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We explore the response of an unconventional superconductor to spatially inhomogeneous antiferromag-
netism (SIAFM). Symmetry allows the superconducting order parameter irEthepresentation models for
UPt; to couple directly to the antiferromagneti&8FM) order parameter. The Ginzburg-Landau equations for
coupled superconductivity and SIAFM are solved numerically for two possible SIAFM configurations: Model
I, abutting antiferromagnetic domains of uniform size; and Model Il, quenched random disorder of “nan-
odomains” in a uniform AFM background. We discuss the contributions to the free energy, specific heat, and
order parameter for these models. Neither model provides a satisfactory account of experiment, but results
from the two models differ significantly. Our results demonstrate that the responsétgf anperconductor to
SIAFM is strongly dependent on the spatial dependence of AFM order; no conclusion can be drawn regarding
the compatibility ofE,, superconductivity with URtthat is independent of assumptions on the spatial depen-
dence of antiferromagnetism.
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[. INTRODUCTION which concludes that spatially varying antiferromagnetism
would rule out the two-dimensional representation models
The nature of the spatially inhomogeneous small-momentor UPt;, we examine the sensitivity of aB,, supercon-
antiferromagnetism  observed in  neutron-scatteringductor to SIAFM through numerical calculations of its re-
experiments below Ty~6 K and its interaction with su- sponse to two qualitatively different kinds of spatial configu-
perconductivity T.~0.5 K) remain central issues in deter- rations of the SIAFM. Since the free-energy functionals for
mining the symmetry of the superconducting order parametean E,, and ank, 4 superconductor are formally identical, our
of UPt;. The unusuaH-T phase diagraf? at ambient pres- results are also relevant B, superconductors.
sure apparently shows three superconducting phases in the Antiferromagnetism is the prime suspect for inducing the
mixed state and two Meissner phases. Experimental studiezero-field double phase transition observed in specific-heat
using hydrostatitand uniaxidi pressure reveal the existence experiments on high-quality crystals. A coupling between
of a critical pressure above which the zero-field transitionAFM and superconducting order parameters is suggested by
splitting disappears. This complex phase diagram stronglp downward kink in the magnitude of the modulus of the
suggests that superconductivity in this heavy-electron mateAFM order parameter at the superconducting transftibma
rial is unconventional and has provided motivation for muchcomparison of specific-heat measurements with neutron-
theoretical work*? Proposed theories range from odd-in- scattering experiments under pressure, Hayeeal® ob-
frequency pairing' to multicomponent order parameters. served that the disappearance of the double transition is cor-
The latter may belong to a single multidimensional represenrelated with the disappearance of signatures of
tation of the symmetry grousee Refs. 7 and 8 for revieyys ~ antiferromagnetism. Recent work of Keizet al'* further
or they may belong to different representations of the crystasupports this correlation. Upon substituting Pd for Pt on a
point group that are either accidentally degenéfaiereflect ~ small number of sites, they find that the magnetic moment
a “higher symmetry” of the crystaf or of spin spacé. and the splitting of the double transition increase simulta-
As briefly summarized below, experiments suggest an inheously with increasing Pd doping.
triguing interplay between superconductivity and antiferro- The nature of the antiferromagnetism is itself unusual. A
magnetism; however, an interpretation without significantsignature of an AFM phase transition in thermodynamic,
ambiguity has not yet emerged. Here, we focus on one theNMR (nuclear magnetic-resonanceand zero-field SR
oretical proposal: an odd-parity superconducting state with &muon spin relaxation experiments has so far not been
two-dimensional order parameter that transforms like aobserved?® This has been taken as evidence for the absence
single representation, tHe, representation of the hexagonal of long-range order and the existence of magnetic fluctua-
symmetry group. This order parameter may also couple t¢ions on a characteristic scale smaller than neutron-scattering
the antiferromagnetiGAFM) order parameter. While the spa- frequencies, but greater than those of NMR. This temporal
tially homogeneous superconducting states of this model anffuctuation has largely been ignored and the antiferromag-
their response to an applied magnetic field have been studietism has been taken to be static when considering the in-
ied, there is comparatively little work that explores the effectteraction of antiferromagnetism with superconductivity.
of spatially inhomogeneous antiferromagneti€é®hAFM) on  While conventional thermodynamic signatures of theeNe
superconductivity. Motivated by recent work of Gdfg, temperaturely have not been observed, more recent trans-
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staggered moments that are rigidly fixed to the lattice, is
important in determining the symmetry of the superconduct-
ing states, particularly for states near the upper transition

