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Quasiparticles and vortices in unconventional superconductors
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Quasiparticles in the vortex lattice of strongly type-ll superconductors are investigated by means of a
singular gauge transformation applied to the tight-binding lattice Bogoliubov-de Gennes Hamiltonian. We
present a detailed derivation of the gauge invariant effective low-energy Hamiltonian for the quasiparticle-
vortex system and show how the physics of the “Doppler shift” and “Berry phase” can be incorporated at the
Hamiltonian level by working in the singular gauge. In particular, we show that the “Berry phase” effect
manifests itself in the effective Hamiltonian through a half-flux Aharonov-Bohm scattering of quasiparticles
off vortices and stress the important role that this effect plays in the quasiparticle dynamics. Full numerical
solutions in the regime of intermediate fields; <B<H,, are presented for model superconductors sith
p-, andd-wave symmetries and with square and triangular vortex latticess-Famd p-wave cases we obtain
low-energy bound states in the core, in agreement with the existing results. Fbnénee case only extended
quasiparticle states exist. We investigate in detail the nature of these extended states and provide comparison
to the previous results within linearized “Dirac fermion” model. We also investigate internodal interference
effects when vortex and ionic lattices have a high degree of commensurability and discuss various specific
choices for the singular gauge transformation.
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[. INTRODUCTION played by the low-lying quasiparticle excitations in the
mixed (or vorteX state. All HTS are extreme type-Il systems
In conventional §-wave superconductors the single- and have a huge mixed phase extending from the lower criti-
particle fermionic excitations(quasiparticles are fully  cal fieldH.; which is in the range of 10-100 G to the upper
gapped everywhere on the Fermi surface and the quasipartitical field H., which can be as large as 100—-200 T. We
cle density of states vanishes below a specific energy. Thisuspect that in this large region the interactions between qua-
has profound consequences for the traditional phenomenosiparticles and vortices play the essential role in defining the
ogy of superconductors. The gap in the fermionic spectrumrmature of thermodynamic and transport properties.
leads to the well-known activated BCS form of the quasipar- Such thermodynamic and transport properties are ex-
ticle contribution to various thermodynamic and transportpected to be rather different for distinct classes of unconven-
properties. Furthermore, even as one moves beyond th®nal superconductors. This difference stems from a com-
mean-field BCS theory, the absence of low-energy quasipaplex motion of the quasiparticles under the combined effects
ticles in the superconducting state allows one to rewrite th@f both the magnetic fiel@ and the local drift produced by
problem of superconducting fluctuations as a “bosonic” chiral supercurrents of the vortex state. For example, in HTS
theory, with the role of bosons played by fluctuating Coopetthed,z_,2-wave nature of the gap function results in its van-
pairs, after integrating out “fermionic” degrees of freedom, ishing along nodal directions. Along these nodal directions
i.e., the quasiparticles. In high-temperature superconductotbe pair breaking induced by supercurrents has a particularly
(HTS), however, everything is different: the cuprates appeastrong effect. On the other hand, in unconventional super-
to be accurately described by the._,.-wave order conductors with the,.;, pairing, SfRuQ, being a possible
parametef, consequently allowing quasiparticle excitations candidaté the spectrum is fully gapped but the order param-
at arbitrary low-energy near the nodal points. These low<eter is chiral even in the absence of external magnetic field.
energy fermionic excitations appear to govern much of theThis leads to two different types of vortices for two different
thermodynamics and transport in the HTS materials. We aréeld orientations’®
thus handed a new intellectual challerfgere must devise Still, in all these different situations, the quantum dynam-
methods that can incorporate the low-energy fermionic exciics of quasiparticles in the vortex state contains two essential
tations into the phenomenology of superconductors, botltommon ingredientdrirst, there is a purely classical effect
within the mean-field BCS-like theory and beyond. of a Doppler shift® a quasiparticle energy is shifted by a
This challenge is not trivial and has many diverse compodocally drifting superfluid, E(k) —E(k) —7#vg(r) -k, where
nents: low-energy quasiparticles are scattered by impuritieg(r) is the local superfluid velocity(r) contains informa-
in unusual ways, depending on the low-energy density ofion about vortex configurations allowing us to connect qua-
states® they interact with external perturbations in ways notsiparticle spectral properties to various cooperative phenom-
encountered in conventional superconductors and these intezna in the system of vorticds!! The Doppler shift effect is
actions give rise to unusual phenoméniathe low-energy  not peculiar to the vortex state. It also occurs in the Meissner
quasiparticles are expected to qualitatively affect the quanphasé and is generally present whenever a quasiparticle ex-
tum critical behavior of HTS. Among many aspects of thisperiences a locally uniform drift in the superfluid velocity.
quasiparticle phenomenology a particularly prominent role isSecondthere is also a purely quantum effect which is inti-

0163-1829/2001/633)/13450917)/$20.00 63 134509-1 ©2001 The American Physical Society



O. VAFEK, A. MELIKYAN, M. FRANZ, AND Z. TESANOVIC PHYSICAL REVIEW B 63 134509

mately tied to the vortex state: as a quasiparticle circle®f the CdGMs-wave solution. We expect the above qualita-
around a vortex while maintaining its quantum coherencetive results to hold for all unconventional superconductors
the accumulated phase through a Doppler shiftis. This ~ and within confines of the simple BdG equations, as long as
implies that there must be aadditional compensating=«  there are nodes in the gap.
contribution to the phase on top of the one due to the Dop- A particularly important issue in this context is the nature
pler shift!?2 The required* 7 contribution is supplied by a of the quasiparticle excitations at very low fields, in the pres-
“Berry phase” effect and can be built in at the Hamiltonian ence of a vortex lattice. This is a challenge since the spec-
level as a half-flux Aharonov-Bohm scattering of quasiparti-trum starts as gapless at zero field and at issue is the inter-
cles by vortices? This interplay between the classi¢@lop-  action of these low-lying quasiparticles with the vortex
pler shify and purely quantum effedt'Berry phase”) is lattice. This problem has been addressed via a numerical
what makes the problem of quasiparticle-vortex interactiorsolution of the tight-binding modeél, a numerical diagonal-
particularly fascinating. ization of the continuum mod® and a semiclassical
Let us briefly review what is already known about the analysis® Gorkov, Schrieffef’ and, in a somewhat different
subject. The initial theoretical investigations of gapped andcontext, AndersoR’ predicted that the quasiparticle spec-
gapless superconductors in the vortex state were directdsum is described by a Dirac-like Landau quantization of
along rather separate lines. The low-energy quasiparticlénergy levels
spectrum of ars-wave superconductor in the mixed state was
originally studied by Caroli, de Gennes, and Matricon
(CgGM){3 within thg framework of the Bogoliubov-de En=*hopyn, n=01,..., @
Gennes equation.Their solution yields well-known bound

