PHYSICAL REVIEW B, VOLUME 63, 134503

Vortex ordering in fully frustrated superconducting systems with a dice lattice
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The structure and the degeneracy of the ground state of a fully frusiXatedodel are investigated for the
case of a dice-lattice geometry. The results are applicable for the description of Josephson junction arrays and
thin superconducting wire networks in the external magnetic field providing half-integer number of flux quanta
per plaquette. The mechanisms of disordering of vortex pattern in such systems are briefly discussed.
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[. INTRODUCTION ground state of a FKKXY model with dice lattice. In Sec. IV
we show that this state has high additional degeneracy be-

De Gennesand Alexander have shown that the linear- cause it allows for formation of zero-energy domain walls.
ized Ginzburg-Landau equations for a superconducting wiréec. V is devoted to a brief discussion of possible conse-
network in external magnetic field can be mapped on thgluences of this additional degeneracy for the disordering of
eigenvalue equations for a single electron hopping problenvortex pattern in FF superconducting systems with dice-
in the same geometry. Thus the dependence(ofean-fielg  lattice geometry.
superconducting transition temperature on external field can
be found by following the field dependence of the lowest Il. THE MODEL
eigenvalue in single electron problem.

Recently it has been shown by Videt al3 that the single
electron hopping problem has very special features in th
case of so-callétP dice lattice(see Fig. 1if the value of the
magnetic flux per plaquet® is equal to one-half of the flux
guantum®,=hc/2e. Namely, the spectrum of an electron sz V(6;), D
lacks any dispersion and is reduced to three discrete levels. ()
tal investigation of superconducting networks with dice-gnq
lattice geometry:’ It has been showfrthat in contrast to the
case ofd = /3, for which vortex pattern in dice network is 27 (]
nicely ordered, atb=®/2 [so-called fully frustratedFF) Oij == i~ af dxA(X)=— 6 @)
casq the vortices do not fornfpresumably at the same tem- 0
peraturg¢ any regular pattern. The authors of Ref. 7 haveis the gauge-invariant phase difference that can be associated
suggested that this absence of ordering is related with awith the link (ij). Here ¢; is the order parameter phase of
infinite degeneracy and localized structure of the states coljth superconducting island aridis the vector potential. The
responding to the lowest energy level in terms of a singlephasese; are defined up to a shift by a multiple ofn2
electron problemor to the lowest free energy in terms of a therefore the interaction functiovi( §) has to be periodic in
superconducting netwoyk 0. The form ofV(#) depends on the type of the coupling.

Although this conjecture can be correct, it still has to beFor Josephson junction array
verified. A superconducting network problem reduces to a
single electron hopping problem only at the mean-field tran-
sition point. Below it the nonlinear terms in Ginzburg-
Landau equation become important and may completely or
partially remove the high degeneracy of the state with the
lowest free energy.

In the present work we use a different approach for theo-
retical investigation of an ordering in a FF superconducting
system with dice lattice. We consider another limit when the
amplitude of the order parameter is well defined and uni-
form, but phase fluctuations are possible and can lead to
destruction of an ordered state. In that limit a discrete super-
conducting systena wire network or a junction arrayin
external magnetic field can be described by a frustrat¥d
model introduced in Sec. Il. FIG. 1. Dice lattice is periodic and has hexagonal symmetry. It

In Sec. Il we propose a highly symmetric state that due taconsists of the sites with coordination numbers 3 and 6. All elemen-
simplicity of its structure may be a good candidate for thetary plaquettes are rhombic.

In the regime when only phase fluctuations are of impor-
{ance an array of weakly coupled superconducting islands
can be described by the Hamiltonian
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Summation of Eq.(2) over a perimeter of a lattice ®®C®®@®CeeeO8e
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where the frustration parameteis equal tod/d, andd is
the magnetic flux threading the plaquette. In the limit when© ® @ @ OOO LA A4

screening effects can be neglectdd,is determined by the e ec e e @ oO. .o. oO.
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external field and for the uniform field and flat geometry is 000606660666

proportional to the area of the plaquette. If all the plaquetteso o o o o
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[ —m,7]. That makes the description of any state in terms of

6;; more transparent, but transforms the constredninto / /
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wherem is an integer. The form of Eq5) shows thaf can 'O.O°°O.O'°o.o °o O'o O.O O.' o. .o. .o
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f being equivalent to some value from that intervalVIf6) X X Yo¥oX ¥ Yo¥oX X Yol 0000Q000OOQe
is an even function of (as it usually i f is additionally  (e) O_.o._.ok'._o’o_o'}.o_
equivalent to—f. The special case df=1/2 (which is the o ol e o e e
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FIG. 2. Filled(empty circles designate positivenegative half
vortices. Structures$a), (c), (e), and(g) are periodic, whereak),
(d), and(f) include zero-energy domain walls separating different
periodic states. All states shown have the same energy.

