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Quasiparticles and vortices in unconventional superconductors
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Quasiparticles in the vortex lattice of strongly type-II superconductors are investigated by means of a
singular gauge transformation applied to the tight-binding lattice Bogoliubov-de Gennes Hamiltonian. We
present a detailed derivation of the gauge invariant effective low-energy Hamiltonian for the quasiparticle-
vortex system and show how the physics of the ‘‘Doppler shift’’ and ‘‘Berry phase’’ can be incorporated at the
Hamiltonian level by working in the singular gauge. In particular, we show that the ‘‘Berry phase’’ effect
manifests itself in the effective Hamiltonian through a half-flux Aharonov-Bohm scattering of quasiparticles
off vortices and stress the important role that this effect plays in the quasiparticle dynamics. Full numerical
solutions in the regime of intermediate fieldsHc1!B!Hc2 are presented for model superconductors withs-,
p-, andd-wave symmetries and with square and triangular vortex lattices. Fors- andp-wave cases we obtain
low-energy bound states in the core, in agreement with the existing results. For thed-wave case only extended
quasiparticle states exist. We investigate in detail the nature of these extended states and provide comparison
to the previous results within linearized ‘‘Dirac fermion’’ model. We also investigate internodal interference
effects when vortex and ionic lattices have a high degree of commensurability and discuss various specific
choices for the singular gauge transformation.

DOI: 10.1103/PhysRevB.63.134509 PACS number~s!: 74.60.Ec, 74.72.2h
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I. INTRODUCTION

In conventional (s-wave! superconductors the single
particle fermionic excitations~quasiparticles! are fully
gapped everywhere on the Fermi surface and the quasip
cle density of states vanishes below a specific energy. T
has profound consequences for the traditional phenome
ogy of superconductors. The gap in the fermionic spectr
leads to the well-known activated BCS form of the quasip
ticle contribution to various thermodynamic and transp
properties. Furthermore, even as one moves beyond
mean-field BCS theory, the absence of low-energy quasi
ticles in the superconducting state allows one to rewrite
problem of superconducting fluctuations as a ‘‘bosoni
theory, with the role of bosons played by fluctuating Coop
pairs, after integrating out ‘‘fermionic’’ degrees of freedom
i.e., the quasiparticles. In high-temperature superconduc
~HTS!, however, everything is different: the cuprates app
to be accurately described by thedx22y2-wave order
parameter,1 consequently allowing quasiparticle excitatio
at arbitrary low-energy near the nodal points. These lo
energy fermionic excitations appear to govern much of
thermodynamics and transport in the HTS materials. We
thus handed a new intellectual challenge:2 we must devise
methods that can incorporate the low-energy fermionic e
tations into the phenomenology of superconductors, b
within the mean-field BCS-like theory and beyond.

This challenge is not trivial and has many diverse com
nents: low-energy quasiparticles are scattered by impur
in unusual ways, depending on the low-energy density
states;3 they interact with external perturbations in ways n
encountered in conventional superconductors and these i
actions give rise to unusual phenomena;4,5 the low-energy
quasiparticles are expected to qualitatively affect the qu
tum critical behavior of HTS. Among many aspects of th
quasiparticle phenomenology a particularly prominent role
0163-1829/2001/63~13!/134509~17!/$20.00 63 1345
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played by the low-lying quasiparticle excitations in th
mixed ~or vortex! state. All HTS are extreme type-II system
and have a huge mixed phase extending from the lower c
cal fieldHc1 which is in the range of 10–100 G to the upp
critical field Hc2 which can be as large as 100–200 T. W
suspect that in this large region the interactions between q
siparticles and vortices play the essential role in defining
nature of thermodynamic and transport properties.

Such thermodynamic and transport properties are
pected to be rather different for distinct classes of unconv
tional superconductors. This difference stems from a co
plex motion of the quasiparticles under the combined effe
of both the magnetic fieldB and the local drift produced by
chiral supercurrents of the vortex state. For example, in H
thedx22y2-wave nature of the gap function results in its va
ishing along nodal directions. Along these nodal directio
the pair breaking induced by supercurrents has a particul
strong effect. On the other hand, in unconventional sup
conductors with thepx6 iy pairing, Sr2RuO4 being a possible
candidate,6 the spectrum is fully gapped but the order para
eter is chiral even in the absence of external magnetic fi
This leads to two different types of vortices for two differe
field orientations.7,8

Still, in all these different situations, the quantum dyna
ics of quasiparticles in the vortex state contains two essen
common ingredients.First, there is a purely classical effec
of a Doppler shift:4,5 a quasiparticle energy is shifted by
locally drifting superfluid,E(k)→E(k)2\vs(r )•k, where
vs(r ) is the local superfluid velocity.vs(r ) contains informa-
tion about vortex configurations allowing us to connect qu
siparticle spectral properties to various cooperative phen
ena in the system of vortices.9–11 The Doppler shift effect is
not peculiar to the vortex state. It also occurs in the Meiss
phase5 and is generally present whenever a quasiparticle
periences a locally uniform drift in the superfluid velocit
Second, there is also a purely quantum effect which is in
©2001 The American Physical Society09-1
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mately tied to the vortex state: as a quasiparticle circ
around a vortex while maintaining its quantum coheren
the accumulated phase through a Doppler shift is6p. This
implies that there must be anadditional compensating6p
contribution to the phase on top of the one due to the D
pler shift.12 The required6p contribution is supplied by a
‘‘Berry phase’’ effect and can be built in at the Hamiltonia
level as a half-flux Aharonov-Bohm scattering of quasipa
cles by vortices.12 This interplay between the classical~Dop-
pler shift! and purely quantum effect~‘‘Berry phase’’! is
what makes the problem of quasiparticle-vortex interact
particularly fascinating.

Let us briefly review what is already known about t
subject. The initial theoretical investigations of gapped a
gapless superconductors in the vortex state were dire
along rather separate lines. The low-energy quasipar
spectrum of ans-wave superconductor in the mixed state w
originally studied by Caroli, de Gennes, and Matric
~CdGM!13 within the framework of the Bogoliubov-de
Gennes equations.14 Their solution yields well-known bound
states in the vortex cores. These states arelocalized in the
core and have an exponential envelope the scale of whic
set by the BCS coherence length. The low-energy end of
spectrum is given byem;m(D0

2/EF), wherem51/2,3/2, . . . ,
D0 is the overall BCS gap andEF is the Fermi energy. This
solution can be relatively straightforwardly generalized to
fully gapped, chiral p-wave superconductor. In this case t
low-energy quasiparticle spectrum also displays bound v
tex core states, whose energy quantization is, howe
modified relative to itss-wave counterpart, precisely becau
of the chiral character of apx6 iy-wave superconductor an
the ensuing shift in the angular momentum. For example,
low-energy spectrum of quasiparticles in the singly qu
tized vortex of thepx6 iy-wave superconductor, possesse
state at exactly zero energy.7,8

By comparison, the spectrum of agapless d-wave super-
conductor in the mixed phase has become the subject o
active debate only relatively recently, fueled by the inter
in HTS. Naturally, the first question that arises is what is
analog of the CdGM solution for a single vortex? It is im
portant to realize here that the situation in adx22y2 super-
conductor isqualitatively differentfrom the classics-wave
case:15 when the pairing state has a finite angular moment
and is not a global eigenstate of the angular momentumLz ~a
dx22y2 superconductor is an equal admixture ofLz561
states!, the problem of fermionic excitations in the corecan-
not be reduced to a collection of decoupled one-dimensio
~1D! dimensional eigenvalue equations for each angular
mentum channel, the key feature of the CdGM solution.
stead, all channels remain coupled and one must solve afull
2D problem. The fully self-consistent numerical solution
the BdG equations15,16 reveals the most important physic
consequence of this qualitatively new situation: the vor
core quasiparticle states in a puredx22y2 superconductor are
delocalizedwith wave functions extended along the nod
directions. The low-lying states have a continuous spect
and, in a broad range of parameters, do not seem to ex
strong resonant behavior. Obviously, this is in sharp cont
with a discrete spectrum and true bound quasiparticle st
13450
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of the CdGMs-wave solution. We expect the above qualit
tive results to hold for all unconventional superconduct
and within confines of the simple BdG equations, as long
there are nodes in the gap.

