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Nonlinear feedback effects in coupled boson-fermion systems
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We address ourselves to a class of systems composed of two coupled subsystems without any intrasub-
system interaction: itinerant fermions and localized bosons on a lattice. Switching on an interaction between
the two subsystems leads to feedback effects which result in a rich dynamical structure in both of them. Such
feedback features are studied on the basis of the flow equation technique—an infinite series of infinitesimal
unitary transformations—which leads to a gradual elimination of the intersubsystem interaction. As a result the
two subsystems get decoupled but their renormalized kinetic energies become mutually dependent on each
other. Choosing for the intersubsystem interaction a charge exchange ternhesthefermion modetthe
initially localized bosons acquire itinerancy through their dependence on the renormalized fermion dispersion.
This latter evolves from a free particle dispersion into one showing a pseudogap structure near the chemical
potential. Upon lowering the temperature both subsystems simultaneously enter a macroscopic coherent quan-
tum state. The bosons become superfluid, exhibiting a soundwavelike dispersion while the fermions develop a
true gap in their dispersion. The essential physical features described by this technique are already contained in
the renormalization of the kinetic terms in the respective Hamiltonians of the two subsystems. The extra
interaction terms resulting in the process of iteration only strengthen this physics. We compare the results with
previous calculations based on self-consistent perturbative approaches.
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[. INTRODUCTION these feedback effects. There are many physical situations in
which already a relatively small intersubsystem coupling
A wide class of problems in solid state physics can bdeads to substantial fluctuations in each of them and which
described in terms of interacting boson-fermion systems. Exkhence requires the selfconsistent determination of the mutual
amples ard(i) the electron-phonon problem and its associ-nonlinear feedback effects between the fermions and bosons.
ated realization in superconductivity and polaron formation|n those cases perturbative approaches in form of self-
(if) fermions interacting with spin fluctuations, relevant for consistent diagrammatic techniques can and have been ap-
the description of heavy fermion systems as well as for highplied for the electron-phonon problenthe Eliashberg
temperature superconducto(ti,) certain systems which can approach) and for the BFM. These approaches, however,
be mapped into boson-fermion interacting systems via Hubtotally neglect vertex corrections.
bard Stratanovich transformation®y) the Anderson impu- Controlled perturbative methods in the spirit of renormal-
rity and Kondo problem, and finalljv) the boson-fermion ization group techniques have been recently proposed, the
model (BFM) for high-T,, superconductivity, believed to de- similarity renormalization scherfieand theflow equation
scribe a coupled electron-phonon system in the crossoveechnique’ These techniques are capable in reformulating
regime between weak and strong coupling. such interacting systems in terms of renormalized Hamilto-
In order to obtain the correct low-energy physics in thesenians which capture the low-energy physics, which is
various scenarios of boson-fermion interacting systems thachieved via an infinite series of infinitesimal unitary trans-
mutual feedback effects caused by the interaction betweeformations. Contrary to the standard simple unitary transfor-
the two subsystems must be handled properly. It invariablynations which treat the different energy scales in the prob-
gives rise to effective time-dependent interactions among thieem in a single stepand therefore generally failthese
constituents in each subsystem which quite generally can beontinuous transformations deal with each energy scale in a
obtained by the standard field theoretical method based ogsequence of transformations and by doing so are capable of
functional integrals. This method is particularly suited if oneextracting the low-energy physics in which we are interested.
considers the limit of infinite dimensions where it has been This paper is organized in the following way. In the sub-
developed in great detail and is known as dynamical mearnsequent Sec. |l we review the essential points of the flow
field theory! The mutual feedback effects have been recentlyequation technique and apply it to the boson-fermion model.
studied on the basis of this method for the boson-fermiorin Sec. Il we discuss the excitation spectrum of the renor-
modef and for the many polaron problem in the Holstein malized Hamiltonian and compare the results to those previ-
model® While this method is nonperturbative and capable ofously obtained by different methods. In Sec. IV we give a
describing the low-energy physics, it is, as up to now, repreliminary discussion of the superconducting phase proper-
stricted to the study of local quantities. In situations whereties of the BFM.
the dimensionality and anisotropy of the physical systems Apart from testing this flow equation method for this
play a role, such as believed to be the case in the Tijgh- model, this present study on the BFM goes beyond the stud-
cuprates, one has to resort to different techniques to handles so far reported in the past. We are able to treat on the
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same footing the normal and the superconducting phase ammtinciple it is also possible to formulate the flow equations in
handle the question of how the pseudogap evolves into a trusuch a way that lifetime effects can be studied too. Such type

gap belowT,. of flow equations have been used so far to account for dy-
namical effects in the context of spin-boson probtéand
Il. THE FLOW EQUATION TECHNIQUE also in the investigation of phonon damping effects due to

the electron-phonon interactidf.
The method ofcontinuous unitary transformation has

been formulated by Glazek and Wilsoand independently
by Wegner’ Instead of the single-step transformation this
method amounts to a procedure for simplifying the Hamilto- We shall now apply this flow equation technique to the
nian’s representation through the series of infinitesimal uniBFM described by the following Hamiltonian

tary transformationdJ(l), wherel denotes the continuous

A. Application to the boson-fermion model

flow parameter H=Ho+Hjy. (4)
Tpe continuous  unitary  transformation H(l)  The free partdiagonal in the basis of the plane wayesn-
=U'(I)HU(I) gives rise to the followindlow equation sists of the kinetic terms of the fermions and bosons
dH()
—ar ~L7(.HDT @ Ho= 2 (e~ #)6l,0+ 2 (Eq=2u)bibg. (9
where (1) represents some arbitrafgnti-Hermitean gen-

