PHYSICAL REVIEW B, VOLUME 63, 134515

Tunneling through an Anderson impurity between superconductors

Yshai Avishail* Anatoly Golub! and Andrei D. ZaikiR*
Department of Physics, Ben-Gurion University of the Negev, Beer-Sheva, Israel
2Forschungszentrum Karlsruhe, Instittir fidanotechnologie, D-76021 Karlsruhe, Germany
3L.E. Tamm Department of Theoretical Physics, P.N. Lebedev Physics Institute, 117924 Moscow, Russia
(Received 14 June 2000; revised manuscript received 25 August 2000; published 13 March 2001

We consider an Anderson impuritp) weakly connected to a superconducting electr@l®n one side and
a superconducting or a normal-metal electrébl¢é on the other side. A general path-integral formalism is
developed and the response ®AN and SASjunctions to a constant voltage bidsis elucidated, using a
combination of the Keldysh techniq® handle nonequilibrium effedteind a dynamical mean-field approxi-
mation (to handle repulsive Hubbard interactipnAn interesting physics is exposed at subgap voltagés (
<A for SANandeV<2A for SAS. For anSANjunction, Andreev reflection is strongly affected by Coulomb
interaction. For superconductors wiihwave symmetry the junction conductance exhibits a remarkable peak at
eV<A, while for superconductors witswave symmetric pair potential the peak is shifted towards the gap
edgeeV=A and strongly suppressed if the Hubbard repulsive interaction increases. Electron tranSgo# in
junctions is determined by an interplay between multiple Andreev refle@iérR) and Coulomb effects. For
s-wave superconductors the usual peaks in the conductance that originate from MAR are shifted by interaction
to larger values ofV. They are also suppressed as the Hubbard interaction strength growp-weore
superconductors the subgap current is much larger andl-theharacteristics reveal an interesting feature,
namely, a peak in the current resulting from a midgap bound state in the junction.
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I. INTRODUCTION channels. The Coulomb interaction was considered there to
be screened as in bulk metals. However, for quantum dots
The dynamical behavior of Josephson junction stronglyand break junctions the screening is virtually ineffective and
depends, among other factors, on its transparency. If the iran unscreened Hubbard-type repulsive interaction emerges.
sulating barrier is not too high then the concept of nonlineain this case the Kondo temperatufg becomes a relevant
tunneling becomes relevant. In this case the characteristisarameter, separating levels wifly >A (which are respon-
dynamical conductancel/dV at applied voltages/ less sible for high, nearly resonant conductanfrem levels with
than the superconducting gap shows a subgap structure. T <A, in which the conductance is strongly influenced by
An explanation of this behavior was given some time &§o, interaction.
based on the mechanisms of multiple Andreev reflections In recent experiments, a tunable Kondo effect in semicon-
(MAR). Recently, the subgap current was calculated for thejucting quantum dot devic®® was investigated. It was
case of electron tunneling through a junction with resonantlearly demonstrated there that tunneling through a single
impurity.2 Rapid progress in the technology of superconductievel (out of numerous levels formed by electron confine-
ing junctions makes it possible to fabricate junctions com-ment in the dottakes place. In such dots, the interaction of
posed of quantum dots weakly coupled to superconductinglectronsU strongly influences the bare orbital energy In
or normal electrodes. The basic physics of such a device cahe case of quantum dots with superconducting leads we then
be elucidated once it is modeled as an Anderson impuritexpect the superconducting gap at the leads and the connec-
center. In this case the Coulomb interaction is expected t@on of the dot to the leads to play an important role for both
strongly affect the tunneling current in general and the subSAS and SAN junctions. Depending on relative values of
gap current in particular. Since the subgap current is origitheses parameters different regimes for the tunneling current
nated from multiple Andreev reflections, its physics has aare possible. One is the Kondo regime considered in Refs.
close similarity to that of the Josephson current. In this con10-12.
text, it is establishetithat the tunneling through a quantum  In the present paper we study the other regime when the
dot is suppressed if the effective Kondo temperatlige  impurity is singly occupied, and develop a detailed theoreti-
= \/U_l"exp[—a-r|eo|/21“] is small as compared with the super- cal analysis of an interplay between the phenomena of MAR
conducting gapA (hereafter,U is the Hubbard repulsion and Coulomb interaction in quantum dots with superconduct-
strength e, is the orbital energy of the dot electron, aiids  ing leads. Both MAR and Coulomb effects have been inten-
the width of this energy stateStrong interaction-induced sively studied in the literature over the past decades; here we
suppression of the current through superconducting quantuelucidate an interplay between them. When combined to-
dots was also observed experimentally. gether in quantum dots, these two phenomena, lead to inter-
Quite recently detailed measurementsle¥ curves in  esting physical effects and — depending on parameters —
atomic-size metallic contacts were perforffefin explana- may dramatically influence the subgap conductance pattern
tion of the observed-V curves were givehin terms of the  of the system. Another important issue in the studySé{S
atomic valence orbitals which represent different conductinggndS ANjunctions is the parity of the order parameter of the

0163-1829/2001/633)/13451513)/$20.00 63 134515-1 ©2001 The American Physical Society



YSHAI AVISHAI, ANATOLY GOLUB, AND ANDREI D. ZAIKIN PHYSICAL REVIEW B 63134515

superconducting electrodes. For example, the order param-

eter of the recently discoverEdsuperconducting material Hj:j dr[ W] (NEV)W (1)

SKL,RuUQ, is believed to have a-wave symmetry? If a su-

perconductor of this type is properly oriented with respect to —)\\PJ-TT(r)\If}rL(r)\Ifjl(r)\If”(r)]. (2)

the tunneling direction the principal contribution to the Jo-

sephson current comes from a bound fdt&formed at the Here W[, (¥;,) are the electron creatio@nnihilatio) op-

contact point. This bound state arises since the pair potenti@rators,\ is the BCS coupling constang(V)=—V?2/2m

has an opposite sign for injected and reflected quasiparticles #, andj=L,R. Here and below we set the Planck’s con-

and is expected to play an important role in the formation ofstantz=1. Whenever appropriate, the spin, space, and time

subgap currents. dependence of all the field operators will not be explicitly
The rich physics oSASandSANjunctions subject to a displayed.

finite potential bias is exposed below. In particular, we cal- The quantum dot is treated as an Anderson impurity cen-

culate the tunneling current and the dynamical conductancter located ak=y=0. It is described by the Hamiltonian

for junctions consisting os- and p-wave superconductors.

