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SU„4… model of high-temperature superconductivity and antiferromagnetism
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We present an SU~4! model of high-temperature superconductivity having many similarities to dynamical
symmetries known to play an important role in microscopic nuclear structure physics and in elementary
particle physics. Analytical solutions in three dynamical symmetry limits of this model are found: an SO~4!
limit associated with antiferromagnetic order; an SU(2)3SO(3) limit that may be interpreted as ad-wave
pairing condensate; and an SO~5! limit that may be interpreted as a doorway state between the antiferromag-
netic order and the superconducting order. The model suggests a phase diagram in qualitative agreement with
that observed in the cuprate superconductors. The relationship between the present model and the SO~5!
unification of superconductivity and antiferromagnetic order proposed by Zhang is discussed.
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I. INTRODUCTION

There are compelling arguments that the mechanism le
ing to high-temperature superconductivity does not co
spond to ordinary BCSs-wave pairing. Although experimen
tal evidence implicates singlet~hole! pairs as the carriers o
the supercurrent, the interaction leading to the formation
the singlet pairs appears not to be the traditional lattice p
non mechanism underlying the BCS theory, but rather se
to be a collective electronic interaction. Furthermore,
pairing gap is anisotropic, with nodes in thekx–ky plane
strongly suggestive ofd-wave hybridization in the two-
particle wave functions, and the mechanism responsible
superconductivity in the cuprates is thought to be clos
related to the unusual antiferromagnetic~AF! insulator prop-
erties of their normal states.

Contrary to the case for BCS superconductors, the for
tion of Cooper pairs and the formation of a superconduct
~SC! condensate of those pairs in high-Tc compounds may
be distinct, with pair formation corresponding to a high
temperature scale than the condensation of the pairs into
SC state. That is, there appear to be at least two dis
energy scales associated with the formation of the hi
temperature SC state. This is reminiscent of grand uni
theories in elementary particle physics, where qualitativ
different physical phases result from a hierarchy of symm
try breakings occurring on different energy~temperature!
scales. This finds its most natural explanation in a Lie gro
structure that is broken spontaneously~and perhaps explic
itly ! down to subgroups at different characteristic ene
scales.

II. DYNAMICS AND SYMMETRIES

Such observations argue strongly for a theory based
continuous symmetries of the dynamical system that is
pable of describing more sophisticated pairing than found
0163-1829/2001/63~13!/134516~11!/$20.00 63 1345
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the simple BCS picture~which is described by a single com
plex order parameter!, and capable of unifying different col
lective modes and phases on a equivalent footing. Then s
fundamentally different physics as antiferromagnetic or
and superconductivity can emerge from the same effec
Hamiltonian as concentration variables~e.g., doping param-
eters! are varied.

A. Fermion dynamical symmetries

For approximately the same period of time that the hig
Tc compounds have been known, techniques based on
namical symmetries in fermion degrees of freedom that
capable of satisfying the preceding conditions have bee
development in the field of nuclear structure physics. Th
it has proven fruitful to ask the following questions: what a
the most important collective degrees of freedom in the lo
lying spectrum of complex nuclei, what are the microsco
many-body quantum operators that create and annih
these modes, and what is the commutator algebra obeye
this set of operators.

Systematic investigation of these questions has led
strong confirmation of the following set of conjectures abo
the nuclear many-body system.~1! Low-lying collective
modes are in approximate one-to-one correspondence
dynamical symmetries in the fermion degrees of freedom.~A
system possesses a dynamical symmetry if it has a Ha
tonian that can be expressed as a polynomial in the Cas
invariants of a subgroup chain.! ~2! A dynamical symmetry
associated with low-lying collective modes is associated w
a Lie algebra and its subalgebras that are formed from a
of fermion operators closed under commutation.~3! Differ-
ent dynamical symmetry subgroup chains arising from
same highest symmetry group are associated with fundam
tally different phases of the theory. These dynamical symm
tries are characterized by different collective modes and
corresponding phases are unified in the highest group, jus
©2001 The American Physical Society16-1
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grand unified theories are unified in the higher groups of
symmetry breaking chain.~4! The unification implied by the
preceding point suggests that the many low-lying collect
states formed by systematic filling of valence shells in he
nuclei are in reality different projections in an abstract m
tidimensional space of the same state. Equivalently, the
ferent states are transformed into each other by the gen
tors of the symmetry. Thus, the systematics of collect
modes and phase transitions as a function of concentra
variables are specified by the group structure.

It has been demonstrated that dynamical symmetrie
the type described in Ref. 1 are realized to remarkably h
accuracy in the spectrum and the wavefunctions of lar
scale numerical calculations using the Projected S
model.2 Since this model is known to give extremely goo
agreement with a broad range of experimental data~see, e.g.,
Ref. 3!, this provides rather conclusive proof that these d
namical symmetries are strongly realized in the low-lyi
states of complex nuclei. This raises the issue of whe
similar symmetries might be found in other complex man
body fermion systems such as those important in conden
matter. We may expect that the nuclear and conden
matter systems have many similarities that could make
consideration fruitful: both are composed of interacting f
mions and both are ultimately many-body systems that
only approximately describable by mean-field ideas.

B. The Zhang SO„5… model

S. C. Zhang and collaborators have introduced ideas b
ing many similarities to these into the high-temperature
perconductor discussion.4 Motivated by a desire to unify AF
and SC order parameters, Zhanget al. have assembled thes
into a five-dimensional vector order parameter, and h
then constructed an SO~5! group that rotates the AF orde
parameters into the SC ones. This construction is based
plicitly on the assumption ofd-wave pairing in the SC state

In this paper we proceed differently. We start, not fro
the desire to unify two particular phases, but from ident
cation of a closed algebra associated with a general se
fermion pairing and particle-hole operators defined on a
riodic lattice. Nevertheless, we shall find that we reco
Zhang’s SO~5! symmetry as a subgroup of a more gene
U~4! symmetry if certain commutators of the full SU~4! al-
gebra are set to zero. Thus, much of the extensive re
discussion of the Zhang SO~5! symmetry applies directly to
the results of this paper.