states in the vortex cores. These stateslacalizedin the  where w,,= 2w Ay/%, w.=eB/mc is the cyclotron fre-
core and have an exponential envelope the scale of which iguency andA, is the maximum superconducting gap. The
set by the BCS coherence length. The low-energy end of thjirac-like spectrum of Landau levels arises from the linear
spectrum is given by, ~ u(AJ/Eg), wheren=1/2,3/2. ..,  dispersion of nodal quasiparticles at zero field. This argu-
A, is the overall BCS gap anflr is the Fermi energy. This mentation neglects the effect of spatially varying supercur-
solution can be relatively straightforwardly generalized to arents in the vortex array which were shown to strongly mix
fully gapped chiral p-wave superconductor. In this case theindividual Landau levelé!
low-energy quasiparticle spectrum also displays bound vor- Recently, Franz and Tasovic(FT)*? pointed out that the
tex core states, whose energy quantization is, howevelow-energy quasiparticle states ofdge_,2-wave supercon-
modified relative to its-wave counterpart, precisely becauseductor in a vortex state are most naturally described by
of the chiral character of @, j,-wave superconductor and strongly dispersive Bloch waves. This conclusion was based
the ensuing shift in the angular momentum. For example, then the particular choice of a singular gauge transformation,
low-energy spectrum of quasiparticles in the singly quanwhich allows for the treatment of the uniform external mag-
tized vortex of thep,.;,-wave superconductor, possesses anetic field and the effects produced by chiral supercurrents
state at exactly zero enerdy. on equal footing. The starting point was the Bogoliubov-de
By comparison, the spectrum ofgapless ewave super- GennesBdG) equation linearized around a Dirac node. By
conductor in the mixed phase has become the subject of asmploying the singular gauge transformation FT mapped the
active debate only relatively recently, fueled by the interesbriginal problem onto that of a Dirac Hamiltonian in periodic
in HTS. Naturally, the first question that arises is what is thevector and scalar potentials, comprised of an array of an
analog of the CdGM solution for a single vortex? It is im- effective magnetic Aharonov-Bohm half fluxes, and with a
portant to realize here that the situation irda_,2 super-  vanishing overall magnetic flux per unit cell. The FT gauge
conductor isqualitatively differentfrom the classicswave  transformation allows use of standard band structure and
case*® when the pairing state has a finite angular momentunother zero-field techniques to study the quasiparticle dynam-
and is not a global eigenstate of the angular momeritya ics in the presence of vortex arrays, ordered or disordered. Its
dy2_y2 superconductor is an equal admixture lof=+1 utility was illustrated in Ref. 12 through computation of the
state$, the problem of fermionic excitations in the caran-  quasiparticle spectra of a square vortex lattice. A remarkable
not be reduced to a collection of decoupled one-dimensionafeature of these spectra is the persistence of the massless
(1D) dimensional eigenvalue equations for each angular mobirac node at finite fields and the appearance of the “lines of
mentum channel, the key feature of the CdGM solution. Innodes” in the gap at large values of the anisotropy ratio
stead, all channels remain coupled and one must sofu a ap=vg/v,, Starting atep=15. Furthermore, the FT trans-
2D problem. The fully self-consistent numerical solution of formation directly reveals that a quasiparticle moving coher-
the BAG equatior’$'*® reveals the most important physical ently through a vortex array experiences not only a Doppler
consequence of this qualitatively new situation: the vortexshift caused by circulating supercurrents but alsoaddi-
core quasiparticle states in a putg 2 superconductor are tional, “Berry phase” effect: the latter is a purely quantum
delocalizedwith wave functions extended along the nodal mechanical phenomenon and is absent from a typical semi-
directions. The low-lying states have a continuous spectrunslassical approach. Interestingly, the cyclotron motion in
and, in a broad range of parameters, do not seem to exhibiirac cones i€ntirely caused by such “Berry phase” effect,
strong resonant behavior. Obviously, this is in sharp contrasivhich takes the form of a half-flux Aharonov-Bohm scatter-
with a discrete spectrum and true bound quasiparticle statésg of quasiparticles by vortices, and daast explicitly in-
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volve the external magnetic field. It is for this reason that thegence to the same final result or whether they actually con-
Dirac-like Landau level quantization is absent from the exacverge to a different answer. This will be discussed again
guasiparticle spectrum. shortly. This problem appears to be a conspiracy between the
Further progress was achieved by Marinelli, Halperin, andstrong Aharonov-Bohm scattering from magnetic half fluxes
Simorf2 who presented a detailed perturbative analysis of thavhich tends to push some states of the unperturbed Hamil-
linearized Hamiltonian of Ref. 12. They showed that thetonian to very high energies and the unbounded nature of the
presence of the particle-hole symmetry is of key importanceD'raC s_pectrum. Itis an mteregtmg issue for future study h_ow
in determining the nature of the Spectrum of |0w-energy exlo QGVISG the cutoff .|n the rFT'CIprocaI lattice SUrT:IS of the I!n-
citations. If the vortices are arranged in a Bravais lattice, theyg@rized problem which is tailor made for a particular choice
showed that, to all orders in perturbation theory, the Dirac®f the singular gauge transformation. In this paper, we cir-
node is preserved at finite fields, i.e., the quasiparticle specumvent this problem entirely by regularizing the original
trum remains gapless at tHe point. This result masks in- Hamlltonlan.on a square Iattlce_. '_I’he t|ght—b|nd|ng formula-
tense mixing of individual basis vectof® the case of Ref. tion regularizes the strong mixing of the basis vectors
22 these are Dirac plane wayeicluding strong mixing of  through the introduction of an upper and a lower bound on
states far removed in energy. The continuing presence of tH&€ SP?C”ZUama thus prohibiting the shift of the spectral weight
massless Dirac node at thie point after the application of to |r_1f|n|ty. ThIS immediately solves our problem: d_lfferent
the external field is thus not due to the lack of scattering°hoices of singular gauge transformation now rapidly con-
which is actually remarkably strong. Rather, it is dictated byVerge to identical spectra, as they should. The low-energy
symmetry: Marinelli et al. demonstrated that the crucial Part of the spectrum compares best with the original FT
agent responsible for the presence of the Dirac node is thﬁgansformatloﬁ2 of the Ilneanzed.HamlIt'oman, which might
particle-hole symmetry, present at every point in the Br"_have been expected based on its having the smoothest rela-
louin zone. The fact that it is the particle-hole symmetrytive phase between particles and holes. _
rather than the lack of scattering that protects the Dirac node S€cond, the lattice formulation allows us to study what, if
is clearly revealed in the related problem of a Scimger &Ny, role is played bynternodalscattering which is simply
electron in the presence of a single Aharonov-Bohm halfhot a pqrt of the linearized descrlp_tlon. \Ne find that under
flux, where the density of states acquire8 function deple- SPecialcircumstances, when there is a high degree of com-
tion atk=0,% thus shifting part of the spectral weight to mensurability between the ionic and vortex Iattlc_es, the_ in-
infinity due to remarkably strong scattering. The authors of€rference between the nodes can lead to scattering which is
Ref. 22 also corrected Ref. 12 by showing that the “lines ofSurprisingly strong {- VB) and might be observable in HTS.
nodes” must actually be the “lines of near nodes” since trueSuch scattering is responsible for opening a gap at the Fermi
zeros of the energy away from Dirac node are prohibited orfurface even in the case of a Bravais vortex lattice. In a
symmetry grounds. Still, these “lines” will act as true nodes typical situation, however, when the two lattices have a low
in all realistic circumstances, due to extraordinarily smalldegree of commensurability or are of different symmetry and
excitation energies. particularly vyhen weak therm_al or quenched Q|sorder is in-
Marinelli et al. also showed that, if the particle-hole sym- cluded, the internodal scattering effectively disappears. We
metry is broken, for example by introducing a non-Bravaisd'agonahze the tight-binding Har_mltonlan numerically for '
vortex lattice with broken inversion symmetry and four vor- Various order parameter symmetries and both square and tri-
tices in the unit cell, then true lines of nodes can develop foRngular vortex lattices. Our treatment provides an access to
values of anisotropy ratio starting already @§=5. They the fantlre quas!partlcle energy spectrum_toggther W|th dis-
concluded, that the density of states is finite at zero energpl@ying the utility of the FT transformation in analyzing
and the semiclassical results of Kopnin and Voldimight ~ Japped superconductafesg.s- or py.y- wave), which area
apply down to zero energy. For a non-Bravais lattice withProri inaccessible through_the linearization. We are there-
two vortices per unit cell they found that the quasiparticlefore able to present a unified treatment of a general, both
spectrum can become gapped. conyenuon_al and unconventional, strongly type-Il supercon-
Very recently Y& discussed transport properties of the ducting pairing in the vortex state.
quasiparticles described by the Dirac Hamiltonian of Ref. 12
_and pointed out some intriguing effects th_at may take p_Iace Il. BDG HAMILTONIAN AND THE SINGULAR GAUGE
in rangom vortex arrays. Also, AI'FIand, S_|mons, and_ Zirn- TRANSFORMATION: LOW ENERGY PHYSICS
bauer myesuggted genera! properties of disordered Dirac op- OF QUASIPARTICLES AND VORTICES
erators, including vortex disordéf.
In this paper we extend the original analysis which was Because of the nonlocality inherent in the superconduct-
based solely on theontinuumdescription by introducing a ors with higher angular momentum pairing, their Hamilto-
tight-binding “regularization” of the full lattice BAG Hamil- nians are most naturally formulated on a discrete real space
tonian, to which we then apply the FT gauge transformationlattice representing the underlying crystalline lattice of the
Our motivation is twofold: First, we have found by explicit compound in question. Quite generically, the simplest lattice
numerical computations that different choices of singularHamiltonian which allows pairing to occur is, p-, and
gauge transformation result in spectra which, while rathed-wave channels is the tight-binding model with the on-site
similar, are not the same. Within our numerical accuracy weor nearest neighbor attraction between electrons. Conven-
could not tell whether the spectra have a very slow convertional mean-field Hartree-Fock-Bogoliubov decoupling of
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the interaction term then leads to the BCS-type lattice Hamilan unconventional superconductor differ most dramatically
tonian of the form from its swave counterpart. Under these circumstances it is
desirable to consider a continuum version of the BdG Hamil-
tonian. For ad-wave superconductor such a continuum
, (2)  Hamiltonian was derived by Simon and L&elt turns out,
however, that as written in Ref. 27 this Hamiltonian is not
where gauge invariant® At fault is the off-diagonal term represent-
ing the d-wave pairing operator, which does not transform
et efi(e/hc)f:“sA(r)-dI%ﬁ_ « 3 Eroperly under the W) gauge group. In Appendix A we
= ave derived the gauge invariant form of this pairing opera-
tor for a pured,2_,2 superconductor and have outlined how
and such a derivation can be carried out for other unconventional
pairing states. The continuum Hamiltonian reads:

