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Nonlinear feedback effects in coupled boson-fermion systems
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We address ourselves to a class of systems composed of two coupled subsystems without any intrasub-
system interaction: itinerant fermions and localized bosons on a lattice. Switching on an interaction between
the two subsystems leads to feedback effects which result in a rich dynamical structure in both of them. Such
feedback features are studied on the basis of the flow equation technique—an infinite series of infinitesimal
unitary transformations—which leads to a gradual elimination of the intersubsystem interaction. As a result the
two subsystems get decoupled but their renormalized kinetic energies become mutually dependent on each
other. Choosing for the intersubsystem interaction a charge exchange term,—theboson-fermion model—the
initially localized bosons acquire itinerancy through their dependence on the renormalized fermion dispersion.
This latter evolves from a free particle dispersion into one showing a pseudogap structure near the chemical
potential. Upon lowering the temperature both subsystems simultaneously enter a macroscopic coherent quan-
tum state. The bosons become superfluid, exhibiting a soundwavelike dispersion while the fermions develop a
true gap in their dispersion. The essential physical features described by this technique are already contained in
the renormalization of the kinetic terms in the respective Hamiltonians of the two subsystems. The extra
interaction terms resulting in the process of iteration only strengthen this physics. We compare the results with
previous calculations based on self-consistent perturbative approaches.

DOI: 10.1103/PhysRevB.63.134505 PACS number~s!: 74.25.2q, 71.10.2w, 05.10.Cc
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I. INTRODUCTION

A wide class of problems in solid state physics can
described in terms of interacting boson-fermion systems.
amples are~i! the electron-phonon problem and its asso
ated realization in superconductivity and polaron formati
~ii ! fermions interacting with spin fluctuations, relevant f
the description of heavy fermion systems as well as for hi
temperature superconductors,~iii ! certain systems which ca
be mapped into boson-fermion interacting systems via H
bard Stratanovich transformations,~iv! the Anderson impu-
rity and Kondo problem, and finally~v! the boson-fermion
model~BFM! for high-Tc superconductivity, believed to de
scribe a coupled electron-phonon system in the cross
regime between weak and strong coupling.

In order to obtain the correct low-energy physics in the
various scenarios of boson-fermion interacting systems
mutual feedback effects caused by the interaction betw
the two subsystems must be handled properly. It invaria
gives rise to effective time-dependent interactions among
constituents in each subsystem which quite generally ca
obtained by the standard field theoretical method based
functional integrals. This method is particularly suited if o
considers the limit of infinite dimensions where it has be
developed in great detail and is known as dynamical me
field theory.1 The mutual feedback effects have been recen
studied on the basis of this method for the boson-ferm
model2 and for the many polaron problem in the Holste
model.3 While this method is nonperturbative and capable
describing the low-energy physics, it is, as up to now,
stricted to the study of local quantities. In situations whe
the dimensionality and anisotropy of the physical syste
play a role, such as believed to be the case in the highTc
cuprates, one has to resort to different techniques to ha
0163-1829/2001/63~13!/134505~12!/$20.00 63 1345
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these feedback effects. There are many physical situation
which already a relatively small intersubsystem coupli
leads to substantial fluctuations in each of them and wh
hence requires the selfconsistent determination of the mu
nonlinear feedback effects between the fermions and bos
In those cases perturbative approaches in form of s
consistent diagrammatic techniques can and have been
plied for the electron-phonon problem~the Eliashberg
approach4! and for the BFM.5 These approaches, howeve
totally neglect vertex corrections.

Controlled perturbative methods in the spirit of renorm
ization group techniques have been recently proposed,
similarity renormalization scheme6 and the flow equation
technique.7 These techniques are capable in reformulat
such interacting systems in terms of renormalized Hami
nians which capture the low-energy physics, which
achieved via an infinite series of infinitesimal unitary tran
formations. Contrary to the standard simple unitary transf
mations which treat the different energy scales in the pr
lem in a single step~and therefore generally fail! these
continuous transformations deal with each energy scale
sequence of transformations and by doing so are capab
extracting the low-energy physics in which we are interest

This paper is organized in the following way. In the su
sequent Sec. II we review the essential points of the fl
equation technique and apply it to the boson-fermion mod
In Sec. III we discuss the excitation spectrum of the ren
malized Hamiltonian and compare the results to those pr
ously obtained by different methods. In Sec. IV we give
preliminary discussion of the superconducting phase pro
ties of the BFM.

Apart from testing this flow equation method for th
model, this present study on the BFM goes beyond the s
ies so far reported in the past. We are able to treat on
©2001 The American Physical Society05-1
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same footing the normal and the superconducting phase
handle the question of how the pseudogap evolves into a
gap belowTc .

II. THE FLOW EQUATION TECHNIQUE

The method ofcontinuous unitary transformation has
been formulated by Głazek and Wilson6 and independently
by Wegner.7 Instead of the single-step transformation th
method amounts to a procedure for simplifying the Hamil
nian’s representation through the series of infinitesimal u
tary transformationsU( l ), where l denotes the continuou
flow parameter.

The continuous unitary transformation H( l )
5U†( l )HU( l ) gives rise to the followingflow equation

dH~ l !

dl
5@h~ l !,H~ l !#, ~1!

whereh( l ) represents some arbitrary~anti-Hermitean! gen-
erator

h~ l !5
dU†~ l !

dl
U~ l !. ~2!

The choice of a specific form ofh( l ) is usually deter-
mined by the physical situation under consideration.6–8 In
this paper we use Wegner’s proposal7

h~ l !5@H0~ l !,Hint~ l !#, ~3!

whereH0 is the diagonal andHint the nondiagonal part o
the Hamiltonian in a given representation. In generalHint
will be understood as the perturbation with respect toH0.
The generating operator Eq.~3! guarantees that under th
continuous transformation the off diagonal terms are m
notonously reduced, eventually leading to a block diagon
ization of the Hamiltonian, provided that no degeneranc
are encountered.7,9 Recently Mielke has proposed8 some dif-
ferent form of theh( l ) operator which can be used for stud
ing systems with degeneracies.