However, the present paper extends this discussion
stantially: ~1! The SO~5! subgroup is embedded in a larg
algebra defined microscopically in the fermion degrees
freedom, which implies constraints on the SO~5! subgroup;
~2! The SU~4! highest symmetry has subgroups in addition
SO~5! that may be relevant to the condensed-matter prob
in general and the cuprate superconductors in particular~3!
we frame the discussion, not in terms of an approxim
symmetry of a Hubbard ort –J Hamiltonian, but in terms of
an exactdynamical symmetryconstructed using the Casim
invariants of group chains. We shall present a more deta
discussion of the relationship between the present model
the Zhang SO~5! model.
13451
e

e
y
-
if-
ra-
e
on

of
h
-
ll

-

er
-
ed
d-
is
-
re

r-
-

e

x-

-
of
-

r
l

nt

b-

f

m

e

d
nd

III. DYNAMICAL SYMMETRY METHOD

The dynamical symmetry method applied here cor
sponds schematically to the following algorithm.

~0! Assume the following conjecture:All strongly collec-
tive modes in fermion (or boson) many-body systems ca
put into correspondence with a closed algebra defining
dynamical symmetry of the sort described below.This is a
conjecture, but there is so much evidence in support o
from various fields of physics that it is almost a theore
Strongly correlated motion implies a symmetry of the d
namics described by a Lie algebra in the second-quant
operators implementing that motion.

~1! Identify, within a suitable ‘‘valence space,’’ degree
of freedom that one believes are physically relevant for
problem at hand, guided by phenomenology, theory, a
general principles. In the present case, that reduces to d
ing a minimal set of operators that might be important
describe superconductivity and antiferromagnetism on a s
lattice.

~2! Try to close a commutation algebra~of manageable
dimension! with the second-quantized operators creating a
annihilating the modes chosen in step~1! If necessary, ap-
proximate these operators, or add additional ones to the s
the algebra does not close naturally. In the present con
the simpleg(k) form factor introduced below is an examp
of simplifying things to close the algebra.

~3! Use standard Lie algebra theory to identify releva
subalgebra chains that end in algebras for conserva
laws that one expects to be obeyed for the problem at ha
In the present example, we require all group chains to en
U~1!3SU~2!, corresponding to an algebra implementin
conservation of charge and spin.

~4! Construct dynamical symmetry Hamiltonians~Hamil-
tonian that are polynomials in the Casimir invariants of
group chain! for each chain. Each such group chain th
defines a wave-function basis labeled by the eigenvalue
chain invariants~the Casimirs and the elements of the Cart
subalgebras!, and a Hamiltonian that is diagonal in that bas
~since it is constructed explicitly from invariants!. Thus, the
Schoedinger equation is solved analytically for each cha
by construction.

~5! Calculate the physical implications of each of the
dynamical symmetries by considering the wave functio
spectra, and transitional matrix elements of physical r
evance. This is tractable, because the eigenvalues and e
vectors were obtained in step~4!. Consistency of the sym
metry requires that transition operators be related to gr
generators; otherwise, transitions would mix irreducible m
tiplets and break the symmetry.

~6! If step ~5! suggests that one is on the right tra
@meaning that a wise choice was made in step~1!#, one can
write the most general Hamiltonian for the system in t
model space, which is just a linear combination of all t
Hamiltonians for the symmetry group chains. Since the C
simir operators of different group chains do not genera
commute with each other, a Casimir invariant for one gro
chain may be a symmetry-breaking term for another gro
chain. Thus the competition between different dynami
6-2
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SU~4! MODEL OF HIGH-TEMPERATURE . . . PHYSICAL REVIEW B 63 134516
symmetries and the corresponding phase transitions ca
studied.

~7! The symmetry-limit solutions may be used as a sta
ing point for more ambitious calculations that incorpora
symmetry breaking. Although no longer generally analytic
such more realistic approximations may be solved by per
bation theory around the symmetry solutions~which are gen-
erally nonperturbative, so this is perturbation theory aroun
nonperturbative minimum!, by numerical diagonalization o
symmetry breaking terms, or by coherent state or ot
mean-field approximations.

Representative application of these ideas for both ferm
and boson systems may be found in nuclear,1,5 particle,6

molecular,7 and polymer physics.8 We also note that the gen
eral idea of symmetry having dynamical implications lies
the heart of local gauge-field theories in particle physi
though the details and methodologies in that case differ fr
the ones used here.

The only approximation in the dynamical symmetry a
proach outlined above is the space truncation. If all degr
of freedom are incorporated, this defines an exact mic
scopic theory. Of course, in practical calculations only a f
carefully selected degrees of freedom can be included
the effect of the excluded space must be incorporated
renormalized interactions in the truncated space. It follo
that the validity of such an approach hinges on a wise cho
of the collective degrees of freedom and sufficient pheno
enological or theoretical information to specify the corr
sponding effective interactions of the truncated space.

IV. THE SU „4… MODEL

Let us now introduce a mathematical formalism that p
vides a systematic implementation of the dynamical symm
try procedure for a particular physically motivated choice
operators.

A. Choice of operators

The success of the dynamical symmetry method depe
on a wise selection of the operators that describe the l
energy degrees of freedom for the system. In the cas
cuprate superconductors, we know that~unlike for normal
superconductors! antiferromagnetism and superconductiv
lie very near each other in the phase diagram. Further,
suggest that the SC phases are associated with Cooper
of spin-singlet electron holes havingd-wave geometry. Fi-
nally, we expect that the physical system must conserve b
charge and spin. These observations suggest that at a
mum we needd-wave singlet pairs and operators associa
with antiferromagnetism, spin operators, and charge op
tors entering the theory on an equivalent footing. Let us n
construct a minimal closed algebra that incorporates th
degrees of freedom.9

B. The algebra

We begin by defining the following lattice fermion oper
tors:
13451
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p12
† 5(

k
g~k!ck↑

† c2k↓,
† p125(

k
g* ~k!c2k↓ck↑ ,

qi j
† 5(

k
g~k!ck1Q,i

† c2k, j
† , qi j 5~qi j

† !†, ~1!