>
[

A:Aozﬁ el $()123, gl ()12, 4)

(7)

He A
The sums are over nearest neighbors and on the square lattice A* _ﬂ; ) ’
5=+x,%y; A(r) is the vector potential associated with the

external magnetic fiel®, e is Fermi energy, an&,; isan  with H,=1/2m(p—e/cA)?— e andp=—iAV the momen-
operator which is defined by its action on a general functiorium operator. If we follow the convention and choose the
u(r) so thatgﬁu(r):u(rJr ). The operator;yg depends on coo_rdinate axes in_the direction of gap nodes ¢hege in-
the type of pairing as discussed later. variant dwave pairing operator has the form
A quasiparticl$ wave function is a rank two spinor in the ]
- R ~ oA i ..
ey acew (N=LUn.v(n). and obeys the BAS R p 2, (b, A}z AN (Bbyd),  (®
Hi= €. (5)  where pg is the Fermi momentum¢ is the phase of the
superconducting gap\(r), and curly brackets represent
Besides relying on conventional mean-field BCS decousymmetrization{a,b}=(1/2)(ab+ba). The above pairing
pling, Hamiltonian(2) contains two additional approxima- operator resembles the familiar Simon-Lee form except for
tions. First, we have assumed that the order-parameter maghe last term which is necessary to restore the full gauge
nitude is constant and equal & everywhere in space. This invariance. We emphasize that expressi is valid for
is essentially the London linit which is expected to be uniform gap amplitude; otherwise additional terms which in-
valid in the regime of low fieldsB<H,, when vortex cores volve derivatives of the amplitude appear.
comprise negligible fraction of the sample. Second, we ap- We now use this Hamiltonian as the starting point in our
proximated the phase of the order paramelg(r), which is  discussion of low-energy quasiparticles in the presence of
a nonlocal field associated withkmnd between two neigh-  magnetic field. Operationally, the main difficulty encoun-
bor sites, by the average of the phases associated with thered when solving for the eigenstates of Ef).in the vortex
attached sites, state is the nontrivial structure of the order-parameter phase
1 field ¢(r), which is constrained by topology to wind byr2
= around the center of each vortex. Ideally, we would want to
Pal)— 2[¢(r)+¢(r+®]. © get rid of this phase to make the problem look as close as
. S . - .possible to the reference solution in which the phase can
,-lA—hIS ;jeplacement is dlscbussed in more de;an in the '?‘ppeng'gimply be set to zero. If4(r) is a pure gauge, ie.
and we expect It to be very accurate far away from t e.VquS(r):O, this is easily accomplished by performing a
vortex cores where the phase varies slowly, but inadequate i ;
L . ! auge transformation
the core. Hamiltoniari2) is therefore useful when consider-

ing quasiparticle properties in a dilute vortex lattice, which is Qi b(1)12 0

the main focus of this work. To study properties of the core HUYHU. U= _ (9)
. .. i ) 0 —ig(r)2] -

region one must explicitly treat the order parameter ampli e

tude variation and nonlocality of its phase as done, e.g., in ) ) o
Refs. 15 and 17. Surprisingly, however, we shall see belov{ter this transformation the BdG Hamiltonian becomes
that even the present approximation yields results for the

core region that are qualitatively correct. 1 . Ao~
g g y 2 (p+ mvs)z_ €F —2PxPy
m PE
A. Continuum formulation A d
0~ - o1 2
In many cases our main interest is directed at the long DTprpy o (P~ MVs) "+ €f

wavelength and low-energy or low-temperature properties. It
is precisely in this respect that the quasiparticle excitations invhere
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® 0 @ magnetic unitcell O and{r2}, respectivelysee Fig. 1 We then define two phase
| : STy fields ¢A(r) and ¢g(r) such that
_______ S 3 ) P O S ¢
i1 | Y 9B -
o o' | e AN VXV, (r)=2mz2, 8(r—r), p=AB, (14
. i : @A § e '
------- o o O{ ] O and identify ¢o= o and ¢,= ¢dg. Comparison with Eg.
§ § T | (11) confirms that this choice ob¢(r) and ¢y(r) satisfies
o——o ——o o’ the condition(13), possibly up to some unimportant nonsin-
@ () gular phase which can be always transformed away by the
conventional gauge transformati¢®).
FIG. 1. Example ofA and B sublattices for the squai@ and The transformed Hamiltonian becori®s
triangular(b) vortex lattice.
1o .
1/4 e ﬁ(p"_ mvg)“— eg D
vs(r)=a(§V¢— EA) (10) ,

| | o | 5 S e

is the conventional superfluid velocity. We recognize the 2m

term containingV¢ as the Doppler shift of quasiparticles in .~ . ~ .

a locally uniform superflot:® with D= Ag/2pE[ pyt+mM/2(v&—vS) I[Py +m2(vs,—v3)]
However, if ¢(r) contains vortices the situation is far T (x—Y) and

more subtle: the vector field¢(r), while still locally uni- 1 e
form, acquires alobal curvature, i.e., Vg=a<ﬁv¢ﬂ_ EA)’ u=AB. (15)
vaq;(r):zwgz S(r—r,)#0, (11 From the perspective of quasiparticleé and vsB can be
i

thought of aseffectivevector potentials acting on electrons
where {r;} denotes vortex positions. Consequently, in thea.md holes, respectlvgly. Qorrespcindlng effect|v§ magnetic
vortex state it is no longer possible to eliminate the superfIGId seen by the quas_lpartlclesBSﬁ— —mde(Vxvg), and
conducting phase by the above transformat®@rand obtain  can Pe expressed using E¢s4) and (15) as
a Hamiltonian describing quasiparticles coupled to the lo-
cally uniform superflow. Formally this can be seen from the BL=B— ¢022 S(r—r#), u=AB, (16
fact that in the presence of vortices transformati®nis not :
single valued. In principle such multiple valuedness of the,hare B=VXA is the physical magnetic field ane,
resulting Hamiltonian could be handled by introducing com-_1, /e i the flux quantum. We observe that quasielectrons
pensating branch cuts in the quasiparticle wave functions. 1a,q qasjholes propagate in the effective field which consists
practice, howe_ver, itis far more desirable to avoid any suchy (almost uniform physical magnetic fielé and an array
complications in the first place. o of opposing delta function “spikes” of unit fluxes associated
We follow FT (Ref. 12 and perform a “bipartite” singu- yith yortex singularities. The latter are different for electrons
lar gauge transformation, and holes. As discussed {Ref. 12 it is desirable to choose
i alr) A and B vortices in such a way that the effective magnetic
e' e 0 . . . .
), (12)  field vanishes on average, i.€Bgy) =0. This translates to a
simple requirement that we have precisely one flux sfiie
A and B type) per flux quantum of the physical magnetic
field. In that case flux quantization guarantees that the right-
_ hand side of Eq(16) vanishes when averaged over a vortex
Pe(1)+ $n(1)= (). (a3 lattice unit cell containing two physical vortices. It also im-
This more general transformation also eliminates the phasglies that there must be equal numberg\aindB vortices in
of the order parameter from the pairing term of the Hamil-the system.
tonian butg(r) and¢,(r) now can be chosen in a way that ~ The essential advantage of the choice with vanishing
avoids multiple valuedness and the associated complicationéB.) is thatvé andv? can be chosen periodically in space
The way to accomplish this is to assign the singular part ofvith periodicity of the magnetic unit cell containing one
the phase field generated by any given vortex to eighgr) electronic flux quantunhic/e. Notice that vector potential of
or ¢,(r), but not both as is done by symmetric transforma-a field that does not vanish on average can never be periodic
tion (9). Physically, a vortex assigned t,(r) will be seen in space. ConditiofBL;) =0 is therefore crucial in this re-
by electrons and be invisible to holes, while vortex assignedpect.
to ¢p(r) will be seen by holes and be invisible to electrons.  The singular gauge transformati¢h?) maps the original
In practice we implement the above transformation byHamiltonian of fermionic quasiparticles in finite magnetic
dividing vortices into two groupé andB, positioned a(riA} field onto a Hamiltonian which is formally in zero average

-1 —
H—U"HU, u—( 0 et

where ¢o(r) and ¢n(r) are two functions satisfying
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field and has no singular phase winding in the off-diagona
components. This situation bears some similarity to the frac
tional quantum Hall effectFQHE). Here, the composite

fermior’®3! is created by attaching a flux tube to the elec-
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tron. The details, however, are quite different. In the present ... OB-.-AO O ______ OBOBO

case it is the superconducting condensate that creates t
fictitious “flux spikes” which then on average exactly neu-
tralize the physical applied magnetic field. Unlike in FQHE,

he

the fluxes are stationary and we are generally in the limit (a) (b)

where there is a large number of electrons per flux.

