
point.” On the deconfined side of the transition the electroniS @ soft-spin ¥ 1 quantum lIsing model £=X,7). The
fractionalizes into chargons and spinons, and a subsequetiichematig form of the boundary coupling is
condensation of the bosonic chargon leads to superconduc- +
tivity. At the quantum critical point the chargons and spinons Lint=tpo(y) p[¢h1¢o+c.C. (27)

become confined together recovering the electron, and ON&henr<0 the Ising field picks up a nonzero expectation

enters a Fermi liquid phase. Unfortunately, the critical pro Value (4)#0, and the spinons can propagate coherentl
erties of this most interesting confinement transition are very ' P propag y

difficult to access. In this section we revisit the two much %¢'9%° the cut. Far>0 the Ising model is disordered, and

simpler quantum confinement transitions mentioned in Secsl(;]r,:gr;"g&)'gtzgrrg;es ?F:Jet th fr']?jlg; ge?ﬁéast'ngoizrg?eeé(g:fanngfon
[l and Ill, and briefly address their critical properties. Since u y— P! :

topological order present in the fractionalized phase disa gither side of the boundary, however. The boundary confine-

pears upon undergoing a confinement transition, these can IS%e_Ir_'rt]éri?iz'égnp?gg:ﬁeﬁzgévﬁ;hgcgiasgg'ﬂs tcr:)en(;?éering a
thought of as “topology-changing” phase transitions. . L . )
9 pology ging-p simple renormalization grougRG) transformation which

rescales both spatial coordinates and time by the same factor.
A. Two dimensions Whent,=0, the theory decouples into (aritical) massless

Perhaps the simplest possible topology-changing phas +1)—q|men5|9nal free Dirac theory and a cr|t|c>(ajf1)—
transition is the one explored briefly in Sec. Il. For a 2D .|menS|onaI Ising model. The relevancy .Of a small interac-
cylindrical sample in a deconfined phase with a “cut” of tion across the cut can then be deduced in terms of the scal-

weakened bonds running parallel to the axis of the cyIinder'nAg (TT/eSn.sion of the Dirac fieldX,=1) and the Ising field
there are two phaseg) a topologically ordered phase with a (A4=1/8):
twofold degenerate ground state when the bonds along the i _
cut are strong andi) a phase with a unique ground state and Mplol=(2=28,=Ay)ty. (28
no topological order when the bonds are weak. In the lattefrnys, the spinon hopping amplitude is actuallyimalevant
phase, the chargons and spinons cannot propagate cohererilyityrbation, scaling to zero with eigenvaltel/8. Being
across the cut, and are thus deconfined on a topologicallyre|evant, the transport of spinons across the cut right at the

trivial manifold (the 2D plang in contrast to the former case confinement transition can be deduced by working perturba-
where the chargons and spinons can be taken coherentfyely in t, .

around the cylinder.
As detailed in Sec. Il, for the pur2, gauge theory which
is deep within the deconfined phase, the effective 1D theory
across the cut is simply the 1D transverse field quantum The situation is somewhat more interesting when gapless
Ising model. The quantum confinement transition correspinons are present at the confinement transition separating
sponds to the ferromagnetic to paramagnetic transition in ththe 3D deconfined phase from the quasi-2D deconfined
Ising model, and is in the universality class of tBe=1 phase in an anisotropic layered situatitike the cuprates
+ 1 dimensional classical Ising model. The simplest situation to consider is that of a layered system
In the presence ofjappedchargon and spinon matter with two layers only. To access the critical properties it is
fields one does not expect the universality class of this transufficient to consider the limit tha,, =, so that visons
sition to be modified. But more interesting behavior becomesannot penetrate through either layer. The remainihg
possible in a “nodal liquid” (or d-wave RVB phase in gauge degrees of freedom reside on the interlayer bonds, and
which the deconfined spinons are gapless at the four nodalre described by th&2+1)-dimensional quantum Ising
points. In this case one can readily write down an effectivemodel, Eq.(22). The Ising spin is coupled to the interlayer
field theory that should describe the critical properties of thisspinon hopping. An effective field theory can be easily writ-
boundary confinement transition, by coupling the spin of theien down, taking a very similar form to above, except with