Qi j 5(
k

ck1Q,i
† ck, j , Si j 5(

k
ck,i

† ck, j2
1
2 Vd i j ,

whereck,i
† creates a fermion of momentumk and spin pro-

jection i , j 51 or 25↑ or ↓, Q5(p,p,p) is an AF ordering
vector, V is the lattice degeneracy, and we approximate
d-wave form factor by

g~k!5sign~coskx2cosky!561,

with g(k1Q)52g(k) andug(k)u51 ~see Refs. 10,11!. Us-
ing the usual fermion anticommutators, we deduce the
lowing commutation relations among the operators of E
~1!:

@ p12,p12
† #52S112S22,

@ qi j ,qkl
† #52d ikSl j 2d i l Sk j2dk jSli 2d j l Ski ,

@ pi j ,qkl
† #5d ikQl j 1d i l Qk j2dk jQli 2d j l Qki ,

@ Si j ,Skl#5d jkSil 2d i l Sk j ,

@ Qi j ,Qkl #5d jkSil 2d i l Sk j , ~2!

@ Si j ,pkl
† #5d ikpkl

† 2d j l pik
† ,

@ Si j ,qkl
† #5d ikqil

† 1d j l qik
† ,

@ Qi j ,pkl
† #5d jkqil

† 2d j l qik
† ,

@ Qi j ,qkl
† #5d jkpil

† 1d j l pik
† .

Thus, this set of 16 operators is closed under commuta
and generates a Lie algebra. Detailed examination indic
that the algebra is associated with the groupU(4) and has
the subgroup chains

.SO~4!3U~1!.SU~2!s3U~1!

U~4!.SU~4!.SO~5!.SU~2!s3U~1! ~3!

.SU~2!p3SU~2!s.SU~2!s3U~1!

that end in the subgroup SU(2)s3U(1) representing spin
and charge conservation. The physical interpretation is ai
by rewriting the generators of the U(4) algebra as
6-3
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TABLE I. Properties of SU~4! and its subgroups~valid for representations with no broken pairs!.

Group Generators Quantum numbers Casimir operator Casimir eigenva

SU~4! Q1 , SW , QW , pW † s15
V

2
~s25s350! pW †

•pW 1D†D1SW •SW
V

2 SV2 14D
pW , D†, D, M 1QW •QW 1M (M24)

SO~4! QW , SW w (F5G5w/2) QW •QW 1SW •SW w(w12)

SO~5! SW , pW †, pW , M t (v50) pW †
•pW 1SW •SW 1M (M23) t(t13)

SU(2)p D†, D, M v D†D1M (M21) 1
4

(V2v)(V2v12)
SU(2)s SW S SW •SW S(S11)
.
es
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Q15Q111Q225(
k

~ck1Q↑
† ck↑1ck1Q↓

† ck↓!,

SW 5S S121S21

2
,2 i

S122S21

2
,
S112S22

2 D ,

QW 5S Q121Q21

2
,2 i

Q122Q21

2
,
Q112Q22

2 D , ~4!

pW †5S i

2
~q11

† 2q22
† !, 1

2 ~q11
† 1q22

† !,2
i

2
~q12

† 1q21
† ! D ,

pW 5~pW †!† D†5p12
† D5p12 M5 1

2 ~n2V!,

whereQ1 generates charge density waves,SW is the spin op-
erator,QW is the staggered magnetization, andpW †,pW create
and annihilate tripletd-wave pairs~see Ref. 4!, the operators
D† andD are associated with singletd-wave pairs,n is the
electron number operator, andM is the charge operator
Properties of this group structure are summarized in Tabl
and II, and Fig. 1.

Notice in this context that we require exact conservat
of charge and spin for our dynamical symmetry solutio
because we have not introduced approximations that vio
these symmetries. Although it is common to refer to sup
conductivity as resulting from violation of particle numbe
this is a statement about an approximate solution. In the
act solution and in nature, particle number is conserved.12 In
13451
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a later section we shall introduce usefulapproximate solu-
tions through coherent state methods that lead to sponta
ous symmetry breaking and to intrinsic states violating p
ticle number, but our dynamical symmetry solutio
conserve charge and spin exactly.

C. The collective subspace

The group SU~4! has a quadratic Casimir operator

Csu(4)5pW †
•pW 1D†D1SW •SW 1QW •QW 1M ~M24!. ~5!

The group is rank-3 and the irreducible representations~ir-
reps! may be labeled by three weight-space quantum nu
bers, (s1 ,s2 ,s3). We assume for the simplest implement
tion of the model a collectived-wave pair subspace spanne
by the following vectors:

uS&5unxnynzns&5~px
†!nx~py

†!ny~pz
†!nz~D†!nsu0&. ~6!

This collective subspace is associated with irreps of the fo

~s1 ,s2 ,s3!5S V

2
,0,0D , ~7!

whereV is the number of lattice sites. The correspondi
expectation value of the SU~4! Casimir evaluated in thes
irreps is a constant:

^Csu(4)&5
V

2 S V

2
14D . ~8!
TABLE II. The Hamiltonian, eigenstates, and spectra in three dynamical symmetry limits of the SU~4! model~assumeN is even and 1/V
is negligible!. Eg.s. is the ground-state energy,DE the excitation energy, Dim the dimension of each representation for a givenN, N
5n/2 the pair number,x512n/V, andkso45keff1xeff .