0.8 1 temperature. Several authors take the view that this quasi-
o static antiferromagnetism acts as a symmetry-breaking field
65 | Oooo (_SBF) and lifts the degeneracy among components of a mul-
' o ticomponent order parameter resulting in two superconduct-
ing phase transitions separated 560 mK that are ob-
aa | served in zero fiel§?2-24925-30A two-component odd-
parity order parameter that transforms like the two-

[AC/T] / [C/T]
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& (@]
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o .8 dimensionalE,, representation of the hexagonal symmetry
o2 L o o groupDg, is one of the more promising proposafs: At low
0 foa temperature or in the absence of the SBF, weak-coupling
. ogs! BCS theory shows that the homogeneous equilibrium state
0.0 : ' ' ; B breaks time-reversal symmetry. Further calculations using
Qs o5 bF T(}'lg 0:3 14 weak-coupling BCS theory show that thermal conductivty,

transverse sound attenuatithand upper critical field% of
this state are in good agreement with experiments for tem-

FIG. 1. Specific-heat data of a low-quality sample showing a ) 35 .
single broad peakRef. 49 (squares compared to that for a high- peratures in the low-temperature phas€oupling to a SBF

quality sample(Ref. 14. The latter reveals signatures of two Nas been included within a Ginzburg-LandeBL) theory
closely spaced phase transitions. In the normal s@tgT  developed for a single-domain superconducting state. Signa-
~430 mJ/(K mol). tures of a double phase transition are apparent in the specific
heat and lower critical field®” and in the cores of vortices.
verse high-fielgu SR experiments have detected anomalies atn contrast to two-dimensional even-pariy, andE,y, and
Ty as identified by neutron scatterit. to odd-parityE,,, order parameters, the,, model can allow
The appearance of the double transition was unexpectetbr a tetracritical point for arbitrary field orientations in the
As shown in Fig. 1, specific-heat experiméntsrior to 1989  H-T phase diagram. An enhancement of this model includes
typically showed a single anomalously broad peak at thehe competition between magnetic anisotropy and Zeeman
transition to superconductivity. An obvious explanation isenergies of the magnetic order paraméfeand reproduces
that AFM domains increase in size during the annealing prothe angular dependence of the upper critical field observed in
cess, sharpening the distribution around two intrinsic superexperiment®
conducting transitions, but x-rdyand neutron-scatterii Within the E,,, model, comparatively little has been done
experiments fail to show any obvious correlation betweerto explore the effect of coupling superconductivity and spa-
domain size and annealing. tially inhomogeneous antiferromagnetism. Motivated by the
A commonly held physical picture is based on an inter-quenched domain interpretation of the neutron-scattering
pretation of the neutron-scattering data. The AFM order withdata, early work orE-representation superconductivity by
orthorhombic symmetry appears with0.02u5 ordered mo-  Joynt et al?® and by Minee¥® focused on abutting AFM
ments constrained to lie in the basal plane. AFM order ocdomains that are uniform in size with dimensions of a super-
curs in domains of uniform sizee 30 nm that are randomly conducting coherence length and considers the possibility of
distributed over threg vectors that are oriented at 0°, 120°, a superconducting glass phase. Based on a variational calcu-
and 240° with respect to tha* axis. The moments are es- lation for domains of uniform size and on calculations for a
sentially rigidly locked to the lattice for fields in excess of one-dimensional “toy model,” Garg argued that the pure
the zero-temperature upper critical field of the superconducte-representation models are “incompatible” with WHbr
ing state!t®?° the small domains suggested by the neutron-scattering ex-
This picture is not firmly established. Existing neutron- periments.
scattering data are unable to rule out the possibility that in- Taking the AFM order to be static, we explore the sensi-
stead of domains of a singtgstructure, AFM order appears tivity of E,, superconductivity to spatially varying AFM or-
in a tripleq structure that preserves the symmetry of theder in two models for thédisorderedl domain structure of
crystal lattice?® Moreover, a recent careful analysis of the the AFM state: Model |, abutting AFM domains of uniform
neutron-scattering datafinds that no conclusion can be size with orientations that are equally distributed over the
drawn from existing data on whether the staggered momerallowedq vectors; and Model I, small domains interspersed
remains fixed to the lattice or whether it rotates with an apin a homogeneous AFM background. We consider these
plied magnetic field. Existing data also cannot distinguishmodels to represent limiting cases for the configuration of
randomly oriented abutting domains with small magneticthe SIAFM. The first model corresponds to the standard in-
moments from small domains with magnetic moments ofterpretation of the neutron-scattering data. The second model
~1ug interspersed in an otherwise nonmagnetic system. begins with uniform AFM order and adds “nanodomains”
Whether antiferromagnetism occurs in a few large do-with random position and orientation of the staggered mag-
mains with staggered moments that are free to rotate in anetization; this provides the broadening mechanism for the
applied field, or whether it is strongly spatially varying with linewidth of neutron-scattering data. We present numerical
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solutions of the GL equations in two spatial dimensions andvhere e(p;) =[e1(ps).,e2(p;)] are basis functions on the
focus on contributions to the free energy, the specific heatrermi surface that transform among each other under the
and the nature of the superconducting state. Our results f@perations of the Dg, symmetry group, #(r)
Model | agree with those for Garg’s simple periodic model. =[ 5,(r), 7,(r)] are Cooper-pair amplitudes that are func-
While neither model provides an adequate account of experijons of the Cooper-pair center of massc is a unit vector
ment, our results for Models | and Il differ, and taken t0- gong thec axis of the crystal, and-; are Pauli matrices in
gether theydo notlead to Garg's conclusion that the,,  spin space. Explicit expressions 5, and other basis func-