The main steps required for treating the pertinent many-body

problem can be summarized as followig: Taking the Fermi

energy of the unbiased lead as an energy reference, the site

energy ey of the Anderson impurity is chosen such thgt whereCT, andC, are the electron operators in the dot. The

<0 while U+ €,>0. These inequalities assure that assumimpurity site energy, (counted from the Fermi energy) is

ing the quantum dot to be at most singly occupied should bessumed to be far below the Fermi levtdat is, e =0, ¢,

an excellent approximatiorfii) To handle the strong inter- <0. The presence of a strong Coulomb repulsibr — €,

action appearing in the Hubbard term, a mean-fieldbetween electrons in the same orbital guarantees that the dot

approximation®'? is adopted.(iii) The formalism should s at most singly occupied.

take into account the nonequilibrium nature of the physical Electron tunneling through the dot is accounted for by

system. For this purpose, the standard approach is to staiteans of the term

from the expression for the kernel of the evolution operator

or the generating functional, which is the analog of the par-

tition function in the equilibrium case, evaluated, however, H= > 7,2 ¥/, (0)C,+H.c, (4)

on a Keldysh contod? (see review article in Ref. 21At the I=LR o

end of this procedure one is able to calculate SRNAN-  \yhere7; r are the effective transfer amplitudes between the

dreev conductance analytically, and to get expressions fqgft (right) electrode and the dot.

the nonlinear response 8fASjunctions which are amenable |y what follows we will always assume that, if a bias

for numerical evaluation. _ voltageV is applied to the system from, say, right to left, the
The technical procedure by which we manage to advancgntire voltage drop occurs across the dot. Hence the quasi-
the calculations is detailed below in Sec. II, where we deriveyarticle distribution functions in the leads are the Fermi ones,

an effective action foSASand SANjunctions. In Sec. Il with the chemical potentials of the electrodes shifted with
we discuss the dynamical mean-field approximation adoptegbspect to each other BN.

in the present work in order to treat interaction effects. Con-
crete results pertaining to subgap currentSIASjunctions
and differential conductance BAN junctions are presented
and discussed in Sec. IV. The paper is then concluded and Complete information about the quantum dynamics of the
summarized in Sec. V. Some technical details of the calcusystem is contained within the evolution operator defined on
lation are given in the Appendix. the Keldysh contodf K (which consists of forward and
backward oriented time branche3he kerneld of this evo-
lution operator can be expressed in terms of a path integral,

Haor= 602 C(TTCUJF UC%FCTCICl , 3)

B. Evolution operator

Il. GENERAL ANALYSIS

A. Model J= f DY DYDCDC expliS), (5

Consider a system consisting of two superconducting

wide strips on the left X<0,—<y<) and on the right over the fermion fields corresponding to the operatrs

(x>0,—<y<=) weakly connected by a quantum doty, C' and C [here the field ¥ corresponds to

through whlch an electron tunr]ehn_g takes place. This sySteWIT!q}EL!\I’EI’\PEL) and similarly for other fields S

can be described by the Hamiltonian = [«Ldt is the action and. is the Lagrangian pertaining to
the Hamiltonian(1). The external fielde.g., electromag-

(1) netic fields can be treated as the source terms for the action,
though the fluctuating parts of these fields should be inte-
grated as well.

The Hamiltonians of the left and right superconducting elec- Usually it is convenient to perform an operator rotation

trodes have the standard BCS form, C—c and¥— ¢ in Keldysh space:

H:HL+ HR+ HdOI+ HI'
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EZEQ—1, C=QUZC; E: @Q—l’ = QUZ‘I’. (6) integral overA is then evaluated by means of the saddle-
point approximation. Quantitatively, it amounts to setting
Hereo, is one of the Pauli matrices, , oy, o, operatingin  A(r,t) equal to the equilibrium superconducting order pa-
the Keldysh space and rameter values\, g of the left and the right electrodes. If
needed, fluctuations of the order parameter figdth the
A 1 1 -1 amplitude and the phasean easily be included into our
Q= ﬁ 1 1 @) consideration along the same lines as it was done in Ref. 21.
o Disregarding such fluctuations here, we find
is the Keldysh matrix. The Grassman variabdes, , ¢ are
now defined solely on the forward time branch.
The transformation of the Green functions follows di-

rectly from Eq.(6). One starts from the 22 matrixG of the 1 ore we definer.. = (7,+i7,)/2. Here and below, 7, , 7,

Green functions defined in terms gf the initial electron OP-is the set of Pauli matrices operating in the Nambu sgtaze
erators. The elements of the mati are the Green func- the sake of clarity we chose a different notation from that

tions éij with i,j=+,— according to whether the time be- used for Pauli matrices operating in the Keldysh space
longs to the upper or the lower branch of the Keldysh

o .0
GLRO=I 2 ~mE(V)+ T A pt Al (13

contourK. Of these four Green functions only three are in- C. Effective action
dependent. U|lder the operator Arotatu()ﬁz the Green- Let us now proceed with the derivation of the effective
Keldysh matrixG is transformed a&=Q 'GQ, where action for our model. We first notice that thiefields depen-
‘R Ak dent partS, of the total action is quadratic in these fields.
& G" G ®) Hence the integrals ovey and ¢ in Eqg. (10) can be evalu-
0o GA ated exactly, resulting in an actid®,,[(c,c), formally de-
fined as
and
GR= — it —t ) (0P (1 1)+ g (0 ) (r, ), exmsen{?,cpzf DYDY exp(iSoly,y]). (14
Gr=i0(t" —tO)(p(r, )y (r' 1)+ ¢l (r 1) y(r 1)), Its physical content can be understood as follows: One can

say that electrons in the two superconducting bulks serve as
GR=—i(y(r,t)yyt(r' tH—y¢'r' t)Hy(r,t)), (9  an effective environment for the quantum dot. Integrating out
these electron variables in the spirit of the Feynman-Vernon
ffifluence functional approathone arrives at the “environ-
ment” contribution to the actio®,,,, expressed only in terms

of the Anderson impurity variables andc.
Due to the fact that coupling to the leads is concentrated
at one point X,y)=(0,0) we can integrate out the fields
_ _ _ inside the superconductotkereafter referred as bulk fie)lds
J= f DyDyDeDe expliSqort 1Sl #,41), (100 and obtain an effective action in terms of fermion operators

are respectively retarded, advanced and Keldysh Green fun
tions. Each of these matrices is in turrk2 matrix in the
Nambu space.