A particularly important issue in this context is the natu
of the quasiparticle excitations at very low fields, in the pre
ence of a vortex lattice. This is a challenge since the sp
trum starts as gapless at zero field and at issue is the in
action of these low-lying quasiparticles with the vorte
lattice. This problem has been addressed via a nume
solution of the tight-binding model,17 a numerical diagonal-
ization of the continuum model18 and a semiclassica
analysis.4 Gorkov, Schrieffer19 and, in a somewhat differen
context, Anderson,20 predicted that the quasiparticle spe
trum is described by a Dirac-like Landau quantization
energy levels

En56\vHAn, n50,1, . . . , ~1!

where vH5A2vcD0 /\, vc5eB/mc is the cyclotron fre-
quency andD0 is the maximum superconducting gap. Th
Dirac-like spectrum of Landau levels arises from the line
dispersion of nodal quasiparticles at zero field. This ar
mentation neglects the effect of spatially varying superc
rents in the vortex array which were shown to strongly m
individual Landau levels.21

Recently, Franz and Tesˇanović~FT!12 pointed out that the
low-energy quasiparticle states of adx22y2-wave supercon-
ductor in a vortex state are most naturally described
strongly dispersive Bloch waves. This conclusion was ba
on the particular choice of a singular gauge transformati
which allows for the treatment of the uniform external ma
netic field and the effects produced by chiral supercurre
on equal footing. The starting point was the Bogoliubov-
Gennes~BdG! equation linearized around a Dirac node. B
employing the singular gauge transformation FT mapped
original problem onto that of a Dirac Hamiltonian in period
vector and scalar potentials, comprised of an array of
effective magnetic Aharonov-Bohm half fluxes, and with
vanishing overall magnetic flux per unit cell. The FT gau
transformation allows use of standard band structure
other zero-field techniques to study the quasiparticle dyn
ics in the presence of vortex arrays, ordered or disordered
utility was illustrated in Ref. 12 through computation of th
quasiparticle spectra of a square vortex lattice. A remarka
feature of these spectra is the persistence of the mas
Dirac node at finite fields and the appearance of the ‘‘lines
nodes’’ in the gap at large values of the anisotropy ra
aD5vF /vD , starting ataD.15. Furthermore, the FT trans
formation directly reveals that a quasiparticle moving coh
ently through a vortex array experiences not only a Dopp
shift caused by circulating supercurrents but also anaddi-
tional, ‘‘Berry phase’’ effect: the latter is a purely quantum
mechanical phenomenon and is absent from a typical se
classical approach. Interestingly, the cyclotron motion
Dirac cones isentirelycaused by such ‘‘Berry phase’’ effec
which takes the form of a half-flux Aharonov-Bohm scatte
ing of quasiparticles by vortices, and doesnot explicitly in-
9-2
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QUASIPARTICLES AND VORTICES IN . . . PHYSICAL REVIEW B63 134509
volve the external magnetic field. It is for this reason that
Dirac-like Landau level quantization is absent from the ex
quasiparticle spectrum.

Further progress was achieved by Marinelli, Halperin, a
Simon22 who presented a detailed perturbative analysis of
linearized Hamiltonian of Ref. 12. They showed that t
presence of the particle-hole symmetry is of key importa
in determining the nature of the spectrum of low-energy
citations. If the vortices are arranged in a Bravais lattice, t
showed that, to all orders in perturbation theory, the Di
node is preserved at finite fields, i.e., the quasiparticle sp
trum remains gapless at theG point. This result masks in
tense mixing of individual basis vectors~in the case of Ref.
22 these are Dirac plane waves!, including strong mixing of
states far removed in energy. The continuing presence o
massless Dirac node at theG point after the application o
the external field is thus not due to the lack of scatter
which is actually remarkably strong. Rather, it is dictated
symmetry: Marinelli et al. demonstrated that the crucia
agent responsible for the presence of the Dirac node is
particle-hole symmetry, present at every point in the B
louin zone. The fact that it is the particle-hole symme
rather than the lack of scattering that protects the Dirac n
is clearly revealed in the related problem of a Schro¨dinger
electron in the presence of a single Aharonov-Bohm h
flux, where the density of states acquires ad function deple-
tion at k50,23 thus shifting part of the spectral weight t
infinity due to remarkably strong scattering. The authors
Ref. 22 also corrected Ref. 12 by showing that the ‘‘lines
nodes’’ must actually be the ‘‘lines of near nodes’’ since tr
zeros of the energy away from Dirac node are prohibited
symmetry grounds. Still, these ‘‘lines’’ will act as true nod
in all realistic circumstances, due to extraordinarily sm
excitation energies.

Marinelli et al. also showed that, if the particle-hole sym
metry is broken, for example by introducing a non-Brav
vortex lattice with broken inversion symmetry and four vo
tices in the unit cell, then true lines of nodes can develop
values of anisotropy ratio starting already ataD.5. They
concluded, that the density of states is finite at zero ene
and the semiclassical results of Kopnin and Volovik24 might
apply down to zero energy. For a non-Bravais lattice w
two vortices per unit cell they found that the quasiparti
spectrum can become gapped.

Very recently Ye25 discussed transport properties of t
quasiparticles described by the Dirac Hamiltonian of Ref.
and pointed out some intriguing effects that may take pl
in random vortex arrays. Also, Altland, Simons, and Zir
bauer investigated general properties of disordered Dirac
erators, including vortex disorder.26

In this paper we extend the original analysis which w
based solely on thecontinuumdescription by introducing a
tight-binding ‘‘regularization’’ of the full lattice BdG Hamil-
tonian, to which we then apply the FT gauge transformati
Our motivation is twofold: First, we have found by explic
numerical computations that different choices of singu
gauge transformation result in spectra which, while rat
similar, are not the same. Within our numerical accuracy
could not tell whether the spectra have a very slow conv
13450
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gence to the same final result or whether they actually c
verge to a different answer. This will be discussed ag
shortly. This problem appears to be a conspiracy between
strong Aharonov-Bohm scattering from magnetic half flux
which tends to push some states of the unperturbed Ha
tonian to very high energies and the unbounded nature of
Dirac spectrum. It is an interesting issue for future study h
to devise the cutoff in the reciprocal lattice sums of the l
earized problem which is tailor made for a particular cho
of the singular gauge transformation. In this paper, we
cumvent this problem entirely by regularizing the origin
Hamiltonian on a square lattice. The tight-binding formu
tion regularizes the strong mixing of the basis vecto
through the introduction of an upper and a lower bound
the spectrum, thus prohibiting the shift of the spectral wei
to infinity.23 This immediately solves our problem: differen
choices of singular gauge transformation now rapidly co
verge to identical spectra, as they should. The low-ene
part of the spectrum compares best with the original
transformation12 of the linearized Hamiltonian, which migh
have been expected based on its having the smoothest
tive phase between particles and holes.

Second, the lattice formulation allows us to study what
any, role is played byinternodalscattering which is simply
not a part of the linearized description. We find that und
specialcircumstances, when there is a high degree of co
mensurability between the ionic and vortex lattices, the
terference between the nodes can lead to scattering whic
surprisingly strong (;AB) and might be observable in HTS
Such scattering is responsible for opening a gap at the Fe
surface even in the case of a Bravais vortex lattice. In
typical situation, however, when the two lattices have a lo
degree of commensurability or are of different symmetry a
particularly when weak thermal or quenched disorder is
cluded, the internodal scattering effectively disappears.
diagonalize the tight-binding Hamiltonian numerically fo
various order parameter symmetries and both square and
angular vortex lattices. Our treatment provides an acces
the entire quasiparticle energy spectrum together with
playing the utility of the FT transformation in analyzin
gapped superconductors~e.g.s- or px1 iy- wave!, which area
priori inaccessible through the linearization. We are the
fore able to present a unified treatment of a general, b
conventional and unconventional, strongly type-II superc
ducting pairing in the vortex state.

II. BDG HAMILTONIAN AND THE SINGULAR GAUGE
TRANSFORMATION: LOW ENERGY PHYSICS

OF QUASIPARTICLES AND VORTICES

Because of the nonlocality inherent in the supercondu
ors with higher angular momentum pairing, their Hamilt
nians are most naturally formulated on a discrete real sp
lattice representing the underlying crystalline lattice of t
compound in question. Quite generically, the simplest latt
Hamiltonian which allows pairing to occur ins-, p-, and
d-wave channels is the tight-binding model with the on-s
or nearest neighbor attraction between electrons. Conv
tional mean-field Hartree-Fock-Bogoliubov decoupling
9-3
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the interaction term then leads to the BCS-type lattice Ham
tonian of the form

H5S ĥ D̂

D̂* 2ĥ*
D , ~2!

where

ĥ52t(
d

e2 i ~e/\c!* r
r1dA(r )•dlŝd2eF ~3!

and

D̂5D0(
d

eif(r )/2ĥd eif(r )/2. ~4!