SU„2… limit: uc(SU2)&5uN,v,S,ms& SO„4… limit: uc(SO4)&5uN,w,S,mS& SO„5… limit: uc(SO5)&5ut,N,S,mS&

^CSU(2)p
&5

1
4 (V2v)(V2v12) ^CSO(4)&5w(w12), w5N2m ^CSO(5)&5t(t13), t5V/22N1l

Dim(v,N)5(v11)(v12)/2 Dim(w,N)5(w11)2 Dim(t,N)5(l11)(l12)/2

H5H082Geff
(0)D†D1keff SW •SW H5H082x

eff
QW •QW 1keff SW •SW H5H082Geff

(0)QW •QW 1D†D1keff SW •SW

^D†D&5^CSU(2)p
2M (M21)& ^QW •QW &5^CSO(4)2SW •SW & ^QW •QW 1D†D&5^CSU(4)1M2CSO(5)&

Eg.s.5H082
1
4 Geff

(0)V2(12x2) Eg.s.5H082
1
4 xeffV

2(12x)2 Eg.s.5H082
1
4 xeffV

2(12x)2

DE5nGeff
(0)V1keff S(S11), n5v/2 DE5mx

eff
(12x)V1kso4 S(S11) DE5lGeff

(0) xV1keff S(S11)

n50,1,2, . . . ,N; S5n,n22, . . . 0 m50,2, . . .N; S5w,w21, . . . 0 l50,1,2, . . . ,N; S5l,l22, . . . 0
6-4
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The operatorQ1 defined in Eq.~4! is the generator of the
U~1! factor in U(4).U(1)3SU(4).Physically, it is associ-
ated with charge-density wave excitations in the system.
note thatQ1 commutes with all generators so it annihilat
the stateuS&:

Q1uS&50, ^SuQ1uS&50. ~9!

Thus, the collective subspace considered in isolation is a
ciated with an eigenvalueQ150. Physically, this corre-
sponds to exclusion of charge-density wave excitations in
low-lying collective subspace of the effective theory.13

The dimensionality of the full space is 22V. The dimen-
sionality of the collective subspace is much smaller, sca
approximately asV4:

DimS V

2
,0,0D5

1

12S V

2
11D S V

2
12D 2S V

2
13D . ~10!

Thus for small lattices it is possible to enumerate all state
the collective subspace in a simple model where observa
can be calculated analytically.

D. SU„4… model Hamiltonian

The most general two-body Hamiltonian within th
d-wave pair space consists of a linear combination of~qua-
dratic! Casimir operatorsCg for all subgroupsg:14

H5H01(
g

HgCg ,

whereH0 andHg are parameters and the Casimir operat
Cg are ~see Table I!

CSO(5)5pW †
•pW 1SW •SW 1M ~M23!,

CSO(4)5QW •QW 1SW •SW ,

CSU(2)p
5D†D1M ~M21!, ~11!

CSU(2)s
5SW •SW ,

CU(1)5M and M2.

For fixed electron number the terms inM andM2 in Eq. ~11!
are constant. The termH0 is a quadratic function of particle
number and may be parametrized as

H05«n1 1
2 vn~n21!,

FIG. 1. Dynamical symmetries associated with the U~4! symme-
try. The generators are listed for each subgroup.
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where« and v are the effective single-electron energy a
the average two-body interaction in zero-order approxim
tion, respectively. Thus the Hamiltonian can be written a

H5H01V5«n2 1
2 vn~n21!1V, ~12!

V52G0D†D2G1pW †
•pW 2xQW •QW 1kSW •SW , ~13!

where G0 , G1 , x, and k are the interaction strengths o
d-wave singlet pairing,d-wave triplet pairing, staggered
magnetization, and spin-spin interactions, respectively. Si
^Csu(4)& is a constant, by using Eq.~5! we can eliminate the
pW †

•pW term and after renormalizing the interaction streng
the SU~4! Hamiltonian can be expressed as

H5H082G@~12p!D†D1pQW •QW #1keff SW •SW , ~14!

H085«eff n1 1
2 veff n~n21!, ~15!

with (12p)G5Geff
0 , pG5xeff , andkeff as the effective in-

teraction strengths, and where 0<p<1 for the parameterp.
Since in this paper we primarily address the ground-s
properties whereS50, the last term in Eq.~14! will gener-
ally not enter into the later discussion.

V. THE DYNAMICAL SYMMETRY LIMITS

As we have already noted, there are three subgroup ch
of the SU~4! symmetry that conserve spin and charge. Th
define three dynamical symmetries with clear physical me
ings. The three dynamical symmetry limits SU~2!, SO~4!,
and SO~5!, correspond to the choicesp50, 1, and 1/2, re-
spectively, in Eq.~14!. The Hamiltonian, eigenfunctions, en
ergy spectrum, and the corresponding quantum number
these symmetry limits are listed in Tables I and II, where
introduce a doping parameterx that is related to particle
number and lattice degeneracy through

x512
n

V
. ~16!

The pairing gapD ~measure of pairing order! and the stag-
gered magnetization~measure of AF order! Q,

D5Geff
0 ^D†D&1/2, Q5^QW •QW &1/2, ~17!

may be used to characterize the states in these symm
limits. As we shall now see, each limit represents a differ
possible low-energy phase of the SU~4! system.

A. The SO„4… limit

The dynamical symmetry chain

SU~4!.SO~4!3U~1!.SU~2!s3U~1!,

which we shall term the SO~4! limit, corresponds to long-
range AF order. This is the symmetry limit of Eq.~14! when
p51. The SO~4! subgroup is locally isomorphic to SU(2)F
3SU(2)G , where the product group is generated by the l
ear combinations
6-5
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FW 5 1
2 ~QW 1SW !, GW 5 1

2 ~QW 2SW !, ~18!

of the original SO~4! generatorsQW andSW . We may interpret
the new generatorsFW andGW physically by noting that if we
transformQi j andSi j defined in Eq.~1! to the physical co-
ordinate lattice,

Qi j 5(
r

~2 !rcri
† cr j 5 (

r 5even
cri

† cr j 2 (
r 5odd

cri
† cr j ,

~19!

Si j 5(
r

cri
† cr j 5 (

r 5even
cri

† cr j 1 (
r 5odd

cri
† cr j ,

implying that FW is the generator of total spin on even sit
and GW is the generator of total spin on odd sites. Thus,
may interpret the SO~4! group as being generated by tw
independent spin operators: one that is the total spin on
sites and one that is the difference in spins on even and
sites of the spatial lattice. This clearly is an algebraic vers
of the physical picture associated with AF long-range ord

The SO~4! Casimir operator may be expressed as

Cso(4)52~FW 21GW 2!. ~20!