The path integral5) is now expressed in terms of the new
Grassman variables

U — 2
c+5(cc) , (11

with arguments solely on the surface. In order to achieve this
where central goal let us first note that translation invariance along
y permits the Fourier-transform in E¢L2) in this direction.
s, :f dt qii_;T The problem then reduces to a one-dimensional one with
o ot z fermion fields ¢ (x) where k is the momentum along.
Gaussian integration over the bulk fields can be done with
— N the help of the saddle-point method.
So= dt.;LR f.d“ﬂj(r*t)ej i(r,0) Let us consider, say, the left superconductor and omit the
= . subscriptj =L for the moment. The pertinent equation for
_ the optimal field reads
+ (T (0t) T,c(t)+c.c)|. (12

- G H (&) (=0, (15)
i =¢p+ : i -
Here we defined&= ¢,+ U/2. In order to obtain the expres where, — — (1/2m) (2219x) — . and s = u— K2/2m.

sion for the operatofi;j’1 we employ the standard Hubbard- ~ T .
Stratonovich transformation of the quartic term in E) Let us decomposehi(x) = () +#(0) in such a way

and introduce additional path integrals over the complex scalat on the surface one haﬁ(O)zo._ The bulk fieldyy(x)
lar order parameter field (r,t) defined on the Keldysh con- Satisfies the inhomogeneous equation

tour, see, e.g., Ref. 21. Here we are not interested in the — b

fluctuation effects for the order-parameter field, and the path G (&) (X)) = — 72 4(0). (16)
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In the right-hand side of this equation we employed the stan- _ TEA

dard quasiclassicalAndreey approximation which makes Senv=2i f dtJ dt’E c(t)(—g,_(t,t’)

use of the fact that the superconducting gap as well as other k Ux

typical energies of the problem are all much smaller than the TﬁA

Fermi energy. + U—gR(t,t’)) 7,c(t"). (23
X

In order to solve Eq(16) we find the Green function
Gi(x,t;x’,t") (which satisfies the same equation albeit with
a 6 function on the right-hand sidle@nd requireG to vanish
atx=0. The solution of Eq(16) is then exploited to express
4//E(x) in terms of the surface fieldg,(0). Combining the
result with Eq.(12) we arrive at the intermediate effective

action’S for a superconducting electrode which depends o
the ¢ fields at the surface,

Note that in deriving Eq(23) we made use of the normal-
ization conditio® g7 g=1.

Equation(23) is valid for an arbitrary pairing symmetry.
In the case of unconventional superconductors the Green

functions\eijR depend explicitly on the direction of the Fermi
rllelocity. For uniforms-wave superconductors such depen-
dence is absent and E3) can be simplified further. De-
fining the tunneling rates between the l&fight) supercon-

~S=if dtf dt,zk: %Ek(o,t){:](t,t’)rzz,//k(o,t’), (17) ductor and the dot as

T2
where v,= 2w, /m is the quasiparticle velocity in th& FL(R)=4E L(R), (24)
direction. For a uniform superconducting half spéuere the ko Ux

left one), the Green-Keldysh matrix

we obtain

A J A
g(t,t’)r;—i%a dx' Gu(x,t;x",t" ) |x=g (18 i o
L S | dt| QUCOII G (L) + et mct)

[which has the structuré8)] is expressed in terms of the (25
Eilenberger functiorfs as follows:
Concerning the definitior{24) some comment is in order.
. ) . ) de ., The focus of attention here is the case in which there is a
Q(Lt'):ew(t)lezf ge)e < )Zef"‘(t )72, (19)  single conducting channel in the dot. In this situation, the
transfer amplituded| r should effectively differ from zero
where only for |v,|~vE. One can easily generalize the acti@9)
to the situation with several or even many conducting chan-
) ] nels. In this case the summation over momentassentially
(exi0)7,+i|A|7y 20 equivalent to the summation over conducting moddmuld
(e+i0)2—|A[2 ' 20 be done in Eq(25) and some other dependence?(ff,R on
vy Should apply. For instance, for tunnel junctions in the
. NP many channel limit one can demonstrate that gv?. It
g (e)=[g"(e)—g”(e)]tank(€/2T). (21)  is also quite clear that the transfer amplitudgs; cannotbe
) ) considered as constants independent of the Fermi velocity
Here ¢(t) = @0+ 2€['V(t;)dt, is the time-dependent phase direction, as it is sometimes assumed in the literature. In that
of the superconducting order parameter &(t) is the elec-  case the sun24) would simply diverge at small, in a clear
tric potential of the superconducting electrode. contradiction with the fact that quasiparticles with— 0
An identical procedure applies for the right electrode.should not contribute to the current at all. This “paradox” is
Each superconducior is thBS described by a zero-dimensionglsglved in a trivial way: the amplitudeg r do depend on
action, respectively5, and Sz, coupled by an on-site hop- v, and, moreover, they should vanishigt—0. For further
ping term with the Anderson impurity. It is now possible to discussion of this point we refer the reader to Ref. 24.
integrate out these surface fields. The integral Combining Eqs(10) and(14) we arrive at the expression
for the kernel of the evolution operatdrsolely in terms of

the fieldsc andc:

g7A(e) =

J= f Dy(0)Dy(0)
Xexp[igL'RH f AT mr(O)rctcc]) (22 J= J DcDC eXPiSe),  Ser ©,C1= Suort Senv-  (26)

can easily be evaluated, so that the contribution of the supeHereSeﬁ[?,c] [defined by Eqs(11) and(25)] represents the
conductors to the total effective action of our model is mani-effective action for a quantum dot between two supercon-
fested inSg,,, defined as ductors.
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D. Transport current

PHYSICAL REVIEW B63 134515

This expression completes our task. We have demonstrated

In order to complete our general analysis let us expres@at in order to calculate the current through an interacting

the current through the dot in terms of the correlation fun

tion for the variables andc. This goal can be achieved by
various means. For instance, one can treat the supercondu

cguantum dot between two superconducting electrodes it is

sufficient to evaluate the correlat@mc) in the model defined
by the effective actiorSei= Syt Senv [Egs. (11) and (25)].

ing phase difference across the dot as a source field in tHgU" @pproach enables one to investigate both equilibrium
effective action and obtain the expression for the current jusg"d nonequilibrium electron transport in superconducting
by varying the corresponding generating functional with re-duantum dots. In the noninteracting lintit—0 the problem
spect to this phase difference. Another possible procedure [§duces to a Gaussian one. In this case it can easily be solved
to directly employ the general expression for the current if"d, @ we will demonstrate below, the well known results

terms of the Green-Keldysh functions of ofeg., the left
superconductor, with arguments at the impurity site:

— € d ~K Iagl e 2
I_mf y(ax_ax’)Tr[G (vax y vt)]x:x’a ( 7)

where the trace is taken in Nambu space.