The sums are over nearest neighbors and on the square l
d56 x̂,6 ŷ; A(r ) is the vector potential associated with th
external magnetic fieldB, eF is Fermi energy, andŝd is an
operator which is defined by its action on a general funct
u(r ) so thatŝdu(r )5u(r1d). The operatorĥd depends on
the type of pairing as discussed later.

A quasiparticle wave function is a rank two spinor in t
Nambu space,cT(r )5@u(r ),v(r )#, and obeys the BdG
equation

Hc5ec. ~5!

Besides relying on conventional mean-field BCS dec
pling, Hamiltonian~2! contains two additional approxima
tions. First, we have assumed that the order-parameter m
nitude is constant and equal toD0 everywhere in space. Thi
is essentially the London limit14 which is expected to be
valid in the regime of low fields,B!Hc2, when vortex cores
comprise negligible fraction of the sample. Second, we
proximated the phase of the order parameterfd(r ), which is
a nonlocal field associated with abondbetween two neigh-
bor sites, by the average of the phases associated with
attached sites,

fd~r !→ 1

2
@f~r !1f~r1d!#. ~6!

This replacement is discussed in more detail in the Appen
A and we expect it to be very accurate far away from
vortex cores where the phase varies slowly, but inadequa
the core. Hamiltonian~2! is therefore useful when conside
ing quasiparticle properties in a dilute vortex lattice, which
the main focus of this work. To study properties of the co
region one must explicitly treat the order parameter am
tude variation and nonlocality of its phase as done, e.g.
Refs. 15 and 17. Surprisingly, however, we shall see be
that even the present approximation yields results for
core region that are qualitatively correct.

A. Continuum formulation

In many cases our main interest is directed at the lo
wavelength and low-energy or low-temperature properties
is precisely in this respect that the quasiparticle excitation
13450
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an unconventional superconductor differ most dramatica
from its s-wave counterpart. Under these circumstances i
desirable to consider a continuum version of the BdG Ham
tonian. For a d-wave superconductor such a continuu
Hamiltonian was derived by Simon and Lee.27 It turns out,
however, that as written in Ref. 27 this Hamiltonian is n
gauge invariant.28 At fault is the off-diagonal term represen
ing the d-wave pairing operator, which does not transfor
properly under the U~1! gauge group. In Appendix A we
have derived the gauge invariant form of this pairing ope
tor for a puredx22y2 superconductor and have outlined ho
such a derivation can be carried out for other unconventio
pairing states. The continuum Hamiltonian reads:

H5S Ĥe D̂

D̂* 2Ĥe*
D , ~7!

with Ĥe51/2m(p2e/cA)22eF and p̂52 i\¹ the momen-
tum operator. If we follow the convention and choose t
coordinate axes in the direction of gap nodes thegauge in-
variant d-wave pairing operator has the form

D̂5pF
22$ p̂x ,$ p̂y ,D~r !%%1

i

4
pF

22D~r !~ p̂xp̂yf!, ~8!

where pF is the Fermi momentum,f is the phase of the
superconducting gapD(r ), and curly brackets represen
symmetrization,$a,b%5(1/2)(ab1ba). The above pairing
operator resembles the familiar Simon-Lee form except
the last term which is necessary to restore the full ga
invariance. We emphasize that expression~8! is valid for
uniform gap amplitude; otherwise additional terms which
volve derivatives of the amplitude appear.

We now use this Hamiltonian as the starting point in o
discussion of low-energy quasiparticles in the presence
magnetic field. Operationally, the main difficulty encou
tered when solving for the eigenstates of Eq.~7! in the vortex
state is the nontrivial structure of the order-parameter ph
field f~r !, which is constrained by topology to wind by 2p
around the center of each vortex. Ideally, we would want
get rid of this phase to make the problem look as close
possible to the reference solution in which the phase
simply be set to zero. Iff~r ! is a pure gauge, i.e.
¹3¹f~r !50, this is easily accomplished by performing
gauge transformation

H→U21HU, U5S eif(r )/2 0

0 e2 if(r )/2D . ~9!

After this transformation the BdG Hamiltonian becomes

S 1

2m
~ p̂1mvs!

22eF

D0

pF
2 p̂xp̂y

D0

pF
2 p̂xp̂y 2

1

2m
~ p̂2mvs!

21eF
D ,

where
9-4
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vs~r !5
1

mS \

2
¹f2

e

c
AD ~10!

is the conventional superfluid velocity. We recognize t
term containing¹f as the Doppler shift of quasiparticles
a locally uniform superflow.4,5

However, if f~r ! contains vortices the situation is fa
more subtle: the vector field¹f~r !, while still locally uni-
form, acquires aglobal curvature, i.e.,

¹3¹f~r !52p ẑ(
i

d~r2r i !Þ0, ~11!

where $r i% denotes vortex positions. Consequently, in t
vortex state it is no longer possible to eliminate the sup
conducting phase by the above transformation~9! and obtain
a Hamiltonian describing quasiparticles coupled to the
cally uniform superflow. Formally this can be seen from t
fact that in the presence of vortices transformation~9! is not
single valued. In principle such multiple valuedness of
resulting Hamiltonian could be handled by introducing co
pensating branch cuts in the quasiparticle wave functions
practice, however, it is far more desirable to avoid any s
complications in the first place.

We follow FT ~Ref. 12! and perform a ‘‘bipartite’’ singu-
lar gauge transformation,

H→U21HU, U5S eife(r ) 0

0 e2 ifh(r )D , ~12!

wherefe(r ) andfh(r ) are two functions satisfying

fe~r !1fh~r !5f~r !. ~13!

This more general transformation also eliminates the ph
of the order parameter from the pairing term of the Ham
tonian butfe(r ) andfh(r ) now can be chosen in a way th
avoids multiple valuedness and the associated complicati
The way to accomplish this is to assign the singular par
the phase field generated by any given vortex to eitherfe(r )
or fh(r ), but not both as is done by symmetric transform
tion ~9!. Physically, a vortex assigned tofe(r ) will be seen
by electrons and be invisible to holes, while vortex assign
to fh(r ) will be seen by holes and be invisible to electron

In practice we implement the above transformation
dividing vortices into two groupsA andB, positioned at$r i

A%

FIG. 1. Example ofA and B sublattices for the square~a! and
triangular~b! vortex lattice.
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and$r i
B%, respectively~see Fig. 1!. We then define two phas

fields fA(r ) andfB(r ) such that

¹3¹fm~r !52p ẑ(
i

d~r2r i
m!, m5A,B, ~14!

and identify fe5fA and fh5fB . Comparison with Eq.
~11! confirms that this choice offe(r ) and fh(r ) satisfies
the condition~13!, possibly up to some unimportant nonsi
gular phase which can be always transformed away by
conventional gauge transformation~9!.

The transformed Hamiltonian becomes29

S 1

2m
~ p̂1mvs

A!22eF D̂

D̂ 2
1

2m
~ p̂2mvs

B!21eF

D ,

with D̂5D0/2pF
2@ p̂x1m/2(vsx

A 2vsx
B )#@ p̂y1m/2(vsy

A 2vsy
B )#

1(x↔y) and

vs
m5

1

m S \¹fm2
e

c
AD , m5A,B. ~15!

From the perspective of quasiparticlesvs
A and vs

B can be
thought of aseffectivevector potentials acting on electron
and holes, respectively. Corresponding effective magn
field seen by the quasiparticles isBeff

m 52mc/e(¹3vs
m), and

can be expressed using Eqs.~14! and ~15! as

Beff
m 5B2f0ẑ(

i
d~r2r i

m!, m5A,B, ~16!

where B5¹3A is the physical magnetic field andf0
5hc/e is the flux quantum. We observe that quasielectro
and quasiholes propagate in the effective field which cons
of ~almost! uniform physical magnetic fieldB and an array
of opposing delta function ‘‘spikes’’ of unit fluxes associate
with vortex singularities. The latter are different for electro
and holes. As discussed in~Ref. 12! it is desirable to choose
A and B vortices in such a way that the effective magne
field vanishes on average, i.e.,^Beff

m &50. This translates to a
simple requirement that we have precisely one flux spike~of
A and B type! per flux quantum of the physical magnet
field. In that case flux quantization guarantees that the rig
hand side of Eq.~16! vanishes when averaged over a vort
lattice unit cell containing two physical vortices. It also im
plies that there must be equal numbers ofA andB vortices in
the system.