To facilitate further insights into the physics of the low-
energy quasiparticles we now linearize the transforme
Hamiltonian in the vicinity of one of the four nodes of the
gap function on the Fermi surface. Following Simon and
Le€?’ we obtainHy="Hy+H’, where

HO:(UFﬁx UAﬁy ) 17

UAPy  —UEPx

is the free Dirac Hamiltonian and

A 1 A B
UpUsx EUA(Usy_Usy)

)

[
H'=m N A_ B
20A(Vgy—Ugy) URUgy

Here v is the Fermi velocity and ,=A,/pg denotes the
slope of the gap at the node.

‘Hyn can be viewed as a relativistic Hamiltonian for & 2
massless “Dirac” fermion and can be rewritten accordingly
as

HNzUF(bx+ax)73+UA(E)y+ay)Tl+mUFst- (19

where 7, are Pauli matricesys=3(V4+V2)=1/m(#/2V ¢
—elcA) is the conventional superfluid velocity and
=m/2(Va—VE)=%/2(Vpp—V ) is the internal gauge
field. We observe thatg couples to the Dirac fermions as a
scalar potential whilea couples as avector potential. The
Dirac “magnetic field” b=VXa produced by this vector po-
tential is highly unusual: it consists of delta function spikes

located at the vortex centers and it vanishes on average when

the numbers of andB vortices are equal. Each spike carries

precisely one half of the conventional electronic flux quan- -1.5

FIG. 2. Two sublattices, ABAB’ and “AABB’ used to in-
estigate the internal gauge symmetry of the FT transformation.
he shaded region marks the unit cell used in the numerical diago-

nalization.

the linearized Hamiltonian as regards the choicé& @ndB
subsets of vortices, which seems to have been overlooked
thus far.

Logic dictates that all measurable quantities must be in-
dependent of our choice & andB. This is because there
should be no physical distinction betwearand B vortices,
the assignment being completely arbitrary. The freedom of
assignment of vortices inté and B subsets represents an
internal gauge symmetry of the problem closely related to
the fact that electrons condense in pairs and therefore vorti-
ces carryhalf of the electronic flux quanturhc/e.

To explicitly test this internal gauge symmetry we have
diagonalized the linearized Hamiltoniah7) and (18) using
the Bloch wave technique described in Ref. 12 for the two
distinct choices ofA—B sublattices as illustrated in Fig. 2.
We used a unit cell containing 4 vortices in order to be able
to compare the band structures for the two cases directly on
the same Brillouin zone. The corresponding band structures
for the isotropic casedp=vg/v,=1) are displayed in Fig.

1.5
1.0
0.5
0.0
-0.5
-1.0

Energy [w,]

tum ¢ and therefore, although comprising a set of measure

zero in the real space, the flux spikes lead ntaximal

Aharonov-Bohm scattering and have strong effect on the
quasiparticle spectra. In particular, note that the cyclotron

motion in a Dirac cone arisemntirely throughb=Vxa and
does not include explicitly the actual magnetic field
B=VXA. Such half-flux scattering is a time-reversal invari-
ant and cannot lead to Dirac-likeor any) Landau level
guantization.

B. Internal gauge symmetry

Spectral properties of the continuum linearized Hamil-
tonian (17) and (18) have been analyzed in great detaif

0S

0.0 '
-4.0 -2.0 0.0

Energy [w,]

FIG. 3. The band structurgop) and DOS(bottom) of the lin-

and initial investigation of its transport properties has beerearized Hamiltonian with two choices of sublatticB AB (thick

presented® Here we wish to point out a peculiar property of

line) and AABB (thin line).
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3. We observe that although qualitatively similar, their de-(by the tight-binding bandwidjhn this case and therefore all
tailed features areifferentand so are the associated densi-states are accounted for in the numerical diagonalization.
ties of states. A similar situation occurs for other values ofAlso, the lattice spacing acts as a natural short distance cut-
Dirac cone anisotropyp and other symmetries of the vortex off which regularizes the behavior of the wave functions at
lattice, although the case shown in Fig. 3 is an extreme eXthe core.
ample of the differences. This is a surprising and unexpected e have also solved the linearized problem by directly
result whose ramifications we do not fully understand at theyjscretizing the Hamiltoniai17) and (18) on a square grid
present time. _ _ __inthe real space, a technique similar to that described in Ref.
We expended considerable effort to verify that the differ-55 1he problem persists in this case. We conclude that the
ence between the two band structures is not a trivial artifact.opiam appears to be caused by a conspiracy between the
of our dt|ac?on$rl1|z?;|on p:ﬁc?dqrﬁ. Bl","zthsrh't gppe?rfhto b trong Aharonov-Bohm scattering and the unbounded nature
associated with the pathologicarr ehavior of e ot the Dirac spectrum of Hamiltonia(l7) and (18). While
Dirac wave functions in the vicinity of a vortex center, which . . R .
: e S . o we believe that there exists a regularization scheme which
is presumably difficult to mimic using a finite number of L . . .
. yould resolve the problem within the linearized formulation,
our attempts to construct such a scheme were unsuccessful
so far. We leave it as an interesting problem for further in-
vestigation.

diagonalization. We also note that the Aharonov-Bohm scat
tering induced by the half-flux spikes is extraordinarily
strong. As shown by MoroZ in the case of ordinary Schro
dinger electron it causes a transfer of spectral weight from
zero energy up to infinite energy.

The problem is clearly inherent only to tHmearized
BdG Hamiltonian. In the following Section we show that no It is straightforward to apply the FT singular gauge
such problem arises in the lattice version of the BdG Hamiltransformation(12) to the lattice BAG Hamiltoniaf2). One
tonian. This is presumably because the spectrum is boundexbtains

C. Lattice formulation

_tz eiv;‘(r)gﬁ_ € Aoz e—(i/2)6¢;7&e(i/2)5¢
) 3
HN: ) (20)
. ~ . .1,B A~
AOEIS e7(|/2)6¢77§e(|/2)5¢ tzﬁ e*lvﬁ(r)sﬁ_i_ €

where Following FT we use the familiar Bloch states as the natu-
ral basis for finding the eigenvalues ®fy specified above.
In particular we seek the eigensolution of the BdG equation

r+é e _ .
V’g(r)=f (Vdm— EA) dl, w=AB, (21 Hny= €y in the Bloch form
,

(1) = <r>—e‘k'f(u”k(r)) @3
and " " V() )’
where U,,Vn) are periodic on the corresponding unit
Shp=pp— . (22 cell, n is a band index and is a wave vector from the

first Brillouin zone. Bloch wave functionb . (r) satisfies

. . . _ the “off-diagonal” Bloch equationH, P = € P, with
We notice that the integrand of E@1) is proportional to the o ariitonian of the formHk:eKiknr'(HNe'}ﬁ.rf‘kln the

superfluid velocities/s defined by Eq.(15) in connection  ¢5)15ing section we describe specific forms of such Hamil-

with the continuum Hamiltonian. Appendix B describes anignians for thes- p-, and d-wave symmetries and discuss
efficient calculation of these quantities in the vortex lattice. ineir solutions.