As before, it is convenient to separate the computation in

describing normal and superconducting contacts without in-
teraction can be recovered in a straightforward manner. In
the interacting cast) #0 the solution of the problem natu-
rally involves certain approximations. One of them, the dy-
namical mean-field approximation, is described in the next
section.

[lI. MEAN-FIELD APPROXIMATION

terms of bulk and surface variables. After a simple algebra

we transform Eq(27) into the following result:

e ~ A
I=—ig ; v, 7119, G,—H.cllk, (28)

whereG,,= —i{4(0)#(0)) is the Green-Keldysh function

for the surfacey fields. Here and below the integration over
the internal time variables in the product of matrices is im-
plied and (--)|x means the Keldysh component of this

product.
Finally, let us express the functio®¢ in terms of the

In order to proceed further let us decouple the interacting
term in Eq. (11) by means of a Hubbard-Stratonovich
transformatiot®'® introducing additional scalar fields.. .
The kerneld now reads

— Jd -
J=J DCDCD’erD’yeX[{iS[’y]-FiJ dtz(ia—erz>c
(33

_ _ 2
S[y]:fdt(chrO'XC-l-CyC—U%r}’ - (34

correlator for the fieldsc and c. Consider the generating These equations are still exact. Now let us assume that the

functional for the surface fields

Z[ 9, ]=3 T m,c+ 1, T 7,C+ 7], (29)

where the path integral is defined in Eq(22). The func-
tional derivative of Eq(29) with respect to they fields just

yields the functionG:

Gy=i 22 | (30)
=l—,—,-0-
¥ 5757 n=7n=0
Evaluating the path integré29) and making use of Eq30)

we arrive at the following identity:

A 2. 4TE

X

(31

Combining Egs(28) and (31) with the conditiong?= 1

we observe that the contribution of the first term in the right-
hand side of Eq(31) to the current vanishes identically, and

only the second ternx{cc) turns out to be important. Mak-
ing use of the definition(24) and symmetrizing the final
result with respect tdR and L we arrive at the following
expression for the current:

|=§Tr[(FL§1L—FR§R)<?c>|K+ H.c]. (32)

effective Kondo temperaturd = UT exd —m|e|/2'] is
smaller than the superconducting gapIn this case, inter-
actions can be accounted for within the dynamical mean-
field (MF) approximation'seeS ANsection for more details
Notice that in equilibrium, an elaborate approximation was
suggested recently in Ref. 25. The fields in Eq. (34) can

be determined from the saddle-point conditions

8318y, =0. (35)

In general these two equations contain an explicit depen-
dence on the time variable. Let us average these equations
over time and considey. as time independent parameters.
This approximation is equivalent to retaining only the first
moment ofy.. . The self-consistency Eqé35) now read

U _
=% J dt(cc), (36)

—Uf dt(cc
Y-=% (coye).

As it turns out from our numerical analysi® be described
below), the parametey . has a negligible effect on the sub-
gap current. It just slightly renormalizes the coupling con-
stants7, r of our model. On the other hand, the second pa-
rameter,y_, which has(see belowthe physical meaning as
an energy proportional to the difference of spin up and down

(37)
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populations of electrons on the level, strongly influences thavhere the superscripts denote the matrix elements in Nambu
-V characteristics. Therefore in what follows we will set space andP.=(1%17,)/2.
y+=0 and take into account only the second self- |n what follows we shall abbreviate, (e+2meV,e
consigtency.Eq(SY) for y_. Under.this approxim_ation the +2ne\0=(m|§1L(e)|n) where the right-hand side is ob-
effective action of our model acquires the following form: tained from Eq.(44) after replacinge— e+2meV, s
de o —0mns 0-1s— Onm—1, and d; s— &, m+1. Then we have
Seﬁ[y]zfzf de’'cM(e€,€’)c, (39 ) )
gu(e,€)=2 dle=e'+2neV)(Olgu(e)n).  (45)
M(e,e')=05(e— €' ) e+ y_—reti(I'r/2)gr(€)T,]
The matrixM (39) may also be represented in a similar

+i(TL/2)g(e,€') 7, (39 form, that is,
Here and below we deliberately choose the electrostatic po- R R
tential of the right electrode to be equal to zero, for which M(e e’ )=, S(e—€ +n2eV)[0|M(e)|n],  (46)
n

case the Keldysh matrigg is diagonal in energy space. Per-

forming the functional integration over Grassman variables Where
and c we can cast the self-consistency Eg7) for y_ in

terms of the matrix [M[NI(€)[N]= 8y n| €+ M2eV+y_— 7€

) (MR)*I _(MR)*lMK(MA)*l ir

M~1= . . , (40 + —"gr(e+m2eV)r

0 (MA)il 2 Or z

whereMR, MA, M¥ are three independent elements of the . iF—L[m|A (] @
Keldysh matrixM (39). Recall that each of these elements is 2 gule Tz
a 2x2 matrix in the Nambu space and an infinite matrix in ) ) ) ]
the energy space. Equati¢di) for y_ can now be rewritten ~ The integration over energy variables in the self-
as consistent equation foy_ and in the expression for the time

averaged current is conveniently performed by dividing the
U Ry 1 K 8 A — 1 whole energy domain into slices of widtle¥ and perform-
y-=i5 TI(M7)*ME(M™) (41D ing energy integration on an intenfld<E<2eV]. Thus we
can use the discrete representatidi and write
with the trace being taken both in energy and spin spaces.

Finally, employing the MF approximation for the Hub- U [2evde N Ry LK AL — 1
bard interaction as was implied in the calculatiomyof, we =%, 2« En" TNl (M5 ™" ME(M®) ~n],
get the current as a difference of symmetric forms, (48)
eFLFR ~ AR eFLFR 2eVde A A
I=—5— TM(NLgr—(L=R))+H.c], 42 = fo o ; Tr(n|[(N_gR— (L—R))+H.c]|n).