The SO~4! representations can be labeled by the spinl
quantum numbers (F5w/2,G5w/2), wherew5N2m with
m50,2, . . . ,N. The eigenstates are labeled byw and the spin
S, c(SO4)5uN,w,S,ms&, and are of dimension (w11)2.

The ground state corresponds tov5N andS50, and has
n/2 spinup electrons on the even sites (F5N/2) and n/2
spin-down electrons on odd sites (G5N/2), or vice versa.
Thus it has maximal staggered magnetization

Q5 1
2 V~12x!5 1

2 n ~21!

and a large energy gap~associated with the correlationQW
•QW ),

DE52xeff~12x!V, ~22!

that inhibits electronic excitation and favors magnetic in
lator properties at half filling. In addition, the pairing gap

D5 1
2 Geff

0 VAx~12x! ~23!

is small near half filling (x50). We conclude that thes
SO~4! states are identified naturally with an AF insulatin
phase of the system.

B. The SU„2… limit

The dynamical symmetry chain

SU~4!.SU~2!p3SU~2!s.SU~2!s3U~1!,

which we shall term the SU~2! limit, corresponds to SC orde
and is thep50 symmetry limit of Eq.~14!. The eigenstates
are labeled byv and spinS, c(SU2)5uN,v,S,ms&, and are
of dimension (v11)(v12)/2. The senioritylike quantum
numberv is the number of particles that do not form sing
13451
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d pairs ~see Table II!. The ground state hasv50, implying
that all electrons are singlet paired. In addition, there exis
large pairing gap

DE5Geff
(0)V ~24!

~see Table II!, the pairing correlation is the largest among t
three symmetry limits, and the staggered magnetization v
ishes in the ground state:

D5 1
2 Geff

0 VA12x2, Q50. ~25!

Thus we propose that this state is a pair condensate as
ated with ad-wave SC phase of the cuprates.

C. The SO„5… Limit

The dynamical symmetry chain

SU~4!.SO~5!.SU~2!s3U~1!,

which we shall term the SO~5! limit, corresponds to a phas
with the nature of a transitional orcritical dynamical sym-
metry. This symmetry limit appears whenp51/2 in Eq.~14!.
The SO~5! irreps are labeled by a quantum numbert and the
eigenstates may be labeled byt and the spinS, c(SO5)
5uN,t,S,ms& with N5V/22t1l, wherel is the number
of p pairs. The irreducible representation dimensionality
given N is (l11)(l12)/2 and the ground state hasl50
andS50.

The SO~5! dynamical symmetry has very unusual beha
ior. Although the expectation values ofD andQ for ground
state in this symmetry limit are the same as that of Eq.~25!
for the SU~2! case, there exist a huge number of states w
different values ofl ~the number ofp pairs! that can mix
easily with the ground state whenx is small because the
excitation energy in this symmetry limit is

DE5lGeff
(0)Vx ~26!

~see Table II!. In particular, at half filling (x50) the ground
state is highly degenerate with respect tol and mixing dif-
ferent numbers ofp pairs in the ground state costs no e
ergy. Thep pairs must be responsible for the antiferroma
netism in this phase, since within the model space onlyp
pairs carry spin. Thus the ground state in this symmetry li
has large-amplitude fluctuation in the AF order~and SC or-
der!. This indicates that the SO~5! symmetry limit is associ-
ated with phases in which the system is extremely susc
tible to fluctuations between AF and SC order.

D. Energy Surfaces

The soft nature of the SO~5! phase is seen most clearly
we introduce approximate solutions in terms of SU~4! coher-
ent states.15 We shall discuss the interpretation of SO~5! us-
ing coherent states in a separate paper,16 but we quote one
result of that study here. In Fig. 2, ground-state energy s
faces for various particle numbern ~or dopingx) are plotted
as a function of a quantityb, which is related directly to the
AF order parameter~see figure caption!. Three plots are as
sociated with the symmetry limits discussed abovep
6-6
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50,1,1/2), and one corresponds to a situation with a sli
SO~5! symmetry breaking (p50.52). For all doping valuesx
the energy minimum lies atb50 ~implying that Q50) in
the SU~2! limit @Fig. 2~a!#, while it lies at

b5A 1
4 ~12x!

~implying that Q5n/2) for the SO~4! limit @Fig. 2~b!#. In
Fig. 2~c!, there is a broad range of doping in which the SO~5!
energy surface is almost flat in the parameterb, implying
large excursions in the AF~and SC! order: one can fluctuate
into the other at negligible energy cost. Notice in Fig. 2~d!
that as doping varies the SO~5! Hamiltonian with slight sym-
metry breaking interpolates smoothly between AF order
half filling and SC order at smaller filling. Thus SO~5! acts
as a kind of doorway between SU(2)p and SO~4! symmetries
and this gives a precise meaning to the assertion4 that the
SO~5! symmetry rotates between AF and SC order.

However, the present discussion shows that the rela
between the AF and SC phases is more complex tha
simple SO~5! rotation because of the non-Abelian nature
the SU~4! parent group of SO~5!. Such dynamical symme
tries that define a phase of the theory but that also interpo
between two other dynamical symmetries are known
nuclear structure physics where they have been termedcriti-
cal dynamical symmetries.17

The soft SO~5! energy surface could lead to ‘‘spin-glas
like’’ phases~by which we mean phases with local AF or S

FIG. 2. Coherent-state energy surfaces for Eq.~14!. The energy
unit is GV2/4 @see Eq.~14!#. The staggered magnetizationQ is
related tob by ^Q&52Vb0(n/2V2b0

2)1/2, whereb0 is the value
of b at the stable point, sob measures the AF order. Numbers o
curves are the lattice occupation fractions, withn/V51 corre-
sponding to half filling and 0,n/V,1 to finite hole doping.
13451
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order but with large fluctuations in both!. It could also lead
to inhomogenous structurelike stripes if there is a perio
spatial modulation of the system, since the soft nature of
energy surface implies that relatively small perturbations
shift an SO~5! system between AF and SC behavior. A
noted in an earlier footnote, perturbations of the symme
by a charge-density wave could be one source of suc
spatial modulation.

