
PHYSICAL REVIEW B, VOLUME 63, 134503
Vortex ordering in fully frustrated superconducting systems with a dice lattice

S. E. Korshunov
L. D. Landau Institute for Theoretical Physics, Kosygina 2, Moscow 117940, Russia

~Received 26 July 2000; published 28 February 2001!

The structure and the degeneracy of the ground state of a fully frustratedXY model are investigated for the
case of a dice-lattice geometry. The results are applicable for the description of Josephson junction arrays and
thin superconducting wire networks in the external magnetic field providing half-integer number of flux quanta
per plaquette. The mechanisms of disordering of vortex pattern in such systems are briefly discussed.
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I. INTRODUCTION

De Gennes1 and Alexander2 have shown that the linear
ized Ginzburg-Landau equations for a superconducting w
network in external magnetic field can be mapped on
eigenvalue equations for a single electron hopping prob
in the same geometry. Thus the dependence of a~mean-field!
superconducting transition temperature on external field
be found by following the field dependence of the lowe
eigenvalue in single electron problem.

Recently it has been shown by Vidalet al.3 that the single
electron hopping problem has very special features in
case of so-called4,5 dice lattice~see Fig. 1! if the value of the
magnetic flux per plaquetteF is equal to one-half of the flux
quantumF05hc/2e. Namely, the spectrum of an electro
lacks any dispersion and is reduced to three discrete lev

This theoretical result has led to the interest in experim
tal investigation of superconducting networks with dic
lattice geometry.6,7 It has been shown7 that in contrast to the
case ofF5F0/3, for which vortex pattern in dice network i
nicely ordered, atF5F0/2 @so-called fully frustrated~FF!
case# the vortices do not form~presumably at the same tem
perature! any regular pattern. The authors of Ref. 7 ha
suggested that this absence of ordering is related with
infinite degeneracy and localized structure of the states
responding to the lowest energy level in terms of a sin
electron problem~or to the lowest free energy in terms of
superconducting network!.

Although this conjecture can be correct, it still has to
verified. A superconducting network problem reduces to
single electron hopping problem only at the mean-field tr
sition point. Below it the nonlinear terms in Ginzburg
Landau equation become important and may completely
partially remove the high degeneracy of the state with
lowest free energy.

In the present work we use a different approach for th
retical investigation of an ordering in a FF superconduct
system with dice lattice. We consider another limit when
amplitude of the order parameter is well defined and u
form, but phase fluctuations are possible and can lea
destruction of an ordered state. In that limit a discrete sup
conducting system~a wire network or a junction array! in
external magnetic field can be described by a frustratedXY
model introduced in Sec. II.

In Sec. III we propose a highly symmetric state that due
simplicity of its structure may be a good candidate for t
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ground state of a FFXY model with dice lattice. In Sec. IV
we show that this state has high additional degeneracy
cause it allows for formation of zero-energy domain wal
Sec. V is devoted to a brief discussion of possible con
quences of this additional degeneracy for the disordering
vortex pattern in FF superconducting systems with di
lattice geometry.

II. THE MODEL

In the regime when only phase fluctuations are of imp
tance an array of weakly coupled superconducting isla
can be described by the Hamiltonian

H5(̂
i j &

V~u i j !, ~1!

where the sum is performed over all pairs of coupled isla
and

u i j 5w j2w i2
2p

F0
E

i

j

dxA~x![2u j i ~2!

is the gauge-invariant phase difference that can be assoc
with the link ^ i j &. Herew j is the order parameter phase
j th superconducting island andA is the vector potential. The
phasesw j are defined up to a shift by a multiple of 2p,
therefore the interaction functionV(u) has to be periodic in
u. The form ofV(u) depends on the type of the couplin
For Josephson junction array

FIG. 1. Dice lattice is periodic and has hexagonal symmetry
consists of the sites with coordination numbers 3 and 6. All elem
tary plaquettes are rhombic.
©2001 The American Physical Society03-1
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V~u!52J cosu, ~3!

whereJ is the coupling constant of the junction.
Summation of Eq.~2! over a perimeter of a lattice

plaquette imposes a constraint

(
h

u i j 522p f , ~4!

where the frustration parameterf is equal toF/F0 andF is
the magnetic flux threading the plaquette. In the limit wh
screening effects can be neglected,F is determined by the
external field and for the uniform field and flat geometry
proportional to the area of the plaquette. If all the plaque
have equal areas the value off is the same for all plaquettes
In such cases a system is called uniformly frustrated.