One condensed matter problem analyzed with use of
flow equation was the electron-phonon Hamiltonian.10 It has
been shown that eliminating the electron-phonon interac
induces the effective interactions between electrons wh
are attractive in the whole Brillouin zone. Near the Fer
surface this attraction is strongly enhanced but it never
comes divergent as in the case for the classical Fro¨hlich
transformation. The method has also been successfully
plied to a variety of other physical problems like the sing
impurity Anderson model11 ~the Schrieffer-Wolff transfor-
mation has been improved!, the strong coupling expansio
for the Hubbard model12 (t/U expansion!, the large spin
Heisenberg Hamiltonian13 (1/S expansion!, and for other
topics such as dissipative quantum systems,14 light front
QCD,15 quarkonium spectra16 and the Sine-Gordon model.17

The main advantage of the continuous transformation
that an effective Hamiltonian can be derived which is va
not only in the low-energy sector~like the standard renor
malization group! but in the overall regime of energies. I
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principle it is also possible to formulate the flow equations
such a way that lifetime effects can be studied too. Such t
of flow equations have been used so far to account for
namical effects in the context of spin-boson problem14 and
also in the investigation of phonon damping effects due
the electron-phonon interaction.18

A. Application to the boson-fermion model

We shall now apply this flow equation technique to t
BFM described by the following Hamiltonian

H5H01Hint . ~4!

The free part~diagonal in the basis of the plane waves! con-
sists of the kinetic terms of the fermions and bosons

H05(
k,s

~«k
s2m!cks

† cks1(
q

~Eq22m!bq
†bq . ~5!

The mutual interaction between both species is represe
by the charge exchange term

Hint5
1

AN
(
k,p

~vk,pbk1p
† ck↓cp↑1vk,p* bk1pcp↑

† ck↓
† !. ~6!

The flow equations control the evolution of the model p
rameters«k

s , Eq , vk,q which get renormalized in the cours
of the flow equations procedure. From now on we assu
that they depend on the flow parameterl with the following
initial conditions

Eq~ l 50!5DB , «k
s~ l 50!5ek , vk,p~ l 50!5v. ~7!

According to Wegner’s definition~3! of the generating op-
erator we have

h~ l !5
1

AN
(
k,p

~«k
↓~ l !1«p

↑~ l !2Ek1p~ l !!

3~vk,p* ~ l !bk1pcp↑
† ck↓

† 2vk,p~ l !bk1p
† ck↓cp↑!. ~8!

Upon iterating the flow equation, Eq.~1!, interaction
terms are in general created which are not contained in
original Hamiltonian. Certain of those terms can be incorp
rated in such a flow equation procedure by reformulating
initial H0 in the following way

H0~ l !5(
k,s

@«k
s~ l !2m#:cks

† cks :1(
q

@Eq~ l !22m#:bq
†bq :

1
1

N (
p,k,q

Up,k,q~ l !cp↑
† ck↓

† cq↓cp1k2q↑1c~ l !, ~9!

where the symbol :xªx2^x& stands for the normal-orde
product andc~l! denotes ac-number contribution to the
Hamiltonian. We furthermore supplement the initial cond
tions ~7! with the constraints

Up,k,q~ l 50!50, ~10!
5-2
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c~ l 50!5(
k,s

~«k2m!ns,k
(FD)1(

q
~Eq22m!nq

(BE) . ~11!

After some straightforward algebraic manipulations we finally obtain

dH~ l !

dl
52

1

AN
(
k,p

ak,p
2 ~ l !@vk,p~ l !bk1p

† ck↓cp↑1vk,p* ~ l !bk1pcp↑
† ck↓

† #1
1

N (
k,p,q

@ak,p~ l !

1aq,k1p2q~ l !#vk,p* ~ l !vq,k1p2q~ l !cp↑
† ck↓

† cq↓cp1k2q↑1
2

N (
k,p

ak,p~ l !uvk,p~ l !u2np1k
(BE) :ck↓

† ck↓ :

1
2

N (
k,p

ap,k~ l !uvp,k~ l !u2np1k
(BE) :ck↑

† ck↑ :1
2

N (
k,p

$ak,p~ l !uvk,p~ l !u2@211n↓,k
(FD)#

1ap,k~ l !uvp,k~ l !u2n↑,k
(FD)%:bk1p

† bk1p :1
2

N (
k,p

$ak,p~ l !uvk,p~ l !u2@211nFD
↓ ~k!#1ap,k~ l !uvp,k~ l !u2nFD

↑ ~k!%nk1p
(BE)

1
1

N (
k,p,qÞk

bp1q
† bp1k$@ak,p~ l !1aq,p~ l !#vk,p* ~ l !vq,p~ l !ck↓

† cq↓1@ap,k~ l !1ap,q~ l !#vp,k* ~ l !vp,q~ l !ck↑
† cq↑%

1O~ :cks
† cks ::bp

†bp : !1O~v3!, ~12!
in

n
s

s

g

ua-

hat
za-
-
ing
where for brevity we introduce

ak,p~ l !5«k
↓~ l !1«p

↑~ l !2Ek1p~ l !. ~13!

The expectation values are defined as

^cks
† cks& l5ns,k

(FD)~ l ![
1

e(«k
s( l )2m)/kBT11

, ~14!

^bq
†bq& l5nq

(BE)~ l ![
1

e(Eq( l )22m)/kBT21
, ~15!

where n(FD), n(BE) are the Fermi-Dirac and Bose-Einste
distribution functions, respectively. They dependent onl
only through their arguments«k( l ) and Eq( l ). In order to
proceed with the numerical analysis of this flow equatio
Eq. ~12!, we shall neglect from now on the terms in the la
two lines. Such a neglect implies that~a! our theory is valid
up to the orderv2, ~b! we omit any fluctuations of the form
(cks

† cks2^cks
† cks&)(bp

†bp2^bp
†bp&), and~c! as shown in the

Appendix, contributions coming from the term
bp1q

† bp1kcks
† cqs for qÞk are of orderO(v3).