model is incompatible with URt Rather, they suggest that a tions may be found in Refs. 7,8, and 32. The GL free-energy
reasonably accurate model of the spatial dependence of thgnsity is

antiferromagnetism is required to make meaningful compari-
sons with experiment. In a forthcoming work, we discuss f(r)=Foun(r) + fgrad 1) + friera(r). (2
other domain configurations along with the effects of dimen- , i .
sionality and the possible role of superconducting g|as§ymmetry constrains the form of the bulk, gradient, and field
phased® Central results of this paper are contained in theContributions for ark,, superconductor to Be
Egmpﬁgsacg:f specific-heat calculations with experiment for fouie= (T 92+ Bal ml*+ Bol - 2. 3)
In Model I, the signatures of the superconducting transi- .
tions rapidly smear and broaden with decreasing domain forad™= K1(Di 7)) (Din))* + ko(Di 7)) (Dj7)*
size. The SBF introduces a convenient Ie_ngth séalede- +k3(Di 1) (D7) * + k(D7) (D,m)*,  (4)
fined below that, for UP%, is some three times larger than
the zero-temperature superconducting coherence length. For
domain sizes of 1§ —20¢,, the calculated specific heat ffie|d=g|b|2' 5
compares well with data from experiméfitThis homoge-
neous domain size model does not agree with neutronwherea(T)=ao(T—T,), ag is a constant], is the transi-
scattering experiments that, when viewed through the lens afon temperatureb=@xA is the magnetic field, and;
Model I, would suggest a much smaller domain sizé&¢, =d;—i(2elhc)A; is the gauge-invariant gradient. In the cal-
—3¢, . As the domain size is decreased bels\#¢, , only a  culations that follow for a spatially varying SBF, we restrict
single superconducting transition appears in the specific headurselves to two dimensions ard plays no role. In weak-
While the suppression of the double transition with decreaseoupling BCS theory for ak,, order parameter, the param-
ing domain size suggests an obvious explanation for the ageters «, and «; are small for Fermi surfaces with axial
pearance of the double transition upon annealing of as-growsymmetry’ we take x,= k3=0 and write k=« for nota-
samplegsee Fig. 1, this explanation appears to be inconsis-tional convenience. Weak-coupling BCS theory also predicts
tent with magnetic x-ray and neutron-scattering data that arghat 8,= 8,/2 independent of the shape of the Fermi surface
interpreted as showing no change in domain size with anand that the homogeneous equilibrium order parameter that
nealing. minimizes the free energy is doubly degenerate, breaks time-
In contrast, Model Il is not as sensitive to the density ofreversal symmetry, and is of the forgr(1,+1).
nanodomains. Specific-heat signatures remain sharp even for The orientation of the AFM order parameti(r) may
a high density of “nanodomains” and resemble those forfluctuate dynamically. An estimate of the magnetic fluctua-
high-quality crystals. Although these signatures remainjon time 7,4 from the energy-resolution limited magnetic
sharp, for coverages larger than75% only a single super- Bragg peaks obtained from elastic neutron-scattering experi-
conducting transition occurs. ments givesr,,~500 ps!! Because this fluctuation time is
While neither model provides an adequate account of thglow compared to the characteristic time scale of the super-
experimental data, the calculations presented here demogonducting staters.~h/Ay,~50 ps, we take the SBF to
strate the sensitivity o, superconductivity to SIAFM and  arise from static AFM ordér and calculate equilibrium so-
suggest that a reasonably accurate description of the spatiglions of the GL functional in the presence of spatially vary-
variation of the underlying antiferromagnetism is crucial ining AFM order.