B. Interlayer confinement transition
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Lspinon= Y1091+ ¥3s, (29 |
where nowy; and i, are nodal spinors in the two layers, S <D
and 7

Elsing:(au¢)2+r¢2+u¢4 (30) _ E
is a (2+1)-dimensional quantum Ising modekEX,y, 7). ]
The interaction term igschematically :
Line=tod Y1+ c.C]. (3D
Once again, as above, one can consider a simple RG trans- (A) (B)

formation which leaves the massless$ 2 Dirac and critical
2+1 Ising theories invariant. Since the boundary tunneling
interaction is now over the 2D spatial plane, the eigenvalue
of t, is modified as

with A ,=1 as above, but now ,~0.52 is the scaling di-
mension of the spin field for the21 critical Ising theory. In
this case the interlayer interaction is quite strongly relevant,
and one will crossover to a strongly interacting critical
theory. One might be able to access this critical point by (C) (D)
generalizing the Dirac and Ising theories to gendbatd
+1 dimensions, and expanding around a Gaussian theory FIG. 7. The experiment to detect the topological order. The
perturbatively inD =4— e space-time dimensions. sample is superconducting {#) and (D) and is “normal” in (B)
and(C). The electromagnetic flux is shown as a solid line. In A, a
flux of hc/2e is trapped in the hole. On moving {8), the electro-
magnetic flux penetrates, but the vis@hown as dashed linas
In previous sections, we have discussed how a precis@i” trapped. In(C), the sample is in zero external magnetic field,
theoretical characterization of fractionalized phases may bebut still has a trapped vison. On moving back to the superconductor
obtained through the concept of topological order. In a recenif (D). & spontaneous flux dfc/2e appears—its direction is arbi-
paper** we proposed an experiment that will directly probe rary-
this topological order. This enables a precesgerimental
characterization of fractionalized phases. In this section, w&Vhat we have done is to prepare the sample in the nonsu-
will discuss this experiment at length, providing more detailsperconducting state with a vison trapped in the hole of the
than available in Ref. 14 and considering extensions. cylinder. This imposes antiperiodic boundary conditions on
The crucial property of the fractionalized phase is the in-the chargons and spinons. On moving back into the super-
ability of a trapped vison to escape from the cylinder. Theconductor in stegd) where the chargon condenses, the vison
effect described in Ref. 14 is a direct probe of this propertycannot exist by itself and must nucleate lao/2e unit of
and involves the following sequence of evefdee Fig. 7. magnetic flux. Thisbreaks the time reversal invariance
(a) Start with an underdoped sample in a cylindrical ge-achieved in stefc). The direction of the spontaneous flux is
ometry, with the axis of the cylinder perpendicular to theindependent of that of the initial flux.
layers. In the presence of a magnetic field, cool into the This spontaneous appearance of a magnetic flux is a direct
superconducting phase such that exactly loo2e magnetic  consequence of the inability of the trapped vison to escape in

VIIl. DETECTION OF TOPOLOGICAL ORDER

flux quantum is trapped in the hole of the cylinder. a topologically ordered phase. We have, in effect, used the
(b) Heat the sample to abovi. . superconducting state to prepare and detect the vfstm.
(c) Now turn off the magnetic field. particular, if the nonsuperconducting state does not have the
(d) Cool the sample back down beloty. . topological order, then there will be no spontaneous flux.