Within that procedure we finally arrive at the followin
set of the flow equations for the BFM

dvk,p~ l !

dl
52ak,p

2 ~ l !vk,p~ l !, ~16!

d«k
↓~ l !

dl
5

2

N (
p

ak,p~ l !uvk,p~ l !u2nk1p
(BE)~ l !, ~17!

d«k
↑~ l !

dl
5

2

N (
p

ap,k~ l !uvp,k~ l !u2nk1p
(BE)~ l !, ~18!
13450
,
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dEk~ l !

dl
5

2

N (
p

$ak2p,p~ l !uvk2p,p~ l !u2@211n↓,k2p
(FD) ~ l !#

1ap,k2puvp,k2p~ l !u2n↑,k2p
(FD) ~ l !% ~19!

dUp,k,q~ l !

dl
5@ak,p~ l !1aq,k1p2q~ l !#vk,p* ~ l !vq,k1p2q~ l !,

~20!

dc~ l !

dl
5

2

N (
p

$ak,p~ l !uvk,p~ l !u2@211n↓,k
(FD)~ l !#

1ap,k2puvp,k~ l !u2n↑,k
(FD)~ l !nk1p

(BE)~ l !%. ~21!

A formal solution for the flow equation, Eq.~16!, can be
given right away

vk,p~ l !5v e2*0
l [«k

↓( l 8)1«p
↑( l 8)2Ek1p( l 8)] 2dl8, ~22!

but of course the dispersion functions«k
s( l ) andEp( l ) ought

to be determined self-consistently via the other flow eq
tions.

B. Lowest-order iterative solution

The flow equation scheme is devised in such a way t
the dominant renormalization takes place for the hybridi
tion constantvk,p( l ). To get some insight about its effective
ness we solve here the flow equations approximatively us
on the right-hand side of Eqs.~16!–~21! the bare~unrenor-
malized! energies«k

s( l ).«k andEq( l ).DB (5Eq50). The
resulting hybridization constant~22! reduces in this case to

vk,p~ l !5vp,k~ l !5v e2(«k1«p2DB)2l ~23!
5-3
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and has the desired propertyvk,p( l→`)50 for all momenta,
except when«k1«p5DB . This situation corresponds to
resonant scattering of two fermions into a boson state w
their total energy being conserved. We shall see in Sec
III that in the self-consistent solution of the flow equatio
such a problem does not occur. Substituting Eq.~23! into the
flow equations, Eqs.~17!–~20!, and taking the limitl→`
one obtains the renormalized quantities:

«k
(R)5«k1uvu2

1

N (
p

nq50
(BE)

«k1«p2DB
~24!

Ek
(R)5DB1uvu2

1

N (
p

12np
(FD)2nk2p

(FD)

DB2«p2«k2p
~25!

Up,k,q
(R) 5uvu2

«k1«p1«q1«k1p2q22DB

~«k1«p2DB!21~«q1«k1p2q2DB!2
,

~26!

where«k
(R) stands for the fermion spectrum, valid for bo

spins.
Let us concentrate from now on exclusively on two cha

nels of the induced fermion-fermion interactions; the ze
momentum BCS channel and the zero momentum den
density (d-d) channel, respectively,

(
p,k

Up,k
(BCS)cp↑

† c2p↓
† c2k↓ck↑ , ~27!

(
p,k

Up,k
(d2d)cp↑

† cp↑ck↓
† ck↓ . ~28!

They denote specific elementsUp,k
(BCS)[Up,2p,2k( l→`) and

Up,k
(d2d)[Up,k,k( l→`) which together with Eq.~26! become

Up,k
(BCS)52uvu2

~DB22«p!1~DB22«k!

~DB22«p!21~DB22«k!
2

~29!

Up,k
(d2d)52uvu2

1

DB2«p2«k
. ~30!

They are divergent in certain regions of the Brillouin zon
but as we shall show below, a self-consistent numerical
lution of the flow equations smoothens such divergences
a regular behavior.

C. Comparison with standard perturbation theory

Let us next discuss the results of the first iterative solut
of the flow equation method and compare it to that obtain
by standard perturbative studies of the BFM, discussed
detail in Refs. 5 and 19. The second order expansions for
fermion and boson self-energies of the single particle pro
gators are given by

SF~k,ivn!5uvu2kBT
1

N (
p,vm

GF~p2k,ivm

2 ivn!GB~p,ivm!
13450
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SB~k,vm!52uvu2kBT
1

N (
p,vn

GF~k2p,ivm

2 ivn!GF~p,ivn!. ~31!

Our approximate solutions of the flow equations deriv
above~Sec. II B! were based on unrenormalized fermion a
boson spectra and therefore are not self-consistent. Le
now determine the selfenergies using the bare Green’s fu
tions, as it has been done in Ref. 5 and which read

SF~k,v!5uvu2
1

N (
p

np2k
(FD)1nq50

(BE)

v1m2DB1«p2k
, ~32!

SB~k,v!5uvu2
1

N (
p

12nk2p
(FD)2np

(FD)

v12m2«p2k2«p
, ~33!

with nq50
(BE)5@exp$(DB22m)/kBT%21#21. The effective quasi-

particle spectra are then given by the solutions of followi
equations

vk
F1m2«k2SF~k,vk

F!50, ~34!

vk
B12m2DB2SB~k,vk

B!50. ~35!

In the limit of smallv we can put

vk
F1m.«k

vk
B12m.DB

and then substitute these quantities into the expressions
the self-energies~32! and ~33! which results in

vk
F1m.«k1uvu2

1

N (
p

np2k
(FD)1nq50

(BE)

«k1«p2k2DB
~36!

vk
B12m.DB1uvu2

1

N (
p

12np
(FD)2nk2p

(FD)

DB2«p2«k2p
. ~37!

The difference between the fermion spectra~36! derived
from this perturbative approach and that derived from
flow equation approach~24! can be remedied after havin
realized that the standard perturbative study describes a
fective fermion spectrum while the flow equations metho
reformulating the boson-fermion interaction, results in~a! a
renormalization of the fermion energies«k→«k

(R) and~b! an
appearance of the fermion-fermion interactions. Taking b
effects into account when evaluating the final fermion qu
siparticle spectrum, the lowest-order corrections to«k

(R) is
given by the Hartree term; i.e.,

«k
(R)→«k

(R)1
1

N (
p

Uk,p,p
(R) np

(FD) . ~38!