drawing conclusions about the symmetry of the supercon- The transition temperature below which antiferromagnetic

ducting states. order occurs is an order of magnitude larger than the super-
conducting transition. In a mean-field description of the

[l. COUPLED SUPERCONDUCTIVITY AFM order, the order parameter is well developed at the

AND ANTIFERROMAGNETISM transition to superconductivity. Below the superconducting

transition, the neutron-scattering data suggests that the
modulus of the staggered magnetization decreases. Over the
We begin by reviewing the Ginzburg-Landau free energytemperature range for which a GL theory of superconductiv-
for an E,, superconductor coupled to a SBF. We take theity is valid, the modulus of the staggered magnetization
Eou gap matrixA,4(k,r) to be the superconducting order changes by less than 5%. Since this change is small, we take

A. The E-representation model

parameter; it has the form the staggered magnetization to be a fixed external field and
o neglect the effect of superconductivity on antiferromagnetic
Ap(ps 1) =eps) - g(r)(C-ioay) g, (1) order?®? The leading contribution to the free energy from the
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coupling of antiferromagnetism and superconductivity is sec- AChM=ToMy2128,5, (10)
ond order iny and of the form
fsor=2e ao(IN- 7%= 3 [9?) AChM=TMom 2128, (1D
—c0s29 sin26
=cagy'| m, ©® _ o
sin26  cos2) with B1,= 81+ B,. The ratio of the heat-capacity jumps is

whereN=[sind(r),cosé(r)] is a normalized direction vec-
tor of the staggered magnetization, ands a coupling con-

stant proportional to the square of the staggered magnetiza- Achem  phom
tion. Symmetry also allows a coupling of the SBF to the m_m(l"'ﬂ)' (12)
gradient in theE,, model!* so thatf 4.4 is given by * *
f grad™ «1 |Di7]?+ k1 [Dimal? (@) Using these equations and the specific-heat data, we estimate
with the ratio 8~0.42—0.65*1% Noting that the weak-coupling
value of 8 lies comfortably in this range, we takg=1/2 in
k1 =rKy(1xe N?). (8)  the calculations below. Further, the measutedxis Heo

'5 . . . . _ . _
This term, together with the-axis gradient terms, deter- slopes”® of ~6.6 T/K imply within a coarse-grained analy

mines the kink and possible tetracritical point on the upper thatic/ ap~50 Knnt, |(.)e., a zero-temp'eratur.e GL coher-
critical-field curve. Because the magnitude of the gradienfCe lengthéo= y/(aoTci™)~10 nm. This estimate of

coupling to the SBF is small, being of the order~¢ In the 4lgasal plane is in very good agreement with other
~AT,/T., it will not significantly affect our results, and so €pOrts.
we neglect thedirect coupling of N to » through the gra-
dient terms for the calculation of thermodynamic properties
in zero magnetic field. ll. SPATIALLY INHOMOGENEOUS
The symmetry-breaking term in E¢f) is combined with ANTIFERROMAGNETISM

Eq. (2) to give the free-energy densit
a2tg 9 Y We now consider the possibility that the orientationNof

f=a_(T)| )%+ a(T)| 7,/%+ e agsin 26( 7175 +C.C.) varies in the crystal lattic®l=N(r) and explicitly investi-
gate two cases(l) abutting antiferromagnetic domains of
+ By 71|?+ [ 92]*) 2+ Bo| 95 + w51+ k(D 7)) (D 7)) * uniform size&, with orientations distributed equally among