An alternate experiment is to again repeat the sequence of In the cuprates, the fractionalization is presumably of the
events(a)—(d), but now work at a fixed very low temperature quasi-2D kind discussed in Sec. lll. Thus, strictly speaking,
and move from the superconductor into thenderdopell the topological order exists only at zero temperature. In this
insulator, and back, by adiabatically tuning some parametecase, if the experiment is performed by tuning some param-

In the nonsuperconducting state at the end of 8tgpthe  eter to reversibly move across the superconductor-insulator
magnetic flux penetrates into the samfléf, however, this  phase boundary at very low temperature, a spontaneous flux
state is topologically ordered, thenZg flux, i.e., a vison, s certainly expected. This is, however, much more challeng-
remains trappedRecall that the vison is bound to the/2e  ing than cycling with temperature. What will be the outcome
vortex inside the superconducto©n turning off the mag- of the experiment done by varying the temperature? At a low
netic field in step(c), time reversal invariance is achieved. but nonzero temperature, the trapped vison will eventually
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escape out of the sample in some titpe A spontaneous tionalized, the vison will be expelled from the bulk of the
flux will be seen if the time scale for the experiment is sample. However, in this case, the vison can tunnel back and

smaller thart,, . forth between the two holes. Consider this experiment done
Decay of the trapped vison requires thermal activatiorat zero temperature by moving reversibly between the super-
across the vison gap in the bulk of the sample. Thus conducting and nonsuperconducting phases. Then the tunnel-
ing of the vison from one hole to the other is entirely quan-
t,~toeFo/keT, (33)  tum mechanicallt is therefore not possible even in principle

where T is the temperature, anfl, is the vison gap. The to predict with certainty which hole the vison will be in after

X . o a given amount of timeThe best that can be done is to
prefactort, is a microscopic time scale that depends much

more weakly on temperature. Thysincreases strongly with predict the probal_)ility of the vison being in any given ho_le.
decreasing temperature ' Now, on reentering the superconducting state, the vison

How big iis the vison gap? Aower bound on this gap may again acquires ahc/2e unit of electromagnetic flux. How-

be obtained from the results of angle-resolved photoemissioﬁver’ the resultinghc/2e vortex can no longer tunnel so

spectroscopyfARPES studies of the underdoped cuprates.][ﬁl ?(dtlg be;évsﬁlrll Stgg ;ﬁ?zgodiist. oT%nvx?nn;izsg:ihmeegihjrthe
One of the most striking features of these experiments is th PP

absence of a quasiparticle peak in the nonsuperconductin%O : . .
state. This is indeed as expected at low temperatures below Thus the two-hole experiment offers an oppartunity o

the vison gap in a fractionalized phase. The ARPES intensitgLoeb;?u;ggjrzgjz?oﬁeiléngs%r&e?gm;nzraé Zr%aggotzg?%'lzscﬁgi
continues to be broad all the way up to the pseudogap tem- P prep P

peratureT*. This suggests that the vison gapaisleastas ence qf a vison. ane t_he n_onsuperconductmg state Is pre-
big asT*. In earlier work® we have suggested that the ob- pared in a state with a vison in one hole, it evolves quantum

. mechanically into a state which is a linear superposition of
served pseudogap crossover in the underdoped cuprates ac- . . N .

. . T e two states with the vison being in either hole. Moving
tually occurs at the scale of the vison gap, iEy~kgT*.

) . . T L back into the superconductor nucleatet2e flux which can
A reliable estimate of the time is difficult in view of the . !
) o . . be used to detect the presence of a vison. The relation of the
exponential sensitivity to the ratio of the vison gap to the

temperature. But the discussion above does suaaest that observed probability for the flux being in either hole to the
canpbe enhainced enormously by enhancin thegﬁ%‘tﬂv original vison wave function(in the nonsuperconducting
. Uty Dy g ¢ statg depends on the details of the dynamics of the system,
and performing the experiment at temperatures closk.to ; - :
- ; : and we will not discuss it here.
A promising candidate material would therefore be

