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We present an S@) model of high-temperature superconductivity having many similarities to dynamical
symmetries known to play an important role in microscopic nuclear structure physics and in elementary
particle physics. Analytical solutions in three dynamical symmetry limits of this model are found: @ SO
limit associated with antiferromagnetic order; an SWBO(3) limit that may be interpreted asdawave
pairing condensate; and an &plimit that may be interpreted as a doorway state between the antiferromag-
netic order and the superconducting order. The model suggests a phase diagram in qualitative agreement with
that observed in the cuprate superconductors. The relationship between the present model an@)the SO
unification of superconductivity and antiferromagnetic order proposed by Zhang is discussed.
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I. INTRODUCTION the simple BCS picturéwhich is described by a single com-
plex order parametgrand capable of unifying different col-

There are compelling arguments that the mechanism leadective modes and phases on a equivalent footing. Then such
ing to high-temperature superconductivity does not correfundamentally different physics as antiferromagnetic order
spond to ordinary BCS-wave pairing. Although experimen- and superconductivity can emerge from the same effective
tal evidence implicates singl¢hole) pairs as the carriers of Hamiltonian as concentration variablésg., doping param-
the supercurrent, the interaction leading to the formation oters are varied.
the singlet pairs appears not to be the traditional lattice pho-
non mechanism underlying the BCS theory, but rather seems
to be a collective electronic interaction. Furthermore, the
pairing gap is anisotropic, with nodes in theg—k, plane
strongly suggestive ofi-wave hybridization in the two- For approximately the same period of time that the high-
particle wave functions, and the mechanism responsible for, compounds have been known, techniques based on dy-
superconductivity in the cuprates is thought to be closelhamical symmetries in fermion degrees of freedom that are
related to the unusual antiferromagnet#d-) insulator prop-  capable of satisfying the preceding conditions have been in
erties of their normal states. development in the field of nuclear structure physics. There

Contrary to the case for BCS superconductors, the formait has proven fruitful to ask the following questions: what are
tion of Cooper pairs and the formation of a superconductinghe most important collective degrees of freedom in the low-
(SO condensate of those pairs in hih-compounds may lying spectrum of complex nuclei, what are the microscopic
be distinct, with pair formation corresponding to a highermany-body quantum operators that create and annihilate
temperature scale than the condensation of the pairs into thRese modes, and what is the commutator algebra obeyed by
SC state. That is, there appear to be at least two distinghis set of operators.
energy scales associated with the formation of the high- Systematic investigation of these questions has led to
temperature SC state. This is reminiscent of grand unifiedtrong confirmation of the following set of conjectures about
theories in elementary particle physics, where qualitativelfthe nuclear many-body systenil) Low-lying collective
different physical phases result from a hierarchy of symmemodes are in approximate one-to-one correspondence with
try breakings occurring on different enerdsemperature  dynamical symmetries in the fermion degrees of freed@m.
scales. This finds its most natural explanation in a Lie grougystem possesses a dynamical symmetry if it has a Hamil-
structure that is broken spontaneougiynd perhaps explic- tonian that can be expressed as a polynomial in the Casimir
ity) down to subgroups at different characteristic energyinvariants of a subgroup chajn2) A dynamical symmetry
scales. associated with low-lying collective modes is associated with
a Lie algebra and its subalgebras that are formed from a set
of fermion operators closed under commutati8). Differ-
ent dynamical symmetry subgroup chains arising from the
same highest symmetry group are associated with fundamen-

Such observations argue strongly for a theory based otally different phases of the theory. These dynamical symme-
continuous symmetries of the dynamical system that is catries are characterized by different collective modes and the
pable of describing more sophisticated pairing than found ircorresponding phases are unified in the highest group, just as

A. Fermion dynamical symmetries

II. DYNAMICS AND SYMMETRIES
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grand unified theories are unified in the higher groups of the lll. DYNAMICAL SYMMETRY METHOD
symmetry breaking chairi4) The unification implied by the
preceding point suggests that the many low-lying collective

states formed by systematic filling of valence shells in heavy?P0nds schematically to the following algorithm.
nuclei are in reality different projections in an abstract mul-  (0) Assume the following conjecturéill strongly collec-