. . . . (49
NLr=(MR) gl pry(MA) 7 , _
Let us also note that in the case AN junctions the
Consider now the case of a constdtime-independent expressions for the current and fpr can be further simpli-
voltage biasV and recall that the entire voltage drop occursfied. In this case Eq42) takes the form
across the quantum dot. Setting the phase of the right elec-
trode equal to zero, we obtain, for the phase of the left su- _ el'\I'r

perconductorg(t) =2eVt+ ¢,. Let us expresg), in terms 2
of the matrix elements in energy space

J'_OODO;_;Tr({[MR(6)]_1?(6,V)[|\A/|A(5)]_1§é(6)

—[MR(e)] " (e,00gR(€) TIMA(e)] 17} + H.c),

(elglle)= D, 6S(e—e€ +2seV)g, (e e+2seV), (50)
s=0,£1 .
(43 where the matriX has the standard form
- - +eV
§.(c.e+25eV)=[GHHE V)P + g e+ eVIP_ |5y, tani‘(e e 0
+elvoglie—eV)r, 8; ,+e gt f(e,V)= ; eyl |- G
X(e+eV)r_ 8,1, (44) tanf =7
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Equation (50) can be straightforwardly evaluated since U,

the (Fourier transformedmatrices 1?7*)~! depend now
only on one energy [g, in Eq. (39) is proportional tod(e

—¢€') in this casé and hence can easily be inverted analyti-
cally. Similar simplifications can also be performed in the 2:8 - .

self-consistency Eq41).

IV. RESULTS AND DISCUSSION
A. SAN junction

1. swave superconductors

We commence by calculating the differential conductance

of an SANcontact assuming thewave pairing symmetry in

PHYSICAL REVIEW B63 134515

min

3L _

2.7 B

2.6 -

2.5 - -

2.4 - -

2.3 B

I | ! ! | I |
. r
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

a superconducting electrode. As it was already pointed out

above, Eqs(50) and(51) allow one to proceed analytically.

FIG. 1. The lower bound Hubbard interactioh,;, as a function

From these equations one obtains the expression for currefit I' ateéV=A for the bare level positior,=—1.5 of anSAN

which consists of two parts. The first part originates from th

integration over subgap energiescA and yields the domi-

nant contribution to the current at low temperatures. The

other part comes from integration over energesA. At
low voltages and temperaturé®wer than the gap\) this

e|unction with ans-wave symmetry superconduct@ihe parameters

U, I', and e are given in units o).

4e?

GNSZZGNN:T' (56)

second part gives a negligible contribution to the current.

Considering below the subgap contribution only, we find

et+eV e—eV
tan T —tan T

I_eFLFRJw de

2 | 2.2

(52)
where at subgap voltages and energies one has
B(e)
:A29(|A|_|6|) I' I'r
AZ— ¢ 2 I3 A2 ° L
~2 2
E+T+TA2_62—X +FLX
(53
and
FR € 2
=l e+y +— —u-— 54
X=|ety-+- o (54)

In the limit eV<A and T—O0 for the conductanc&=1/V
we obtain

G_e_2 s
r2+T3

h 2 1—‘2'
—I—'yz,—L

+e?— " y

In order to recover the expression 18rin the noninteracting
limit in Eq. (55) one should simply puy_=0. In a symmet-

ric casel', =I'g and fore—0 Eq.(55) reduces to the well-
known result®

In the presence of Coulomb interaction the parameter
in Egs. (53)—(55) should be determined from the self-
consistency Eq41). It has a physical meaning as an energy
proportional to the difference pertaining to spin-up and spin-
down populations of electrons on the level. We are looking
for solution of Eq.(41) which gives nonzero value of this
parameter. In the introduction we noticed that the solution
exists ifU> — ¢5. The presence of nonzero bidsas well as
interaction itself modifies this condition and put a restriction
on the lower bound ob) for which there is a solution of Eq.
(41). Generally, at a givel this lower bound for interaction
Unin increases when the voltage grows, more strongly for
SANjunction and less foS ASones. The same is true if we
increase the transparenty Figure 1 displays such a depen-
dence ofU,,;, as function ofl" ateV=A.

The parametel,,;, plays the important role of being a
lower bound on the Hubbard energyfor which the single
occupancy solution of mean-field E41) (doublet state
still exists. The other stat@ singlej, which is relevant for
the Kondo limit'!? cannot be obtained in the MF approxi-
mation. It turn out to be important for higher valueslbfind
when the Kondo temperatuf®, = JUT exy — m|€/2I'] is
larger thanA. In the present study we do not consider the
Kondo limit*°~? assuming thafT is small and thus the
single occupancy solution represents the ground state of the
system.

The calculation of the tunneling current then proceed as
Eq. (41) is solved numerically for a given set of system
parameters. To be definite, the parametéis=I'gr=T
=0.35\ are adopted, and the more interesting subgap volt-
age bias regimeeV=2A is considered in the low-
temperature limiT — 0. The values of the Hubbard repulsion
parametetJ were fixed to beU=2.45Q\ andU=2.713\.

As a reference we also consider a noninteracting localized
staté in the off-resonance case that formally corresponds to
the limit U=+y_=0, although, as we noticed above, this

134515-7
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portant(a shift fromA in the position of the peak originates
from a small inelastic term we added to the enegrdy the
presence of interaction, dt=0, the nonzero solutioty_ of

the self-consistent Eq41) appears. It represents the Cou-
lomb blockade influence on electron tunneling which acts in
the mean-field approximation by changing the position of the
level and also, through the value ¢f , by changing the
energy of spin-up and spin-down electrons. In the strongly
interacting regime the single occupancy energy is not

zero even if the renormalized level positiervanishes. This
drives the conductance to small values\6fEq. (55) and
turns the current behavior to be like that corresponding to
tunneling through a localized level out of resonance. The
height of the maximum and the exact voltage at which the
current is “turned on” are in the vicinity to the gap as in Fig.
2 for all 0.3<I'<1. Although the above height and voltage

swave symmetry superconductor. The figure displays the deperare affected by interaction, the presence of the gap is mani-

dence of Andreev conductance on the applied voltage Uor
=2.450(dot curvg andU=2.713(dashed curveandU=7y_=0

(solid curve. The barrier transparency I5=0.35 and the dot level
energy isep= — 1.5 (the parameterd, I', and e, are given in units

of A).

limit cannot be reached by a gradually decreadihgFor
convenience all energy parameters are scaled, namely,
I' g, andT are expressed in units &f. The current and the
conductance are respectively expressed in unitsesf, and

e?/2h.

The dependence of_ on the biasV has a considerable
impact on the differential conductanee=d1/dV which we
calculate numerically. The corresponding results are pr
sented in Fig. 2. It is readily seen that for a given set o

€

fested.

It is interesting to point out that the highest peak in the
conductance near the superconducting gap is obtained when
the Hubbard energy approaches the valug,,;,. As was
noticed earlierU i, is the low boundary value of the inter-
action at which the MF approximation is valid for voltage
eV=A. ForU<U,, there is no solution of Eq41) for the
single occupancy parameter .