) . ) In the more complicated situation with several layers, the
gi'éserzvcvigr%%:ch()B'Kz,z;2)\'/;?”?%fr_:iaz'ls%gngeg;p%igﬁ' visons in each layer can tunnel independently between the

st two holes. At the end of the experiment, one frozemai2e
reportea. - flux line will still be observed. This will pass through one of
A number of other equally robust predictions can be madq e two holes in each layer. The detailed shape of the flux
for small modifications of the experiment, as also discusse#1 X
in Ref. 14. In particular, if the experiment is done with an
initial flux of nhc/2e, a spontaneous flux dic/2e will be
observed fom odd at the end of the experiment, while no
spontaneous flux will be observed foreven. This even-odd IX. CONCLUSIONS

effect may be useful to rule out other mundane explanations )
of the effect, such as the presence of unknown stray mag- !N this paper, we have addressed a number of conceptual
netic fields in the sample at the end of st@p. A further ~ 1SSUES _relat_ed to _the pQSS|b|I|ty of electron fractlona_llzat|on
observation is that the effect will not be observed if the axis Spatial dimensions higher than 1. Before concluding, we
of the cylinder isparallel to the layers. This is because, with SUmmarize some of the main results. o
quasi-2D fractionalization, vison loops are condensed in the The.preuse theoretlcql characterlza.uon of a fractionalized
region between the layers. A vison that is initially trappedPh@se is through the notion of topological order. Apart from
parallel to the layers will then be quickly absorbed by thisthe fractional particles into which the electron breaks apart,
vison condensate and escape. there are nontnwgl gapped topological excitations—the vi-
sons. The full excitation spectrum therefore decomposes into
different topological sectors. If a vison is initially trapped in
the “hole” of a cylindrical sample that is fractionalized, it

It is also extremely interesting to consider the situationstays there forever.
where there aréwo holes drilled into the sample separated Motivated by the strongly anisotropic behavior of the cu-
by a distancd much smaller than the sample radiBssTo  prates in the nonsuperconducting states, we considered the
begin with, we specialize to a strictly two-dimensional sys-possible fractionalized phases in a layered geometry. Inter-
tem. Imagine starting in the superconducting state with astingly, there are two kinds of fractionalized phases. In one,
single hc/2e flux quantum trapped in one of the two holes. the system behaves like a full three-dimensional solid with
Upon moving to the nonsuperconducting state either by heathe chargons and spinons being able to freely propagate in all
ing or by other means, the magnetic flux penetrates into théhree directions. In the other phase, the different layers de-
sample. But again, if this nonsuperconducting state is fraceouple from each other. The chargons and spinons are de-

ne is an intriguing question that we leave open for the
present.

Two holes and quantum tunneling of visons
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confined in each layer, but are confined in the direction perthen directly condense, leading to superconductivity. This is
pendicular to the layers. It is this quasi-2D deconfined phasan alternative to the pairing route to superconductivity.
that is quite possibly relevant to the cuprates. (ii) Despite the alternate mechanism, the resulting super-

We also considered the effect of a nonzero temperature ofonductor is in the same phase as one obtained by condens-
the topological order. For the quasi-2D deconfined phase, thgg Cooper pairs of electrons. That this is true may appear
topological order does not, strictly speaking, survive at finitesyrprising given that what is condensing is a chagdmson
temperature. However, at temperature scales much small@father than a chargee2one. In particular, the flux quanti-
than the zero-temperature vison gap, it is “almost” topologi- zation is in units ofhc/2e. This remarkable feat is made
cally ordered. In the cuprates, we have suggésteat the possible by the presence of gapped topological excitations—
vison gap sets the scale for the pseudogap crossover. the visons—in the fractionalized phase. Thus the existence of

We argued that the fractionalization could coexist withthese excitations is crucial for the fractionalization route to
various conventional broken symmetries and even in theyperconductivity.
presence of disorder. Again, the notion of topological order i) The experiment we propose directly detects the sta-
gives a precise characterization of ordered fractionalizegjlity of a trapped vison in the “normal” state of the cu-
phases(such as the phase Af which distinguishes them prates.
from the corresponding ordered phases without the fraction- |n view of the above, we believe that it should be possible
alization. to definitively establish or rule out the fractionalization ex-

We also briefly discussed some toy examples of quanturpjanation of cuprate superconductivity.
confinement transitions. The motivation was that precisely
such a transition might possibly control the finite-
temperature properties of the cuprates in the region between ACKNOWLEDGMENTS
the under and overdoped regimes.
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