The essential advantage of the choice with vanish
^Beff

m & is thatvs
A andvs

B can be chosen periodically in spac
with periodicity of the magnetic unit cell containing on
electronic flux quantumhc/e. Notice that vector potential o
a field that does not vanish on average can never be peri
in space. Condition̂Beff

m &50 is therefore crucial in this re
spect.

The singular gauge transformation~12! maps the original
Hamiltonian of fermionic quasiparticles in finite magnet
field onto a Hamiltonian which is formally in zero averag
9-5
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field and has no singular phase winding in the off-diago
components. This situation bears some similarity to the fr
tional quantum Hall effect~FQHE!. Here, the composite
fermion30,31 is created by attaching a flux tube to the ele
tron. The details, however, are quite different. In the pres
case it is the superconducting condensate that creates
fictitious ‘‘flux spikes’’ which then on average exactly ne
tralize the physical applied magnetic field. Unlike in FQH
the fluxes are stationary and we are generally in the li
where there is a large number of electrons per flux.

To facilitate further insights into the physics of the low
energy quasiparticles we now linearize the transform
Hamiltonian in the vicinity of one of the four nodes of th
gap function on the Fermi surface. Following Simon a
Lee27 we obtainHN.H01H8, where

H05S vFp̂x vDp̂y

vDp̂y 2vFp̂x
D ~17!

is the free Dirac Hamiltonian and

H85mS vFvsx
A 1

2 vD~vsy
A 2vsy

B !

1
2 vD~vsy

A 2vsy
B ! vFvsx

B D . ~18!

Here vF is the Fermi velocity andvD5D0 /pF denotes the
slope of the gap at the node.

HN can be viewed as a relativistic Hamiltonian for a 211
massless ‘‘Dirac’’ fermion and can be rewritten according
as

HN5vF~ p̂x1ax!t31vD~ p̂y1ay!t11mvFvsx , ~19!

where t i are Pauli matrices,vs5
1
2 (vs

A1vs
B)51/m(\/2¹f

2e/cA) is the conventional superfluid velocity anda
5m/2(vs

A2vs
B)5\/2(¹fA2¹fB) is the internal gauge

field. We observe thatvs couples to the Dirac fermions as
scalar potential whilea couples as avector potential. The
Dirac ‘‘magnetic field’’ b5¹3a produced by this vector po
tential is highly unusual: it consists of delta function spik
located at the vortex centers and it vanishes on average w
the numbers ofA andB vortices are equal. Each spike carri
precisely one half of the conventional electronic flux qua
tum f0 and therefore, although comprising a set of meas
zero in the real space, the flux spikes lead tomaximal
Aharonov-Bohm scattering and have strong effect on
quasiparticle spectra. In particular, note that the cyclot
motion in a Dirac cone arisesentirely throughb5¹3a and
does not include explicitly the actual magnetic fiel
B5¹3A. Such half-flux scattering is a time-reversal inva
ant and cannot lead to Dirac-like~or any!! Landau level
quantization.

B. Internal gauge symmetry

Spectral properties of the continuum linearized Ham
tonian ~17! and ~18! have been analyzed in great detail12,22

and initial investigation of its transport properties has be
presented.25 Here we wish to point out a peculiar property
13450
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the linearized Hamiltonian as regards the choice ofA andB
subsets of vortices, which seems to have been overloo
thus far.

Logic dictates that all measurable quantities must be
dependent of our choice ofA and B. This is because there
should be no physical distinction betweenA andB vortices,
the assignment being completely arbitrary. The freedom
assignment of vortices intoA and B subsets represents a
internal gauge symmetry of the problem closely related
the fact that electrons condense in pairs and therefore v
ces carryhalf of the electronic flux quantumhc/e.

To explicitly test this internal gauge symmetry we ha
diagonalized the linearized Hamiltonian~17! and ~18! using
the Bloch wave technique described in Ref. 12 for the t
distinct choices ofA–B sublattices as illustrated in Fig. 2
We used a unit cell containing 4 vortices in order to be a
to compare the band structures for the two cases directly
the same Brillouin zone. The corresponding band structu
for the isotropic case (aD5vF /vD51) are displayed in Fig.

FIG. 2. Two sublattices, ‘‘ABAB’’ and ‘‘ AABB’’ used to in-
vestigate the internal gauge symmetry of the FT transformat
The shaded region marks the unit cell used in the numerical dia
nalization.

FIG. 3. The band structure~top! and DOS~bottom! of the lin-
earized Hamiltonian with two choices of sublattices:ABAB ~thick
line! andAABB ~thin line!.
9-6
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3. We observe that although qualitatively similar, their d
tailed features aredifferent and so are the associated den
ties of states. A similar situation occurs for other values
Dirac cone anisotropyaD and other symmetries of the vorte
lattice, although the case shown in Fig. 3 is an extreme
ample of the differences. This is a surprising and unexpec
result whose ramifications we do not fully understand at
present time.

We expended considerable effort to verify that the diff
ence between the two band structures is not a trivial arti
of our diagonalization procedures. Rather, it appears to
associated with the pathological;r 21/2 behavior of the
Dirac wave functions in the vicinity of a vortex center, whic
is presumably difficult to mimic using a finite number
Bloch waves which are used as basis states in our nume
diagonalization. We also note that the Aharonov-Bohm sc
tering induced by the half-flux spikes is extraordinar
strong. As shown by Moroz,23 in the case of ordinary Schro¨-
dinger electron it causes a transfer of spectral weight fr
zero energy up to infinite energy.

The problem is clearly inherent only to thelinearized
BdG Hamiltonian. In the following Section we show that n
such problem arises in the lattice version of the BdG Ham
tonian. This is presumably because the spectrum is boun
an
e.
is
d
e

la
as
th
e

13450
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d

e
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e
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~by the tight-binding bandwidth! in this case and therefore a
states are accounted for in the numerical diagonalizat
Also, the lattice spacing acts as a natural short distance
off which regularizes the behavior of the wave functions
the core.

We have also solved the linearized problem by direc
discretizing the Hamiltonian~17! and ~18! on a square grid
in the real space, a technique similar to that described in R
22. The problem persists in this case. We conclude that
problem appears to be caused by a conspiracy between
strong Aharonov-Bohm scattering and the unbounded na
of the Dirac spectrum of Hamiltonian~17! and ~18!. While
we believe that there exists a regularization scheme wh
would resolve the problem within the linearized formulatio
our attempts to construct such a scheme were unsucce
so far. We leave it as an interesting problem for further
vestigation.

C. Lattice formulation

It is straightforward to apply the FT singular gaug
transformation~12! to the lattice BdG Hamiltonian~2!. One
obtains
HN5S 2t(
d

eiVd
A(r )ŝd2eF D0(

d
e2~ i /2!dfĥde

~ i /2!df

D0(
d

e2~ i /2!dfĥd* e~ i /2!df t(
d

e2 iVd
B(r )ŝd1eF

D , ~20!
tu-

ion

it

il-
s

In
where

Vd
m~r !5E

r

r1dS ¹fm2
e

\c
AD •dl, m5A,B, ~21!

and

df5fA2fB . ~22!

We notice that the integrand of Eq.~21! is proportional to the
superfluid velocitiesvs

m defined by Eq.~15! in connection
with the continuum Hamiltonian. Appendix B describes
efficient calculation of these quantities in the vortex lattic

The main benefit of reframing the original problem in th
way is the explicit gauge invariance. In the case of a perio
arrangement of vortices the Hamiltonian is periodic with p
riodicity of a magnetic unit cell containing a pair ofA andB
vortices. In what follows we consider square and triangu
vortex lattices with two physical vortices per unit cell
illustrated in Fig. 1. The vortex center is always placed at
center of the plaquette of the underlying tight-binding lattic
ic
-

r

e
.

Following FT we use the familiar Bloch states as the na
ral basis for finding the eigenvalues ofHN specified above.
In particular we seek the eigensolution of the BdG equat
HNc5ec in the Bloch form

cnk~r !5eik•rFnk~r !5eik•rS Unk~r !