There exists a certain analogy between our results and
those obtained for superconductor-ferromagnes F)(
junctions?” Here the repulsion parametéf plays a role
similar to that of an exchange term 8F systems: in both
cases the subgap conductance can be tuned by changing this
f;f)arameter in a way that a smaller valuelbtorresponds to
a weaker exchange field. In contrast to the case under study

parameters the conductance virtually vanishes in a substafare however changing of the exchange fieldSi junc-
tial part of the subgap region. Note, however, that at voltage§ong jeads to smooth variations of the subgap conducnce.

close to but still smaller tharh/e the differential conduc-

Let us now briefly consider the limit of large bias voltages

tanceo increases sharply. This feature can be understood g$\/s. A |n this case the current may be represented as a sum

a result of interplay between Coulomb blockade and twoyt o termsi =1
electron tunneling effects. It is well knohthat the subgap expression simil

1+1,. The terml, is determined by an
ar to Eq52) which now includes the con-

conductance irBN junctions is caused by the mechanism of yinution from energies above the gap. We find

Andreev reflection during which the charge B transferred
between the electrodes. Without interaction Esp) with
U=vy_=0 holds atVv—0. The conductance versus voltage
dependence in the whole subgap region is represented in this
case U=vy_=0) by the solid curve in Fig. 2. Unlike the
resonance limit Eq(56), which corresponds to perfect trans-
parency of the channel here we clearly see a maximum near
the gap region. This effect is related to the small transpar-

e+eV

S [Ble)+ Bye)]

tan "(

(57)

ency of the junction due to the off-resonance conditionHere B(e) is again given by Eq(53) while the function
when increasing the BCS density of states at the gap is imB;(e) reads

2lelo(]e|-|a])

[€2+(e+y-)2+x1]

1L€)=
62_A2
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We also define

N
¥ AB) S
_ = 2 2
X1—4 FL+FR+2FLFRW) (59)
The other contributiom, is proportional to the level position
‘. One obtains
\B:ﬂ—a
| _eFLFwa dEB E+ev
2=y | a e A oy
oV tant = 60 A
_ _ o
+tan 5T tan 5T/ | (60)

The expression foB,(e) can be obtained from Ed58) if
one replaces the term in the square brackets by the expres-

sion —2e(e+y-). FIG. 3. Schematic geometry of the junction. The left half plane
The above results together with the self-consistency equas a superconductor and the right one is a normal metal. Incoming

tion for y_ provide a complete description for theéV/ curve  and reflected electronlike excitations are moving in an angle-

of an SAN junction in the presence of interactions. In all dependent pair potential which can have different signs for these

interesting limits the energy integrals in Eq57) and (60)  quasiparticles.

can be carried out and the corresponding expressions for the

current can be obtained. These general expressions, howevg(cting states the order parameter is an odd vector function
turn out to be quite complicated and will not be analyzed ingf momentum and a:2 2 matrix in spin space. We choose to
detail further below. Here we just demonstrate that in theepresent it by a time-reversal symmetry-breaking &tate
noninteracting limity_=0 our results reduce to those al- which is off-diagonal in spin indices. In the geometry of Fig.
ready familiar in the literature. Indeed, in the leading order3 4 is the azimuthal angle in the-y plane and the order

Wigner formula =Agexp(a). This order parameter can possibly describe
) pairing in a superconductor SRuQ, which was recently
. 2e” I'I'r 1) discovered? The pair potential so chosen within the geom-
h (' +I'R)? ~2' etry of the junction may have different signs for incoming
T“Lf and reflected quasiparticles moving at the angteand 7

5 — a, respectively. This fact significantly affects the scatter-
After settinge=0 andI'>A in Egs.(57), (53), and(58) in ing proces¥® and causes the formation of a zero energy
the limit eV>A one easily obtains the contributions to the (midgap bound stat¥ centered at the boundary. For this

current equal to ByyA/e and Gyn(V—2A/3e), respec-  state we calculate the Green functi@which, like in the
tively, from the subgap energies5\ and from energies case ofs-wave superconductors, satisfies Et6) with a &
above the gaplfy). The sum of these contributions yields nction on the right side and requif to vanish atx=0.

the standard result The distinction of solutions fod- or p-wave superconductors
| =Gy (V+4A/3€). (62) from those found above for trewave case is due to the sign
change of the pair potential: reflected quasiparticles propa-
The second term represents the so-called excess curregdte in a pair potential of an opposite sign compared with
which originates from the mechanism of Andreev reflection.as “seen” by incoming quasiparticles. The equilibrium re-

It follows from our general analySiS that in quantum dots th|Starded and advanced E”enberger-Keldysh funct@ﬁé for
current is also affected by Coulomb interaction. p-wave superconductors read

2. Superconductors with unconventional pairing

J(e£i0)2—A2— 7, A+ 7_A*

Since the order parametarfor p- andd-wave supercon- gRA(e)= i (63)
ductors is not isotropic, the magnitude of the current is sen- €xio
sitive to the junction geometry. As discussed before, here we
consider a system of two planar superconductargnorma) The -V curve for anSAN junction with electrodes com-

strips with electron tunneling between them alongxfexis  posed ofp-wave superconductors amdth Hubbard interac-
through the dot located at=y=0. For d-wave supercon- tion is remarkably distinct from those found for tisavave
ductors we choose the nodal line of the pair potential on th%ase(cf_ Figs. 2 and % This difference is predominantly due
Fermi surface to coincide with the tunneling directifig.  tg the surface bound state which exists in theave case

3), such thatA=v,pp_sin2x. The direction of tunneling and causes the conductance peak in the subgap region. Due
corresponds to the angle=0. For spin-triplet supercon- to electron-electron repulsion this peak is split and appears at

134515-9
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FIG. 4. Same as in Fig. 2 but formwave symmetry supercon-
ductor. The figure displays the dependence of Andreev conductance g 5 The subgap tunneling current in uniteAZh versus
on the applied voltage fdd =2.4 (solid curvg andU=2.713(dot | ,gtage for anSASjunction with swave symmetry superconduct-
_curve. The barrier transparency i5=0.35 and the dot level energy 5.c The parametern units of A) are U=2.4 (solid curve, U
is €o=—1.5 =2.7 (dot curve, e=—1.5, andl'=0.6.