When interaction functionV(u) is periodic in u, it is
convenient to consider variablesu i j reduced to the interva
@2p,p#. That makes the description of any state in terms
u i j more transparent, but transforms the constraint~4! into

(
h

u i j 52pM , M[m2 f , ~5!

wherem is an integer. The form of Eq.~5! shows thatf can
be reduced to the interval21/2, f <1/2, all other values of
f being equivalent to some value from that interval. IfV(u)
is an even function ofu ~as it usually is! f is additionally
equivalent to2 f . The special case off 51/2 ~which is the
maximal irreducible value off ) is called a FFXY model.

Well below mean-field transition temperature a netwo
of thin superconducting wires can be described by the s
Hamiltonian~1! with the termw j2w i in the definition ofu i j

@Eq. ~2!# now substituted by the integral* i
jdx(dw/dx) along

the link ^ i j &.8 In that case summation of Eq.~2! around a
perimeter of a plaquette leads directly to Eq.~5!. In the limit
of long thin wires the interaction function is almo
harmonic:8

V~u!}u2. ~6!

In this work we use the term ‘‘frustratedXY model’’ for
a system defined by Eqs.~1! and ~5! with a general form of
the interaction function and not only forV(u) of the form
~3!. Thus our approach is valid for the description both
junction arrays and wire networks.

III. THE GROUND STATE

In a FF XY model all variablesM are half integer and
different low-lying extrema of the Hamiltonian can be cha
acterized by the distribution of positive and negative h
vortices (M561/2) in the plaquettes of the lattice. The vo
tices of the same sign repel each other, therefore in
ground state they can be expected to be situated as far
each other as possible. In particular, in the case of a FFXY
model with square lattice the positive and negative half v
tices form, in the ground state, a regular checkerbo
pattern.9 Analogous pattern in which the nearest neighbors
each half vortex are of the opposite sign is possible w
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they occupy the sites of a honeycomb lattice, that is in
XY model with triangular lattice.10,11

A dice lattice is dual to akagome´ lattice, therefore in a FF
XY model with dice lattice, the half vortices can be cons
ered as occupying the sites of akagome´ lattice. Since a
kagome´ lattice is constructed from triangles it is impossib
to distribute the half vortices in it in such a way that a
nearest neighbors are of the opposite sign. The half vort
of the same sign will have to form clusters and the minim
size of such clusters that allow for covering of akagome´
lattice turns out to be equal to three. The most symme
example of a regular~periodic! arrangement of vortices on
kagome´ lattice in which half vortices of the same sign for
the clusters of the size three~triads! is shown in Fig. 2~a!.

This state has the 12-fold degeneracy and can be
scribed as a regular lattice of vacancies~absent positive vor-
tices! on the background off 52/3 ground state or, equiva

FIG. 2. Filled ~empty! circles designate positive~negative! half
vortices. Structures~a!, ~c!, ~e!, and ~g! are periodic, whereas~b!,
~d!, and ~f! include zero-energy domain walls separating differe
periodic states. All states shown have the same energy.
3-2
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FIG. 3. ~a! Phase representation of the periodic state shown in Fig. 2~a!; ~b! elementary pattern, repetition of which allows to constru
this state;~c! phase representation of a zero-energy domain wall@shown in Fig. 2~b!#. Three types of arrows correspond to three differe
values ofu i j .
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lently, a regular lattice of extra positive vortices on t
background off 51/3 ground state~cf. with Ref. 7!. How-
ever, symmetry considerations show that its structure
terms of gauge-invariant phase variablesu i j @which is shown
in Fig. 3~a!# is very simple and can be constructed by repe
tion ~with rotation and reflection! of a simple three-link pat-
tern shown in Fig. 3~b!. Although we cannot rigorously
prove that this state has the lowest possible energy~which is
typical for XY models with nontrivial frustration!, we be-
lieve that the simplicity of its structure strongly supports th
conjecture.