The mutual interaction between both species is represented

erator by the charge exchange term
(M —dUT(l)U(l) 2 1
n(l)= . _ T T AT
dl Him—\/—N ;p (U, pPk+ pCk | Cp1 F Uk pPK+pCpiCk ). (6)

The choice of a specific form ofy(l) is usually deter-
mined by the physical situation under considerafichin
this paper we use Wegner's propdsal

The flow equations control the evolution of the model pa-
rametersey , Eq, vy q Which get renormalized in the course
of the flow equations procedure. From now on we assume
2()=[Ho(1),Hin(D1, (3)  that they depend on the flow parametavith the following

initial conditions
whereH, is the diagonal andH;,; the nondiagonal part of

the Hamiltonian in a given representation. In genefal; Eq1=0)=Ag, &((I1=0)=¢€y, vyp(l=0)=v. (7)
will be understood as the perturbation with respecHig

The generating operator E¢3) guarantees that under the According to Wegner's definitiort3) of the generating op-
continuous transformation the off diagonal terms are mo£rator we have

notonously reduced, eventually leading to a block diagonal-

ization of the Hamiltonian, provided that no degenerancies

J— T(1)—
are encountere® Recently Mielke has propos&dome dif- (I)_ = (eil1)+ep()—Egep(1)
ferent form of thex(l) operator which can be used for study-
ing systems with degeneracies. _ X(U:,p(l)bk+pC;TCL_Uk,p(|)bl+kaLCpT)- (8)
One condensed matter problem analyzed with use of the
flow equation was the electron-phonon Hamiltont&it. has Upon iterating the flow equation, Ed1), interaction

been shown that eliminating the electron-phonon interactiomerms are in general created which are not contained in the

induces the effective interactions between electrons whiclariginal Hamiltonian. Certain of those terms can be incorpo-

are attractive in the whole Brillouin zone. Near the Fermirated in such a flow equation procedure by reformulating the

surface this attraction is strongly enhanced but it never beinitial H, in the following way

comes divergent as in the case for the classicahlirio

transformation. The method has also been successfully ap

plied to a variety of other physical problems like the single Ho(l)= 2 [eg(1)— p]:ClyCro +2 [Eq(1)=2u]: b by:

impurity Anderson modét (the Schrieffer-Wolff transfor-

mation has been improvgdthe strong coupling expansion 1 _—

for the Hubbard modéf (t/U expansiol, the large spin N Zk Upka(l)CpiCk Cq Cpri—qr te(l), (9

Heisenberg HamiltonidA (1/S expansioh and for other P

topics such as dissipative quantum systéfnght front ~ where the symbolx:=x—(x) stands for the normal-order

QCD, quarkonium specttd and the Sine-Gordon mod¥l.  product andc(l) denotes ac-number contribution to the
The main advantage of the continuous transformations iglamiltonian. We furthermore supplement the initial condi-

that an effective Hamiltonian can be derived which is validtions (7) with the constraints

not only in the low-energy sectdtike the standard renor-

malization group but in the overall regime of energies. In Upkq(l=0)=0, (10
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c(1=0)= E (e—H) n‘FD’+E (Eq—2u)ne . (11)

After some straightforward algebraic manipulations we finally obtain

dH(1) 1 1
o N 2 acp(DIvkp(bl gk Cor F vk p(DbicpCpii 1+ iy 2 Latpl)

ta (Hw§ (Ho (hel el cqic +3§) ay (Do p(NZnEB ¢l ¢y
q.k+p—q k,p a,k+p—q pl~kl>ql¥p+k—ql N r k,p k,p p+k -~k VK| -

2
N & @eiDlop DR e on 4 2 {enep(DlowpIF = 1+n{7]

2
+apiDopDEEIN0L b+ g 24 {aip(DIvip(DIL =1 nep(k) 1+ api(Dlvpi(h ko (kI

N kg 2 bp+q p+k{[ak p(|)+aq p(l)]vk p(l)vq p( )Cklcqi+[ap k(|)+apq(|)]vp k(1 )qu(I)CkTCqT}

+0(:¢f,Cry:blby 1) +O(v), (12
|
where for brevity we introduce dE(1) 2
N 2 @ ppD vk pp(OPL =102 ()]
e p(N=ek(1)+eh()=Ep(l). (13) P
The expectation values are defined as + “p,kfp|vp,k*p(|)|2 TFI?)p(I)} (19
1 dUp kq(h)
(et =nP=—— @4 g = Lap()+agrep-oD0kp(Dvgiep-q()),
o elek ()= m/ksT | q dl
(20)
1
T \ — A(BE) /[y — de(l) 2
(bgba)=ng (D= Eammer—+ 19 N 2 {apDloep =1+ (0]
(FD) (BE) D = :
wheren'™’, n are the Fermi-Dirac and Bose-Einstein +ap p|vpk(|)|2n%ﬁ?)(|)n(k3?(|)}- (22)

distribution functions, respectively. They dependent lon
only through their arguments,(l) and Ey(l). In order to A formal solution for the flow equation, Eq16), can be
proceed with the numerical analysis of this flow equation,given right away

Eqg. (12), we shall neglect from now on the terms in the last
two lines. Such a neglect implies th@ our theory is valid
up to the ordew?, (b) we omit any fluctuations of the form

(CloCro—(CkoCho)) (Dby—(blby)), and(c) as shown inthe  put of course the dispersion functioaf(l) andE,(l) ought