From the approximate solution~26! we have

Uk,p,p
(R) 5

uvu2

«k1«p2DB
, ~39!

which eventually leads to
5-4
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«k
(R)→«k

(R)1uvu2
1

N (
p

np
(FD)

«k1«p2DB

5«k1uvu2
1

N (
p

nq50
(BE)1np

(FD)

«k1«p2DB
~40!

and which thus is identical to the expression, Eq.~36! ob-
tained from the diagrammatic perturbation theory analys

III. NUMERICAL SOLUTION OF THE FLOW
EQUATIONS

In this section we present the results of the self-consis
numerical solution of the flow equations. In order to sol
the differential equations, Eqs.~16!–~21! we implement the
Runge Kutta method. Thel dependent physical quantities a
determined iteratively. Starting from their initial values, Eq
~7!, ~10!, and~11! we determine them in the following ste
according tox( l 1d l )5x( l )1d lx8( l ), where x8( l ) stands
for the derivative ofx with respect to the flow parameterl, as
given by the corresponding flow equation. The increm
which we use for this procedure is the following:d l 50.01
for l<5, d l 50.1 for 5, l<100, d l 51.0 for 100, l<1000,
and finallyd l 510 for 1000, l<10 000~the flow parameterl
is expressed in units of the inverse square bandwidthD22).
The major renormalizations take place up tol;100 or 500,
but certain parts of the Brillouin zone are slightly affected
a further increase ofl up to few thousands. We control ou
choice for the upper limit ofl by: ~a! looking on the
asymptotic behavior of all the renormalized quantities, a
~b! by checking whether all the hybridization matrix el
mentsvk,q( l ) decreased below 0.1% of their initial value.

In order to compare the results of this method with t
results previously obtained by a self-consistent perturba
treatment5 we choose the same set of model parameter
used in the above mentioned previous studies, i.e.,v50.1,
DB520.6 andntot5(s^cis

† cis&12^bi
†bi&51 and consider

a one-dimensional tight-binding structure with the initial d
persion«k522t cos(ka) ~we set the lattice constanta51
and use the bandwidthD54t as a unit throughout this
work!. It is instructive to first of all have a look how th
hybridization matrixvk,q( l ) evolves in the course of thi
renormalization technique. In Fig. 1 we showvk,q( l ) for l
5100. Most of the terms of the matrix (k,q) are practically
reduced to zero while there is a region in the moment
space for which the hybridization is only very weakly a
fected.

To understand why a situation like that shown in Fig.
takes place let us come back to the approximate solutio
the flow equations, without treating the fermion and bos
spectra self-consistently~Sec. II B!. By inspection of Eq.
~23! we see that fork, q such that«k1«q2DB50 the cou-
pling constantvk,q( l ) remains unrenormalized. In order t
determine around which momenta (q, k) this happens, we
use«k.22t1tk2. This gives us a topology of concentr
circles around a mean radius given by

k* [Ak21q2.2A11
DB

D
50.894 427. ~41!
13450
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Solving the flow equations self-consistently we do not e
counter such a pathological situation but still, near thosq
and k points, the renormalization ofvk,q( l ) evolves only
very slowly. There are different characteristicl 0 points from
which efficient renormalization starts for the momentum s
tor near the resonant scattering«k1«q5Ek1q ~as also
pointed out before by Ragawitz and Wegner18 for the
electron-phonon problem! and away from it.

Figure 2 shows the evolution of the hybridization consta
along theq52k cross section as a function of l. It is clea
that renormalization of all the model parameters is necess
otherwise the total elimination of the boson-fermion intera
tion is difficult or even impossible to fullfill.

A. The evolution of the chemical potential

To keep the total number of particles fixed we have
tune the chemical potential. There are two effects obser
in the behavior of the chemical potential. First, with a d
crease of temperature, the chemical potential approac
from below the bottom of the boson band. Simultaneous
the bottom of the boson band lowers and this is the rea
why below a given temperature (T;0.007) m starts to be
pulled down. Of course, the relative distanceE022m is a
monotonously decreasing function of temperature.

In this one-dimensional~1D! case studied here, condens
tion of bosons can of course not take place. The chem
potential approaches asymptotically the lowest boson le
Eq50 but never touches it except atT50 ~see Fig. 3!.

FIG. 1. Sketch of the hybridization matrixvk,q( l ) for l 5100.

FIG. 2. Evolution of the momentum dependence of the hybr
ization constantv2k,k( l ) as a function of the continuous iteratio
parameterl 510a.
5-5
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B. The boson spectrum

Due to the interaction with fermions the initially localize
bosons acquire itinerancy. The effective interaction betw
bosons, being of orderv4, is hence neglected here. In Figs.
and 5 we show how, with a decrease of temperature,
boson band becomes broadened and the effective mass o
bosonsmB gets reduced, finally saturating aroundmB(T
→0);mF

0/4. As a relative quantity we usemF
05\2/(2ta2)

which refers to the bare initial fermion mass for the 1D tig
binding case. A parabolic curvature of the long wavelen
limit k→0 is characterized by the inverse effective mass

For all temperatures studied by us the boson disper
function exhibits a resonantlike feature~a kink! around mo-
mentumq52k* ;1.8. This does not correspond to the val
of 2kF as was initially mistakenly believed.5 By inspecting
the location of such a kink for other sets of model parame
we conclude that it is mainly depending on the choice ofDB .
This kink occurs for such momenta which satisfy the con
tion

«k* 1«q2k* 5Eq , ~42!

whereq is a wave vector in the first Brillouin zone. Sinc
within a precision of the orderv2 the value of the boson

FIG. 3. Variation of the chemical potential as function of tem
perature ~at l 5`) for DB520.6, ntot51. The boson band is
shown as a shaded area.

FIG. 4. The effective boson dispersion for a chosen set of t
peratures. Notice the increase of the band width with a decreas
temperature. At very small temperatures the bottom of the bo
band asymptotically approaches the position of 2m and as a result
the top of the boson band gets somewhat pushed up.
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energies is around the initialDB , k* is roughly determined
by the condition 2«k* 5DB . In an approximate study of the
flow equations based on a first iterative substitutions~Sec.
II B ! one can check that the functionEq , Eq. ~25! in fact
diverges forq52k* .

C. Interactions between fermions

As a result of the renormalization of the model paramet
we obtain an effective interaction between fermions. Figu
~6! and~7! below illustrate the momentum characteristics
the two channels defined in Eqs.~27! and ~28!.