Vnk~r !
D , ~23!

where (Unk ,Vnk) are periodic on the corresponding un
cell, n is a band index andk is a wave vector from the
first Brillouin zone. Bloch wave functionFnk(r ) satisfies
the ‘‘off-diagonal’’ Bloch equationHkFnk5enkFnk , with
the Hamiltonian of the formHk5e2 ik•rHNeik•r. In the
following section we describe specific forms of such Ham
tonians for thes-, p-, and d-wave symmetries and discus
their solutions.

III. NUMERICAL RESULTS

A. s-wave pairing

In the case ofs-wave pairing the operatorĥd takes the
form ĥd5 1

4 , and the Hamiltonian simplifies considerably.
particular, the off-diagonal terms become simplyD0, and
9-7
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HN5S 2t(
d

eiVd
A(r )ŝd2eF D0

D0 t(
d

e2 iVd
B(r )ŝd1eF

D .

~24!

It is interesting to note that in the limit of high quasipartic
energy, e@D0, the off-diagonal terms become irrelevan
and the equations for the electron and hole part of the Nam
wave function decouple. We recover a Hamiltonian desc
ing holes and electrons in a uniform magnetic field pierc
by a lattice of counteracting full Aharonov-Bohm magne
flux tubes with unit flux quantahc/e concentrated at the se
of point cores. The solution is just the familiar Schro¨dinger
Landau levels, not to be confused with Eq.~1!, because the
full electronic flux has no effect on the particle ener
spectrum.32 This result is expected from the outset since
high-energies the quasiparticles behave as normal elec
or holes, which know little about the condensate. These h
energy quasiparticles experience effectively a uniform m
netic field and move along cyclotron orbits. Similar arg
ment holds for any pairing symmetry and we expect Land
level quantization of the quasiparticle spectrum at energ
much larger thanD0.

We have numerically diagonalized the above Hamilton
making use of the standard LAPACK diagonalization ro
tine. We considered a tight-binding lattice of 10310 sites,
which turns out to be sufficiently large to analyze the CdG
regime. The corresponding magnetic fieldB51/(100d2) in
units of unit fluxhc/e per unit area, the superconducting g
D05t and the chemical potentialeF522.2t assuring an ap-
proximately cylindrical Fermi surface. The resulting spe
trum for the Brillouin zone displayed in Fig. 4 and density
states for the square vortex lattice are shown in the Fig
The B50 spectrum has the usual BCS form with a full g
D0. The additional features at 2.1D0 and 2.4D0 are remnants
of the band edge and the van Hove singularity, respectiv
present in the normal-state spectrum.

The magnetic field induces low-energy states within
gap, which become localized in the vortex cores. These
CdGM states13 dispersed into bands. At low energies, t

FIG. 4. Magnetic Brillouin zone for the square vortex latti
with the corresponding notations used in the discussion of the
siparticle band structure.
13450
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bands are very narrow signaling strong concentration of
wave functions at the vortex cores and insignificant overl
among the states at neighboring vortices. This fact justi
the chosen parameters. At energies less, but comparab

a-

FIG. 5. Top: Quasiparticle band spectrum for ans-wave super-
conductor in the presence of the external magnetic fieldB
51/100d2, and D05t,eF522.2t. Bottom: corresponding DOS
Note the bound Caroli-Matricon bands at energies below the
and the Landau levels at energiese@D0.
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D0, the bands are broadened due to increasing ove
among the wave functions. It is interesting to note th
CdGM bound states appear despite the fact that our m
assumes constant order-parameter amplitude and the e
tive core size is the tight-binding lattice spacingd. The small
size of the core causes the lowest bound state to be push
rather high energy and also that only a few bound states
be resolved with our numerical accuracy. For energiee
@D0 the spectrum exhibits Landau level quantization, as
pected from the argument presented above.

It is appropriate to illustrate the pitfall lurking in the guis
of the symmetric transformation widely used in the literatu
At first glance, perhaps the most natural choice for remov
the phases from the off-diagonal terms is setting in Eq.~13!
fe(r )5fh(r )5f(r )/2. Note that in this case the transfo
mation

U5S eif(r )/2 0

0 e2 if(r )/2D ~25!

is not single valued and neither are the resulting wave fu
tions. Nevertheless, ignoring these facts, the Hamiltonian
comes

HN5S 2t(
d

eiVd(r )ŝd2eF D0

D0 t(
d

e2 iVd(r )ŝd1eF

D
~26!

with

Vd~r !5E
r

r1dS 1

2
¹f2

e

\c
AD •dl. ~27!

In the limit of high quasiparticle energies the equations ag
decouple, but now they describe a quasiparticle moving
uniform magnetic field pierced by half electronic flux quan
hc/2e canceling the overall field. These half-fluxes cau
significant Aharonov-Bohm scattering and cannot be
nored. As shown in Ref. 32, the spectrum for this problem
not that of Landau levels; there is a significant dispersi
Again, this argument is independent of the pairing symm
try.

B. p-wave pairing

We follow Matsumoto and Sigrist8 and for simplicity as-
sume that the prototypep-wave superconductor is two d
mensional and has a cylindrical Fermi surface. We furt
assume for simplicity that it is strongly type II, althoug
Sr2RuO4 is not of this type. We restrict the Hamiltonian t
one of the two degenerate states,px1 iy and ignore thepx2 iy
part. Forp wave (px1 ipy) we have

ĥd5H 7 i ŝd if d56 x̂

6 ŝd if d56 ŷ,
~28!

whereŝd u(r )5u(r1d). The Hamiltonian becomes
13450
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HN5S 2t(
d

eiVd
A(r )ŝd2eF D0(

d
eiAd(r )ĥd

D0(
d

e2 iAd(r )ĥd
* t(

d
e2 iVd

B(r )ŝd1eF

D ,

~29!

where the phasesVd
m(r ) are defined by Eq.~21! and

Ad~r !5
1

2Er

r1d

~¹fA2¹fB!•dl. ~30!

We choseeF522.2t which yields approximately circula
Fermi surface with the superconducting gap, to a good ac
racy, uniform everywhere on the Fermi surface. As in t
case ofs wave, the value ofD0 is set equal tot. The resulting
spectrum and density of states are shown in the Fig. 6.

The spectrum again reveals bound vortex states bro
ened into a band. In contrast to thes-wave case we now hav
a state at zero energy. These results are what is expecte
the basis of our understanding of a singlep-wave vortex.7,8

C. d-wave pairing

To model the high-temperature superconductors such
YBa2Cu3O7, we assume that coupling between the Cu
planes is weak and to the leading approximation can be
nored. On the tight-binding lattice thed-wave pairing is
given by D52D0@cos(kxd)2cos(kyd)# which determines the
form of the lattice operator to be:

ĥd5H ŝd if d56 x̂

2 ŝd if d56 ŷ,
~31!

where as beforeŝdu(r )5u(r1d). With this definition ofĥd
the Hamiltonian ford-wave pairing has the same form as E
~29!.

The results presented in this section correspond to
magnetic fieldf0 /(1600d2) for square vortex lattice and
f0 /(1500d2) for triangular vortex lattice wheref05hc/e
54.1373105 TÅ 2 and d is the tight-binding lattice con-
stant. Takingd54 Å , as in YBa2Cu3O7, this corresponds to
physical field of 16 T. The above parameters were chosen
computational efficiency, but we did not see any qualitat
difference down to the fields as low asf0 /(4900d2) corre-
sponding to a magnetic unit cell of 70d370d and a field of
5.2 T. Numerical diagonalization was performed using st
dard ARPACK package routines for sparse matrices. T
algorithm provides a set of low-lying eigenvalues and allo
handling much larger systems than the full diagonalizat
used ins- andp-wave cases.

We find that the quasiparticle wave functions exhibit s
nificant dependence on the symmetry of the vortex latti
For the square lattice, the overlap among the wave functi
corresponding to different nodes is appreciable and there
strong interference effects along theuxu5uyu diagonals, i.e.,
the directions in the real space whereD~k! vanishes. This is
illustrated in Fig. 7. For certain commensurability of th
tight-binding and the square vortex lattices, the interfere
9-9



n
t

and
he
ef-
the

a
ger
py

etic

e

the

n-

on

ric
an
part
c
ura-

s in
t
ters
y
use
rac-

O. VAFEK, A. MELIKYAN, M. FRANZ, AND Z. TEŠANOVIĆ PHYSICAL REVIEW B 63 134509
effects are responsible foropening a gapat Fermi energy,
while for the complementary set of lattices at differe
commensurability factors, the spectra are gapless at
Dirac G point.