Appendix,  contributions coming from the terms to be determined self-consistently via the other flow equa-
by 0p+ kChaCqo fOr q#K are of orderO(v?). tions.
Within that procedure we finally arrive at the following

set of the flow equations for the BFM

Uk, p(l):U eff|0[5|£(|’)Jrs;(l’)—Eker(y)]zdl, (22)

B. Lowest-order iterative solution

douy p(I) ’ The flow equation scheme is devised in such a way that
dl —aj (Do p(l), (16)  the dominant renormalization takes place for the hybridiza-
tion constant ,(1). To get some insight about its effective-
dsﬁ(l) 2 ness we solve here the flow equations approximatively using

> ak,p(l)|Uk,p(|)|2n(k%—|:;3)(l)! (17 on t'he right-hgnd side of Eq$16)—(21) the bare(unrenor-
P malized energiese, (I)=gy andEy(1)=Ag (=E4-0). The
resulting hybridization constaii22) reduces in this case to

d N

dsi

2
— 2, (BE) 5
N % ap,k(|)|vp,k(|)| nker(I): (18) Uk’p(l):vp,k(l):v e—(sk+8p—AB) | (23)
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and has the desired propetty (I —)=0 for all momenta, , 1 _

except wheney+e,=Ag. This situation corresponds to a 2p(k,om)=—[v|*keTy > Ge(k—piiop
resonant scattering of two fermions into a boson state with Pn

their total energy being conserved. We shall see in Section —iw,)Ge(p,ioy). (31)

[l that in the self-consistent solution of the flow equations

such a problem does not occur. Substituting @) into the Our approximate solutions of the flow equations derived
flow equations, Eqs(17)—(20), and taking the limitl — o above(Sec. Il By were based on unrenormalized fermion and

one obtains the renormalized quantities: boson spectra and therefore are not self-consistent. Let us
now determine the selfenergies using the bare Green'’s func-
® ,1 néEiEo) tions, as it has been done in Ref. 5 and which read
= + — —_—
k Ek |U| N zp 8k+8p_AB (24) 1 n(F_Dk)—{—n(B:EO)
Se(ko)=lv[?5 2 (32
ER=Ag+|v)2= > —2— P 2
= Ast o] % Ap—ep—Erp @9 1 o 1-nfFO)_ D)
Spko)=vl 5 X e 3y
N T ot2u—e, g
UR e extepteqteripq— 248 -
p.k.g (et £p—Ag)2+ (6q+ ks pg— D) with n{? )—[exp{(AB—Z,u)/k_BT}—l]’l. The effective quasi-
(26) partlcle spectra are then given by the solutions of following
R _ ) equations
where (R stands for the fermion spectrum, valid for both
spins. wf+ p—e—2e(k,0f)=0, (34)
Let us concentrate from now on exclusively on two chan-
nels of the induced fermion-fermion interactions; the zero wE+2,u—AB—EB(k,wE)=O. (35

momentum BCS channel and the zero momentum densny

density @-d) channel, respectively, In the limit of smallv we can put

a)E+,LL28k
2 UGicdeielp eokcu s (27) 5
o, +t2u=Ag
(d a0 N and then substitute these quantities into the expressions for
% Uik i CorCi G - (28)  the self-energie$32) and (33) which results in
They denote specific elemert§’d=U, _, _(I—=) and OFt ums +|v|2£ > n{%+nl3 36
U P=U,  k(I—2) which together with Eq(26) become kTR EK N < extepk—Ag
AB_ZS )+(AB_28k) 1 1_n(FD) n(FD)
U(BCS_ | |2 (29) B+ - Llpl22 = "p " Tk-p
A (Ag—26,)7+(Ag—26,)? oitu=de ol G 2 T s (37
1 The difference between the fermion spect®6) derived
U P=—v? (300 from this perturbative approach and that derived from the

Ap~ep—ek flow equation approack24) can be remedied after having

They are divergent in certain regions of the Brillouin zone,realized that the standard perturbative study describes an ef-
but as we shall show below, a self-consistent numerical sofective fermion spectrum while the flow equations method,
lution of the flow equations smoothens such divergences inteeformulating the boson-fermion interaction, resultgana

a regular behavior. renormalization of the fermion energieg— (X and(b) an
appearance of the fermion-fermion interactions. Taking both
C. Comparison with standard perturbation theory effects into account when evaluating the final fermion qua-

Let us next discuss the results of the first iterative solutlorﬁ'part'de spectrum, the lowest-order correct|on58§8) 1S
of the flow equation method and compare it to that obtained'Ve" by the Hartree term; i.e.,
by standard perturbative studies of the BFM, discussed in 1
detail in Refs. 5 and 19. The second order expansions for the PP+ > U(kRg pnéFD) . (39
fermion and boson self-energies of the single particle propa- N "

gators are given by From the approximate solutio{26) we have
lv]?

. 2 1 .
Ep(k,|wn):|vl kBTN 2 Gp(p_k,|wm U(R) —
P, om

k,p,p_8k+8p_AB! (39)

—iw,)Ga(p,ioy) which eventually leads to
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1
(R) (R) 2= [
k" 8k *[o] N % 8k+sp—AB

(FD)
np
&

(BE) (FD)
1 n +ny

=0
:8k+|v|2N >

p 8k+8p_AB (40)

/// \

and which thus is identical to the expression, E2f) ob-
tained from the diagrammatic perturbation theory analysis.

I1l. NUMERICAL SOLUTION OF THE FLOW
EQUATIONS FIG. 1. Sketch of the hybridization matrix, (1) for 1= 100.