1 the three possibla vectors, and(2) randomly dispersed
+ gbz, (9)  “nanodomains” with characteristic dimensions of order the

superconducting coherence length. For SIAFM, an analytic
with . (T)= a(T) * ey cOS ¥. For temperatures very near solution is generally no longer possible and it is necessary to
the normal-superconducting transition, the second-ordegolve the GL equations numerically. The resulting supercon-
terms that include the coupling to the SBF dominate andlucting state will be complicated, because of the competition
“real” phases of the forms~ (cos#,sin6)e* minimize the  between the condensation energy gainedszpgrienting in

free energy. directions preferred by the SBF and the gradient energy cost
to twist the orientation of the order parameter from domain
B. Single AFM Domain and Estimation of GL Parameters to domain. The response of &y, superconductor to these

] ) ) ~ two models for SIAFM differs as described below.
Without loss of generality, the salient features of coupling

to uniform antiferromagnetisnisingle infinite domaih can
be seen by takingl(r)=(0,1) and the coupling to the SBF A. Preliminaries
to be positive,e >0, so thatf, favors L N. At the tem- . L . :
peratureT23m= T,+e, a phase transition occurs from the For numerical calcu~lat|0n, it is convenu_ent to introduce a
normal state to a spatially homogeneous superconductingf@led order parametay= #/ 770, where 7, is the modulus
phase 7(1,0). At a lower temperatur€22m=To—e/B, of the real phase solution of a-homogeneous single dpmam
there is a second phase transition to a time-reversafo=Y@oet/2f1, that appears in the presence of uniform
symmetry-breaking phase p=[1,+ir(T)], where g AFM order at a transition temperatufBl9"=Ty+e. All
=B,/B; and r(T) is a function that grows rapidly and temperatures are given in terms of a reduced temperature
smoothly from 0-1 ad is lowered?® =(T°™—T)/e. Scaling Eq/(9) to the magnitude of the free-
The specific-heat jumpgper volume at the two phase energy density of the homogeneous single-domain solution
transitionsT'™ and T1°™, measured relative to the normal in the high-temperature phali(t)|=(aoet)*/ (4812, a di-
state, are calculated from a derivative of the free energy anthensionless Ginzburg-Landau free-energy denkitg ob-
are given by® tained, which is of the form
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F= 2| (1= 75ir0)[74] 2+ (1— 7 COL0) |72 quenched, afm ordered S B F

where all lengths are measured in terms of the SBF length

£.=klage, Di=¢.D;, andr=2k.

_ - 1. 2B - -

“rsin20Ren; — 5 lultt gl N
For ease of calculation, we take a square computational

mesh with a step siz& x=Ay=0.2¢,. We tested our GL

+7(|Di 712+ (D 72/, (13
simulations on triangular lattices, which are more natural

given the apparent hexagonal crystal symmetry of;U&td \

y axis

have found no qualitative differences for averaged quantities.
Periodic boundary conditions were imposed. We take the GL
parameters to bg=1/2 andk= ae £2.

As the superconducting order parameter twists to accom-
modate the spatially inhomogeneous symmetry-breaking
field, ime-reversal symmetry-breaking phases may appear in fiG. 2. Structure of AFM domains assumed in Model I. For
localized regions even for temperatures near the normakonvenience, a computational mesh with a square geometry was
superconducting phase boundary, where “real” phases arghosen; explicit comparison with calculations on triangular meshes
expected to dominate. To detect the appearance of thes® not change our central conclusions.
phases, we calculate

X axis

be exact for an infinite systenand to the large concentration
1. ~ of nanoscale defects (9%79 %).
Ma() = 5700 X 71", (19 (9%79%)

. . . B. Model I—Checkerboard
which is (apart from a factor dependent on the gradient

terms) the spontaneous magnetization that arises from the The spatially varying staggered moment configuration
internal orbital motion of a Cooper pair. Note tHdt,, is a ~ COnsists of abutting domains as shown in Fig. 2. The_orlen—
real vector constrained by symmetry to point alang. For tation pattern ofN(r) was generated so that ne_arest_—nelghbor
a homogeneous single domaid,,, vanishes between the domains d_o not have a SBF of the same orientation and so
two transitions, as it must for a “real” phase. At the lower that there_ is no net staggered magnetization. The influence of
transition, the second component of the order parameter béhe SBF is greatest at high temperature and the nature of the
gins to grow with a phase relative to the first akid,, in- Superconducting phase depends on the size of the AFM do-

creases rapidly with decreasing temperature signaling brokef &ns relative to the superconducting coherence length. At

time-reversal symmetry. As expected, the temperature des_ufflqently low temperature,.the' or.der parametersy)
pendence oM, is consistent with a second-order Iohaseoc(1,|) to an excellent approximation; for most purposes the

e e N o coupling to the SBF leads to a negligible correction to the
tLaTnhsoeron in mean-field theoryM o (T)|~VT2™=T, for T order parameter.
<T.oM