tidimensional space of the same state. Equivalently, the diftVé modes in fermion (or boson) many-body systems can be
ferent states are transformed into each other by the generBUt into correspondence with a closed algebra defining a
tors of the symmetry. Thus, the systematics of collectivedynamical symmetry of the sort described beldis is a
modes and phase transitions as a function of concentratiogPnjecture, but there is so much evidence in support of it
variables are specified by the group structure. from various fields of physics that it is almost a theorem:
It has been demonstrated that dynamical symmetries dbtrongly correlated motion implies a symmetry of the dy-
the type described in Ref. 1 are realized to remarkably higlhnamics described by a Lie algebra in the second-quantized
accuracy in the spectrum and the wavefunctions of largeeperators implementing that motion.
scale numerical calculations using the Projected Shell (1) Identify, within a suitable “valence space,” degrees
model? Since this model is known to give extremely good of freedom that one believes are physically relevant for the
agreement with a broad range of experimental ¢s¢@, e.9., problem at hand, guided by phenomenology, theory, and
Ref. 3, this provides rather conclusive proof that these dy-general principles. In the present case, that reduces to defin-
namical symmetries are strongly realized in the low-lyinging a minimal set of operators that might be important to
states of complex nuclei. This raises the issue of whethegescribe superconductivity and antiferromagnetism on a spin
similar symmetries might be found in other complex many-|astice.
body fermion systems such as those important in condensed (2) Try to close a commutation algebfaf manageable
matter. We may expect that the nuclear and condensedsimension with the second-quantized operators creating and
matter systems r_]ave many similarities that c_ould m_ake th'%nnihilating the modes chosen in stép If necessary, ap-
consideration fruitful: both are composed of interacting fer-,roximate these operators, or add additional ones to the set if
mions and both are ultimately many-body systems that argye aigebra does not close naturally. In the present context,
only approximately describable by mean-field ideas. the simpleg(k) form factor introduced below is an example
of simplifying things to close the algebra.
B. The Zhang SQ5) model (3) Use standard Lie algebra theory to identify relevant
S. C. Zhang and collaborators have introduced ideas beasubalgebra chains that end in algebras for conservation
ing many similarities to these into the high-temperature sulaws that one expects to be obeyed for the problem at hand.
perconductor discussidhMotivated by a desire to unify AF In the present example, we require all group chains to end in
and SC order parameters, Zhasigal. have assembled these U(1)XSU(2), corresponding to an algebra implementing
into a five-dimensional vector order parameter, and haveonservation of charge and spin.
then constructed an $8) group that rotates the AF order  (4) Construct dynamical symmetry Hamiltoniatidamil-
parameters into the SC ones. This construction is based ejenian that are polynomials in the Casimir invariants of a
plicitly on the assumption ofi-wave pairing in the SC state. group chain for each chain. Each such group chain thus
In this paper we proceed differently. We start, not fromdefines a wave-function basis labeled by the eigenvalues of
the desire to unify two particular phases, but from identifi-chain invariantgthe Casimirs and the elements of the Cartan
cation of a closed algebra associated with a general set slubalgebrasand a Hamiltonian that is diagonal in that basis
fermion pairing and particle-hole operators defined on a petsince it is constructed explicitly from invariantsThus, the
riodic lattice. Nevertheless, we shall find that we recoverSchoedinger equation is solved analytically for each chain,
Zhang's S@5) symmetry as a subgroup of a more generalby construction.
U(4) symmetry if certain commutators of the full $4) al- (5) Calculate the physical implications of each of these
gebra are set to zero. Thus, much of the extensive recedynamical symmetries by considering the wave functions,
discussion of the Zhang 8 symmetry applies directly to spectra, and transitional matrix elements of physical rel-
the results of this paper. evance. This is tractable, because the eigenvalues and eigen-
However, the present paper extends this discussion sulvectors were obtained in steég). Consistency of the sym-
stantially: (1) The S@5) subgroup is embedded in a larger metry requires that transition operators be related to group
algebra defined microscopically in the fermion degrees ofyenerators; otherwise, transitions would mix irreducible mul-
freedom, which implies constraints on the §Dsubgroup; tiplets and break the symmetry.
(2) The SU4) highest symmetry has subgroups in additionto  (6) If step (5) suggests that one is on the right track
SQ(5) that may be relevant to the condensed-matter problerfmeaning that a wise choice was made in gtB, one can
in general and the cuprate superconductors in partic(8ar; write the most general Hamiltonian for the system in the
we frame the discussion, not in terms of an approximatenodel space, which is just a linear combination of all the
symmetry of a Hubbard dr—J Hamiltonian, but in terms of Hamiltonians for the symmetry group chains. Since the Ca-
an exactdynamical symmetrgonstructed using the Casimir simir operators of different group chains do not generally
invariants of group chains. We shall present a more detailedommute with each other, a Casimir invariant for one group
discussion of the relationship between the present model anghain may be a symmetry-breaking term for another group
the Zhang S(b) model. chain. Thus the competition between different dynamical

The dynamical symmetry method applied here corre-
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symmetries and the corresponding phase transitions can be
studied. pl=2 g(kickcly pr= 2 g* (ke G,
(7) The symmetry-limit solutions may be used as a start-
ing point for more ambitious calculations that incorporate
symmetry breal_<in_g. AIthou_gh no longer generally analytical, + 2 + + ot
such more realistic approximations may be solved by pertur- 9= < 9(K)CrqiCokj  Gij=(ai)’, @
bation theory around the symmetry solutidagich are gen-
erally nonperturbative, so this is perturbation theory around a
nonperturbative minimui by numerical diagonalization of _ + B + 1
symmetry breaking terms, or by coherent state or other Q”_Ek: CrrQiiChijs Si_Ek: CiCkj~ 22,
mean-field approximations.
Representative application of these ideas for both fermio

and boson systems may be found in nuclaparticle® 'i}vherecfii creates a fermion of momentuknand spin pro-

7 ; jectioni,j=1 or 2=1 or |, Q=(mr,, ) is an AF ordering
mo‘ggular,fand polytrneLphysmEWe a.lsolr?otel_tha}: the Ig_]en— tvector,Q is the lattice degeneracy, and we approximate a
eral idea of symmetry having dynamical implications lies aty oo ¢ e o by

the heart of local gauge-field theories in particle physics,
though the details and methodologies in that case differ from
the ones used here. g(k) = sign(cosk,—cosky)=*1,

The only approximation in the dynamical symmetry ap-
proach outlined above is the space truncation. If all degreewith g(k+ Q)= —g(k) and|g(k)|=1 (see Refs. 10,)1Us-
of freedom are incorporated, this defines an exact microing the usual fermion anticommutators, we deduce the fol-
scopic theory. Of course, in practical calculations only a feWowing commutation relations among the operators of Eq.
carefully selected degrees of freedom can be included and):
the effect of the excluded space must be incorporated by

renormalized interactions in the truncated space. It follows [ P12,P1]=—S11— S,

that the validity of such an approach hinges on a wise choice

of the collective degrees of freedom and sufficient phenom- [ qh]= = 84S — 81 S~ 84S — 8 Sui
ij Mkl ik-j i j Il j i

enological or theoretical information to specify the corre-

sponding effective interactions of the truncated space. .
[ Pij »dki]= i Qi + i1 Qi — 6kjQii — 6;1 Qui s

V. THE SU (4) MODEL [ SijSal= kS — 01 S »
Let us now introduce a mathematical formalism that pro-
vides a systematic implementation of the dynamical symme- [ Qij . Qu 1= 6ikSi— &S 2
try procedure for a particular physically motivated choice of

operators. [ Sij .Pi]= SuPki— 8iPik»