Again, we notice certain characteristic features appea
for the momenta corresponding tok* . The interaction
Uk,q

(d2d) has a rather regular behavior: for momenta such t

k21q2,k* 2 this interaction is attractive, while elsewhere
is repulsive. Around the regionk21q25k* 2 we observe a
changeover, which looks quite singular.

The interaction Uk,q
(BCS) shows a similar behavior a

Uk,q
(d2d) but only along the cross sectionq5k ~see the top of

Fig. 8!. Otherwise, the corresponding change over betw
the attractive and the repulsive interaction regimes ha
smooth character~see the bottom of Fig. 8!.

Temperature has a negligible effect on the effect
fermion-fermion interaction. For example,U0,0

(BCS) decreases
only by about 0.4% when the temperature is varied from
to 0.001. No qualitative change is observed at all. Nevert
less temperature is an important factor in as far as the ef

-
of
n

FIG. 5. Low-temperature behavior of the effective bosons m
in units of the initial fermions massmF

0 . In the insert we draw the
long wavelength limit of the boson spectrum for the three low
temperatures evaluated;T50.001,0.005,0.007.

FIG. 6. The BCS interaction strengthUk,q
(BCS) for T50.001.
5-6
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tiveness of this fermion-fermion interaction is concerne
since with a decrease of temperaturekF→k* . To see that we
refer the reader to consult Fig. 3 keeping in mind thatE0
.DB . As seen from the Fig. 8 the interactions foruku,k*
have attractive character and are strongly enhanced~at least
the elementsUk,q5k) infinitesimally below the momentum
k* . One would naturally expect strong effects of these int
actions if the Fermi vector was located just belowk* .

D. The fermion spectrum

Studying the fermion spectrum is a rather complica
issue because on one hand it is affected directly through

FIG. 7. The density-density interaction strengthUk,q
(d2d) for T

50.001.

FIG. 8. Cross sections of the interactionsUk,q
(BCS) and Uk,q

(d2d)

along~a! q5k when both interactions are identical~top figure!, and
~b! for q50 ~bottom figure!. In general both potentials are repulsiv
for momentak.k* and become attractive ifk,k* .
13450
,
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flow equations, Eqs.~17! and ~18!, and, on the other hand
indirectly through the induced interactions as discussed
the preceding section. The effect of temperature turns ou
be a very important factor in this problem. In the physic
regime of interest~i.e., when the effect of the boson-fermio
coupling manifests itself strongly! the Fermi momentum is
situated just belowk* . Upon decreasing the temperaturekF
moves closer and closer to that value. As a result fermi
fermion interactions become more and more effective a
eventually may lead to destruction of the quasiparticle nat
of those fermions in this model.

Below, we discuss what kind of fermion spectrum aris
purely on the basis of the renormalization of the free parti
energies given in Eqs.~17! and ~18!. In Figs. 9 and 10 we
plot the dispersion«k

(R) versusk and in the inset its derivative
with respect to initial«k . Using this derivative we compute
the density of states~DOS!

r~v!5
1

N (
k

d~v1m2«k
(R)!

5E d«r0~«!Ud« (R)

d« U21

d~v1m2« (R)!, ~43!

wherer0(«)5N21(kd(«2«k) is the initial bare DOS of the
fermions.

We notice that below a characteristic temperatureTF* ~at
which the chemical potential starts to be pinned at the b
tom of the boson band! there appears a pseudogap cente
around the Fermi level. In our caseTF* ;0.125 in units of the
initial bare fermion bandwidth.

An important question is the qualitative change over
the pseudogap into a true BCS type gap below the cond
sation temperatureTc . This question can be tackled in
reasonably controlled way in the 1D case.Tc is then identi-
cally zero and atT50 all bosons are condensed in theq
50 state. Remember that we are dealing here with an ef
tively free Bose gas on a lattice, the boson-bos
interaction—of orderv4—being neglected. We thus obtain

d«k~ l !

dl
54n0

B~ l !@«k~ l !2m~ l !#uvk,2k~ l !u2, ~44!

FIG. 9. The renormalized (l→`) fermion spectrum«k
(R) for low

temperatureT50.005. Notice the tendency to form a gap arou
the Fermi vector.
5-7
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dvk,2k~ l !

dl
524@«k~ l !2m~ l !#2vk,2k~ l !, ~45!

dm~ l !

dl
5

1

2

dE0~ l !

dl
522

1

N (
k

u«k~ l !2m~ l !uuvk,2ku2~ l !

~46!

which follow from the general flow equations, Eqs.~16!–
~19!, in the T50 limit. n0

B( l ) denotes the concentration o
condensed bosons andm( l )5E0( l )/2 in this limiting case.
We need not find the whole boson spectrumEq( l ) because
finite momentum statesEqÞ0 are not relevant in the groun
state~at least in absence of some external fields!.

The set of Eqs.~44!, ~45!, and ~46! is rather straightfor-
ward to study because the momentum dependence of
hybridization constantvk,2k( l ) enters only through«k( l ).
Hence one can use the effective DOSr(«,l )51/N(kd@«
2«k( l )# in Eq. ~46!. We solve numerically these equation
for a fixed total concentration of particles which is subject
the supplementary condition

n0
B~ l !5

1

2
ntot2E

2`

m( l )

d«~ l !r~«,l !. ~47!

Figure 11 shows how the chemical potential is renorm
ized through this continuous transformation technique. N
tice that its variation is of the orderv2, as in the case of finite
temperatures. The total concentration of bosons~which are
all in the condensate state atT50) is rather weakly affected
by renormalization~of the order of4%).

The important outcome of thisT50 case analysis is see
in the spectrum of fermions. The asymptotical solution al
→` yields a true gap in«k

(R) which is formed around the

FIG. 10. The DOS for the renormalized fermion spectrum~43!
for T50.02 ~dotted line!, T50.01 ~dashed line! and T50.005
~solid line!. Upon lowering the temperature a pseudogap forms n
the Fermi energy, i.e., (v50), caused by the bonding two-fermio
states~Ref. 21!. Some modification of the DOS is also seen f
higher energies which corresponds to the antibonding two-ferm
state~Ref. 21!. In the inset we compare the results obtained with
the present flow equation technique~solid line! with those derived
by self-consistent diagrammatic techniques~Ref. 5! ~dotted line! for
T50.005.
13450
he

l-
-

chemical potential. The size of this gap is in very go
agreement with the mean-field theory prediction, i.e.,D(T
50)5vAn0

B ~see Fig. 13!.
In Fig. 12 we summarize our results obtained sofar in t

section and which permit us to make some conjectures a
the evolution of the pseudogap into the true superconduc
gap as the temperature is lowered. First of all we notice t
distinct energy scales which define these two gaps:~i! the
superconducting gap being very sharp and being contro
by the first power in the coupling constantv, and ~ii ! the
pseudogap, being evident in form of humps whose positi
slightly move closer together as the temperature decrea
varies with the second power of the coupling constantv.