V#0, see Flg 4. Here again, the repUISion attenuates th@]e number of modes for each energy in the |nte[@aze\/]
conductance, which is larger fod=2.4% than for U s cut off at some integem, the size of the pertinent matrices
=2.71. is (4m+2)X (4m+2). The numbem of energy slices has
to be adjusted in such a way that the results become insen-
B. SASjunction sitive to it. This requires largem for smaller voltages be-

We focus first on the noninteracting casé=0 and cause quasiparticles can escape the gap region after under-
going a large number of Andreev reflections.

briefly consider pure resonant tunneling at the Fermi level, . . T
y P g In the MF approximation which is used to analyze the

l.e., setep—0. This situation corresponds to a ballisBN S Hubbard interaction, the Anderson level is effectively re-

junction with only one conducting channel, Current—voltageduced to a free level out of resonance, which interacts onl
characteristics of ballistiSNS junctions were intensively ' C o y
with the superconductors. The Coulomb repulsion is the

studied in the past?®=3%If the relevant energies are small as caLse of nohzero sinale oecUDANGY e This ener
compared toI" (for short junctions this condition usually .. . gie pancy eneygy. 9y
is included in the deviation of the free level from resonance.

meansl">A), Syt In Eq. (26) can be dropped and one gets Thus tunneling through an Anderson impurity center is rep-

T _ ~ 71 . .
(ccy=g."7,/T'. Equation(32) then yields resented by tunneling through an energy level out of reso-
nance. The farther is the level from resonance, the weaker is
| = STFTZEALQIHK- (64)  the effective transparency of the junction. In &ASjunc-
2 tion, the main process contributing to the subgap current is

Note that here the tunneling raté just cancels out. In the tmhzltf'gﬁ Qg?r%?vlg\?v%esﬁ'gnfymii% zg\glt/a;/\e/r’o]lchs,EgeiSOf
many channel limit Eq(64) coincides Wml the quasiclassical large, the current density is rather weak. This is due to the
result?8:2° Fora Cé)n_starjt bia¥ the matrixg_ * can be evalu- oy effective transparency of the junction as a consequence
ated _analyﬂcally’f, yielding thel-V curve of a ballisticSNS ¢ interaction (Coulomb blockade Indeed, inSAS junc-
junction. In particular, in the zero-bias limil—0 and for  {jons, the interaction produces an effective transparency
I'>A one recovers the MAR currefi: which is of the same order as in E&6) for anSANcontact.
262 2A 4eA If the transparency of the.jun_ction is less than unity, then
AR ==\ = —— (65) every next Andreev reflection is s_uppressed by the power of
h eV h the effective transparency. This is due to the fact that the
current depends in a nonlinear way on the tunneling ampli-
tude, and Andreev reflection is combined with ordinary scat-
tering at theSAinterface. Therefore the highprocesses are
of higher order in the tunneling strength and will be sup-
pressed as theth power of the effective transparency. Thus
there is a strong suppression of the current at low voltages
when the number of Andreev reflections is large. This is
In order to calculate the subgap current in the case of aghat is observed in our Fig. 5.

SASjunCtion with Coulomb interaction one has first to find Thel-V characteristics for tunne"ng between teavave
the solution of the self-consistency Eqé8). This requires  superconductors is displayed in Fig. 5. The transparency of
the inversion of the matris in energy and spin spaces. If the junction is chosen to b&=0.6A and the current is

The corresponding explicit calculation performed within our
formalism is presented in the Appendix.

Now we consideS ASjunctions with Hubbard interaction
included.

1. swave superconductors

134515-10
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2 e T R S S structure in junctions withd-wave superconductors in the
U=2.4 ] absence of Coulomb interaction was recently studmszk,
[\ ] e.g., Ref. 34 and other references thereiear zero bias the
] I-V curves* exhibit a current peakequivalently, negative
1 differential conductangerelated to the presence of midgap
~1U=2.7 ! .
A\ 3 1 surface states. Notice that in such systems the symmetry re-
i stricts the current, so that the contribution from the bound

Ihe A 5 [

.
. / Y N -] midgap states may vanish if, for instance, one assuﬁﬁgg

0.5 & ] to be independent af,. As we have already argued before
i ,/ _,-" 1 (see also Ref. 24 it might be essential to take the depen-

I ; ] dence of tunneling matrix elements on into account al-

§ ety L ettt ready fo_r point contacts. _On_e can also consider_the _impurity
' ev/a ' model different from a pointlike defect. Such a situation can
be realized, e.g., by artificially induced defettsThe spec-
troscopy of BySr,CaCyOg surfaces indicates that such de-
fects appear to be more extended in scanning tunnel micro-
scope imaging. In this case one can expect nonzero

contribution from midgap level also id-waves supercon-

FIG. 6. Same as Fig. 4 but f@rwave symmetry superconduct-
ors.

evaluated forU=2.4A and U=2.7A. One notices that at

relatively low bias voltageeV=0.8A for U=2.4A andeV d ; - ;

- ) . uctors. Here, again, the electron-electron repulsion shifts
=<(0.9-0.95) for L_J—2.7A the subgap current is esse.ntlally the peak positions from their “noninteracting” values/
suppressed. For higher voltages the subgap current increases, y /o o higher voltages. It is quite likely that this

rather sharply, as a result of an interplay between Coulom L . X .
blockade and multiple Andreev reflections. The latter mechali-%teractlon induced shift was observed in the experirint.

nism manifests itself in the occurrence of subharmonic peaks
in the differential conductance. Due to interaction, the sub- V. CONCLUSIONS

gap current as we note above is strongly depressed at low In this paper the tunneling between two superconductors
voltages. The positions of peaks in the conductance are pap 9 P

shifted relative to those in the noninteracting case or between a superconductor and normal metal through an

—2A/n, wheren is the number of Andreev reflections and Anderson-type quantum dot is investigated. Special attention

S . . . is devoted to analyze the implications of the Coulomb repul-
are as can be seen in Fig. 5, increadihgesults in a larger . ; )
. iy sion between electrons in the dot on the tunneling process.
shift of peak positions.