A. Choice of operators [S; 1= duah + 5jlqiTkv

The success of the dynamical symmetry method depends
on a wise selection of the operators that describe the low- [ Qjj E 5ijiT|_5jIQiTkr
energy degrees of freedom for the system. In the case of
cuprate superconductors, we know tliahlike for normal + T +
superconductojsantiferromagnetism and superconductivity [ Qij il = GjcPii + 1 Pikc-
lie very near each other in the phase diagram. Further, da

suggest that the SC phases are associated with Cooper p;ﬁgus, this set of 16 operators is closed under commutation

of spin-singlet electron holes havirdgwave geometry. Fi- and generates a Lie algebra. Detailed examination indicates

nally, we expect that the physical system must conserve botﬁat the algebra is associated with the grauf#) and has

charge and spin. These observations suggest that at a mi e subgroup chains
mum we needd-wave singlet pairs and operators associated

with antiferromagnetism, spin operators, and charge opera- DSQA(4) X U(1)DSU(2)sxU(1)
tors entering the theory on an equivalent footing. Let us now
construct a minimal closed algebra that incorporates theseJ(4) D SU(4)DSQ(5)DSU(2)x U(1) ()]

degrees of freedorh.
DSU(2),% SU(2)DSU(2)ex U(1)

B. The algebra that end in the subgroup SU()U(1) representing spin

We begin by defining the following lattice fermion opera- and charge conservation. The physical interpretation is aided
tors: by rewriting the generators of the U(4) algebra as
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TABLE |. Properties of SW) and its subgroupévalid for representations with no broken pairs

Group Generators Quantum numbers Casimir operator Casimir eigenvalue
& A ot "t - ptp L&, & QQ
SU(4) Q+1 S) Qr ™ 0'125 (0'2:0'3:0) m'-m+D'D+S-S E §+4
7, D', D, M +90-0+M(M—4)

SO4) 9,3 w (F=G=w/2) 9.90+S.S w(w+2)

SQG) S, @', 7, M 7 (0=0) . 7+S. S+ M(M—3) m(7+3)

SU(2), D', D, M v D'D+M(M—1) La-0)@-v+2)

4
SU(2)s 3 S 3.3 S(S+1)

a later section we shall introduce usefpproximate solu-
tions through coherent state methods that lead to spontane-

Q+=0Q111+ Q2= Ek (Ci+01Cki +Civ0,Cky)s
ous symmetry breaking and to intrinsic states violating par-

B B ticle number, but our dynamical symmetry solutions
S_ Szt So1 . S12~ Sz S~ Sz conserve charge and spin exactly.
2 ' 2 T2 '
Qu+Q Q Q. O Q C. The collective subspace
D= 122 2 i 122 =3 112 22), 4 The group SW4) has a quadratic Casimir operator

Coyay=7" - 7+D'D+S.S+0- O+ M(M—4). (5

The group is rank-3 and the irreducible representatigms
rep9 may be labeled by three weight-space quantum num-
bers, (1,05,03). We assume for the simplest implementa-
tion of the model a collective-wave pair subspace spanned
by the following vectors:

N i i
w'= (5(%1‘ 20,3 (a1;+ a3y, — E(QIz*‘ QZ1))1

m=(x")" D'=pl, D=p;, M=%(n-Q),

whereQ . generates charge density wavsss the spin op-

erator, O is the staggered magnetization, and, 7 create
and annihilate triplet-wave pairgsee Ref. 4 the operators
D' and D are associated with singletwave pairsn is the
electron number operator, and is the charge operator.
Properties of this group structure are summarized in Tables |
and Il, and Fig. 1.

Notice in this context that we require exact conservation
of charge and spin for our dynamical symmetry solutionswhere(} is the number of lattice sites. The corresponding
because we have not introduced approximations that violatexpectation value of the §4) Casimir evaluated in these
these symmetries. Although it is common to refer to superiTeps Is a constant:
conductivity as resulting from violation of particle number,
this is a statement about an approximate solution. In the ex-
act solution and in nature, particle number is consefvéd.

|S)=Inynynng) = (mH)™(m})™(7})"(DT)™[0).  (6)

This collective subspace is associated with irreps of the form

Q
(01102103):(51010)1 (7)

Q
—+4

5 . (8

Q
<Csu(4)> = 2

TABLE Il. The Hamiltonian, eigenstates, and spectra in three dynamical symmetry limits of {d¢ 18bdel(assumeN is even and 12
is negligible. E4 s is the ground-state energhE the excitation energy, Dim the dimension of each representation for a diyéh
=n/2 the pair numbenx=1—n/Q, and kg1 = Kef+ Xef -

SUQ) limit: |y(SU2)=|N,v,S,ms)
(Csup),) =1 (2—0v)(Q-v+2)
Dim(v,N) = (v+1) (v +2)/2
H=H,—GYDD+ ke S-S
<DTD>:<CSU(2)p_M(M_1)>
Eg.s.:H(,)_ %G(e?f)ﬂz(l_xz)
AE=vGQ O+ ke S(S+1), v=0/2
v=0,1,2... N; S=v,vr—2,...0

SO(4) limit: |#(SO4)=|N,w,S,mg)
(Csoay) =w(w+2), w=N—pu
Dim(w,N) = (w+1)?
H:Hé_XeﬂQ‘ O+ ket S-S
(Q-0)=(Csqy—S'S)