The main benefit of reframing the original problem in this
way is the explicit gauge invariance. In the case of a periodic
arrangement of vortices the Hamiltonian is periodic with pe- lll. NUMERICAL RESULTS
riodicity of a magnetic unit cell containing a pair AfandB A. swave pairing
vortices. In what follows we consider square and triangular -
vortex lattices with two physical vortices per unit cell as In the case oswave pairing the operato; takes the
illustrated in Fig. 1. The vortex center is always placed at thdorm 7= 7, and the Hamiltonian simplifies considerably. In
center of the plaquette of the underlying tight-binding lattice.particular, the off-diagonal terms become simply, and
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Q L : : :
r w X >0 : : : :
4.0 : ; : = L
T — — I
FIG. 4. Magnetic Brillouin zone for the square vortex lattice = : ? ; :
with the corresponding notations used in the discussion of the qua-5,; ’ — — ‘.
siparticle band structure. S —————— I
c 3.0+ —— — S — e ———
L ﬁ; — 4_41“,_____
VAN
—t>, eVe (s~ e Ao
5
HN=
iy, By~
AO tz ef'vﬁ(r)sﬁ-l— €p
]

(24)

It is interesting to note that in the limit of high quasiparticle
energy, e>A,, the off-diagonal terms become irrelevant,
and the equations for the electron and hole part of the Nambu
wave function decouple. We recover a Hamiltonian describ-
ing holes and electrons in a uniform magnetic field pierced
by a lattice of counteracting full Aharonov-Bohm magnetic G0
flux tubes with unit flux quantac/e concentrated at the set
of point cores. The solution is just the familiar Sctirger
Landau levels, not to be confused with Efj), because the
full electronic flux has no effect on the particle energy
spectrunt? This result is expected from the outset since at @
high-energies the quasiparticles behave as normal electrone
or holes, which know little about the condensate. These high
energy quasiparticles experience effectively a uniform mag-
netic field and move along cyclotron orbits. Similar argu- 000575
ment holds for any pairing symmetry and we expect Landau
level quantization of the quasiparticle spectrum at energies
much larger tham\,. 0.30 4
We have numerically diagonalized the above Hamiltonian , | ‘ l l |
|
|

0.30

0.20

0.10 1

0.40 : :

making use of the standard LAPACK diagonalization rou- 8 920

"40 a5

tine. We considered a tight-binding lattice of 200 sites, a10l| } \ L
which turns out to be sufficiently large to analyze the CAGM i ‘

regime. The corresponding magnetic fi@e- 1/(1005%) in R R i 7 = AR~ = R R R S S i m
units of unit fluxhc/e per unit area, the superconducting gap energy [t]

Ay=t and the chemical potential=—2.2t assuring an ap-

proximately cylindrical Fermi surface. The resulting spec- FIG. 5. Top: Quasiparticle band spectrum forsawave super-

trum for the Brillouin zone displayed in Fig. 4 and density of conductor in the presence of the external magnetic fild

states for the square vortex lattice are shown in the Fig. 5. 1/1006° and Ao=t,eg=—2.2. Bottom: corresponding DOS.

The B=0 spectrum has the usual BCS form with a full gapNOte the bound Caroll-Matrlcor? bands at energies below the gap

Ao. The additional features at 23 and 2.4\, are remnants "9 (e Landau levels at energies Ao.

of the band edge and the van Hove singularity, respectively,

present in the normal-state spectrum. bands are very narrow signaling strong concentration of the
The magnetic field induces low-energy states within thewave functions at the vortex cores and insignificant overlaps

gap, which become localized in the vortex cores. These aramong the states at neighboring vortices. This fact justifies

CdGM state¥’ dispersed into bands. At low energies, thethe chosen parameters. At energies less, but comparable to
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Ay, the bands are broadened due to increasing overlap

LA A~ . ~
among the wave functions. It is interesting to note that —tle Vs (Vs ep AoEﬁ e4dn;
CdGM bound states appear despite the fact that our model Hy= ,
assumes constant order-parameter amplitude and the effec- CLALN —ivB(na
tive core size is the tight-binding lattice spacifigThe small Aozﬁ € s tEﬁ & oSt er
size of the core causes the lowest bound state to be pushed to (29

rather high energy and also that only a few bound states can )
be resolved with our numerical accuracy. For energies Where the phase¥;(r) are defined by Eq21) and
> A the spectrum exhibits Landau level quantization, as ex- 1 (r+e
pect_ed from th_e argument presente_d above_. _ _ ALr)= _f (Va—Vbg)-dl. (30)
It is appropriate to illustrate the pitfall lurking in the guise 2 )y
of the symmetric transformation widely used in the literature.
At first glance, perhaps the most natural choice for removing We chosesg= — 2.2t which yields approximately circular
the phases from the off-diagonal terms is setting in @8) Fermi surface with the superconducting gap, to a good accu-
do(r)=p(r) = ¢(r)/2. Note that in this case the transfor- racy, uniform everywhere on the Fermi surface. As in the

mation case ofswave, the value oA is set equal td. The resulting
_ spectrum and density of states are shown in the Fig. 6.
el #(n2 0 The spectrum again reveals bound vortex states broad-
U= 0 e ib(nP2 (25 ened into a band. In contrast to thevave case we now have

a state at zero energy. These results are what is expected on
is not single valued and neither are the resulting wave functhe basis of our understanding of a singlave vortex’:
tions. Nevertheless, ignoring these facts, the Hamiltonian be-

comes C. d-wave pairing

. To model the high-temperature superconductors such as
—tzﬁ e S5~ €F Ao YBa,Cu;0;, we assume that coupling between the Cu-O
Hy= planes is weak and to the leading approximation can be ig-
A tz e IVaNS 4 ¢ nored. On the tight-binding lattice thé-wave pairing is
0 5 ok given by A =2A,[ cosk,8)—cosk,d)] which determines the
(26) form of the lattice operator to be:
with (85 if 6=k .
6=\ ~ . ~
? —ss if 6=y,

r+é

1 e
r where as beforé,,u(r)z u(r+ ). With this definition of;m
In the limit of high quasiparticle energies the equations againhe Hamiltonian ford-wave pairing has the same form as Eq.
decouple, but now they describe a quasiparticle moving in &9).
uniform magnetic field pierced by half electronic flux quanta The results presented in this section correspond to the
hc/2e canceling the overall field. These half-fluxes causemagnetic field¢,/(16005%) for square vortex lattice and
significant Aharonov-Bohm scattering and cannot be ig-¢,/(15005%) for triangular vortex lattice whergh,=hc/e
nored. As shown in Ref. 32, the spectrum for this problem is=4.137x10° TA 2 and & is the tight-binding lattice con-
not that of Landau levels; there is a significant dispersionstant. Takings=4 A , as in YBgCu,05, this corresponds to
Again, this argument is independent of the pairing symmephysical field of 16 T. The above parameters were chosen for
try. computational efficiency, but we did not see any qualitative
difference down to the fields as low @s,/(49005%) corre-
B. p-wave pairing sponding to a magnetic unit cell of 38706 and a field of
5.2 T. Numerical diagonalization was performed using stan-
dard ARPACK package routines for sparse matrices. This
Igorithm provides a set of low-lying eigenvalues and allows
andling much larger systems than the full diagonalization
used ins- andp-wave cases.

We find that the quasiparticle wave functions exhibit sig-
nificant dependence on the symmetry of the vortex lattice.
For the square lattice, the overlap among the wave functions
corresponding to different nodes is appreciable and there are
(28  Strong interference effects along thd=|y| diagonals, i.e.,

We follow Matsumoto and Sigri$and for simplicity as-
sume that the prototypp-wave superconductor is two di-
mensional and has a cylindrical Fermi surface. We furtheﬁ
assume for simplicity that it is strongly type Il, although
SrLRuQ, is not of this type. We restrict the Hamiltonian to
one of the two degenerate statpg, ;, and ignore thep, _;,
part. Forp wave (p,+ip,) we have

Fis; if 6=+*x
U

i%,; if 6= i§/, the directions in the real space whek&) vanishes. This is
. illustrated in Fig. 7. For certain commensurability of the
wheresgsu(r)=u(r+ ). The Hamiltonian becomes tight-binding and the square vortex lattices, the interference
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FIG. 6. Top: Quasiparticle band spectrum fopa ;,-wave su-
perconductor in the presence of the external magnetic field
=1/1005%, and Ay,=t,eg=—2.2t. Bottom: The corresponding
DOS.

effects are responsible fapening a gapat Fermi energy,
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70

20

0 10 30 50 60

FIG. 7. Local density of states &=0 for the d,2_,2-wave
superconductor with square arrangement of vortices. The plot is in
units of the tight-binding lattice consta#t Bright regions represent
maxima while the dark regions represent minima. The parameters
are eg=0,ap=t/Ay=4. The strong overlaps of the low-energy
quasiparticle wave functions along the four nodal directions cause
appreciable interference effects which in turn influence the charac-
ter of the quasiparticle spectrum.