V() 62, (6)

In this work we use the term “frustratedY model” for
a system defined by Eq&l) and (5) with a general form of
the interaction function and not only faf(9) of the form  they occupy the sites of a honeycomb lattice, that is in FF
(3). Thus our approach is valid for the description both ofXY model with triangular lattice®**
junction arrays and wire networks. A dice lattice is dual to &agomdattice, therefore in a FF
XY model with dice lattice, the half vortices can be consid-
ered as occupying the sites of kagomelattice. Since a
kagomelattice is constructed from triangles it is impossible

In a FF XY model all variablesVl are half integer and to distribute the half vortices in it in such a way that all
different low-lying extrema of the Hamiltonian can be char- nearest neighbors are of the opposite sign. The half vortices
acterized by the distribution of positive and negative halfof the same sign will have to form clusters and the minimal
vortices M = = 1/2) in the plaquettes of the lattice. The vor- size of such clusters that allow for covering ofkagome
tices of the same sign repel each other, therefore in thittice turns out to be equal to three. The most symmetric
ground state they can be expected to be situated as far froexample of a regulafperiodig arrangement of vortices on a
each other as possible. In particular, in the case of X¥F kagomelattice in which half vortices of the same sign form
model with square lattice the positive and negative half vorthe clusters of the size thré@iads is shown in Fig. 2a).
tices form, in the ground state, a regular checkerboard This state has the 12-fold degeneracy and can be de-
pattern® Analogous pattern in which the nearest neighbors ofscribed as a regular lattice of vacanciabsent positive vor-
each half vortex are of the opposite sign is possible whetices on the background of =2/3 ground state or, equiva-

Ill. THE GROUND STATE
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(2) (b) (c)

FIG. 3. (a) Phase representation of the periodic state shown in F&y, @) elementary pattern, repetition of which allows to construct
this state;(c) phase representation of a zero-energy domain ghtbwn in Fig. 2b)]. Three types of arrows correspond to three different
values of6;; .

lently, a regular lattice of extra positive vortices on the conservation at each of the six-link sites is then ensured au-
background off =1/3 ground stateécf. with Ref. 7. How-  tomatically.

ever, symmetry considerations show that its structure in For V(6) of the form (3) (corresponding to Josephson
terms of gauge-invariant phase variab#gs[which is shown  junction array the solution of Eqs(8)—(10) gives

in Fig. 3(a)] is very simple and can be constructed by repeti-

tion (with rotation and reflectionof a simple three-link pat- - T

tern shown in Fig. @). Although we cannot rigorously 01=arctar( \/§+1)*10°1 92:Z+91%55°!

prove that this state has the lowest possible enéripch is

typical for XY models with nontrivial frustration we be- -

I|ev_e that the simplicity of its structure strongly supports this 9325 —0,~80°; (12)
conjecture.

In the state depicted in Fig(& the variablesf;; acquire
only three different values that we denotg (a=1,2,3;
0<6,<60,<63;<m) and show as single, double, and triple 9,=15°, 6,=60°, 65=75°. (12)
arrows. The half vortices of the same sign are separated by
single arrows, the central half vortex of each triad is sepaThus the values of, are only weakly sensitive to the type of
rated from its neighbors of the opposite sign by triple arrowssuperconducting system that manifests itself in the form of
and the lateral half vortices of opposite sign are separated ke current-phase relation.
double arrows. The same set of rules for extracting the dis-

whereas fol/(6) x 62 (the case of a thin wire network

tribution of ¢;; from the distribution of half vortices applies IV. THE ADDITIONAL DEGENERACY
also to all the other states with the same energy discussed
below. The regular state depicted in FigaB[Fig. 2(a)] allows
The energy of the considered statalculated per triple for the construction of zero-energy domain wall. Figute)3
site of a dice latticgis given by shows how one can rearrange the arrows in the lower half of
Fig. 3(@ without invalidating constraint&s) or current con-
E=V(6,)+V(6,)+V(653), 7) servation relations, obtaining in such a way another extre-
mum with the same energy. The same state is shown in Fig.
whereas general constrair(®y are reduced to 2(b) in terms of distribution of half vortices. It looks like a
domain wall separating the staf@ [i.e., the state shown in
20, +203= (8)  Fig. 2a)] from another version of the same state in which the
triads of negative half vortices change their orientation by
for the central half vortex of each cluster and 60°.