In the state depicted in Fig. 3~a! the variablesu i j acquire
only three different values that we denoteua (a51,2,3;
0,u1,u2,u3,p) and show as single, double, and trip
arrows. The half vortices of the same sign are separate
single arrows, the central half vortex of each triad is se
rated from its neighbors of the opposite sign by triple arro
and the lateral half vortices of opposite sign are separate
double arrows. The same set of rules for extracting the
tribution of u i j from the distribution of half vortices applie
also to all the other states with the same energy discu
below.

The energy of the considered state~calculated per triple
site of a dice lattice! is given by

E5V~u1!1V~u2!1V~u3!, ~7!

whereas general constraints~5! are reduced to

2u112u35p ~8!

for the central half vortex of each cluster and

2u112u21u35p ~9!

for all the other~lateral! half vortices. Variation of Eq.~7!
with constraints~8! and ~9! gives

V8~u1!1V8~u2!5V8~u3!, ~10!

which ~not unexpectedly! coincides with the condition of the
current conservation for each of the triple sites. The curr
13450
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conservation at each of the six-link sites is then ensured
tomatically.

For V(u) of the form ~3! ~corresponding to Josephso
junction array! the solution of Eqs.~8!–~10! gives

u15arctanS A221

A211
D '10°, u25

p

4
1u1'55°,

u35
p

2
2u1'80°; ~11!

whereas forV(u)}u2 ~the case of a thin wire network!

u1515°, u2560°, u3575°. ~12!

Thus the values ofua are only weakly sensitive to the type o
superconducting system that manifests itself in the form
the current-phase relation.

IV. THE ADDITIONAL DEGENERACY

The regular state depicted in Fig. 3~a! @Fig. 2~a!# allows
for the construction of zero-energy domain wall. Figure 3~c!
shows how one can rearrange the arrows in the lower ha
Fig. 3~a! without invalidating constraints~5! or current con-
servation relations, obtaining in such a way another ex
mum with the same energy. The same state is shown in
2~b! in terms of distribution of half vortices. It looks like a
domain wall separating the state~a! @i.e., the state shown in
Fig. 2~a!# from another version of the same state in which t
triads of negative half vortices change their orientation
60°.

It is possible to construct such domain wall on each ho
zontal line similar to the line shown in Fig. 2~b!. This in-
creases the degeneracy by the factor 2N ~where N is the
number of available positions of the domain walls! due to the
binary possibility of having or not having a domain wall
each available position. The regular state constructed by
serting into the state of Fig. 2~a! a domain wall at each avail
able position is shown in Fig. 2~c!. This state is also periodic
but has the higher~24-fold! degeneracy than the state~a!.
3-3
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Insofar we have discussed only the zero-energy dom
walls that are parallel to the triads of positive half vortices
follows from the symmetry considerations that analogous
main walls can also be constructed in parallel to the triad
negative half vortices. However, the energy remains
same only if all domain walls of this type have the sam
orientation, therefore the total increase of the degeneracy
to a possible creation of zero-energy domain walls of
type ~b! is given by a factor 2N11. Analogous restriction for
the creation of zero-energy domain walls appears in the c
of the frustratedXY model with a triangular lattice and
f 51/4 or f 51/3.12

In Fig. 3 the central half vortex of each triad is marked
square brackets. It is not hard to notice that all the ot
~lateral! half vortices form the rows of alternating pluses a
minuses. These rows are straight for the regular state of
3~a! @Fig. 2~a!#, but the presence of domain walls of the ty
~b! makes them bend~in parallel to each other!.