The relative size of the pseudogap and the ze
temperature true gap can vary considerably as a functio
the boson concentration, as can be seen from Fig. 13. In
12 we have chosen a situation close to the experimental
ation in the high-Tc cuprates where the two gaps are of co
parable size.

In the next section we shall show that this same te
nique, applied to the superconducting state, gives the su
conducting gap varying withv. It is clear that this difference
in the size of these two gaps does not mean that they ar
different origin! We shall come back to this question in t
last section of this paper.

ar

n

FIG. 11. Evolution of the renormalized chemical potentialm( l )
~top! and concentration of bosonsn0

B( l ) ~bottom!. Total concentra-
tion is kept fixed atntot51.

FIG. 12. Difference between the DOS of the interactingr(v)
and of the free systemr0(v) for ntot50.6597 and temperature
displayed in the legend.
5-8
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IV. THE SUPERCONDUCTING PHASE

Bosons are not able to condense at any finite~nonzero!
temperature unless the dimensionality of the system is hig
than two. In this section we try to reach some prelimina
conclusions regarding the superconducting phase of the B
on the basis of flow equation method. We assume tha
least some fraction of the Bose subsystem is in the c
densed state; in other words we considerT,TBE . We show
that the appearance of such a condensate is inevitably re
to the formation of a true gap in the fermion subsystem. O
estimation of this gap is in agreement with the mean-fi
theory result for this model.20

A. The fermion subsystem

Given the existence of a certain fraction of condens
bosons we put the chemical potential at theq50 level of the
boson energy spectrum, i.e.,m( l )5Eq50( l )/2. In the flow
equation for fermion energies, Eqs.~17! we then have a
dominating contribution coming from thenq50

(BE) thermal fac-
tor and, as a consequence, can simplify this equation
~which for T50 is exact!

d«k~ l !

dl
.4n0

B~T,l !@«k~ l !2m~ l !#uvk,2k~ l !u2. ~48!

n0
B(T,l ) denotes the concentration of condensed boson

temperatureT. This equation is coupled to the flow equatio
for the hybridization couplingvk,2k , given in Eq.~45!. By
inspecting the bottom Fig. 11 we see that thel dependence o
the condensate concentration can be dropped,n0

B(T,l )
.n0

B(T). For the strictly three-dimensional system the te
perature evolution is given through the standard relationn0

B

5nB@12(T/TBE)3/2#, wherenB is the total concentration o
bosons. Similarly, thel dependence of chemical potential c
be dropped because of the following arguments:~1! for mo-
menta close to the Fermi surface, the renormalizations
«k( l ) are of the order ofvAn0

B(T) while the chemical poten
tial undergoes a renormalization of the orderv2 ~see top Fig.
11! for momenta which are far fromkF ~i.e., in the high-
energy sector, using a terminology of the renormalizat

FIG. 13. Variation of the true gap atT50 as function of boson
concentration obtained by the flow equation method~solid line!
compared with the mean-field solution~dashed line!. The filled
circles show the corresponding magnitude of the pseudogap
tained by the flow equation method for a normal phase atT50.01.
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group theory! renormalization is not effective at all~except
for the nevralgick* point which is irrelvant for the purpose
of the present discussion!.

Thus, without loss of generality and precision, we c
rewrite the flow equations in the following form

dj~ l !

dl
54n0

Bj~ l !v2~ l ! ~49!

dv~ l !

dl
524j2~ l !v~ l !, ~50!

from which immediately follows

n0
Bv2~ l !1j2~ l !5const, ~51!

wherej( l )5«( l )2m measures the fermion energy from th
chemical potential. It is evident from Eq.~50! that for any
nonzeroj the hybridization must evolve to zero in the infi
nite l limit, v(jÞ0)→0. Consequently the renormalize
spectrum becomes

« (R)2m5sign~«2m!A~«2m!21n0
Bv2. ~52!

The gap formed around the chemical potential in the ferm
subsystem is given by

DF~T!5vAn0
B~T! ~53!

which is the same as predicted by our previous studies20,22of
this model. This result confirms that the BFM is charact
ized by a single transition temperature Tc at which the
bosons start to condense and fermions to form a gap in t
excitation spectrum. HenceTc5TBE

(B)5TBCS
(F) .

B. The boson subsystem

A very important issue in this context is to understand
impact of the gap in the fermion spectrum on the excitat
spectrum of the bosons. Unfortunately the general flow eq
tion, Eq.~19!, cannot be handled analytically, not even in t
small q limit.

In order to get some insight we study numerically th
equation together with the constraint, Eq.~50! which, evi-
dently, applies only forT,TBE and for dimensions large
than two. The set of equations we have then to solve are
~19! and ~22! together with

@«k~ l !2m~ l !#25@«k2m#21n0
B@v22uvk,2k~ l !u2# ~54!

which is a direct consequence of the constraint, Eq.~51!. We
fix the chemical potential at the levelm( l )5Eq50( l )/2
throughout the iterative solution procedure. Equation~54!
controls the formation of the gap in the fermion spectrum
a result of the presence of boson in the condensate. With
constraint, Eq.~54! included, we investigate the boson spe
trum Eq by restricting ourselves to performing a on
dimensional momentum summation in Eq.~19!. Such an ap-
proximative procedure reduces considerably the numer
complexity and is expected to give at least qualitatively c

b-
5-9
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rect results for dimensionality larger than two. A comple
numerical study on this point will be reported in some futu
work.