It is possible to construct such domain wall on each hori-
zontal line similar to the line shown in Fig(l®. This in-

for all the other(latera) half vortices. Variation of Eq(7)  creases the degeneracy by the factdr @here N is the

_01+202+ 03:77 (9)

with constraints(8) and (9) gives number of available positions of the domain watlsie to the
binary possibility of having or not having a domain wall at
V' (0,)+V'(0,)=V'(63), (100  each available position. The regular state constructed by in-

serting into the state of Fig(@ a domain wall at each avail-
which (not unexpectedlycoincides with the condition of the able position is shown in Fig.(8). This state is also periodic,
current conservation for each of the triple sites. The currenbut has the highet24-fold) degeneracy than the stat®.
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Insofar we have discussed only the zero-energy domaiproportional toNM). That is, they do not lead to appearance
walls that are parallel to the triads of positive half vortices. Itof the extensive residual entropy in contrast to the case of the
follows from the symmetry considerations that analogous doantiferromagneticxY model with akagomelattice in which
main walls can also be constructed in parallel to the triads ofthe manifold of the ground states allows for construction of
negative half vortices. However, the energy remains theero-energy domain walls that can form independent closed
same only if all domain walls of this type have the sameloops of arbitrary length®!* This property of the antiferro-
orientation, therefore the total increase of the degeneracy dumagneticXY model withkagomdattice leads both to a finite
to a possible creation of zero-energy domain walls of theextensive entropy''* and to the presence of a hierarchical
type (b) is given by a factor 2*. Analogous restriction for sequence of barrieféwhich may explain the experimentally
the creation of zero-energy domain walls appears in the casgbserved glasslike dynamics of the antiferromagnet with
of the frustratedXY model with a triangular lattice and such structuré® The family of the states considered in this
f=1/4 orf=1/312 work demonstrates less developed degeneftasglogous to

In Fig. 3 the central half vortex of each triad is marked bythat encountered inf=1/3 XY model with triangular
square brackets. It is not hard to notice that all the othetattice'?).

(latera) half vortices form the rows of alternating pluses and  Since different values of, correspond to different values
minuses. These rows are straight for the regular state of Figpf V”(6), at finite temperatures, the accidental degeneracy
3(a) [Fig. 2@)], but the presence of domain walls of the typerelated to possible formation of zero-energy domain walls
(b) makes them bentn parallel to each othér can be expected to be removed due to the difference in free

It turns out possible to interchange pluses and minuses iBnergy of the small amplitude continuous fluctuatiésigin
any of these rows by interchanging the single and triple arwaves, in the same way as it happens in %¥ model with
rows on the links that separate the row from the neighboringriangular lattice and = 1/4 or f =1/3.12 Most probably the
central half vortices and reversing the double arrows on alspin wave contribution to free energy will be minimal for
Ithe links inside the row. This procedure does not invalidateone of the periodic states shown in Fig. 2, which therefore
current conservation at any site and does not change the ewill be dominant in the low temperature limit.
ergy of the system. The zero-energy domain walls separating from each other

Such sign reversal in the rows of alternating lateral halfthe different versions of this state will then acquire a positive
vortices allows to construct the zero-energy domain wall offree energy, so the phase transition associated with their pro-
different type shown in Fig. @), which [like the domain liferation (and vortex-pattern disorderingan be expected to
wall of the type(b)] also separates two different versions of happen at finite temperature. However, in the thin wire net-
the statg(@), but now with interchanged orientations of posi- works with almost harmonic interaction function(6) the
tive and negative triads. A regular repetition of such domaireffects related to the differences in spin wave free energy
wall at each available position leads to the periodic statevill be extremely weak, and therefore, the disordering of
shown in Fig. 2e), which like the statda) has the 12-fold vortex pattern due to proliferation of domain walls may hap-
degeneracy. pen already at rather low temperatures.

The zero-energy domain walls of different types can cross The strong disordering of vortex pattern observed in FF
each othefas is shown in Fig. @)] without increasing the superconducting network with dice lattice geométoan
energy of the system. Each time the wall of tyjoke crosses  also have some relation to geometrical irregularities. Gupta
the wall of the type(b) it has to change its orientation by and Teitet® have recently shown that in the case of the FF
60°, all the walls of the typéd) being parallel to each other XY model with square lattice, the irregularities of so-called
in each strip between the walls of the ty(i®. “positional-disorder”-type (uncorrelated lattice sites dis-

Thus the system with an arbitrary number of the walls ofplacements, etgproduce an effective random field for the
the type(b) can simultaneously contain an arbitrary numberising-type variables (describing the signs of the half vor-
of the walls of type(d). The total additional degenerafiyn  tice9 and therefore induce the destruction of long-range or-
comparison with our reference sta®] is given by the fac-  der (at large enough scalgsven if the disorder is small. In
tor 28*M*1 whereM is the number of positions available the system that allows for formation of the zero-energy do-
for domain walls of the typgd), which is the number of main walls, the relevance of this mechanism may be strongly
rows of the alternating lateral half vortices. The most densamplified.
network of zero-energy domain walls of both types produces
the periodic state shown in Fig(d, which like the statéc) ACKNOWLEDGMENTS
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