Eg.s.:H(l)_ %Xeﬁﬂz(l_x)z
AE=px_ (1= X) Q-+ keos S(S+1)
n=02,...N; S=w,w—-1,...0

SO(5) limit: [#(SO5)=|7,N,S,mg)
(Csoy=7(7+3), 7=Q/2—N+\
Dim(7,N)= (A +1)(\ +2)/2
H=H{- GO -0+D'D+ ke S-S
(Q-0+D'D)=(Csyay+M—Csq(s))
Egs=Ho— ixen*(1—x)?
AE=AG) xQ+ ke S(S+1)
A=0,12...N; S=AN-2,...0
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SO(4) SO(5) SU(Q)p wheree and v are the effective single-electron energy and
(A doorway between AF & SC) the average two-body interaction in zero-order approxima-
AF o d e SC tion, respectively. Thus the Hamiltonian can be written as
.5 773 Dt D, M
Q5 (%, %, 5. M) ( ) H=Ho+V=en—3vn(n—1)+V, (12)
FIG. 1. Dynamical symmetries associated with th@)lbymme- oL o Lo
try. The generators are listed for each subgroup. V=-G,D'D-G,;n"- 7—xQ- Q+«S-S, (13

where Gy, G, x, and « are the interaction strengths of

U(1) factor in U(4)DU(1)x SU(4). Physically, it is associ- 0VaVe singlet pairing,d-wave triplet pairing, staggered
magnetization, and spin-spin interactions, respectively. Since

ated with charge-density wave excitations in the system. W Cyua) iS @ constant, by using E5) we can eliminate the

note thatQ, commutes with all generators so it annihilates \. - ) )
the statdS): 7' - term and after renormalizing the interaction strengths

the SU4) Hamiltonian can be expressed as

The operatoQ , defined in Eq(4) is the generator of the

Q:9=0. (SIQ.I9)=0. © H=H,—G[(1-p)D'D+pd- O]+ kxS S, (14
Thus, the collective subspace considered in isolation is asso-
ciated with an eigenvalu®,=0. Physically, this corre- Ho=¢&e N+ 3Ver N(N—1), (15)
sponds to exclusion of charge-density wave excitations in the 0 o
low-lying collective subspace of the effective thedty. with (1—p)G=Ges, PG= xerr, andxer as the effective in-

The dimensionality of the full space i€2. The dimen- teraction strengths, and wheresp<1 for the parametep.
sionality of the collective subspace is much smaller, scalingdince in this paper we primarily address the ground-state
approximately a€)*: properties wher&=0, the last term in Eq(14) will gener-

ally not enter into the later discussion.

o 1 2
"2 2T
Thus for small lattices it is possible to enumerate all states of S We have already noted, there are three subgroup chains

the collective subspace in a simple model where observablé¥ the SU4) symmetry that conserve spin and charge. These
can be calculated analytically. define three dynamical symmetries with clear physical mean-

ings. The three dynamical symmetry limits @J SQ4),
D. SU(4) model Hamiltonian and S@5), correspond to the choicgs=0, 1, and 1/2, re-
: spectively, in Eq(14). The Hamiltonian, eigenfunctions, en-
The most general two-body Hamiltonian within the ergy spectrum, and the corresponding quantum numbers of
d-wave pair space consists of a linear combinatiorioqpfa-  these symmetry limits are listed in Tables | and Il, where we

) Q
Dim

QOO 1
?71

ZQ 3
54—

- (10 V. THE DYNAMICAL SYMMETRY LIMITS

dratic Casimir operator€, for all subgroupgy:'* introduce a doping parameter that is related to particle
number and lattice degeneracy through
H=Ho+ > HyCq, n
] x=1-— a (16)

whereH, andH, are parameters and the Casimir operator

C, are(see Table)l S‘I’he pairing gapAd (measure of pairing ordeand the stag-
9

gered magnetizatiotmeasure of AF orderQ,

Csos)=7" 7+S-S+M(M—3),

A=G(D'D)2 Q=(3-9)*? (17)
qu4)=Q‘ 0+S.5, may be used to characterize the states in these symmetry
limits. As we shall now see, each limit represents a different
CSU(Z)p: D'D+M(M—1), (11) possible low-energy phase of the @Wsystem.
Lo A. The SO(4) limit
Csua), =SS The dynamical symmetry chain
Cyw=M and M?. SU(4)DSO4) X U(1)DSU(2) X U(1),

For fixed electron number the termshhandM? in Eq. (11) which we shall term the S@) limit, corresponds to long-
are constant. The terid is a quadratic function of particle range AF order. This is the symmetry limit of Ed.4) when

number and may be parametrized as p=1. The S@4) subgroup is locally isomorphic to SU(R)
X SU(2)s, where the product group is generated by the lin-
Ho=en+3vn(n—1), ear combinations
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F=1(0+9), G=%13-9), (18) d pairs(see Table ). The ground state has=0, implying

that all electrons are singlet paired. In addition, there exists a
of the original S®4) generator®) andS. We may interpret large pairing gap
the new generator’§ andG physically by noting that if we
transformQ;; and§;; defined in Eq.(1) to the physical co-
ordinate lattice, (see Table I\, the pairing correlation is the largest among the
three symmetry limits, and the staggered magnetization van-
ishes in the ground state:

AE=GH0 (24)

_ T — ) T
Q=2 (-)clhcy= 2 clicy— 2 clicy,
r r=even r=odd

(19 A=31G0\V1-x?, Q=0. (25)
_ .o t t Thus we propose that this state is a pair condensate associ-
= Ci = C,i + Cyi
S Er: Criri r=§/en Cri r=20dd CriCri ated with ad-wave SC phase of the cuprates.

implying thatF is the generator of total spin on even sites C. The SQ(5) Limit

andG is the generator of total spin on odd sites. Thus, we
may interpret the S@) group as being generated by two
independent spin operators: one that is the total spin on all SU(4)DSO(5)DSU(2)x U(1),

sites and one that is the difference in spins on even and odd

sites of the spatial lattice. This clearly is an algebraic versiovhich we shall term the S@) limit, corresponds to a phase
of the physical picture associated with AF long-range orderWith the nature of a transitional aritical dynamical sym-