In this section we present the results of the self—consistené . . .
numerical solution of the flow equations. In order to solve olving the flow equatlons sellf-co'n3|stently'we do not en-
the differential equations, Eq&L6)—(21) we implement the counter such a pathologlcgl S|t_uat|on but still, near thgse
Runge Kutta method. THedependent physical quantities are @nd K points, the renormalization of4(1) evolves only
determined iteratively. Starting from their initial values, Eqs. V€'Y Slowly. There are different characteristjcpoints from
(7), (10), and(11) we determine them in the following step which efficient renormalization s.tarts for the momentum sec-
according tox(l+ 1) =x(1)+ 8lx' (1), wherex'(l) stands tor near the resonant scattering+e,=Ey. 4 (as also
for the derivative ok with respect to the flow parameteras ~ pointed out before by Ragawitz and Wegfiefor the
given by the corresponding flow equation. The incremenglectron-phonon problejrand away from it.
which we use for this procedure is the fo”ow|n@|:001 Figure 2 shows the evolution of the hybridization constant
for 1<5, 81=0.1 for 5<1=<100, 8l =1.0 for 100<1<1000, along theq=—k cross section as a function of I. It is clear
and finally 5l = 10 for 1000<|< 10 000(the flow parameter  that renormalization of all the model parameters is necessary,
is expressed in units of the inverse square bandwiitR). otherwise the total elimination of the boson-fermion interac-
The major renormalizations take place upl to100 or 500, tion is difficult or even impossible to fullfill.
but certain parts of the Brillouin zone are slightly affected by
a further increase df up to few thousands. We control our A. The evolution of the chemical potential

hoice for th limit ofl by: looki h
choice for the upper fimit off by: (@ looking on the d To keep the total number of particles fixed we have to

asymptotic behavior of all the renormalized quantities, an i .
(b) by checking whether all the hybridization matrix ele- tune the chemical potential. There are two effects observed

ments (1) decreased below 0.1% of their initial value. in the behavior of the chemical potential. First, with a de-

In order to compare the results of this method with thecrease of temperature, the chemical potential approaches
rom below the bottom of the boson band. Simultaneously,

results previously obtained by a self-consistent perturbativ o
treatmeEﬁ we chgose the sarxe set of model paFr)ameters aﬁwe bottom of the boson band lowers and this is the reason

used in the above mentioned previous studies, ¢.e.0.1, why below a given temperaturel {-0.007) n starts to be
Ag=—0.6 andn,= 3 ,(c],¢;,) + 2(b/b;)=1 and consider pulled down. Of course, the relative distanEég—2u is a

: : . gie . - ... monotonously decreasing function of temperature.
a one-dimensional tight-binding structure with the initial dis- . . . .
) - ; - In this one-dimensiondlLD) case studied here, condensa-
persiong, = — 2t coska) (we set the lattice constami=1

. ; . tion of bosons can of course not take place. The chemical
and use the bandwidtid=4t as a unit throughout this : .
work). It is instructive to first of all have a Ioogk how the potential approaches asymptotically the lowest boson level

hybridization matrixv 4(l) evolves in the course of this Eq-o but never touches it except a0 (see Fig. 3
renormalization technique. In Fig. 1 we shaw q(I) for |

=100. Most of the terms of the matridk(q) are practically Vi) —
reduced to zero while there is a region in the momentum 0.1t =10
space for which the hybridization is only very weakly af-
fected. 0.08 r =0
To understand why a situation like that shown in Fig. 1
takes place let us come back to the approximate solution of 0.06 |
the flow equations, without treating the fermion and boson 1
spectra self-consistentlySec. 11B). By inspection of Eq. 0.04 r
(23) we see that fok, g such thatey+&,—Ag=0 the cou- 2
pling constantvy (1) remains unrenormalized. In order to 0.02
determine around which momentgq, (k) this happens, we
use g, = —2t+tk?. This gives us a topology of concentric 0% 0 k T

circles around a mean radius given by
FIG. 2. Evolution of the momentum dependence of the hybrid-

Ag izati | function of th i iterati
*— T~ L 2B _ ization constanv _, (1) as a function of the continuous iteration
k= IPFg7=2\/1+ 5'=0.894427.  (4]) e ametol — 10
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M mg(T)
5 rE-2p
-0.32 4t g ,///
-/
3 -
-0.33 C= ,
00 w100 Kk
2 L
-0.34
1+
L L s s 0 L ) .
0 0.01 002 0.03 0.04 T 0 0.01 0.02 T 0.03

FIG. 3. Variation of the chemical potential as function of tem-  FIG. 5. Low-temperature behavior of the effective bosons mass
perature(at | =) for Ag=—0.6, n,.;=1. The boson band is N units of the initial fermions masmg. In the insert we draw the
shown as a shaded area. long wavelength limit of the boson spectrum for the three lowest

temperatures evaluated;=0.001,0.005,0.007.
B. The boson spectrum
energies is around the initidlg, k* is roughly determined

Due to the interaction with fermions the initially localized o .
Y y the condition 2,+=Ag. In an approximate study of the

bosons acquire itinerancy. The effective interaction betweeﬁ . S . o

bosons, being of order’, is hence neglected here. In Figs. 4fOW equations based on a first |te_rat|ve subsﬂtu_ﬂ(ﬁec.

and 5 we show how, with a decrease of temperature, tha.B) one can che*ck that the functidg,, Eq. (25 in fact

boson band becomes broadened and the effective mass of tH&©9€S forg=2k*.

bosonsmg gets reduced, finally saturating aroumas(T ) )

—0)~mY/4. As a relative quantity we usel=7#2%/(2ta?) C. Interactions between fermions

which refers to the bare initial fermion mass for the 1D tight-  As a result of the renormalization of the model parameters

binding case. A parabolic curvature of the long wavelengthwe obtain an effective interaction between fermions. Figures

limit k— O is characterized by the inverse effective mass. (6) and(7) below illustrate the momentum characteristics of