VI. PHASES AND PHASE TRANSITIONS

In quantitative tests of the SU~4! model with parameters
determined by fitting to pairing gap and pseudogap data
cuprate phase diagram has been predicted. It is found tha
the symmetry-mixing parameterp close to but larger than 0.5
@antiferromagnetically perturbed SO~5! symmetry# the ex-
perimental data are described quite well. The results of
study will be published separately.18,19 In this paper, we con-
centrate on general features and use the preceding discu
to construct the qualitative phase diagram illustrated in F
3. This diagram, which contains essential features of the
alistic phase diagram, is constructed based on the follow
arguments.

A. Phase diagram

Consider the Hamiltonian~14! and, to simplify this dis-
cussion, let us assume the spin termkeffSW •SW to be neglected.
In that case, there are two fundamental energy scales in
Hamiltonian~14!: H08 andH2H08;GV2. The termH08 origi-
nates in the single-particle energies«effn and the SU~4! in-
variantCsu4. This term depends only on particle number a
is isotropic: it has the same expectation value for any stat
the SU~4! representation space. In contrast, the other te
H2H08 ~with characteristic energy scaleGV2) are aniso-
tropic in the SU~4! space: states associated with differe
dynamical symmetries may have quite different expectat
values.~Thus, if we make a mean-field approximation to t

FIG. 3. Schematic phase diagram for SU~4! symmetry based on
Fig. 1~d!. TheH08 in Eq. ~14! is expressed in terms of hole dopin
x with x512n/V; «eff8 5«effV/2, and veff8 5veffV

2/2.
6-7
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present many-body theory—like the method of coher
states—these anisotropic terms will lead to spontaneo
broken symmetries.!

The termH08 in the Hamiltonian~14! may be regarded a
the energy scale for the U(4).U(1)3SU(4) symmetry,
which describes a fermion system in which electrons are
paired but with no distinction among thed pairs andp pairs.
We may expect this symmetry to hold while the therm
energy is less thanH08 . When the system is cooled, the the
mal energy eventually drops below the anisotropic sc
GV2, the anisotropic pairing and antiferromagnetic corre
tionsH2H08 become important, and SU~4! breaks to its sub-
groups. Then different low-temperature phases appear,
the favored phases depending on the competition betw
D†D andQW •QW interactions as a function of doping conce
trations.

From the preceding discussion, at zero temperature
expect the SO~4! AF phase to dominate at half filling ifp

.0.5, because the energy surface is minimized atb5@ 1
4 (1

2x)#1/2, implying that the staggered magnetization is larg
Q5n/2. On the other hand, at larger doping the SU~2! pair-
ing phase is favored~the pairing energy is optimized and th
staggered magnetization minimized! @see Fig. 2~d!#. Finally,
the intermediate doping region is described naturally by
SO~5! critical dynamical symmetry that interpolates betwe
SC and AF behavior with doping. Thus, SU~4! symmetry
implies the schematic phase diagram of Fig. 3, independ
of detailed calculations.

B. Phase transitions and symmetry breaking

In the Hamiltonian~14!, the parameterp takes on the
values 0, 1, and 1/2 in the three symmetry limits of t
theory. For any other allowed value ofp the system exhibits
SU~4! symmetry but there is no dynamical symmetry~if p
Þ0,1,1/2, the eigenstates of the system are linear superp
tions of eigenstates from the three dynamical symme
chains!. In this case, phase transitions are driven by mic
scopically determined control parameters that change the
pectation value of the terms of the Hamiltonian such t

^QW •QW & is dominant in some circumstances while^D†
•D&

dominates in others. This permits phase transitions am
the AF @SO(4) limit#, SO~5!, and SC phases@SU(2)# to be
studied using a fixed Hamiltonian. In cuprates, the ho
dopingx is an example of such a microscopically determin
control parameter. Thus, a Hamiltonian that possesses a
proximate SO~5! symmetry @antiferromagnetic perturbe
SO~5!# can have AF solutions at small hole doping and
solutions at large hole doping. We shall give an explicit e
ample of a phase transition driven microscopically by cha
ing hole doping in the next section.

VII. THE TRANSITION BETWEEN
ANTIFERROMAGNETISM AND SUPERCONDUCTIVITY

Above, we have used the method of generalized cohe
states to give an interpretation of the SO~5! subgroup as a
critical dynamical symmetry interpolating between AF a
13451
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SC order and having the character of a ‘‘spin glass’’ or p
haps leading to stripe phases for a large range of intermed
doping parameters.16 In this section we address further th
relationship between the other two phases of the theory.
show that the microscopic symmetry incorporates a differ
dependence on doping for SC and AF order. This impl
that the group structure itself controls the transition betwe
the superconducting SU~2! symmetry and the antiferromag
netically ordered SO~4! symmetry. Thus, we conclude tha
the SU~4! symmetry leads naturally to AF order at hal
filling and tod-wave superconductivity as the system is ho
doped away from half filling for a broad range of Ham
tonian parameters.

A. A simplified picture

To simplify the discussion, we drop the common depe
dence of both phases on the spin and charge generators
consider the competition between the SO~4! stabilization en-
ergy coming from a termQW •QW and the SU~2! stabilization
energy coming from a termD†D in the Hamiltonian. These
clearly have fundamentally different behaviors with chan
ing particle number. From Table II and Eq.~16!, we may
conclude that, in the respective ground states,

^xQW •QW &5xN~N12!,
~27!

^G0D†D&5G0N~V2N11!,

where the pair number isN5 1
2 n. At half filling ( N5V/2), if

x/G0.1, the Hamiltonian exhibits an effective SO~4! sym-
metry because the SO~4! correlation energyxW Q•QW domi-
nates. As the particle number decreases~hole dopingx in-
creases!, the SO~4! correlation energy decrease
quadratically but thed-wave pairingD†D decreases much
more slowly~essentially linearly!. Therefore, the pairing cor
relationD†D will eventually dominate and the Hamiltonia
exhibits effective SU~2! symmetry.