The dynamical symmetry chain

The S@4) Casimir operator may be expressed as metry. This symmetry limit appears when=1/2 in Eq.(14).
The S@5) irreps are labeled by a quantum numbeand the
Cso(4):2(|f 21G?, (20) eigenstates may be labeled byand the spinS (SO5)

=|N,7,S,ms) with N=Q/2— 7+X\, where\ is the number

The SQ4) representations can be labeled by the spinlikeof 7 pairs. The irreducible representation dimensionality for
quantum numbersH=w/2,G=w/2), wherew=N—pu with  given N is (A +1)(\+2)/2 and the ground state has=0
©=0,2,...N. The eigenstates are labeledwynd the spin gnds=0.
S ¢(SO4)=|N,w,S,m,), and are of dimensiom(+ 1)>. The S@5) dynamical symmetry has very unusual behav-

The ground state correspondsde=N andS=0, and has jor. Although the expectation values af andQ for ground
n/2 spinup electrons on the even sitds(N/2) andn/2  state in this symmetry limit are the same as that of @§)
spin-down electrons on odd site& € N/2), or vice versa. for the SU2) case, there exist a huge number of states with

Thus it has maximal staggered magnetization different values of\ (the number ofr pairg that can mix
. L easily with the ground state whenis small because the
Q=20(1-x)=3n (2)  excitation energy in this symmetry limit is
an@t;l a large energy gafassociated with the correlatio@ AszGg?f)Qx (26)

(see Table . In particular, at half filling k=0) the ground
AE=2xer(1—X), (22)  state is highly degenerate with respecivt@nd mixing dif-
o ) o . ferent numbers ofr pairs in the ground state costs no en-
that inhibits electronic excitation and favors magnetic INSU-grgy. Ther pairs must be responsible for the antiferromag-
lator properties at half filling. In addition, the pairing gap  petism in this phase, since within the model space anly
pairs carry spin. Thus the ground state in this symmetry limit
A=3Gg2VX(1-X) (23 has large-amplitude fluctuation in the AF ordand SC or-
den. This indicates that the S6) symmetry limit is associ-
ated with phases in which the system is extremely suscep-
tible to fluctuations between AF and SC order.

is small near half filing x=0). We conclude that these
SQ(4) states are identified naturally with an AF insulating
phase of the system.

B. The SU?2) limit D. Energy Surfaces

The soft nature of the SG) phase is seen most clearly if
we introduce approximate solutions in terms of(8).toher-
SU4)DSU(2), X SU(2).0SU2) X U(1), ent states® We shall discuss the interpretation of GDus-

P s s ing coherent states in a separate papdmt we quote one
which we shall term the S@) limit, corresponds to SC order result of that study here. In Fig. 2, ground-state energy sur-
and is thep=0 symmetry limit of Eq.(14). The eigenstates faces for various particle numbar(or dopingx) are plotted
are labeled by and spinS, #(SU2)=|N,v,S,m,), and are  as a function of a quantitg, which is related directly to the
of dimension ¢+1)(v+2)/2. The senioritylike quantum AF order parametefsee figure caption Three plots are as-
numberv is the number of particles that do not form singlet sociated with the symmetry limits discussed above (

The dynamical symmetry chain

134516-6



SU(4) MODEL OF HIGH-TEMPERATURE . . . PHYSICAL REVIEW B 63 134516

T T T T T T T T T T T T T T T T T T
0.0
0.2
0.4
e
-0.6 2
. g
-0.8 £
()
'_
& 1.0
2
w 0.0
0.1 |
Half .
-0.2 Filling Hole Doping X —>»
0.3 FIG. 3. Schematic phase diagram for @Jsymmetry based on
04 Fig. 1(d). TheH in Eq. (14) is expressed in terms of hole doping
e X With x=1—n/Q; &.4= e /2, and \Vig=Ver%/2.
-0.5 |
L . order but with large fluctuations in bgtht could also lead

00 02 04 06 08 00 02 04 06 08 10 to inhomogenous structurelike stripes if there is a periodic

AF Order (B) spatial modulation of the system, since the soft nature of the
energy surface implies that relatively small perturbations can
shift an S@5) system between AF and SC behavior. As
noted in an earlier footnote, perturbations of the symmetry
by a charge-density wave could be one source of such a
spatial modulation.

FIG. 2. Coherent-state energy surfaces for @4). The energy
unit is GQ?/4 [see Eq.(14)]. The staggered magnetizatid® is
related toB by (Q)=2Q B,(n/2Q — B3)Y?, where B, is the value
of B at the stable point, s@ measures the AF order. Numbers on
curves are the lattice occupation fractions, with()=1 corre-
sponding to half filling and &n/Q <1 to finite hole doping.

. ) . ) VI. PHASES AND PHASE TRANSITIONS
=0,1,1/2), and one corresponds to a situation with a slight

SQ(5) symmetry breakingf=0.52). For all doping values In quantitative tests of the S¥) model with parameters
the energy minimum lies g8=0 (implying thatQ=0) in determined by fitting to pairing gap and pseudogap data, a
the SU2) limit [Fig. 2(@)], while it lies at cuprate phase diagram has been predicted. It is found that for
the symmetry-mixing parametgprclose to but larger than 0.5
B= /4;(1_)() [antiferromagnetically perturbed $8 symmetry the ex-