For all temperatures studied by us the boson dispersiothe two channels defined in EqR7) and(28).

function exhibits a resonantlike featua kink) around mo- Again, we notice certain characteristic features appearing

mentuma= 2k* ~1.8. This does not correspond to the valuefor the momenta corresponding tk*. The interaction

of 2kg as was initially mistakenly believetiBy inspecting  U{% ? has a rather regular behavior: for momenta such that

the location of such a kink for other sets of model parameter§2+q2<k*z this interaction is attractive, while elsewhere it

we conclude that it is mainly depending'on the'choicAQf _is repulsive. Around the regiok?+g2=k*2 we observe a

'I_'hls kink occurs for such momenta which satisfy the Cond"changeover, which looks quite singular.

tion The interactionU{%" shows a similar behavior as

420 UL but only along the cross sectiap=k (see the top of
Fig. 8. Otherwise, the corresponding change over between

whereq is a wave vector in the first Brillouin zone. Since the attractive and the repulsive interaction regimes has a

within a precision of the ordep? the value of the boson smooth characteisee the bottom of Fig.)8

Temperature has a negligible effect on the effective

sk*+8q—k*:Eq1

0.05 ; S .
fermion-fermion interaction. For example Sy decreases
0.04 only by about 0.4% when the temperature is varied from 0.1
' to 0.001. No qualitative change is observed at all. Neverthe-

< 0.03 less temperature is an important factor in as far as the effec-
o
I, U, (BCS)
W g02 kq

0.01

%0 w2 K n

FIG. 4. The effective boson dispersion for a chosen set of tem-
peratures. Notice the increase of the band width with a decrease of
temperature. At very small temperatures the bottom of the boson
band asymptotically approaches the position pf nd as a result
the top of the boson band gets somewhat pushed up. FIG. 6. The BCS interaction strengm(k?ch for T=0.001.
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(d-d)

Ukq 05 +

0.2 ®
&

0

-0.2
p—
-0.5

FIG. 7. The density-density interaction strengt®- 9 for T
=0.001 g / ot 0 w2 K ©

FIG. 9. The renormalized ) fermion spectrum.(kR) for low
‘temperaturel =0.005. Notice the tendency to form a gap around
the Fermi vector.

tiveness of this fermion-fermion interaction is concerned
since with a decrease of temperatlpe—k*. To see that we
refer the reader to consult Fig. 3 keeping in mind tBgt
=Ag. As seen from the Fig. 8 the interactions flit<k™ {5,y equations, Eqs(17) and (18), and, on the other hand,
have attractive character and are strongly enhak@etast  jgirectly through the induced interactions as discussed in

”le elementd)y o) infinitesimally below the momentum o hreceding section. The effect of temperature turns out to
k*. One would naturally expect strong effects of these interyo 5 very important factor in this problem. In the physical

actions if the Fermi vector was located just belkiv regime of interesti.e., when the effect of the boson-fermion
coupling manifests itself stronglythe Fermi momentum is
D. The fermion spectrum situated just belovk*. Upon decreasing the temperatise

Studying the fermion spectrum is a rather complicateomoves closer and closer to that value. As a result fermion-

issue because on one hand it is affected directly through thMion interactions become more and more effective and
eventually may lead to destruction of the quasiparticle nature

of those fermions in this model.

Uik Below, we discuss what kind of fermion spectrum arises
02 1 purely on the basis of the renormalization of the free particle
energies given in Eqg17) and(18). In Figs. 9 and 10 we
01 ¢ oK | plot the dispersiors(kR) versusk and in the inset its derivative
00— S _ with respect to initiale,, . Using this derivative we compute
the density of state€DOS)
-0.1 1
02| | plo)=5 2 dwt+u—ell)
. (R)| -1
- 0 k T :f dep®(e) d: Swt+u—e®), (43
(a) ©
wherep®(e) =N"13,6(e — &) is the initial bare DOS of the
Ueo ' fermions.
02 | ] We notice that below a characteristic temperaflife(at
! \ which the chemical potential starts to be pinned at the bot-
017} // oM '\\ tom of the boson bandhere appears a pseudogap centered
_____ - RN around the Fermi level. In our ca3¢ ~0.125 in units of the
00 N’ - initial bare fermion bandwidth.
0.4 I/’ \‘ ] An important question is the qualitative change over of
! \ the pseudogap into a true BCS type gap below the conden-
02| — (BCS) 1 ] sation temperaturd,. This question can be tackled in a
—=== (d-d) reasonably controlled way in theDlcase.T, is then identi-
- 0 K P cally zero and aff=0 all bosons are condensed in the
®) =0 state. Remember that we are dealing here with an effec-
tively free Bose gas on a lattice, the boson-boson
FIG. 8. Cross sections of the interactiob§®9 and U, 9 interaction—of ordew“—being neglected. We thus obtain
along(a) g=k when both interactions are identid#&bp figure, and de(l)
b) for g=0 (bottom figure. In general both potentials are repulsive _ 1B 2
IEO?‘ mo?nent;k>k* angd beecorge attractive E<k*. P dl =4no(le(D) = p]lvi-DI (44)
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p(w) '
4t 3 P(g’)_

-02 0 02 04 06 08
FIG. 10. The DOS for the renormalized fermion spectri®)
for T=0.02 (dotted ling, T=0.01 (dashed ling and T=0.005
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—

500 1 1000

FIG. 11. Evolution of the renormalized chemical potentigl)
(top) and concentration of bosomg (1) (bottom). Total concentra-
tion is kept fixed ai;,;=1.