FIG. 6. Top: Quasiparticle band spectrum for apx1 iy-wave su-
perconductor in the presence of the external magnetic fieldB
51/100d2, and D05t,eF522.2t. Bottom: The corresponding
DOS.
13450
t
he

Figures 8 and 9 show the low-energy band structures
the low-energy density of states for the square lattice. T
two system sizes shown illustrate the commensurability
fect: if the scalar product between the Fermi vector along
nodal directionkF and the vortex primitive Bravais lattice
vectord is an even integer timesp, the spectrum develops
gap, while it remains gapless if this product is an odd inte
timesp. The same effect is seen at higher Dirac anisotro
aD[t/D0510 ~Figs. 10 and 11! andaD515 ~Figs. 12 and
13!.

These interference effects persist down to low magn
fields where the interference gaps scale as;AB ~see the next
section and Fig. 16!. In the case of a triangular lattice, th
interference effects were greatly reduced~Fig. 14! and no
commensurability dependence was observed. We find
spectrum to be gapless at half filling in this case~see Fig.
15!.

Finally we note that we have explicitly verified that ide
tical spectra~to within numerical accuracy! are found irre-
spective of our assignment of theA–B sublattices. This find-
ing confirms that the choice ofA–B vortices is an internal
gauge symmetry of the problem, as one would expect
general grounds.

IV. DISCUSSION

A. Comparison of continuum and lattice results

The results of Secs. II and III show that, under gene
conditions, the spectrum of linearized Dirac Hamiltoni
provides a reasonable approximation to the low-energy
of the spectrum of the full BdG Hamiltonian. The Dira
nodes are preserved provided that there is no commens

FIG. 7. Local density of states atE50 for the dx22y2-wave
superconductor with square arrangement of vortices. The plot i
units of the tight-binding lattice constantd. Bright regions represen
maxima while the dark regions represent minima. The parame
are eF50,aD5t/D054. The strong overlaps of the low-energ
quasiparticle wave functions along the four nodal directions ca
appreciable interference effects which in turn influence the cha
ter of the quasiparticle spectrum.
9-10
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QUASIPARTICLES AND VORTICES IN . . . PHYSICAL REVIEW B63 134509
tion betweenkF at the node and the primitive vector of th
vortex latticed, and thus the internodal scattering can
neglected. The overall shape of the energy bands is
qualitatively and quantitatively similar for the two cases.

Previous investigations of the linearized Hamiltonian12,22

established that the spectrum becomes quasi-o
dimensional and lines of nodes appear33 in the Brillouin zone
for large Dirac cone anisotropyaD.14, leading to finite
DOS at the Fermi level. Inspection of Fig. 12 suggests t
similar effect takes place in the full BdG Hamiltonian, a
though the one dimensionality is somewhat less pronoun
and is restricted to the immediate vicinity of the node. F
thermore, the lines of nodes never quite form~although the
tendency is clearly visible along the lineG→M ) and the
DOS remains zero at the Fermi level. In the above discus
one needs to bear in mind that the vortex lattice conside
here has been rotated by 45° relative to Ref. 12.

FIG. 8. Low-energy part of the quasiparticle band spectrum
the square vortex lattice. The parameters areeF50,aD54. Top:
example of a gapless spectrum forl 538d. Note that the node atQ
is moved away from the original DiracG point. This effect is a
result of a uniform gauge ‘‘boost’’ associated with the choice
vortex unit cell and disappears for a unit cell with four vortice
Bottom: example of a gapped spectrum withl 540d.
13450
so

e-

t

ed
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n
d

B. Scaling of the energy spectrum

The wave function interference effects among the fo
nodes, which are responsible for opening of the ‘‘interfe
ence’’ gaps visible in some of our spectra, seem to be
contrast with the results obtained for the linearized Ham
tonian by FT~Ref. 12! and more recently by Marinelli, Hal-
perin, and Simon,22 where any internodal interaction is ig
nored and assumed insignificant. Furthermore, Marin
et al. advanced strong analytic arguments that in the pr
ence of particle-hole symmetry the linearized Hamiltoni
retains the Dirac node at theG point and does not develop
gap to orderO( l 21), where l is the magnetic length. We
found that the ‘‘interference’’ gaps in the quasiparticle spe
trum in the case of the square lattice scale with magn
field asAB; l 21. This is shown in Fig. 16. The reason fo
this can be understood from the scaling of the wave fu
tions of the linearized Hamiltonian. We find that there is
r 21/2 divergence in the asymptotic solution of the wave fun
tion around one vortex. This strong concentration of t
wave function around the vortex makes the contribut
from the term quadratic in the superfluid velocity particula
enhanced and, independent of regularizing the wave fu
tions to eliminate the divergences at the core, the contri
tion to the gap is significant. We can then extract the dep
dence of the wave function on the magnetic lengthl just
from dimensional analysis. The wave function must ha
units of length21 thereforec;(rl )21/2. One can see, tha
the matrix element, and consequently the gaps, will in g
eral scale asl 21 for the terms beyond the linearized Ham
tonian. This dependence is extremely difficult to obtain fro
the plane wave expansion of the wave functions.

r

f
.

FIG. 9. Low-energy part of the quasiparticle density of states
a dx22y2-wave superconductor with square arrangement of vorti
for two different interference cases in whichkF•d52np ~solid
line! and kF•d5(2n11)p ~dashed line!, n being an integer,kF

5(p/2,p/2) a Fermi vector at nodal points, andd is the primitive
vortex lattice vector. Notice the appearance of the gap in the den
of states forkF•d52np. Plotted on arbitrary scale, energy is
units of t. The parameters areeF50,aD54.
9-11
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Our numerical results strongly suggest that there i
characteristic oscillation in the gap of the spectrum
pending on the commensurability of the magnetic lattice a
the underlying ionic lattice. This can be interpreted
the internodal scattering. The interaction between the qu
particles at different nodes is responsible for opening
gaps at the Fermi surface. The effect of the intrano
scattering on these gaps on the Fermi surface is, howe
absent since for certain commensurability of the magn
and ionic lattices there is no gap. Thus we conclude t
the effect is purely due to the internodal scattering media
by the terms beyond the linearized Hamiltonian. The se
tivity of the gaps to the commensurability of the ionic a
magnetic lattices is supported by the results with triangu
vortex lattice, in which case the spectrum remains gap
as there is no commensurability between ionic and vor
lattice. This supports the view that the internodal scatt
alone is responsible for the presence of the gap at the F
surface.

FIG. 10. Low-energy part of the quasiparticle band spectrum
the square vortex lattice. The parameters areeF50,aD510. Top:
gapless spectrum forl 538d. Note the increase of the dispersion
the QM direction with increase of the Dirac anisotropyaD . Bot-
tom: gapped spectrum forl 540d.
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C. Comparison with the Doppler-shift-only results
for d-wave gap

One of the key insights gained from the FT transform
tion is that the familiar and often used Doppler sh
approximation4,5 is not sufficient to describe the quasipartic
dynamics in the vortex lattice. While the Doppler shift ente
at the level of a linearized Dirac Hamiltonian as a period
scalar potential, there is also an effectivevectorpotentiala
~Sec. II!, which originates from the global curvature of s
perflow in the presence of vortices. This vector poten
term leads to additional strong magnetic half-flux scatter
across the whole energy spectrum. It is instructive to co
pare our results with those obtained by performing the sy
metric gauge transformation specified by Eq.~26!. As al-
ready pointed out the symmetric transformation isnot single-
valued and the resulting transformed Hamiltonian must
accompanied by the branch cuts imposed on its eigenfu
tions. If one simplyignoresthese branch cuts altogether, th
resulting Hamiltonian contains only the Doppler shift term
and reads

HS5S 2t(
d

eiVd(r )ŝd2eF D0(
d

ĥd

D0(
d

ĥd t(
d

e2 iVd(r )ŝd1eF

D .