perimental data are described quite well. The results of this
(implying that Q=n/2) for the S@4) limit [Fig. 2b)]. In study will be published separatel§°In this paper, we con-
Fig. 2(c), there is a broad range of doping in which the(S0 centrate on general fgatpres and use the pr_ecedlng d|§cu53|on
energy surface is almost flat in the paramegerimplying to Cor_15tr_uct the qua_htatlve phase d|agr§1m illustrated in Fig.
large excursions in the AfFand SG order: one can fluctuate 3._T_h|s dlagram, Whlch_ contains essential features of the re-
into the other at negligible energy cost. Notice in Fi¢d)2 alistic phase diagram, is constructed based on the following
that as doping varies the $8 Hamiltonian with slight sym- ~ arguments.
metry breaking interpolates smoothly between AF order at
half filling and SC order at smaller filling. Thus $&) acts A. Phase diagram
as a kind of doorway between SU(2gnd S@4) symmetries
and this gives a pr)écise meaniné&?o theQa;sghtbat the Consider the Hamiltoniai(14) and,etoﬁsimplify this dis-
SO(5) symmetry rotates between AF and SC order. cussion, let us assume the spin tekgrS- S to be neglected.
However, the present discussion shows that the relatiol that case, there are two fundamental energy scales in the
between the AF and SC phases is more complex than Hamiltonian(14): Hy andH —Hgy~GQ?. The termH | origi-
simple S@5) rotation because of the non-Abelian nature ofnates in the single-particle energiegmn and the S#) in-
the SU4) parent group of SG). Such dynamical symme- variantCgy. This term depends only on particle number and
tries that define a phase of the theory but that also interpolatie isotropic: it has the same expectation value for any state in
between two other dynamical symmetries are known irthe SU4) representation space. In contrast, the other terms
nuclear structure physics where they have been tegrigd ~ H—H/ (with characteristic energy scal@?) are aniso-
cal dynamical symmetrig$ tropic in the SUW4) space: states associated with different
The soft S@5) energy surface could lead to “spin-glass- dynamical symmetries may have quite different expectation
like” phases(by which we mean phases with local AF or SC values.(Thus, if we make a mean-field approximation to the
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present many-body theory—like the method of coherenSC order and having the character of a “spin glass” or per-
states—these anisotropic terms will lead to spontaneousligaps leading to stripe phases for a large range of intermediate
broken symmetries. doping parameter. In this section we address further the
The termH, in the Hamiltonian(14) may be regarded as relationship between the other two phases of the theory. We
the energy scale for the U(®)U(1)xSU(4) symmetry, show that the microscopic symmetry incorporates a differing
which describes a fermion system in which electrons are allependence on doping for SC and AF order. This implies
paired but with no distinction among tligpairs andr pairs.  that the group structure itself controls the transition between
We may expect this symmetry to hold while the thermalthe superconducting SB) symmetry and the antiferromag-
energy is less thaH . When the system is cooled, the ther- netically ordered S@) symmetry. Thus, we conclude that
mal energy eventually drops below the anisotropic scaldhe SU4) symmetry leads naturally to AF order at half-
GQ?, the anisotropic pairing and antiferromagnetic correla-illing and tod-wave superconductivity as the system is hole-
tionsH—H}{, become important, and $4) breaks to its sub- doped away from half filling for a broad range of Hamil-
groups. Then different low-temperature phases appear, witfPhian parameters.
the favored phases depending on the competition between

D'D and O- O interactions as a function of doping concen-

trations. To simplify the discussion, we drop the common depen-
From the preceding discussion, at zero temperature weence of both phases on the spin and charge generators and

expect the S@) AF phase to dominate at half filling i consider the competition between the (80stabilization en-

>0.5, because the energy surface is minimizegaf (1 ergy coming from a termQ- O and the SWP) stabilization
—x)]¥2, implying that the staggered magnetization is large:energy coming from a ter® D in the Hamiltonian. These
Q=n/2. On the other hand, at larger doping the(3\pair-  clearly have fundamentally different behaviors with chang-
ing phase is favore(the pairing energy is optimized and the ing particle number. From Table Il and E(L6), we may
staggered magnetization minimizggee Fig. 2d)]. Finally, ~ conclude that, in the respective ground states,

the intermediate doping region is described naturally by the ..

SQ(5) critical dynamical symmetry that interpolates between (xQ-Q)=xN(N+2),

SC and AF behavior with doping. Thus, 8 symmetry (27
implies the schematic phase diagram of Fig. 3, independent (GoD'D)=GoN(Q~N+1),

of detailed calculations. where the pair number N =2%n. At half filling (N=Q/2), if
x/Go>1, the Hamiltonian exhibits an effective $) sym-
B. Phase transitions and symmetry breaking metry because the $@ correlation energyyQ- O domi-

In the Hamiltonian(14), the parametep takes on the Naes. As the particle number decreagiesie dopingx in-
values 0, 1, and 1/2 in the three symmetry limits of theC®@Ses the SQ@4)  correlation Tenergy decreases
theory. For any other allowed value pfthe system exhibits duadratically but thed-wave pairingD'D decreases much
SU(4) symmetry but there is no dynamical symmetiiyp ~ MOre slov¥ly(es_sent|ally linearly. 'I_'herefore, the pairing cor-
#0,1,1/2, the eigenstates of the system are linear superpodglationD D will eventually dominate and the Hamiltonian
tions of eigenstates from the three dynamical symmetngXhibits effective SI2) symmetry. _ _
chaing. In this case, phase transitions are driven by micro- 1hese features imply immediately thatifGo>1, anti-
scopically determined control parameters that change the ef€romagnetism will tend to dominate at half filling but, as

pectation value of the terms of the Hamiltonian such thath€ System is doped away from half filling with holes, even-
tually pairing will dominate and the system will become su-

— — . . . . T
Ej%m%atisdion m(;?r?enrts_'nT‘:’“osmge%ig%ﬂ:gecetsr’a\;‘v;{:gnSngonf%erconducting. The transition E)oirjt will depend on the_ rela-
the AF[SO(4) limifl, SO5), and SC phasdsSU(2)] to be Ve strengths of thé'D and Q-Q terms in the effective
studied using a fixed Hamiltonian. In cuprates, the holeH1@miltonian, but the AF ground state at half-filling and the
dopingx is an example of such a microscopically determinedt®ndency to superconductivity as the system is doped away
control parameter. Thus, a Hamiltonian that possesses an afye™m half filling is a direct consequence of the group struc-
proximate S@6) symmetry [antiferromagnetic perturbed ture, independent of detailed parameter choices.