(solid line). Upon lowering the temperature a pseudogap forms near

the Fermi energy, i.e..{=0), caused by the bonding two-fermion
states(Ref. 21). Some modification of the DOS is also seen for
higher energies which corresponds to the antibonding two-fermio
state(Ref. 21). In the inset we compare the results obtained within
the present flow equation techniq(solid line) with those derived
by self-consistent diagrammatic techniqURef. 5 (dotted ling for
T=0.005.

doy, (1)
dl

A e (D)= (D)% —k(D), (45)

du() _ 1 dEg(l) _

21
di 2 d =~ “N

N

; lew() = w()] oyl ?(1)
(46)

which follow from the general flow equations, Eq4.6)—
(19), in the T=0 limit. n§(l) denotes the concentration of
condensed bosons andl) =Ey(l)/2 in this limiting case.
We need not find the whole boson spectrég(l) because
finite momentum stateg, .., are not relevant in the ground
state(at least in absence of some external figlds

The set of Eqs(44), (45), and(46) is rather straightfor-

chemical potential. The size of this gap is in very good
agreement with the mean-field theory prediction, (T
n=0)=0v/nE (see Fig. 1R

In Fig. 12 we summarize our results obtained sofar in this
section and which permit us to make some conjectures as to
the evolution of the pseudogap into the true superconducting
gap as the temperature is lowered. First of all we notice two
distinct energy scales which define these two ga&psthe
superconducting gap being very sharp and being controlled
by the first power in the coupling constanf and (ii) the
pseudogap, being evident in form of humps whose positions
slightly move closer together as the temperature decreases,
varies with the second power of the coupling constant

The relative size of the pseudogap and the zero-
temperature true gap can vary considerably as a function of
the boson concentration, as can be seen from Fig. 13. In Fig.
12 we have chosen a situation close to the experimental situ-
ation in the high¥; cuprates where the two gaps are of com-
parable size.

In the next section we shall show that this same tech-
nique, applied to the superconducting state, gives the super-
conducting gap varying with. It is clear that this difference

ward to study because the momentum dependence of the the size of these two gaps does not mean that they are of

hybridization constanib _ () enters only throughe,(l).
Hence one can use the effective DQ%e,l)=1/NZ, [ &
—g(l)] in Eq. (46). We solve numerically these equations
for a fixed total concentration of particles which is subject to
the supplementary condition

0]
_de(Dp(e.D). (47)

B 1 "
”o(|)=§”tot_

Figure 11 shows how the chemical potential is renormal-

ized through this continuous transformation technique. No-

tice that its variation is of the order’, as in the case of finite
temperatures. The total concentration of bos@msich are
all in the condensate state Bt 0) is rather weakly affected
by renormalizatior(of the order 0f4%).

The important outcome of thif=0 case analysis is seen

different origin! We shall come back to this question in the
last section of this paper.

.
| = T=00
b e 0.006
\ ——— 0008

305} 11 —— o010

2 i\

> !

— iA

3 AN

\6_ 0 = __=-_-w .

N/
-05 : : :
-0.05 0 0.05 @

FIG. 12. Difference between the DOS of the interactir(@)

in the spectrum of fermions. The asymptotical solutiont at and of the free systerp®(w) for n,,,=0.6597 and temperatures
— yields a true gap (¥ which is formed around the displayed in the legend.
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group theory renormalization is not effective at aléxcept
for the nevralgidk* point which is irrelvant for the purpose
015 | . of the present discussipn
@ 2A(T=0) __- . . -
S _o=F Thus, without loss of generality and precision, we can
© 54l = rewrite the flow equations in the following form
" 2A(T=0.01) de(l)
0.05 | //’ T=4n§§(l)uz(l) (49
I/
. ‘ ‘ ‘ do(l)
% 01 02 03 o4 e TR —4&(ho (1), (50)

FIG. 13. Variation of the true gap dt=0 as function of boson  from which immediately follows
concentration obtained by the flow equation metHedlid line)
compared with the mean-field solutiddashed ling The filled ngvz(l)+§2(l)=const, (51)
circles show the corresponding magnitude of the pseudogap ob-
tained by the flow equation method for a normal phasé-a0.01. whereé&(l)=e(l) — u measures the fermion energy from the
chemical potential. It is evident from E@50) that for any
IV. THE SUPERCONDUCTING PHASE nonzero¢ the hybridization must evolve to zero in the infi-

Bosons are not able to condense at any fifitenzerd nite | limit, v(£#0)—0. Consequently the renormalized
temperature unless the dimensionality of the system is highetP€Ctrum becomes

than two. In this section we try to reach some preliminary R i B3
conclusions regarding the superconducting phase of the BFM eV —p=signe—u) (e —pu) +ngv°. (52
on the basis of flow equation method. We assume that af’he gap formed around the chemical potential in the fermion
least some fraction of the Bose subsystem is in the CONS hsvstem is given b
densed state; in other words we consitier Tgg. We show y g y
that the appearance of such a condensate is inevitably related B
to the formation of a true gap in the fermion subsystem. Our Ar(T)=v\Ng(T)
estimation of this gap is in agreement with the mean-fieldyhich is the same as predicted by our previous stadif@ef
theory result for this modéf. this model. This result confirms that the BFM is character-
_ ized by asingle transition temperature .Tat which the
A. The fermion subsystem bosons start to condense and fermions to form a gap in their
Given the existence of a certain fraction of condensed®XCitation spectrum. Henck,= T2 =TH .