From the numerical analysis of the above flow equatio
we obtainEq . In the long wavelength limit (q→0) it sig-
nificantly deviates from its behavior, obtained above, in
normal state. In order to illustrate this, we plot in Fig. 14 t
momentum dependence of@Eq

(R)2Eq50
(R) #/q for several tem-

peratures. Clearly the curves show linear behavior up to
mentaq;0.15 and, what is more important, show a nonze
crossing point with the ordinate. Its value determines
sound velocityvs(T) and marks the presence of a collecti
excitation in the superfluid Bose subsystem. That suc
sound wave mode is completely absent in the normal ph
can be seen by the dashed line in Fig. 14 which crosses
ordinate at zero.

By inspection of Fig. 14 one notices the decrease of
sound velocity with increasing temperature. Simultaneou
the region of theq2 behavior of the spectrum starts to shrin
In Figs. 15 and 16 we show the dependence of the so
velocity versus temperature~for a total concentration of car
riersntot51) and versus total concentration atT50.0. These
results agree well with the predictions for the BFM obtain
earlier by means of the dielectric function formalism.20 In the
so-called Bose limit, i.e., when the concentration of boson
not small, the sound velocity has been shown to gradu
decrease with an increase of temperature towardsTc . On the
other hand, the sound velocity of the ground state gets
duced when the total concentration of carriers increases~see
Fig. 15 of our present calculations and compare with Fig
of Ref. 20!. Only in the dilute regime for small boson con
centrations~the so-called BCS limit! one expects a behavio
qualitatively different from that studied here.

V. CONCLUSION

Our previous studies5 of the BFM indicated that the su
perconducting features of it arise due to the initially localiz
bosons becoming itinerant, an effect which is triggered b

FIG. 14. Momentum characteristics of the boson excitat
spectrum in the superfluid state of the BFM withntot51. Solid
lines correspond to various temperatures as marked and the d
line is taken from the self-consistent solution for the normal ph
at T50.005. Inset: the same function for the superfluid~solid line!
and normal phase~dotted line! within the half Brillouin zone atT
50.005.
13450
s

e

o-
o
e

a
se
he

e
ly

nd

is
ly

e-

2

a

mutual feedback effect between the two subsystems. C
comitantly with this occurs the formation of a pseudogap
the DOS of the fermions, as the temperature is lowered
which in turn permits the bosons to acquire longer a
longer lifetimes. The reason for that is a reduction of sc
tering processes due to a diminishing number of fermio
states available in this energy region. The opening of
pseudogap in those descriptions is linked to a renormali
fermion dispersion which becomes flat as the Fermi energ
approached from below, but, with at the same time, a s
stantial loss in spectral weight and lifetime broadening23

The end result is in effect a separation into two separ
subsystems, the fermionic and the bosonic one with th
proper dynamics. Yet, due to the exchange coupling, they
mutually dependent on each other which leads to a sin
critical temperature, describing the onset of superconduc
ity, in both of the two effective uncoupled subsystems.

The flow equation technique studied in this work, reno
malizes this intersubsystem coupling to zero and henc
capable to make this interdependence of the dynamics
these two subsystems explicit. The various results obtai
here are correct to second order in the initial unrenormali
intersubsystem coupling constantv. The effective bosonic
subsystem behaves essentially as a lattice gas of free bo
with a temperature-dependent mass. The effective ferm

n

ted
e

FIG. 15. Sound velocity and the condensate concentration
susT for the superfluid phase of the BFM withntot51.

FIG. 16. Sound velocity of the ground stateT50 as a function
of total concentrationntot for DB520.6. Notice that critical con-
centration above which superfluidity~superconductivity! can arise
is roughly equal toncr;0.49.
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subsystem shows a dispersion which, upon approaching
Fermi wave vector rises almost vertically to some va
above the Fermi energy within a very small regime arou
kF . This reflects a pseudogap structure in the DOS whic
of order v2. In this regime of energies the effective reno
malized intra-subsystem interaction is very singular~see
Figs. 6–8! and is expected to give rise to the lifetime effec
and the reduction in spectral weight seen on our previ
studies.5 For wave vectors greater thankF the effective fer-
mion dispersion remains quasiunrenormalized.

The use of the flow equation technique enables us to t
the superconducting and the normal state on the same foo
and, on the basis of that, to make some conjectures as to
the pseudogap evolves into the true gap in the supercond
ing phase. For a 1D system where the superconducting p
is realized atT[0 the pseudogap evolves in the form of
V-shaped curve which deepens until it touches the zero d
sity level upon decreasing the temperature towardsT501.
Upon entering the superconducting state at exactlyT50, this
V-shaped curve changes abruptly into a more conventio
U-shaped curve, known from standard BCS-type superc
ductors. The pseudogap is characterized by two distinct h
plike features in the DOS whose positions get slowly clo
to each other as the temperature is decreased. The en
difference between those two humps being of the orde
v2. These pseudogap features are distinctively different fr
the gap structure in the superconducting state, as can be
from Fig. 12. The superconducting gap shows a differ
variation with the intersubsytem coupling constant, vary
asv. The sizes for the pseudo- and the superconducting
can in principle be quite different, as shown in Fig. 13. Th
does not mean that they are of different physical origin. W
know from our previous studies2 that the pseudogap is ver
much independent on dimensionality, while the superc
ducting gap evidently is dependent on it. The present stu
further, suggests that the variation of the two gaps with
concentration of bosons varies in opposite direction. This
lead to a situation of a coexistence of two gaplike structu
in the superconducting phase, i.e., a superconducting gap
a remnant of the pseudogap. To what extent we should c
sider the pseudogap as a precursor of the superconducti
a question of semantics. For the model system consid
here, as well as for the real high-Tc cuprate materials the
pseudogap is caused by amplitude rather than phase flu
tions. Amplitude fluctuations are a prerequisite of the sup
conducting state but are not by themselves sufficient to g
antee its materialization. As a consequence, upon redu
the dimensionality of the system, the superconducting sta
suppressed and tends to an insulating state with a chara
istic upturn of the resistivity at low temperatures.2

The study of the changeover between the pseudogap
the superconducting gap for the more realistic anisotropic
case, together with a careful study of the lifetime effe
controlled by the intrafermion subsystem interactions is pr
ently under investigation and will be reported in some futu
study.