~32!
The density of states obtained by diagonalizingHS is

shown in Fig. 17. It is significantly different from the resul
presented in Sec. III. This clearly demonstrates that ther
an essential piece of physics missing from the Hamilton
which contains only the Doppler shift effect, and cons
quently from a frequently encountered semiclassical appr
mation to such a Hamiltonian.4

r

FIG. 11. Low-energy part of the quasiparticle density of sta
for a dx22y2-wave superconductor with square arrangement of v
tices for two different interference cases:l 538d ~dashed! and l
540d ~solid!. Plotted on arbitrary scale, energy is in units oft. The
parameters areeF50,aD510.
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V. CONCLUSIONS

In conclusion, the general utility of the singular gau
transformation for the calculation of the quasiparticle spec
in the vortex state of a general pairing symmetry was sho
Once the tight-binding regularization is introduced, the sp
trum can be computed in principle exactly using the Blo
states as the natural basis, although one is bound to reso
numerical calculation regardless of respecting the s
consistency. In the case ofs- and p-wave symmetry, we
showed that the method applied to an array of vortices le
to results consistent with single vortex solution.

For d-wave pairing, the spectrum is also consistent w
the single vortex solution from the point of view that all th
wave functions are delocalized and no bound states are
served. Additional insight is gained from the exact soluti
with respect to the continuum linearized version of t
theory. For specific commensurability of the tight-bindin
and square vortex lattice the internodal scattering media
by the terms neglected in the linearized theory is found to
significant and of the same order of magnitude as the te

FIG. 12. Low-energy part of the quasiparticle band spectrum
the square vortex lattice. The parameters areeF50,aD515. Top:
gapless spectrum forl 538d. Note the increase of the dispersion
the QM direction with increase of the Dirac anisotropyaD . Bot-
tom: gapped spectrum forl 540d.
13450
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present in the linearized Hamiltonian. This is believed to
brought forth by the diverging accumulation of the Dira
wave functions in the vicinity of the vortex core, cons
quently giving rise to increased significance of the ter
beyond linearization. However, since rather special con
tions must be met for this effect to be significant, it is su
gested that introduction of any perturbing agent such as
order in the position of the vortices or vortex vibrations w

r

FIG. 13. Low-energy part of the quasiparticle density of sta
for andx22y2-wave superconductor with square arrangement of v
tices for two different interference cases:l 538d ~dashed! and l
540d ~solid!. Plotted on arbitrary scale, energy is in units oft. The
parameters areeF50,aD515.

FIG. 14. Displayed is a typical low-energy modulus of a qua
particle wave function for thedx22y2-wave superconductor with
triangular arrangement of vortices. The plot is in units of the tig
binding lattice constantd. Bright regions represent maxima whil
the dark regions represent minima. The parameters areeF50,aD

54. This plot illustrates the reduction of the interference effects
triangular vortex lattice. As a consequence the gap in the quas
ticle spectrum does not emerge as shown in Fig. 15.
9-13
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lead to decoherence of the matrix elements for the interno
scattering and subsequently to the suppression of the in
ference effect. It is also possible, and in our view likely, th
in a fully self consistent solution the vortex array could spo
taneously undergo a slight spatial deformation into an
commensurate state so as to avoid opening gaps in the
siparticle spectrum. In this respect, at chemical potentialeF
50, the results of the theory regularized on the tight bind
lattice agree with the continuum linearized version.

We have uncovered a peculiar property of the Dir
Hamiltonian: it appears to violate the internal gauge symm
try associated with the assignment ofA andB vortices. Al-
though the final resolution of this apparent contradict
awaits further research, we attribute it tentatively to the
usually strong scattering of Aharonov-Bohm half fluxes a
ing in the Dirac Hamiltonian with unbounded excitatio

FIG. 15. Low-energy part of the quasiparticle density of sta
for a d-wave superconductor with triangular arrangement of vo
ces. Plotted on arbitrary scale, energy is in units oft. The param-
eters areeF50,aD54.

FIG. 16. The magnitude of the interference gaps vs magn
length l exhibits l 21 scaling.D050.25t,eF50.
13450
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spectrum. This problem does not occur in the full Bd
Hamiltonian. We argue that the original ‘‘ABAB’’ choice of
the gauge12 is the one most representative of the actual sp
trum because it results in smoothest possible variation
phase in the vortex lattice. This view is also supported by
direct comparison with the spectrum obtained using the
BdG Hamiltonian.

Number of intriguing issues remain to be addressed
particular the effect of static and dynamic disorder in vort
positions on the quasiparticle spectra must be understoo
order to make connections with the experimental data. A
other set of unresolved issues arises in connection with
zero field superconducting state phase-disordered by flu
ating vortex-antivortex pairs.9–11 One would expect that the
‘‘Berry phase’’ term arising from fluctuating vortices woul
influence in a profound way the critical behavior of the HT
system on the verge of becoming a Mott insulator.
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APPENDIX A: LATTICE AND CONTINUUM BDG
HAMILTONIAN IN A GAUGE INVARIANT

FORMULATION

In this Appendix we derive the explicit form of the pai
ing operatorD̂ ~4! which appears in the lattice BdG Hami
tonian of Eq.~2!. We also derive the continuum limit of thi
operator which is used to construct the BdG equations
Sec. II. Throughout our derivation we pay a special attent
to the preservation of local gauge invariance. We start w
the general pairing term on a tight-binding square lattice

s
-

ic

FIG. 17. Comparison of the low-energy part of the quasiparti
density of states for ad-wave superconductor with square arrang
ment of vortices with the DOS obtained from the Doppler-sh
only approximation. Plotted on arbitrary scale, the energy is in u
of t. The parameters areeF50,l 538d,aD54.
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(
^ i , j &

D~ i , j !@u* ~ i !v~ j !1u* ~ j !v~ i !#1H.c.. ~A1!

Here D( i , j ) is a complex pairing potential defined on th
nearest neighbor bonds. Such pairing term generically ar
when t –J and related Hamiltonians, which are thought
represent good microscopic models of various unconv
tional superconductors, are treated within a BCS-type pai
approximation. A conventionals-wave case follows from Eq
~A1! if we replace the sum over nearest-neighbor bonds^ i , j &
with the sum over sitesi. By construction, the pairing term
~A1! is invariant under gauge transformations:

u~ i !→u~ i !eix( i ),

v~ i !→v~ i !e2 ix( i ), ~A2!

D~ i , j !→D~ i , j !eix( i )1 ix( j ),

wherex( i ) is an arbitrary nonsingular function.
The actual form of the complex functionD( i , j )

[D( i , j )exp@iw(i,j)# is obtained as a self-consistent soluti
of the gap equation in some specific gauge. We denote
‘‘amplitude’’ and phase byD( i , j ) andw( i , j ), respectively.
For convenience, the ‘‘amplitude’’D( i , j ) is defined so that
it already contains the information about the relative orb
state of a superconductor. For example, in a puredx22y2

superconductor and at zero field,D( i , j )52(1)D for ^ i , j &
in the x(y) direction, whereD is a complex constant. Fur
thermore, for the purposes of this paper, we assume tha
actual amplitude uD( i , j )u can be well approximated by
uniform ~real! constantD0, independent of̂ i , j &. This as-
sumption is valid in the space between vortices but it clea
breaks down inside a vortex core. At low fields,Hc1!H
!Hc2, where the intervortex separation is much larger th
the core size we expect any effect of the inhomogene
amplitude to be negligibly small.

The essential information about vortex configurations a
self-consistent solution at a finite magnetic field is no
stored in the bond phasew( i , j ). Near a plaquette containin
a vortexw( i , j ) changes rapidly from bond to bond. Far fro
vortex cores, however, we expectw( i , j ) to be some
smoothly varying function undergoing only small chang
between neighboring bonds. Consequently, in the regions
away from vortex cores we can replace thebond phase
w( i , j ) by a suitably chosensite phase variablesf( i ). The
natural choice for thef( i )’s is a simple average:

eif( i )5
1

4 (
s

eiw( i ,i 1s), ~A3!

where the sum overs runs over four bonds containing th
site i. With this choice off( i )’s we can replace:

eiw( i , j )→ei [f( i )1f( j )]/2. ~A4!

Note that, given the choice of site variables~A3!, Eq. ~A4! is
an approximation, accurate up to second-order lattice der
tives of f( i )’s. We could use a more elaborate represen
tion of w( i , j )’s in terms off( i )’s so that Eq.~A4! is satis-
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fied to even higher degree of accuracy. This, however
entirely unnecessary in the present context, since our ove
accuracy is precisely at the level represented by Eqs.~A3!
and ~A4!. The replacement~A4! simplifies the pairing term
of the lattice BdG Hamiltonian and reproduces the form
the pairing operatorD̂ ~4! used in our lattice Hamiltonian o
Eq. ~2!.