Figures 8 and 9 show the low-energy band structures and
the low-energy density of states for the square lattice. The
two system sizes shown illustrate the commensurability ef-
fect: if the scalar product between the Fermi vector along the
nodal directionkg and the vortex primitive Bravais lattice
vectord is an even integer times, the spectrum develops a
gap, while it remains gapless if this product is an odd integer
times 7. The same effect is seen at higher Dirac anisotropy
ap=t/Ay=10 (Figs. 10 and 1land ap=15 (Figs. 12 and
13).

These interference effects persist down to low magnetic
fields where the interference gaps scale-afB (see the next
section and Fig. 16 In the case of a triangular lattice, the
interference effects were greatly reducgtg. 14 and no
commensurability dependence was observed. We find the
spectrum to be gapless at half filling in this casee Fig.
15).

Finally we note that we have explicitly verified that iden-
tical spectra(to within numerical accuragyare found irre-
spective of our assignment of tihe-B sublattices. This find-
ing confirms that the choice &&—B vortices is an internal
gauge symmetry of the problem, as one would expect on
general grounds.

IV. DISCUSSION

A. Comparison of continuum and lattice results

The results of Secs. Il and Ill show that, under generic
conditions, the spectrum of linearized Dirac Hamiltonian

while for the complementary set of lattices at differentprovides a reasonable approximation to the low-energy part
commensurability factors, the spectra are gapless at thef the spectrum of the full BAG Hamiltonian. The Dirac

DiracI" point.

nodes are preserved provided that there is no commensura-
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0.16 | | ‘ ‘ ‘ 8.0 '
: ; i : ! I ---- 12385
0.12 1 | ! ! : — =408
I . ‘ l l '
1 ] I I [ !
0.04 I | l l | i
= ! ! ! | "
& o000 : < 8 40 ]
< I l ‘ Q i
w ) | | | "
) I I q
! | | i l R
) ( | | | ) -
-0.16 : : i i i sl R
r Q M X a w L 20.12 -0.09 -0.06 -0.03 0.00 0.03 0.6 0.09 0.12
0.16 T T T T T energy [{
042 E i | | | FIG. 9. Low-energy part of the quasiparticle density of states for
/\/\;/—_—‘\/_;v_ ad,2_y2-wave superconductor with square arrangement of vortices
0.08 M}\%\ for two different interference cases in whidz-d=2n= (solid
I i l | l line) and kg-d=(2n+1)# (dashed ling n being an integerke
0.04 /\W =(m/2,7/2) a Fermi vector at nodal points, adds the primitive
= N—— N ™~ ———— T L —— ] vortex lattice vector. Notice the appearance of the gap in the density
8  0.00 I I | | | of states forkg-d=2nm. Plotted on arbitrary scale, energy is in
e L~~~ —— T units oft. The parameters arg-=0,ap=4.
—0.08 : : i | | B. Scaling of the energy spectrum
m The wave function interference effects among the four
-0.12 ! ! i : i nodes, which are responsible for opening of the “interfer-
016 ence” gaps visible in some of our spectra, seem to be in
r Q M X Q w L contrast with the results obtained for the linearized Hamil-

N tonian by FT(Ref. 12 and more recently by Marinelli, Hal-
FIG. 8. Low-energy part of the quasiparticle band spectrum for__ . . 2 - ; S

. _ . perin, and SimoR? where any internodal interaction is ig-
the square vortex lattice. The parameters gre0,ap=4. Top:

example of a gapless spectrum fer385. Note that the node ad nored and assumed insignificant. Furthermorg, Marinelli
is moved away from the original DiraE point. This effect is a et al. advanced strong analytic arguments that in the pres-
result of a uniform gauge “boost” associated with the choice of €nce of particle-hole symmetry the linearized Hamiltonian
vortex unit cell and disappears for a unit cell with four vortices. retains the Dirac node at tHe point and does not develop a
Bottom: example of a gapped spectrum wlith405. gap to orderO(1 1), wherel is the magnetic length. We
found that the “interference” gaps in the quasiparticle spec-
tion betweerkg at the node and the primitive vector of the tium in the cai\se Of, th_e square_latti_ce scale with magnetic
field asB~1~1. This is shown in Fig. 16. The reason for

vortex latticed, and thus the internodal scattering can be = b derstood f th t f th f
neglected. The overall shape of the energy bands is als%1IS can be understood from he scaling ol the wave func-

qualitatively and quantitatively similar for the two cases. tions of the linearized Hamiltonian. We find that there is a

“12 g : : : i
Previous investigations of the linearized Hamiltorl&#? ' divergence in the asymptotic solution of the wave func

established that the spectrum becomes quasi-onet'-on around one vortex. This strong concentration of the

dimensional and lines of nodes apgan the Brillouin zone wave function around the vortex makes the contribution
. ) P . . from the term quadratic in the superfluid velocity particularly
for large Dirac cone anisotropywy>14, leading to finite

X i i enhanced and, independent of regularizing the wave func-
DOS at the Fermi level. Inspection of Fig. 12 suggests thafiong to eliminate the divergences at the core, the contribu-
similar effect takes place in the full BAG Hamiltonian, al- +jon to the gap is significant. We can then extract the depen-
though the one dimensionality is somewhat less pronouncegence of the wave function on the magnetic lenbust

and is restricted to the immediate ViCinity of the node. Fur'from dimensiona| ana|ysis' The wave function must have
thermore, the lines of nodes never quite fmhough the units of |ength_1 thereforelpfv(”)_l/z_ One can see, that
tendency is clearly visible along the line—M) and the the matrix element, and consequently the gaps, will in gen-
DOS remains zero at the Fermi level. In the above discussiosral scale a$™* for the terms beyond the linearized Hamil-
one needs to bear in mind that the vortex lattice consideretbnian. This dependence is extremely difficult to obtain from
here has been rotated by 45° relative to Ref. 12. the plane wave expansion of the wave functions.
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FIG. 11. Low-energy part of the quasiparticle density of states
0.04 for ad,2_y2-wave superconductor with square arrangement of vor-
tices for two different interference casds: 385 (dashed and |
0.02 =406 (solid). Plotted on arbitrary scale, energy is in units.0fhe
’ parameters are;=0,ap=10.
>
e 000 C. Comparison with the Doppler-shift-only results
& for d-wave gap
-0.02 One of the key insights gained from the FT transforma-
tion is that the familiar and often used Doppler shift
~0.04 approximatioft® is not sufficient to describe the quasiparticle
dynamics in the vortex lattice. While the Doppler shift enters
at the level of a linearized Dirac Hamiltonian as a periodic

-0.06

scalar potential, there is also an effectiwector potentiala
(Sec. 1), which originates from the global curvature of su-
FIG. 10. Low-energy part of the quasiparticle band spectrum foP€rflow in the presence of vortices. This vector potential
the square vortex lattice. The parameters @re 0,a,=10. Top:  t€rm leads to additional strong magnetic half-flux scattering
gapless spectrum for=385. Note the increase of the dispersion in across the whole energy spectrum. It is instructive to com-
the QM direction with increase of the Dirac anisotropy . Bot-  pare our results with those obtained by performing the sym-
tom: gapped spectrum for=405. metric gauge transformation specified by Eg6). As al-
ready pointed out the symmetric transformationas single-
valued and the resulting transformed Hamiltonian must be

Our numerical results strongly suggest that there is a

characteristic oscillation in the gap of the spectrum de_accompanled by the branch cuts imposed on its eigenfunc-

di th bility of th tic latti (ﬁions. If one simplyignoresthese branch cuts altogether, the
bending on the commensurabiiity of the magnetic 1attice an esulting Hamiltonian contains only the Doppler shift terms
the underlying ionic lattice. This can be interpreted aS,d reads

the internodal scattering. The interaction between the quasi-
particles at different nodes is responsible for opening the
gaps at the Fermi surface. The effect of the intranodal