These features imply immediately that, ifx/G0.1, anti-
ferromagnetism will tend to dominate at half filling but, a
the system is doped away from half filling with holes, eve
tually pairing will dominate and the system will become s
perconducting. The transition point will depend on the re
tive strengths of theD†D and QW •QW terms in the effective
Hamiltonian, but the AF ground state at half-filling and th
tendency to superconductivity as the system is doped a
from half filling is a direct consequence of the group stru
ture, independent of detailed parameter choices.

B. Analogies in nuclear structure

This competition between antiferromagnetism and sup
conductivity bears many strong resemblances to the com
tition in nuclear physics between spherical and deform
structure for nuclei. There, it has been shown that the tr
sition from spherical nuclei, which dominate the beginnin
and endings of shells, to deformed nuclei, which often do
nate the middle of shells, is controlled by the microsco
competition between long-range quadrupole-quadrupole
teractions favoring deformation and short-range monop
6-8
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pairing interactions favoring spherical vibrational structu
This competition in nuclear structure may be expressed a
braically as a competition between a dynamical symme
that favors pairing and a dynamical symmetry that fav
multipole ~particle-hole! interactions.1

The essential physics of the spherical-deformed transi
in nuclear structure physics has been shown to be determ
by the differing particle number dependence of the dyna
cal symmetries: nuclear pairing energy increases line
with particle number but the quadrupole deformation ene
is quadratic in particle number@that is, essentially the sam
relationship as for Eq.~27!#. Thus, the group structure dic
tates that spherical vibrational nuclei~favored by pairing en-
ergy! dominate the ends of shells and deformed nuclei~fa-
vored by the deformation energy! dominate the middle of
shells.20 This behavior is a close analog of the competiti
between antiferromagnetism dominating the half-filled latt
and superconductivity dominating the hole-doped lattice t
we have discussed in this paper.

This analogy between condensed-matter and nuc
physics might not be accidental. The structure of heavy
clei and of high-temperature superconductors both co
spond to complex many-fermion problems in which stro
particle–hole and pairing interactions involvingd pairs play
pivotal roles. It has been demonstrated that dynamical s
metries in the microscopic fermion degrees of freedom p
vide a simple but powerful unifying principle for the nucle
structure problem.1 Recent results, such as those presen
here and in Refs. 4 and 21, suggest that related symme
may play a similar role for condensed matter and that th
problems from rather different fields of physics may hav
common dynamical algebraic structure.

VIII. SU „4… OR SO„5…?

Let us now discuss more precisely the relationship
tween our SU~4! model and the Zhang’s SO~5! model.4 Al-
though the methodologies used to obtain the two models
rather different, the Zhang SO~5! group is a subgroup of ou
SU~4! group and both model Hamiltonians possess antife
magnetic perturbed SO~5! symmetry, implying that the two
models are closely related to each other. Our SU~4! model
and Zhang’s SO~5! model have the same building blocks@the
operator set~4!, but see Ref. 22#. The essential difference i
that we implement the full quantum dynamics~commutator
algebra! of these operators exactly, while in Ref. 4, the d
namics is implemented in an approximate manner: a su
of ten of the operators acts as a rotation on the remaining
operators$D†,D,QW %, which are treated phenomenological
as five independent components of an order-parameter ve
~superspinnW ). Thus only 10 of the 15 generators of o
SU~4! are treated fully dynamically in the Zhang SO~5!. If
the full quantum dynamics~full commutator algebra! of the
15 operators is taken into account, the symmetry is SU~4!,
not SO~5!.

The embedding of SO~5! in our larger algebra has variou
physical consequences that do not appear if the SO~5! sub-
group is considered in isolation. We list four:

~1! As we have seen, a phase transition from antifer
13451
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magnetism to superconductivity at zero temperature tha
controlled by the doping emerges naturally and microsco
cally, whereas in the SO~5! model a symmetry-breaking term
proportional to a chemical potential has to be introduced
hand. This occurs because our SO~5! is embedded in a large
group that contains generators breaking SO~5! but preserving
SU~4!.

~2! The present results suggest that the SO~5! subgroup is
only one of the symmetries relevant to the cuprate proble
It is a transitional symmetry that links AF to SC behavio
suggesting that it is most useful for the underdoped reg
But the AF phases at half filling and the optimally dop
superconductors are more economically described by
SO~4! and SU(2)p symmetries, respectively. All are unifie
in the SU~4! highest symmetry.

~3! As we discuss in a separate publication,18 the present
SU~4! theory leads naturally to the appearance of pseudo
behavior,23 which occurs above the SC transition tempe
ture Tc . The embedding of SO~5! in SU~4! is central to this
behavior.

~4! The different methodology of the SU~4! dynamical
symmetry approach suggests a different physical interpr
tion of the SO~5! subgroup symmetry. We suggest that
should be viewed as an effective symmetry that operates
severely truncated space. As we shall elaborate below,
implies that its microscopic validity is a question of th
physical correctness of the matrix elements evaluated in
truncated model space, not of whether a particular Ham
tonian with some relevance for the full space~Hubbard, for
example! possesses such a symmetry.

Thus, both the Zhang SO~5! theory and the present SU~4!
theory imply the existence of an approximate SO~5! symme-
try in the Hamiltonian of high-temperature superconducto
However, the SU~4! theory encompasses a broader range
physics that may be relevant for cuprate superconduc
Further, as we have argued, a unified quantum mechan
treatment of the generators and order parameter vector o
Zhang SO~5! implies that the full quantum mechanical sym
metry is SU~4! and not SO~5!.