In the limit of high voltageseV>A the |-V curves for The Andreey conduc_tancg for &ANjunction and the sub-

SASjunctions are analogous to those BAN ones except 2P current in arSASJunctmn are calpulated and-ela.borated
J g p
the excess current is two times larger. upon. The theore_t!ca_l treatment requires a comblnatl_on of the
Keldysh nonequilibrium Green function and path integral

formalism and the dynamical mean-field approximation. We
derive general expressions for the effective action and the

Similarly to the case o8 ANjunctions, there is an impor- transport current through the system. These expressions are
tant difference in the tunneling current betwe®ASjunc-  then employed in order to obtain a workable formula for the
tions with interaction depending on whether the order parameurrent. The latter is then calculated analytically and numeri-
eter in the electrodes is &f or p-wave symmetry. Thé-V cally for a certain set of energy parameters.
curve for the latter case is depicted in Fig. 6. We observe that The main results of the present research can be summa-
the subgap current fqs-wave superconductors is consider- rized as follows:(i) When one of the electrodes is a normal
ably larger than fois-wave ones, roughly byg?;g I Eﬁ)aﬁ& metal (an SAN junction) the gap symmetry structure is ex-
On the other hand, the effect of the Coulomb repuldibat  hibited in the Andreev conductance. Fowave supercon-
low voltages is rather similar: there is a strong suppression adluctors, it shows a remarkable peak for voltages in the sub-
the subgap current because highMAR processes are gap region. Fos-wave superconductors, on the other hand,
damped by the power of transparency which is small due to the position of the peak is shifted towards the gap edge. It is
Coulomb repulsion. Fold =2.7A the current is suppressed further demonstrated that the highest peak in the conduc-
compared to its value &l =2.4A. Beside the distinction of tance is reached if the Hubbard repulsive interaction ap-
magnitudes, there is an unusual additional structure in thproachesJ,;,. Recall that at this value df =U,;, the MF
-V curves forp-wave superconductors which is related to approximation is not valid anymore and the single occu-
the presence of a surface bound state. Comparing the resufiancy solution ceases to exiét) The dynamics of tunneling
presented in Figs. 5 and 6 we observe that in the latter casbetween two superconductofan SAS junction) is more
the current peaks at a certain bias voltage. This implies aomplicated. Fos-wave superconductors the usual peaks in
negative differential conductance, which is the hallmark ofthe conductance that originate from multiple Andreev
resonant tunnelingcontributed by the bound state reflectiong are shifted by interaction to higher values \6f

Our analysis of the junctions formed pywave supercon- The subgap current suffers sizable suppression at low volt-
ductors can be straightforwardly extended to the case adges though the number of Andreev reflections is large. This
d-wave pairing. Thel-V curves and the subharmonic gap is because the high-order MAR are suppressed bypower

2. Superconductors with unconventional pairing

134515-11
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of effective transparency of the junction. This effective trans- e?V « i

parency mainly is defined by Hubbard interaction and be'IAR___ 2 [G"(Em) ((m[(M#)?|n]

comes smaller when Hubbard interaction strength increases.

The subgap current in this case may describe the low energy

channels in break junctioffsFor p-wave superconductors,
the subgap current is much larger than in sheave case and

X[n+1[(MF)YmIFAE, ) —[m[(M#)|n]

X[n—=1|(MR)Z|m]FR(E, )—g"(E) (m|(M,)*3n]

thel-V characteristics exhibits an interesting feature: the oc-

currence of midgap bound state results in a peak in the cur-

rent, that is, a negative differential conductance.

ACKNOWLEDGMENTS

X[n[(MR) Y m]FAE,) —[m|(MA)Hn]

X[n[(MRZPmIFR(E,)— g (Eq) ([(m|(MA)23n]

X[n|(MR)2m]FAE,) —[m[(M#)?n]

This research was supported in part by grants from the

Israeli Science Foundatiofi‘Center of Excellence” and
“Many Body Effects in Non-Linear Tunneling); the
German-Israeli DIP foundation “Quantum Electronics in

X[n[(MR)Zm]FR(E,))]. (A7)

Here we denot€, =eV(2n*+1) andE,=2eVn We also

Low Dimensional Systems” and a U.S.-Israel BSF grantlncludedFIZ into the definition oM and omitted terms non-

“Dynamical Instabilities in Quantum Dots.”

APPENDIX

Below we will derive the result65) within the framework
of the formalism developed in the present paper. Consider
guantum dot between tws-wave superconductors and as-
sume that the interaction is negligibly small—0. For the
sake of simplicity we will also sel’, =I'r=I". The result
(42) can be expressed as a sum of two tetrd sg+ |

qp»
where
e]"2 2eV - ~a . ~a
NS Efo dfTr[(NR)lz(gL)21_(NL)lz(gR)21
—(NR) (D) >+ (N (@R ™, (A1)
el? [2ev - ~
lop=— 27 | deTL(N) (gl —g0)P™

—(ND)™M(gr—9R)D™. (A2)

Herel 5 is the subgagAndreev reflection contribution to
the averaged current whilg,, is defined by the excitations
above the gap. In Eq$éAl) and(A2) we defined the Green-

Keldysh matriceg =i 7,g with

ORP(e)=FRA(e)(e+ T A+ T _A%), (A3)
o(|Al—]el) 0(|el—]A)
FRA( ) T_Isgr( ﬁ, (A4)
grL(6)=[0R () —0OR.(e)]tank(e/2T).  (A5)
We also defined
=(MTgl MM, MRA=(MRA L (A6

where the superscripts stand for the spin indices in Nambu

space and Tr denotes the remaining trace ¢discrete en-
ergies which are scaled tb throughout this Appendix.

Consider the limit of small voltagesV<<A. In this limit
the subgap currerityg can be rewritten in the form

diagonal in the spin indices because these terms are small in
the limit eV<A. At T—0 the summation oven is reduced
to just one term with the maximum numbey, determined
by the condition{E, |=1.

It is straightforward to evaluate the matricas,{M"I|n)

for sufficiently largel’>A ande,— 0. In this caseM ' sat-
isfy the following approximate equations:

[m[(MP) ] mo](EZ/4-2)

m‘sm,mO/ZFR(Em) + [m_ 1|(M R)ll| mO]

+[m+1[(MR)Ymg], (A8)

[m|(MR)32mo] = — 4L m| (%) 4 mp
X[EnFR(Em) EmyFR(ER,) ~1.(A9)

[m|(MR)2mg](E2/4—2)

=[Smmy T Om- 1m, JEmF (Em)/4

+[m—1[(Mg)mo] +[m+1|(Mg) "4 mp].
(A10)
Similar equations can easily be derived for the two remain-
ing blocks. In the leading order im, (this approximation is

justified at small voltaged/—0) at subgap energiesEf
<1,FR=FA=F) we obtain

N (—1)"(n+1)
(MR my]= —————— (A11)
[l (M7 ol (Mo+2)F(Epy )
o (CDIOTDER,
[nl ) |m0] (m0+ 2)EnF(En) ’ (Alz)
~ (_1)n(n+1)Em
[n[(MR)#mg]=— - (A13)

(mo+2)EqF(En)

Substituting these matrix elements into E47) and per-
forming a simple summation over we arrive at the result
(65).
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