SO(5)] can have AF solutions at small hole doping and SC

A. A simplified picture

solutions at large hole doping. We shall give an explicit ex- B. Analogies in nuclear structure
ample of a phase transition driven microscopically by chang-  This competition between antiferromagnetism and super-
ing hole doping in the next section. conductivity bears many strong resemblances to the compe-
tition in nuclear physics between spherical and deformed
VII. THE TRANSITION BETWEEN structure for nucl_ei. There,_ it ha_;ls been_shown that t_he tran-
ANTIEERROMAGNETISM AND SUPERCONDUCTIVITY sition from spherical nuclei, which dominate the beginnings

and endings of shells, to deformed nuclei, which often domi-

Above, we have used the method of generalized coheremiate the middle of shells, is controlled by the microscopic
states to give an interpretation of the GDsubgroup as a competition between long-range quadrupole-quadrupole in-
critical dynamical symmetry interpolating between AF andteractions favoring deformation and short-range monopole
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pairing interactions favoring spherical vibrational structure.magnetism to superconductivity at zero temperature that is
This competition in nuclear structure may be expressed algezontrolled by the doping emerges naturally and microscopi-
braically as a competition between a dynamical symmetncally, whereas in the SG6) model a symmetry-breaking term
that favors pairing and a dynamical symmetry that favorsproportional to a chemical potential has to be introduced by
multipole (particle-hole interactions: hand. This occurs because our(S0s embedded in a larger
The essential physics of the spherical-deformed transitiogroup that contains generators breaking ®®ut preserving
in nuclear structure physics has been shown to be determinesl(4).
by the differing particle number dependence of the dynami- (2) The present results suggest that the®™Gubgroup is
cal symmetries: nuclear pairing energy increases linearlpnly one of the symmetries relevant to the cuprate problem.
with particle number but the quadrupole deformation energyt is a transitional symmetry that links AF to SC behavior,
is quadratic in particle numbéthat is, essentially the same suggesting that it is most useful for the underdoped region.
relationship as for Eq(27)]. Thus, the group structure dic- But the AF phases at half filling and the optimally doped
tates that spherical vibrational nuclévored by pairing en- superconductors are more economically described by our
ergy) dominate the ends of shells and deformed nudei  SO(4) and SU(2), symmetries, respectively. All are unified
vored by the deformation energglominate the middle of in the SU4) highest symmetry.
shells® This behavior is a close analog of the competition (3) As we discuss in a separate publicatiBrthe present
between antiferromagnetism dominating the half-filled latticeSU(4) theory leads naturally to the appearance of pseudogap
and superconductivity dominating the hole-doped lattice thabehavior?® which occurs above the SC transition tempera-
we have discussed in this paper. ture T,. The embedding of SG) in SU(4) is central to this
This analogy between condensed-matter and nucledsehavior.
physics might not be accidental. The structure of heavy nu- (4) The different methodology of the $4) dynamical
clei and of high-temperature superconductors both corresymmetry approach suggests a different physical interpreta-
spond to complex many-fermion problems in which strongtion of the S@5) subgroup symmetry. We suggest that it
particle—hole and pairing interactions involvidgpairs play  should be viewed as an effective symmetry that operates in a
pivotal roles. It has been demonstrated that dynamical synseverely truncated space. As we shall elaborate below, this
metries in the microscopic fermion degrees of freedom proimplies that its microscopic validity is a question of the
vide a simple but powerful unifying principle for the nuclear physical correctness of the matrix elements evaluated in that
structure problem.Recent results, such as those presentedruncated model space, not of whether a particular Hamil-
here and in Refs. 4 and 21, suggest that related symmetrigésnian with some relevance for the full spa¢t¢ubbard, for
may play a similar role for condensed matter and that thesexample possesses such a symmetry.
problems from rather different fields of physics may have a Thus, both the Zhang S6) theory and the present $4

common dynamical algebraic structure. theory imply the existence of an approximate(S5symme-
try in the Hamiltonian of high-temperature superconductors.
VIIl. SU (4) OR SO(5)? However, the S(#}) theory encompasses a broader range of

physics that may be relevant for cuprate superconductor.
Let us now discuss more precisely the relationship befurther, as we have argued, a unified quantum mechanical
tween our SW4) model and the Zhang's 6) model? Al-  treatment of the generators and order parameter vector of the
though the methodologies used to obtain the two models arehang S@5) implies that the full quantum mechanical sym-
rather different, the Zhang §8) group is a subgroup of our metry is SU4) and not S@6).
SU(4) group and both model Hamiltonians possess antiferro-

magnetic perturbed S6) symmetry, implying that the two

models are closely related to each other. Ouf4unodel IX. DISCUSSION

and Zhang's S®) model have the same bui]ding blod]tlae_ The U(4)DU(1)xXSU(4) symmetry represents a fully
operator. sef4), but see Ref. 2R The essentlgl difference is microscopic fermion system in which SC and AF modes
that we implement the full quantum dynami@mmutator  gnter on an equal footing. At this “unification” level, there