Finally, for reasons of completeness, we should men
the theoretical studies of the pseudogap phenomenon b
on the so-called BCS-Bose Einstein crossover scenario. S
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studies are based on effective BCS-type coupling as we
the negativeU Hubbard model.24 Within this approach simi-
lar questions of a changeover from the pseudogap into a
gap have been considered.25 A discussion of the precise dif
ferences between this scenario and the BFM scenario as
cerns the physics and applicability to the high-Tc cuprates
lies outside the frame of subject discussed in the pres
paper.
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APPENDIX

Let us consider the following modification of the gene
ating operator

h̃5h1h (2), ~A1!

whereh is given by Eq.~8! and where we choose

h (2)5
1

N (
s

(
p,k,qÞk

@gp,k,q
s ~ l !bp1q

† bp1kcks
† cqs2H.c.#.

~A2!

The coefficientsgp,k,q
s ( l ) can be selected in any arbitrar

way provided thatvk,p( l→`)→0 still holds.
By a straightforward calculations one verifies that

@h (2),H#5
1

N (
s

(
p,k,qÞk

~Ep1k2Ep1q2«k
s1«q

s!

3~gp,k,q
s bp1q

† bp1kcks
† cqs1H.c.!1O~gv,gU !.

~A3!

If we now use the ansatz

gp,k,q
↓ ~ l !52

«k
↓1«p

↑2Ep1k

Ep1k2Ep1q2«k
↓1«q

↓ vk,p* vq,p ~A4!

gp,k,q
↑ ~ l !52

«p
↓1«k

↑2Ep1k

Ep1k2Ep1q2«k
↑1«q

↑ vp,k* vp,q ~A5!

then we effectively obtain

@h (2),H#52
1

N (
p,k,qÞk

bp1q
† bp1k@~ak,p1aq,p!vk,p* vq,p

3ck↓
† cq↓1~ap,k1ap,q!vp,k* vp,qck↑

† cq↑#1O~v3!.

~A6!
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The terms containinggv become of the orderO(v3) and
from the flow equation, Eq.~20!, we can estimateU;v2

which yields thatgU;O(v4).
Thus on the right hand side of Eq.~A6! we obtain the

same term as in Eq.~12! but with an opposite sign. Thes
d

7

ys

13450
terms subtract each other if one usesh̃ in the flow equation
instead of the initial one Eq.~8!. The modified continuous
unitary transformation does not generate any interaction
the formbp1q

† bp1kcks
† cqs for qÞk unless hybridization con-

stantv is large enough.
tt.
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nd

S.
ck,

.

1A. Georges, G. Kotliar, W. Krauth, and M. Rozenberg, Rev. Mo
Phys. 68, 13 ~1996!; F. Gebhard,The Mott Metal Insulator
Transition, Springer Tracts in Modern Physics Vol. 13
~Springer-Verlag, Berlin, 1997!.

2J.-M. Robin, A. Romano, and J. Ranninger, Phys. Rev. Lett.81,
2755 ~1998!; A. Romano and J. Ranninger, Phys. Rev. B62,
4066 ~2000!.

3Y. Motome and G. Kotliar, Phys. Rev. B62, 12 800~2000!.
4G.M. Eliashberg, Zh. E´ksp. Teor. Fiz.28, 966~1960! @ Sov. Phys.

JETP11, 96 ~1960!#; 29, 1437~1990! @12, 1000~1960!#.
5J. Ranninger, J.-M. Robin, and M. Eschrig, Phys. Rev. Lett.74,

4027 ~1995!; P. Devillard and J. Ranninger,ibid. 84, 5200
~2000!.

6S.D. Głazek and K.G. Wilson, Phys. Rev. D48, 5863~1994!.
7F. Wegner, Ann. Phys.~Leipzig! 3, 77 ~1994!.
8A. Mielke, Eur. Phys. J. B5, 605 ~1998!.
9S.K. Kehrein and A. Mielke, J. Phys. A27, 4257~1994!.

10P. Lenz and F. Wegner, Nucl. Phys. B: Field Theory Stat. S
482, 693~1996!; A. Mielke, Ann. Phys.~Leipzig! 6, 215~1997!;
A. Mielke, Europhys. Lett.40, 195 ~1997!.

11S.K. Kehrein and A. Mielke, Ann. Phys.~N.Y.! 252, 1 ~1996!.
12J. Stein, J. Statistical, J. Stat. Phys.88, 487 ~1997!.
13J. Stein, Eur. Phys. J. B5, 193 ~1998!.
14S.K. Kehrein and A. Mielke, Z. Phys. B: Condens. Matter99, 269
.

t.

~1996!; Phys. Lett. A219, 313 ~1996!; Ann. Phys.~Leipzig! 6,
91 ~1997!.

15K.G. Wilson et al., Phys. Rev. D49, 6720~1997!.
16M.M. Brisudova, R.J. Perry, and K.G. Wilson, Phys. Rev. Le

78, 1227~1997!.
17S. Kehrein, Phys. Rev. Lett.83, 4914~1999!.
18M. Ragawitz and F. Wegner, Eur. Phys. J. B8, 9 ~1999!.
19H.C. Ren, Physica C303, 115 ~1998!.
20T. Kostyrko and J. Ranninger, Phys. Rev. B54, 13 105~1996!.
21T. Domanski, J. Ranninger, and J.-M. Robin, Solid State Co

mun.105, 473 ~1998!.
22J. Ranninger and J.-M. Robin, Physica C253, 279 ~1995!.
23J. Ranninger and J.-M. Robin, Solid State Commun.98, 559

~1996!.
24M. Randeria, inModels and phenomenology for conventional a

High-temperature Superconductivity, Proc. Int. School of Phys-
ics ‘‘Enrico Fermi,’’ Course CXXXVI,’’ , edited by G. Iadonisi,
R. Schrieffer, and M.L. Chiofalo, Varenna, 1997~IOS Press,
Amsterdam, 1998! pp. 53–75; R. Micnas, M.H. Pedersen,
Schafroth, T. Schneider, J.J. Rodriguez-Nunez, and H. Be
Phys. Rev. B52, 16 223~1995!; M. Letz and R.J. Gooding, J
Phys.: Condens. Matter10, 6931~1998!.

25O. Tchernyshyov, Phys. Rev. B56, 3372 ~1997!; I. Kosztin, Q.
Chen, B. Janko, and K. Levin,ibid. 58, R5936~1998!.
5-12