bosons we put the chemical potential at ¢ve0 level of the
boson energy spectrum, i.gu(l)=Eq-o(l)/2. In the flow B. The boson subsystem

equation for fermion energies, EqEL7) Be) then have a A yery important issue in this context is to understand the
dominating contribution coming from_tha;g_: thermal fac- jjnact of the gap in the fermion spectrum on the excitation
tor and, as a consequence, can simplify this equation t@pectrum of the bosons. Unfortunately the general flow equa-

(53

(which for T=0 is exact tion, Eq.(19), cannot be handled analytically, not even in the
dey(l) small g limit.
gl =4n3(T,D[e()— D ]oe (D% (48 In prder to get some insight we study num.erically' this
equation together with the constraint, E§0) which, evi-

ng(T,l) denotes the concentration of condensed bosons %ently, applies only folT<Tge and for dimensions larger
temperaturdl. This equation is coupled to the flow equation than twg.;’zhe set cr)]f equ.akt:ons we have then to solve are Egs.
for the hybridization couplin@, _, given in Eq.(45). By (19) and(22) together wit

inspecting the bottom Fig. 11 we see that lthkependence of

the condensate concentration can be droppef(T,!) [ew(h) — () ]?=[ex— p]*+nglv?—]vy (D[*] (54)

=ng(T). For the strictly three-dimensional system the tem-which is a direct consequence of the constraint, (G). We
perature evolution is given through the standard relaltiﬁn fix the chemical potential at the levek(l)=Eqo(1)/2
=n®[1—(T/Tge)¥?], wheren® is the total concentration of throughout the iterative solution procedure. Equatigy)
bosons. Similarly, thédependence of chemical potential can controls the formation of the gap in the fermion spectrum as
be dropped because of the following argumefig:for mo-  a result of the presence of boson in the condensate. With the
menta close to the Fermi surface, the renormalizations ofonstraint, Eq(54) included, we investigate the boson spec-
e(l) are of the order ob \/nOB(T) while the chemical poten- trum E, by restricting ourselves to performing a one-
tial undergoes a renormalization of the ordér(see top Fig. dimensional momentum summation in E§9). Such an ap-

11) for momenta which are far fromag (i.e., in the high- proximative procedure reduces considerably the numerical
energy sector, using a terminology of the renormalizatiorcomplexity and is expected to give at least qualitatively cor-
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FIG. 14. Momentum characteristics of the boson excitation
spectrum in the superfluid state of the BFM with,,=1. Solid FIG. 15. Sound velocity and the condensate concentration ver-
lines correspond to various temperatures as marked and the dottedsT for the superfluid phase of the BFM with,,=1.
line is taken from the self-consistent solution for the normal phase

atT=0.005. Inset: the same function for the superfitdlid line)  mytyal feedback effect between the two subsystems. Con-
and normal phasé&otted ling within the half Brillouin zone aff comitantly with this occurs the formation of a pseudogap in
=0.005. the DOS of the fermions, as the temperature is lowered and

. . ) which in turn permits the bosons to acquire longer and
rect results for dimensionality larger than two. A complete|qnger Jifetimes. The reason for that is a reduction of scat-

numerical study on this point will be reported in some fuwretering processes due to a diminishing number of fermionic

work. , _ _ states available in this energy region. The opening of the
From the numerical analysis of the above flow equationg,sedogap in those descriptions is linked to a renormalized
we obtainE,. In the long wavelength limitd—0) it Sig-  fermion dispersion which becomes flat as the Fermi energy is
nificantly deviates from its behavior, obtained above, in thedpproached from below, but, with at the same time, a sub-
normal state. In order to iIIusérate tgis, we plot in Fig. 14 thegiantial loss in spectral weight and lifetime broaderfihg.
momentum dependence KEE; )_Eé:)o]/q for several tem-  The end result is in effect a separation into two separate
peratures. Clearly the curves show linear behavior up to mosypsystems, the fermionic and the bosonic one with their
mentaq~0.15 and, what is more important, show a nonzeroproper dynamics. Yet, due to the exchange coupling, they are
crossing point with the ordinate. Its value determines thenmytually dependent on each other which leads to a single
sound velocityy(T) and marks the presence of a collective critical temperature, describing the onset of superconductiv-
excitation in the superfluid Bose subsystem. That such gy in both of the two effective uncoupled subsystems.
sound wave mode is completely absent in the normal phase The flow equation technique studied in this work, renor-
can be seen by the dashed line in Fig. 14 which crosses th@alizes this intersubsystem coupling to zero and hence is
ordinate at zero. capable to make this interdependence of the dynamics of
By inspection of Fig. 14 one notices the decrease of thehese two subsystems explicit. The various results obtained
sound velocity with increasing temperature. Simultaneouslyyere are correct to second order in the initial unrenormalized
the region of they” behavior of the spectrum starts to shrink. intersubsystem coupling constant The effective bosonic
In Figs. 15 and 16 we show the dependence of the soungybsystem behaves essentially as a lattice gas of free bosons

velocity versus temperaturéor a total concentration of car- wijth a temperature-dependent mass. The effective fermion
riersn;o=1) and versus total concentrationTat 0.0. These

results agree well with the predictions for the BFM obtained v
earlier by means of the dielectric function formaliéfin the s
so-called Bose limit, i.e., when the concentration of bosons is 02 L
not small, the sound velocity has been shown to gradually
decrease with an increase of temperature tow@gdsOn the
other hand, the sound velocity of the ground state gets re- e
duced when the total concentration of carriers incregses @@ Py
Fig. 15 of our present calculations and compare with Fig. 2 0.1 ¢
of Ref. 20. Only in the dilute regime for small boson con-
centrationgthe so-called BCS limjtone expects a behavior,
qualitatively different from that studied here.