It turns out possible to interchange pluses and minuse
any of these rows by interchanging the single and triple
rows on the links that separate the row from the neighbor
central half vortices and reversing the double arrows on
lthe links inside the row. This procedure does not invalid
current conservation at any site and does not change the
ergy of the system.

Such sign reversal in the rows of alternating lateral h
vortices allows to construct the zero-energy domain wall
different type shown in Fig. 2~d!, which @like the domain
wall of the type~b!# also separates two different versions
the state~a!, but now with interchanged orientations of pos
tive and negative triads. A regular repetition of such dom
wall at each available position leads to the periodic st
shown in Fig. 2~e!, which like the state~a! has the 12-fold
degeneracy.

The zero-energy domain walls of different types can cr
each other@as is shown in Fig. 2~f!# without increasing the
energy of the system. Each time the wall of type~d! crosses
the wall of the type~b! it has to change its orientation b
60°, all the walls of the type~d! being parallel to each othe
in each strip between the walls of the type~b!.

Thus the system with an arbitrary number of the walls
the type~b! can simultaneously contain an arbitrary numb
of the walls of type~d!. The total additional degeneracy@in
comparison with our reference state~a!# is given by the fac-
tor 2N1M11, whereM is the number of positions availabl
for domain walls of the type~d!, which is the number of
rows of the alternating lateral half vortices. The most de
network of zero-energy domain walls of both types produ
the periodic state shown in Fig. 2~g!, which like the state~c!
is characterized by the 24-fold degeneracy.

V. DISCUSSION

The zero-energy domain walls of the two types describ
above produce the contribution to residual~zero-
temperature! entropy that grows with the increase of the sy
tem as (N1M )ln 2, that is slower than its area~which is
13450
in
t
-
f

e

ue
e

se

r

ig.

in
r-
g
l-
e
en-

lf
f

n
e

s

f
r

e
s

d

-

proportional toNM). That is, they do not lead to appearan
of the extensive residual entropy in contrast to the case of
antiferromagneticXY model with akagome´ lattice in which
the manifold of the ground states allows for construction
zero-energy domain walls that can form independent clo
loops of arbitrary length.13,14 This property of the antiferro-
magneticXY model withkagome´ lattice leads both to a finite
extensive entropy13,14 and to the presence of a hierarchic
sequence of barriers,14 which may explain the experimentall
observed glasslike dynamics of the antiferromagnet w
such structure.15 The family of the states considered in th
work demonstrates less developed degeneracy~analogous to
that encountered inf 51/3 XY model with triangular
lattice12!.

Since different values ofua correspond to different value
of V9(u), at finite temperatures, the accidental degener
related to possible formation of zero-energy domain wa
can be expected to be removed due to the difference in
energy of the small amplitude continuous fluctuations~spin
waves!, in the same way as it happens in theXY model with
triangular lattice andf 51/4 or f 51/3.12 Most probably the
spin wave contribution to free energy will be minimal fo
one of the periodic states shown in Fig. 2, which theref
will be dominant in the low temperature limit.

The zero-energy domain walls separating from each o
the different versions of this state will then acquire a posit
free energy, so the phase transition associated with their
liferation ~and vortex-pattern disordering! can be expected to
happen at finite temperature. However, in the thin wire n
works with almost harmonic interaction functionV(u) the
effects related to the differences in spin wave free ene
will be extremely weak, and therefore, the disordering
vortex pattern due to proliferation of domain walls may ha
pen already at rather low temperatures.

The strong disordering of vortex pattern observed in
superconducting network with dice lattice geometry7 can
also have some relation to geometrical irregularities. Gu
and Teitel16 have recently shown that in the case of the
XY model with square lattice, the irregularities of so-call
‘‘positional-disorder’’-type ~uncorrelated lattice sites dis
placements, etc.! produce an effective random field for th
Ising-type variablesM ~describing the signs of the half vor
tices! and therefore induce the destruction of long-range
der ~at large enough scales! even if the disorder is small. In
the system that allows for formation of the zero-energy d
main walls, the relevance of this mechanism may be stron
amplified.
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