. . . — iVag — >
scattering on these gaps on the Fermi surface is, however, tzﬁ € So™ €F AOEﬁ ns
absent since for certain commensurability of the magnetic Hg=
and ionic 'Iattices there is no gap. Thus we cpnclude_that AOE s tz e ViS4 e
the effect is purely due to the internodal scattering mediated 5 >
by the terms beyond the linearized Hamiltonian. The sensi- (32

tivity of the gaps to the commensurability of the ionic and The density of states obtained by diagonaliziig is
magnetic lattices is supported by the results with triangulashown in Fig. 17. It is significantly different from the results
vortex lattice, in which case the spectrum remains gaplespresented in Sec. lll. This clearly demonstrates that there is
as there is no commensurability between ionic and vortexan essential piece of physics missing from the Hamiltonian
lattice. This supports the view that the internodal scattingvhich contains only the Doppler shift effect, and conse-
alone is responsible for the presence of the gap at the Fermjuently from a frequently encountered semiclassical approxi-
surface. mation to such a Hamiltoniah.
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-0.05 . &5 , \ ,
-0.03 -0.02  -0.01 0.00 0.01 0.02 0.03
0.05 Energy [t]
0.04 FIG. 13. Low-energy part of the quasiparticle density of states
0.03 for and,2_ 2>-wave superconductor with square arrangement of vor-
’ tices for two different interference casds: 385 (dashed and |
0.02 =406 (solid). Plotted on arbitrary scale, energy is in units.ofhe
parameters areg=0,ap=15.
~ 001
P
g % present in the linearized Hamiltonian. This is believed to be
W _g01 brought forth by the diverging accumulation of the Dirac
0.02 wave functions in the vicinity of the vortex core, conse-
e quently giving rise to increased significance of the terms
-0.03 beyond linearization. However, since rather special condi-
tions must be met for this effect to be significant, it is sug-
-0.04 . . . i
gested that introduction of any perturbing agent such as dis-
-0.05 - 5 y X W L order in the position of the vortices or vortex vibrations will

FIG. 12. Low-energy part of the quasiparticle band spectrum for

the square vortex lattice. The parameters @re 0,ap=15. Top:
gapless spectrum fdre=385. Note the increase of the dispersion in
the QM direction with increase of the Dirac anisotropy . Bot-
tom: gapped spectrum for=406.

V. CONCLUSIONS

In conclusion, the general utility of the singular gauge

100

80

60

transformation for the calculation of the quasiparticle spectra
in the vortex state of a general pairing symmetry was shown.
Once the tight-binding regularization is introduced, the spec-
trum can be computed in principle exactly using the Bloch
states as the natural basis, although one is bound to resort to
numerical calculation regardless of respecting the self-
consistency. In the case & and p-wave symmetry, we
showed that the method applied to an array of vortices leads
to results consistent with single vortex solution.

For d-wave pairing, the spectrum is also consistent with
the single vortex solution from the point of view that all the

40

FIG. 14. Displayed is a typical low-energy modulus of a quasi-

wave functions are delocalized and no bound states are Oarticle wave function for thel,>,.-wave superconductor with
served. Additional insight is gained from the exact solutiontriangular arrangement of vortices. The plot is in units of the tight-
with respect to the continuum linearized version of thepinding lattice constans. Bright regions represent maxima while
theory. For specific commensurability of the tight-binding the dark regions represent minima. The parametersegred,ap

and square vortex lattice the internodal scattering mediateé 4. This plot illustrates the reduction of the interference effects for
by the terms neglected in the linearized theory is found to beriangular vortex lattice. As a consequence the gap in the quasipar-
significant and of the same order of magnitude as the termticle spectrum does not emerge as shown in Fig. 15.

134509-13



O. VAFEK, A. MELIKYAN, M. FRANZ, AND Z. TESANOVIC PHYSICAL REVIEW B 63 134509

4.00 T T T T T T T 8.0
— [ =308 1. =508 —— exact B finite
: ’ ---- Doppler-shift-only B finite
— B=0

3.00 b 6.0

Q 200 7 8 4.0
a
1.00
0.00 \_) L i J I I U 0.0
-0.12 -0.09 -0.06 -0.03 0.00 003 0.06 009 0.12 0012 0,09 —006 -0.03 000 003 006 009 012

energy [t] eneray [t
FIG. 15. Low-energy part of the quasiparticle density of states k1. 17, Comparison of the low-energy part of the quasiparticle
for a d-wave superconductor with triangular arrangement of vorti-gensity of states for @-wave superconductor with square arrange-
ces. Plotted on arbitrary scale, energy is in unitd.ofhe param-  mnent of vortices with the DOS obtained from the Doppler-shift-
eters areeg=0,ap=4. only approximation. Plotted on arbitrary scale, the energy is in units
of t. The parameters arg-=0,1=385,ap=4.
lead to decoherence of the matrix elements for the internodal
scattering and subsequently to the suppression of the inteppectrum. This problem does not occur in the full BdG
ference effect. It is also possible, and in our view likely, thatHamiltonian. We argue that the originaABAB’ choice of
in a fully self consistent solution the vortex array could spon-the gaugé is the one most representative of the actual spec-
taneously undergo a slight spatial deformation into an infrum because it results in smoothest possible variation of
commensurate state so as to avoid opening gaps in the qulahase in the vortex lattice. This view is also supported by the
siparticle spectrum. In this respect, at chemical potertial ~direct comparison with the spectrum obtained using the full
=0, the results of the theory regularized on the tight bindingBdG Hamiltonian.
lattice agree with the continuum linearized version. Number of intriguing issues remain to be addressed. In
We have uncovered a peculiar property of the DiracParticular the effect of static and dynamic disorder in vortex
Hamiltonian: it appears to violate the internal gauge symmepositions on the quasiparticle spectra must be understood in
try associated with the assignment/fand B vortices. Al-  order to make connections with the experimental data. An-
though the final resolution of this apparent contradictionother set of unresolved issues arises in connection with the
awaits further research, we attribute it tentatively to the unzero field superconducting state phase-disordered by fluctu-
usually strong scattering of Aharonov-Bohm half fluxes act-ating vortex-antivortex pair$:** One would expect that the

ing in the Dirac Hamiltonian with unbounded excitation “Berry phase” term arising from fluctuating vortices would
influence in a profound way the critical behavior of the HTS

system on the verge of becoming a Mott insulator.
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‘g APPENDIX A: LATTICE AND CONTINUUM BDG
E o020} 1 HAMILTONIAN IN A GAUGE INVARIANT
FORMULATION
0.010 - 1 In this Appendix we derive the explicit form of the pair-
ing operatorA (4) which appears in the lattice BAG Hamil-
0.000 s . s s tonian of Eq.(2). We also derive the continuum limit of this
0.00 0.02 0.04 0.06 0.08 0.10

4 operator which is used to construct the BdG equations of

Sec. Il. Throughout our derivation we pay a special attention

FIG. 16. The magnitude of the interference gaps vs magneti¢o the preservation of local gauge invariance. We start with
length| exhibits| ~* scaling.A,=0.2%,e-=0. the general pairing term on a tight-binding square lattice:
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fied to even higher degree of accuracy. This, however, is

> AGDIU*(Du(D+u*(ou(i)]+Hec. (A1) entirely unnecessary in the present context, since our overall

Ry accuracy is precisely at the level represented by E43)
Here A(i,j) is a complex pairing potential defined on the and(A4). The replacementA4) simplifies the pairing term
nearest neighbor bonds. Such pairing term generically arise® the lattice BAG Hamiltonian and reproduces the form of
when t-J and related Hamiltonians, which are thought tothe pairing operatoA (4) used in our lattice Hamiltonian of
represent good microscopic models of various unconvengg. (2).
tional superconductors, are treated within a BCS-type pairing The above replacement of bond phaggs,j)’s with site
approximation. A conventionawave case follows from Eq. phasesp(i)’s is also a necessary first step in our derivation
(A1) if we replace the sum over nearest-neighbor bdinds  of the continuum BdG Hamiltonian. Since bott(i) and
with the sum over siteg By construction, the pairing term v(i) appearing in Eq(A1) are site fields we expect that the

(A1) is invariant under gauge transformations: continuum pairing term in unconventional superconductors
. () will involve u(r) anduv(r) acted upon by somiecal opera-
u(i)—u(i)e, tor. To determine the explicit form of this operator we first

o (i) v (i)e- X0, (A2) combine Eqgs(Al) and(A3) into:

AGLj)— A, ])exW+ix),

N| -

> DY D(i,i+g)eleliita-ish)

wherex(i) is an arbitrary nonsingular function. i o
The actual form of the complex functiom\(i,j) . . .

=D(i,j)exdie(i,j)] is obtained as a self-consistent solution X[u*(Do(i+o)+u*(i+aju(i)]+H.c.,

of the gap equation in some specific gauge. We denote its (A5)

“amplitude” and phase byD(i,j) and ¢(i,j), respectively.