IX. DISCUSSION

The U(4).U(1)3SU(4) symmetry represents a full
microscopic fermion system in which SC and AF mod
enter on an equal footing. At this ‘‘unification’’ level, ther
is in a sense no distinction among these degrees of freed
just as in the Standard Electroweak Theory of element
particle physics the electromagnetic and weak interacti
are unified above the intermediate vector boson mass s
We may expect this symmetry to hold while the temperat
of the system is sufficiently high that anisotropic quantu
fluctuations in the directions associated with these collec
degrees of freedom can be neglected@recall that the SU~4!
scale is set byH08 and the anisotropic scale byGV2], but not
so high that thermal fluctuations destroy the integrity of t
collective modes corresponding to the SU~4! symmetry. This
SU~4! region then corresponds to the pseudogap regime18

Generalizing language already introduced by Zhang,4 in
this regime we may view the system as having conden
6-9
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into SU~4! pairs, which fixes the length of the state vecto
@through the SU~4! Casimir expectation value# but not their
direction in the state-vector space. Physically, this me
that the system is paired, with the pair structure exhibit
SU~4! symmetry, but is neither SC nor AF because fluctu
tions in those directions in the SU~4! space are small relativ
to the scale set by the temperature. Stated in another way
SU~4! pairs are of collective strength, but are not conden
into a state with long-range order. Stated in yet another w
neither the AF nor SC order parameters have finite expe
tion values in this regime, but a sum of their squares@the
SU~4! Casimir# does. This constraint implies an intima
connection between superconductivity and antiferrom
netism in the SU~4! model. They are, in a sense, differe
projections of the same fundamental vector in an abst
algebraic space.

Compared to the Hubbard ort-J models, the dynamica
symmetry approach applied here is just a different way
simplify a strongly correlated electron system. In the Hu
bard ort-J models, approximations are made to simplify t
Hamiltonian but no specific truncation is assumed for
configuration space, although in practical calculations a tr
cation is typically necessary. In contrast, we make no
proximation to the Hamiltonian. The only approximation
the ~severe! space truncation. The symmetry dictated Ham
tonian includes all possible interactions in the trunca
space. In principle, if all the degrees of freedom of the s
tem are included, this approach constitutes an exact mi
scopic theory. The validity of this approach depends entir
on the validity of the choice of truncated space and its eff
tive interactions, which may be tested by comparison w
the data.

Thus, we suggest that effective low-energy theories of
type discussed here need not have much direct relation to
Hamiltonian or wave functions of the Hubbard ort-J models,
because both the Hamiltonian and the wave functions in
ferent model spaces could be very different. What is obse
able quantum mechanically is the matrix elements, not
erators or wave functions separately. As the SU~4! theory
makes clear, we may view these dynamical symmetries
operating in a severely truncated collective subspace
which the truncation has been implemented primarily
symmetry considerations and only secondarily by energy
teria. Thus, it is possible that the matrix elements of
SU~4! theory and a Hubbard ort-J model calculation might
be comparable, even if the Hamiltonians and wave functi
are separately quite different.

The advantage of the dynamical symmetry approach is
cleanness and simplicity. It is clean because theonly ap-
proximation is the selection of the truncated model spa
Thus, a failure of the method is a strong signal that one
chosen a poor model space. It is simple because the me
supplies analytical solutions for various dynamical symme
limits as a starting point. These symmetry-limit solutio
provide an immediate handle on the physics and permi
initial judgment of the model’s validity without large-sca
numerical calculations. Beyond the symmetry limits, nume
cal calculations are necessary. However, because of the
dimensionality of the models spaces and the power of gr
13451
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theory, such numerical calculations are much simpler th
those in, say, a Hubbard ort-J model.

The primary limitation of the dynamical symmetry ap
proach is that the interactions of the model space are ne
sarily effective interactions that will generally be strong
renormalized by the symmetry-constrained space truncat
Thus, their strengths must be supplied separately from
dynamical symmetry method itself, either phenomenolo
cally ~by fitting model-space interaction strengths to data!, or
by a microscopic study of the relationship between the eff
tive and full-space Hamiltonians.

Finally, let us counter a possible philosophical criticis
of the approach taken here. Simple symmetries as a pred
of dynamics has found powerful application in fields such
particle physics or nuclear physics. However, there is a co
mon point of view that the possible ground states in hig
temperature superconductors are too complex to perm
simple model like the current one~which operates in a dras
tically truncated subspace having simple wave functions
highly stylized operators! to have any validity. Although one
can make such an argument formally, this ignores the ra
obvious point that nature has managed to construct a st
ground state having well-defined, collective properties t
change systematically from compound to compound. Ext
sive experience in many fields of physics suggests that th
the signal that the phenomenon in question is described
small effective subspace with renormalized interactions~that
may differ substantially in form and strength from those
the full space! and governed by a symmetry structure
manageable dimensionality. Thus, if an approach like
one proposed here gives correct results for highly nontriv
phenomenology like the doping dependence of observa
quantities, one must take seriously the possibility that
corresponding small symmetry-dictated subspace may h
relevance to the effective behavior of real physical syste
no matter how complex they may appear to be superficia

X. SUMMARY AND CONCLUSIONS

In summary, an SU~4! model of high-Tc superconductiv-
ity has been proposed that contains three dynamical sym
tries: A SC phase identified with the SU(2)p dynamical sym-
metry, an AF phase identified with the SO~4! dynamical
symmetry, and an SO~5! phase extremely soft against A
and SC fluctuations over a substantial doping fraction t
serves as a critical dynamical symmetry interpolating
tween the other two phases. Realistic systems may mix th
subsymmetries while retaining an approximate SU~4! sym-
metry. Zero-temperature phase transitions are shown to
driven by the competition between thed-wave pairing and
the AF QW •QW interactions, as controlled microscopically b
the hole-doping concentration. This model leads naturally
the appearance of pseudogaps in the underdoped regim
cause it introduces multiple energy scales that permit pair
form before they condense into states with long-range or

Thus, we propose that high-Tc behavior of the cuprates
results from an SU~4! symmetry realized dynamically, an
because this symmetry is microscopic its physical interpre
6-10
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tion is accessible to calculation. This provides a solva
model incorporating many features of cuprate supercond
ors, a possible understanding of the cuprate phase diagra
arising from dynamically realized symmetries, and subst
tial insight concerning recent SO~5! theories ofd-wave su-
perconductivity.
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