algebra of these operators exactly, while in Ref. 4, the dy-js iy 4 sense no distinction among these degrees of freedom,
namics is implemented in an approximate manner: a subSls; a5 in the Standard Electroweak Theory of elementary
of ten of the opergtors acts as a rotation on the remaining f'VSarticIe physics the electromagnetic and weak interactions
operators{D',D, O}, which are treated phenomenologically are unified above the intermediate vector boson mass scale.
as five independent components of an order-parameter vectgfe may expect this symmetry to hold while the temperature
(superspinn). Thus only 10 of the 15 generators of our of the system is sufficiently high that anisotropic quantum
SU(4) are treated fully dynamically in the Zhang &0 If  fluctuations in the directions associated with these collective
the full quantum dynamic&ull commutator algebraof the  degrees of freedom can be neglecfeetall that the SU)
15 operators is taken into account, the symmetry ig48U scale is set by, and the anisotropic scale 2], but not
not SA5). so high that thermal fluctuations destroy the integrity of the
The embedding of SG) in our larger algebra has various collective modes corresponding to the @Jsymmetry. This
physical consequences that do not appear if thé558ub-  SU(4) region then corresponds to the pseudogap redfme.
group is considered in isolation. We list four: Generalizing language already introduced by Zhaim,
(1) As we have seen, a phase transition from antiferrothis regime we may view the system as having condensed
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into SU4) pairs, which fixes the length of the state vectorstheory, such numerical calculations are much simpler than
[through the SI4) Casimir expectation valgyebut not their  those in, say, a Hubbard ©J model.
direction in the state-vector space. Physically, this means The primary limitation of the dynamical symmetry ap-
that the system is paired, with the pair structure exhibitingproach is that the interactions of the model space are neces-
SU(4) symmetry, but is neither SC nor AF because fluctua=sarily effective interactions that will generally be strongly
tions in those directions in the $4) space are small relative renormalized by the symmetry-constrained space truncation.
to the scale set by the temperature. Stated in another way, tfigus, their strengths must be supplied separately from the
SU(4) pairs are of collective strength, but are not condensedlynamical symmetry method itself, either phenomenologi-
into a state with long-range order. Stated in yet another waygally (by fitting model-space interaction strengths to datda
neither the AF nor SC order parameters have finite expectdyy a microscopic study of the relationship between the effec-
tion values in this regime, but a sum of their squd®  tive and full-space Hamiltonians.
SU(4) Casimir] does. This constraint implies an intimate  Finally, let us counter a possible philosophical criticism
connection between superconductivity and antiferromagef the approach taken here. Simple symmetries as a predictor
netism in the SW) model. They are, in a sense, different of dynamics has found powerful application in fields such as
projections of the same fundamental vector in an abstragtarticle physics or nuclear physics. However, there is a com-
algebraic space. mon point of view that the possible ground states in high-
Compared to the Hubbard &J models, the dynamical temperature superconductors are too complex to permit a
symmetry approach applied here is just a different way tasimple model like the current or{@hich operates in a dras-
simplify a strongly correlated electron system. In the Hub-tically truncated subspace having simple wave functions and
bard ort-J models, approximations are made to simplify the highly stylized operatoyso have any validity. Although one
Hamiltonian but no specific truncation is assumed for thecan make such an argument formally, this ignores the rather
configuration space, although in practical calculations a trunebvious point that nature has managed to construct a stable
cation is typically necessary. In contrast, we make no apground state having well-defined, collective properties that
proximation to the Hamiltonian. The only approximation is change systematically from compound to compound. Exten-
the (severg space truncation. The symmetry dictated Hamil-sive experience in many fields of physics suggests that this is
tonian includes all possible interactions in the truncatedhe signal that the phenomenon in question is described by a
space. In principle, if all the degrees of freedom of the syssmall effective subspace with renormalized interactighat
tem are included, this approach constitutes an exact micranay differ substantially in form and strength from those of
scopic theory. The validity of this approach depends entirelythe full spac¢ and governed by a symmetry structure of
on the validity of the choice of truncated space and its effecmanageable dimensionality. Thus, if an approach like the
tive interactions, which may be tested by comparison withone proposed here gives correct results for highly nontrivial
the data. phenomenology like the doping dependence of observable
Thus, we suggest that effective low-energy theories of thguantities, one must take seriously the possibility that the
type discussed here need not have much direct relation to thmrresponding small symmetry-dictated subspace may have
Hamiltonian or wave functions of the Hubbardtar models, relevance to the effective behavior of real physical systems,
because both the Hamiltonian and the wave functions in difno matter how complex they may appear to be superficially.
ferent model spaces could be very different. What is observ-
able quantum mechanically is the matrix elements, not op-
erators or wave functions separately. As the(glUheory X. SUMMARY AND CONCLUSIONS
makes clear, we may view these dynamical symmetries as ) _
operating in a severely truncated collective subspace in In summary, an SU) model of highT; superconductiv-
which the truncation has been implemented primarily byity has been proposed that contains three dynamical symme-
symmetry considerations and only secondarily by energy critfies: A SC phase identified with the SU(2dynamical sym-
teria. Thus, it is possible that the matrix elements of themetry, an AF phase identified with the 89 dynamical
SU(4) theory and a Hubbard drJ model calculation might Symmetry, and an SG) phase extremely soft against AF
be comparable, even if the Hamiltonians and wave function@nd SC fluctuations over a substantial doping fraction that
are separately quite different. serves as a critical dynamical symmetry interpolating be-
The advantage of the dynamical symmetry approach is itéveen the other two phases. Realistic systems may mix these
cleanness and simplicity. It is clean because dnéy ap- Subsymmetries while retaining an app_rommate(@Usym-
proximation is the selection of the truncated model spaceletry. Zero-temperature phase transitions are shown to be
Thus, a failure of the method is a strong signal that one hagdriven by tt‘e competition between tliewave pairing and
chosen a poor model space. It is simple because the methdlde AF Q- Q interactions, as controlled microscopically by
supplies analytical solutions for various dynamical symmetrythe hole-doping concentration. This model leads naturally to
limits as a starting point. These symmetry-limit solutionsthe appearance of pseudogaps in the underdoped regime be-
provide an immediate handle on the physics and permit anause it introduces multiple energy scales that permit pairs to
initial judgment of the model’'s validity without large-scale form before they condense into states with long-range order.
numerical calculations. Beyond the symmetry limits, numeri- Thus, we propose that highs behavior of the cuprates
cal calculations are necessary. However, because of the loresults from an SU) symmetry realized dynamically, and
dimensionality of the models spaces and the power of groupecause this symmetry is microscopic its physical interpreta-
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tion is accessible to calculation. This provides a solvable ACKNOWLEDGMENTS
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