For convenience, the “amplitudeD(i,j) is defined so that

it already contains the information about the relative orbita

state of a superconductor. For example, in a paye 2

superconductor and at zero field(i,j)=—(+)A for (i,])

Iwhere we have transformed the summation over bonds into
the summation over sites. We now ugé¢i,i + o) =3 ¢(i)
+1g(i+0)+0(8¢), Eq. (A4) where 5% denotes second-

in the x(y) direction, whereA is a complex constant. Fur- o_rder Iaytic_e derivatives which are unim_portant in th_e con-
thermore, for the purposes of this paper, we assume that guum '”T“t- AISQ' from now on we resirict our attent|on_to
actual amplitude|A(i,j)| can be well approximated by a the most interesting case, aplﬂ.i‘)@_yz superconductor. This
uniform (real) constantA,, independent ofi,j). This as- allows us to rewrite EQ(AS) as:

sumption is valid in the space between vortices but it clearly

breaks down inside a vortex core. At low fieldd;;<H i

<H_.,, where the intervortex separation is much larger than_EA(i){_ei</>(i+x)/2*i</>(i)/2[u*(i)v(i +X)+u*(i +§<)v(i)]

the core size we expect any effect of the inhomogeneous |
amplitude to be negligibly small.

The essential information about vortex configurations and
self-consistent solution at a finite magnetic field is now
stored in the bond phasg(i,j). Near a plaquette containing
a vortexe(i,j) changes rapidly from bond to bond. Far from +ei¢(i79)/27i¢(i)/2[u*(i Yo(i—y)
vortex cores, however, we expeet(i,j) to be some
smoothly varying function undergoing only small changes +u*(i—§/)v(i)]}+ H.c., (AB)
between neighboring bonds. Consequently, in the regions far
away from vortex cores we can replace thend phase
o(i,j) by a suitably chosesite phase variablegh(i). The =~ WhereA(i)=A exdi#(i)] and%,y are unit displacements on
natural choice for thes(i)’s is a simple average: the square lattice. Next, we expand

— @l $I=0R=16M2[ y* (1)p (i — %) + u* (I — ) (i)]

+ el NSOy (1) (i +9) + u* (i +9)v ()]

o1 R
ip(i) — — I(p(l,l+0'), A3 A o i o
e a ; € (A3) el PiEx(2=id(i)2 1 4 %{¢(i =X(y))— ¢(i)}

where the sum oves runs over four bonds containing the 1
sitei. With this choice ofé(i)’s we can replace: T (N A2
gle(=x(y)—d()}*+ -+, (A7)
el e(ii) _, il () +6(1)1/2. (A4)

Note that, given the choice of site variablgs3), Eq.(A4) is  make a transition to continuum variablegi)—au(r),
an approximation, accurate up to second-order lattice derivas(i)—av(r), A(i)—A(r), ¢(i)—o(r), =i—[(d?r/a?),
tives of ¢(i)’s. We could use a more elaborate representaand use the standard definitions of lattice derivatives to fi-
tion of ¢(i,])’s in terms of ¢(i)’s so that Eq(A4) is satis-  nally obtain the continuum version of the pairing term:
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—a( i —af [
| o (ax+§<ax¢><r>)) | @ ax+§<ax¢<r>))
<[t 5@t o0 |+ @900 x| a4 5,800 o0 |+ a0+ 50,000
X ax+Ii(axg{)(r)))u*(r)}A(r)v(r)—(xHy)]+H.c. X ay+Iz(ay¢(r))>u*(r)}A(r)v(r)+(x—>y)]+H.c.

(A8) (A10)

Similarly, by taking functional derivatives we obtain the
In going from Eqgs.(A6) to (A8) one encounters some off-diagonal matrix elements of the continuum BdG Hamil-
lengthy but straightforward algebra. We found that decom+tonian operator:
posing the sum over nearest neighbors in &) into s-, p-,

andd-wave components relative to sitéacilitates the book- —a*{d,{dy, A1)} —a*{dy {dy, A(N)}}
keeping and makes the computations rather efficient. All the i
relevant derivatives up to and including second order are —EA(r)az(aXayqs), (Al1)

kept and accounted for. Higher-order derivatives do not ap-

pear reflecting of our original starting point of the nearest-3nd its Hermitian conjugate, which is precisely the ex-
neighbor pairing of only Eq(Al). Note thata is the lattice pression used in Sec. Il, provided that we idenpfy? with
spacing in our model. 2a2.

The form of the local continuum pairing operator is  The above derivation can be easily repeated fpreave
now apparent. We can vied(r)=A exdi¢(r)] as repre- |attice Hamiltonian and is in fact only simpler. We therefore
senting thecenter-of-masgortion of the gap function. The do not give it explicitly but trust that the-wave derivation
original nonlocality, arising from therelative dz_2 provides a sufficiently detailed prescription. Similarly, our
character of the pairing, manifests itself through “covariant” derivation is straightforwardly generalized to other uncon-
derivatives d,+i/2[ 9, ¢(r)], where ¢(r) is precisely the ventional forms of superconducting pairing.
phase ofA(r). Note that Eq.(A8) is explicitly invariant
under the continuum version of local gauge transforma- APPENDIX B: PHASE FACTORS AND SUPERFLUID
tions: u(r)—u(r)exdix(r)], wv(r)—v(r)exg—ix(r)], VELOCITIES
A(r)—A(r)exd2ix(r)].

The off-diagonal elements of the Hamiltonian matrix ap-
pearing in the continuum BdG equations are obtained b
taking the functional derivatives of EA8) with respect to
u*(r) andov(r). This results in:

In this Appendix we derive expressions for superfluid ve-
locities v4 and v& which enter both continuum and lattice
ersions of the BAG Hamiltonians in consideration in Sec. Il.
We start by taking the curl of Eq15),

27h| .
VXxvh=— 2>, 8(r—rt)—Bl |, (B1)
—a*{d, {0x, AN} +a%{ay {ay, A1)} '
i wheregy=hc/e is the flux quantumB=V XA, and we have
- ZA(r)aZ[(a§¢)—(a§¢)], (A9) used Eq(14). In the intermediate field regime the magnetic

field distribution is to an excellent approximation described
by the conventional London equatidh,
and its Hermitian conjugate. Here we used the standard 1
notation:{é,B}E%(éB+Bé). In performing the functional B—)\ZVZB=—¢OEE S(r—ry), (B2)
derivatives we have exploited the fact that all spatial 2 [
dependence ofA(r) comes through its phase, i.e.,
A A(r)=iA(r)d,¢(r), in line with our previous assump-
tions.

While our derivation starts with a familiar model of the
lattice d-wave superconductatAl) and naturally describes
the d,2_2 state in actual continuum calculations it is often
more convenient to consider &, superconductor, so that 2 e ik

where\ is the London penetration depth and the sum now
runs over all vortex positions. The London equation is easily
solved by going over to the Fourier space, obtainB(g)
=(27) " ?fd’ke* "B, with

either anx or ay axis coincides with a particular nodal di- B _E Al B3
rection, as in Sec. Il. We can obtain the pairing term in the ) boz 1+N2K2 (B3)
continuum BdG Hamiltonian of al,, superconductor by

simply rotating our resultA8) by 45°: If we now Fourier transform EqB1) we obtain
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27h
ikXVéLKZT (84)

iZi e—ik'fi—Bk/qbo}.

To solve forv, we take a vector product of both sides with
ik. After substituting forB, and some easy algebra we may

express
(B5)

and a similar expression faﬁ with A, andB, interchanged.
Here we have defined

C2mh [ d%k ikxz

1 A+B,
m ) (2m)* g2

S 214\%2

A
S

v ik-r

2 e—ik-r.B_

. A
Akzz e7|k~ri , Bk

Equation(B5) gives an explicit formula fow4 which can be
evaluated for arbitrary distribution of vortices. For strongly

PHYSICAL REVIEW B53 134509

type-Il materials in fields well abovel ., Eq. (B5) may be
simplified further by rewriting the expression in the brackets
as

A AKkZ 1 B—Ag
K1+N%K2 2 142262’

and noting that sinc&?k?~\?/d?>>1 (d being intervortex
distance, the second term can be safely neglected. We thus
obtain

a formula used in Ref. 12 which is valid for all practical
purposes. Phase factovsand A entering the lattice Hamil-
tonians of Sec. Ill may be obtained by simple line integrals
of Eq. (B6).

d?k  ikxz
(2m)% 1+ 222

_27Tﬁ)\2

VI—’«_
s m

E eik-(r—ri”)'

(B6)
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