0

0 1 2 Nn. 3
V. CONCLUSION
FIG. 16. Sound velocity of the ground state=0 as a function
Our previous studi€sof the BFM indicated that the su- of total concentratiom,. for Ag=—0.6. Notice that critical con-
perconducting features of it arise due to the initially localizedcentration above which superfluiditguperconductivity can arise
bosons becoming itinerant, an effect which is triggered by as roughly equal tan.,~0.49.
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subsystem shows a dispersion which, upon approaching tretudies are based on effective BCS-type coupling as well as
Fermi wave vector rises almost vertically to some valuethe negatived Hubbard modef? Within this approach simi-
above the Fermi energy within a very small regime aroundar questions of a changeover from the pseudogap into a true
ke . This reflects a pseudogap structure in the DOS which igap have been consider&UA discussion of the precise dif-
of orderv?. In this regime of energies the effective renor- ferences between this scenario and the BFM scenario as con-
malized intra-subsystem interaction is very singulaee Cerns the physics and applicability to the high-cuprates
Figs. 6-8 and is expected to give rise to the lifetime effectslies outside the frame of subject discussed in the present
and the reduction in spectral weight seen on our previougaper.
studies’ For wave vectors greater th&p the effective fer-
mion dispersion remains quasiunrenormalized. ACKNOWLEDGMENTS
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the pseudogap evolves into the true gap in the supercondué?f the Center de recherch_e pour les tres basses temperatures
ing phase. For a 1D system where the superconducting pha¥dere this work was carried out. Moreover, T.D. acknowl-
is realized aff=0 the pseudogap evolves in the form of a €dges support from the Polish Committee of Scientific Re-
V-shaped curve which deepens until it touches the zero derf€arch under the Grant No. 2P03B10618.
sity level upon decreasing the temperature towdrg<0™.
Upon entering the superconducting state at exacthp, this APPENDIX
V-shaped curve changes abruptly into a more conventional ) ] o
U-shaped curve, known from standard BCS-type supercon- _Let us consider the following modification of the gener-
ductors. The pseudogap is characterized by two distinct hunfting operator
plike features in the DOS whose positions get slowly closer _
to each other as the temperature is decreased. The energy n=n+ 7, (A2)
difference between those two humps being of the order of
v2. These pseudogap features are distinctively different fronyvhere 7 is given by Eq.(8) and where we choose
the gap structure in the superconducting state, as can be seen
from Fig. 12. The superconducting gap shows a different 1 -
variation with the intersubsytem coupling constant, varying ”(Z)ZN ; b I%#k [Vp,k,q(l)bg+qbp+kclacqa—H-C-]-
asv. The sizes for the pseudo- and the superconducting gap o (A2)
can in principle be quite different, as shown in Fig. 13. This
does not mean that they are of different physical origin. WeThe coefficientsyy  4(I) can be selected in any arbitrary
know from our previous studiéshat the pseudogap is very way provided thab ,(I—)—0 still holds.
much independent on dimensionality, while the supercon- By a straightforward calculations one verifies that
ducting gap evidently is dependent on it. The present study,
further, suggests that the variation of the two gaps with the 1
concentration of bosons varies in opposite direction. This car 7?),H]= N Y > (Eps—Eprq—sf+ £q)
lead to a situation of a coexistence of two gaplike structures o pkark

in the superconducting phase, i.e., a superconducting gap and X(v. bl bo..el ¢ +H.c)+0O(vv.vU).
a remnant of the pseudogap. To what extent we should con- (7pkaPp +aPp+ChoCar )0y )
sider the pseudogap as a precursor of the superconducting is (A3)

a question of semantics. For the model system consider

here, as well as for the real high- cuprate materials the

pseudogap is caused by amplitude rather than phase fluctua-

tions. Amplitude fluctuations are a prerequisite of the super- I

conducting state but are not by themselves sufficient to guar- Yoka(D =~

antee its materialization. As a consequence, upon reducing

the dimensionality of the system, the superconducting state is

suppressed and tends to an insulating state with a character- '

istic upturn of the resistivity at low temperatures. Ypkal)=—
The study of the changeover between the pseudogap and

the superconducting gap for the more realistic anisotropic 3@hen we effectively obtain

case, together with a careful study of the lifetime effects

controlled by the intrafermion subsystem interactions is pres- 1

gputg/yunder investigation and will be reported in some future[ 5(?) H]= — N, %‘,#k bl qbpil (@pt aq )V U p
Finally, for reasons of completeness, we should mention

the theoretical studies of the pseudogap phenomenon based

on the so-called BCS-Bose Einstein crossover scenario. Such (AB)

&
If we now use the ansatz

sll(-l—sg—Eerk

*
Uk pVa.p (A4)
Ep+k_ Ep+q_8I£+8é

sé-l- 8&— Epik

*
Vg U (Ab)
p.k¥ p.q
Epik— Ep+q—8|1+8£

t * t 3
X Cleql + (ap,k+ apyq)vp'kvp’quTCqT] + O(U )
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The terms containingyv become of the orde®(v®) and  terms subtract each other if one u3gén the flow equation
from the flow equation, Eq(20), we can estimaté) ~uv? instead of the initial one Eq8). The modified continuous
which yields thatyU~O(v%). unitary transformation does not generate any interaction of

Thus on the right hand side of E¢A6) we obtain the the formbg+qbp+kcl,,cq(, for g# k unless hybridization con-
same term as in Eq12) but with an opposite sign. These stantv is large enough.
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