The above replacement of bond phasesw( i , j )’s with site
phasesf( i )’s is also a necessary first step in our derivati
of the continuum BdG Hamiltonian. Since bothu( i ) and
v( i ) appearing in Eq.~A1! are site fields we expect that th
continuum pairing term in unconventional superconduct
will involve u(r ) andv(r ) acted upon by somelocal opera-
tor. To determine the explicit form of this operator we fir
combine Eqs.~A1! and ~A3! into:

1

2 (
i

eif( i )(
s

D~ i ,i 1s!eiw( i ,i 1s)2 if( i )

3@u* ~ i !v~ i 1s!1u* ~ i 1s!v~ i !#1H.c.,

~A5!

where we have transformed the summation over bonds
the summation over sites. We now usew( i ,i 1s)5 1

2 f( i )
1 1

2 f( i 1s)1O(d2f), Eq. ~A4! whered2 denotes second
order lattice derivatives which are unimportant in the co
tinuum limit. Also, from now on we restrict our attention t
the most interesting case, a puredx22y2 superconductor. This
allows us to rewrite Eq.~A5! as:

1

2 (
i

D~ i !$2eif( i 1 x̂)/22 if( i )/2@u* ~ i !v~ i 1 x̂!1u* ~ i 1 x̂!v~ i !#

2eif( i 2 x̂)/22 if( i )/2@u* ~ i !v~ i 2 x̂!1u* ~ i 2 x̂!v~ i !#

1eif( i 1 ŷ)/22 if( i )/2@u* ~ i !v~ i 1 ŷ!1u* ~ i 1 ŷ!v~ i !#

1eif( i 2 ŷ)/22 if( i )/2@u* ~ i !v~ i 2 ŷ!

1u* ~ i 2 ŷ!v~ i !#%1H.c., ~A6!

whereD( i )[D exp@if(i)# and x̂,ŷ are unit displacements o
the square lattice. Next, we expand

eif„i 6 x̂( ŷ)…/22 if( i )/2'11
i

2
$f„i 6 x̂~ ŷ!…2f~ i !%

2
1

8
$f„i 6 x̂~ ŷ!…2f~ i !%21•••, ~A7!

make a transition to continuum variablesu( i )→au(r ),
v( i )→av(r ), D( i )→D(r ), f( i )→f(r ), ( i→*(d2r /a2),
and use the standard definitions of lattice derivatives to
nally obtain the continuum version of the pairing term:
9-15
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2a2

2 E d2r H u* ~r !D~r !F S ]x1
i

2
„]xf~r !…D

3S ]x1
i

2
„]xf~r !…D v~r !G1F S ]x1

i

2
„]xf~r !…D

3S ]x1
i

2
„]xf~r !…Du* ~r !GD~r !v~r !2~x→y!J 1H.c.

~A8!

In going from Eqs. ~A6! to ~A8! one encounters som
lengthy but straightforward algebra. We found that deco
posing the sum over nearest neighbors in Eq.~A6! into s-, p-,
andd-wave components relative to sitei facilitates the book-
keeping and makes the computations rather efficient. All
relevant derivatives up to and including second order
kept and accounted for. Higher-order derivatives do not
pear reflecting of our original starting point of the neare
neighbor pairing of only Eq.~A1!. Note thata is the lattice
spacing in our model.

The form of the local continuum pairing operator
now apparent. We can viewD(r )5D exp@if(r )# as repre-
senting thecenter-of-massportion of the gap function. The
original nonlocality, arising from therelative dx22y2

character of the pairing, manifests itself through ‘‘covarian
derivatives ] r1 i /2@] rf(r )#, where f(r ) is precisely the
phase ofD(r ). Note that Eq.~A8! is explicitly invariant
under the continuum version of local gauge transform
tions: u(r )→u(r )exp@ix(r )#, v(r )→v(r )exp@2ix(r )#,
D(r )→D(r )exp@2ix(r )#.

The off-diagonal elements of the Hamiltonian matrix a
pearing in the continuum BdG equations are obtained
taking the functional derivatives of Eq.~A8! with respect to
u* (r ) andv(r ). This results in:

2a2$]x ,$]x ,D~r !%%1a2$]y ,$]y ,D~r !%%

2
i

4
D~r !a2@~]x

2f!2~]y
2f!#, ~A9!

and its Hermitian conjugate. Here we used the stand
notation: $â,b̂%[ 1

2 (âb̂1b̂â). In performing the functional
derivatives we have exploited the fact that all spa
dependence ofD(r ) comes through its phase, i.e
] rD(r )5 iD(r )] rf(r ), in line with our previous assump
tions.

While our derivation starts with a familiar model of th
lattice d-wave superconductor~A1! and naturally describe
the dx22y2 state in actual continuum calculations it is ofte
more convenient to consider adxy superconductor, so tha
either anx or a y axis coincides with a particular nodal d
rection, as in Sec. II. We can obtain the pairing term in
continuum BdG Hamiltonian of adxy superconductor by
simply rotating our result~A8! by 45°:
13450
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2a2

2 E d2r H u* ~r !D~r !F S ]x1
i

2
„]xf~r !…D

3S ]y1
i

2
„]yf~r !…D v~r !G1F S ]x1

i

2
„]xf~r !…D

3S ]y1
i

2
„]yf~r !…Du* ~r !GD~r !v~r !1~x→y!J 1H.c.

~A10!

Similarly, by taking functional derivatives we obtain th
off-diagonal matrix elements of the continuum BdG Ham
tonian operator:

2a2$]x $]y ,D~r !%%2a2$]y ,$]x ,D~r !%%

2
i

2
D~r !a2~]x]yf!, ~A11!

and its Hermitian conjugate, which is precisely the e
pression used in Sec. II, provided that we identifypF

22 with
2a2.

The above derivation can be easily repeated for ap-wave
lattice Hamiltonian and is in fact only simpler. We therefo
do not give it explicitly but trust that thed-wave derivation
provides a sufficiently detailed prescription. Similarly, o
derivation is straightforwardly generalized to other unco
ventional forms of superconducting pairing.

APPENDIX B: PHASE FACTORS AND SUPERFLUID
VELOCITIES

In this Appendix we derive expressions for superfluid v
locities vs

A and vs
B which enter both continuum and lattic

versions of the BdG Hamiltonians in consideration in Sec.
We start by taking the curl of Eq.~15!,

¹3vs
m5

2p\

m F ẑ(
i

d~r2r i
m!2B/f0G , ~B1!

wheref05hc/e is the flux quantum,B5¹3A, and we have
used Eq.~14!. In the intermediate field regime the magne
field distribution is to an excellent approximation describ
by the conventional London equation,14

B2l2¹2B5
1

2
f0ẑ(

i
d~r2r i !, ~B2!

wherel is the London penetration depth and the sum n
runs over all vortex positions. The London equation is eas
solved by going over to the Fourier space, obtainingB(r )
5(2p)22*d2keik•rBk with

Bk5
1

2
f0ẑ

(
i

e2 ik•r i

11l2k2
. ~B3!

If we now Fourier transform Eq.~B1! we obtain
9-16
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ik3vsk
m 5

2p\

m F ẑ(
i

e2 ik•r i2Bk /f0G . ~B4!

To solve forvsk
m we take a vector product of both sides wi

ik. After substituting forBk and some easy algebra we m
express

vs
A5

2p\

m E d2k

~2p!2

ik3 ẑ

k2 S Ak2
1

2

Ak1Bk

11l2k2D eik•r,

~B5!

and a similar expression forvs
B with Ak andBk interchanged.

Here we have defined

Ak5(
i

e2 ik•r i
A
, Bk5(

i
e2 ik•r i

B
.

Equation~B5! gives an explicit formula forvs
m which can be

evaluated for arbitrary distribution of vortices. For strong
13450
type-II materials in fields well aboveHc1 Eq. ~B5! may be
simplified further by rewriting the expression in the bracke
as

Ak

l2k2

11l2k2 2
1

2

Bk2Ak

11l2k2
,

and noting that sincel2k2;l2/d2@1 (d being intervortex
distance!, the second term can be safely neglected. We t
obtain

vs
m5

2p\l2

m E d2k

~2p!2

ik3 ẑ

11l2k2 (
i

eik•(r2r i
m), ~B6!

a formula used in Ref. 12 which is valid for all practic
purposes. Phase factorsV andA entering the lattice Hamil-
tonians of Sec. III may be obtained by simple line integr
of Eq. ~B6!.
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