, , . The effect of domain size on the superconducting transi-
The calculation of free energies and spatially averagegiyns is apparent in Fig. 3. For large domains, two reasonably
quantities involves a summation over the lattice. We adopgharp transitions are apparent. They smear rapidly as the do-
the notation main size is decreased until f§x;,,~2£, only one transition
NN appearsd for th((ej sizbe of gur com%utational mesh togethe; V\;]ith
_ imposed periodic boundary conditions. A comparison of the
(A() =N 221 121 AXiLY)), 19 numerical calculations of Fig. 3 for our model in two dimen-
sions with the specific-heat calculations for Garg’s one-
whereN? is the number of computational mesh points anddimensional model presented in Fig. 2 of Ref. 13 shows that
the position vector =(x,y). In this notation, the spatially these are in good agreement given the simplicity of the
averaged orbital moment {#44(r)), . In the case of Model ~“toy” model. *°
I, we solved for several antiferromagnetically ordered do- The lower panel of Fig. 3 shows the temperature depen-
main sizes on a square lattice. For Model Il we have foundience of the spatially averaged spontaneous magnetization
solutions of the GL equations for different sets of randomthat reflects the nature of the two phase transitions. For an
configurations of the SBF and have not found any discerniblénfinitely large single domain{My.(r)), vanishes in the
differences for spatially averaged quantities. We attributéligh-temperature phase where the order parameter is “real”
this “self-averaging” of the quenched disorder of the ran-and rapidly increases below the lower phase transifiH',
domized SBF to our relatively large system si#f@s would  as described above. As the domain size decre@skgy(r)),
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FIG. 4. Spatial cuts of the relative angde between the order
Ag 04 parametersy; and 7, along thex axis for a fixedy coordinate at
S temperature$=1 andt=6. The AFM domain size is ZQ and ¢
vt F LSS e =/ (7m1,7m2). The same parameters are used in Fig. 5. A relative
angle of = /2 signals a superconducting phase that breaks time-
0.2 r ) reversal symmetry. The low-temperature phaseq) breaks time-
d . .
df reversal symmetry on average, while the high-temperature phase
bo, L (t=1) breaks time-reversal symmetry predominantly in the domain
0.0 mebaidsdrrrt™ i . : wallls (indicated as vertical dashed lines
0.0 1.0 2.0 3.0 4.0 5.0 6.0
(b) t

domain walls in registry with the AFM domain walls. Occa-
FIG. 3. Top: The specific heat for Model | in units of the upper sionally, the relative phase unwinds from ©-ever an entire
specific-heat jump of the spatialy homogeneous systendomain. Fig. 5 shows the spatially varying superconducting
AC™"/TI™ for various AFM domain sizes measured in units of order parameter for the particular AFM configuration shown
the SBF lengthé, . The temperaturé is measured relative to the in Fig. 2 and a domain size of £0. The spatial variation of
upper superconducting transition addcreasesn the positivex the modulus ofy shown at low and at high temperature in
directiont=(T{"—T)/e. Bottom: The corresponding spatially av- Figs. 5a) and(b), tracks the underlying AFM domain struc-
eraged spontaneous magnetizatidh,,(r)), as a functionotand  tyre. As expected, at high temperature, there is a suppression
for the same domain sizes. of superconductivity at the domain walls. At low tempera-
ture, there is a small reduction in the componenggfarallel
becomes finite but remains small for temperatures bdlpw  to N in the ~(1,i) phase preferred by the fourth-order terms
and above T'c“im. The time-reversal symmetry-breaking in the free energy and a negligibly small suppression of su-
phase appears with increasing strength as the order parameparconductivity occurs in theenterof the domain. At high
tries to twist from domain to domain. For the largest do-temperature, the components of the superconducting order
mains, the specific heat shows two phase transitiaiizeit  parameter are “real” in the interior of the domains. The
rounded by spatial fluctuatiopseven though{M(r)), is  orientation of the order parameter attempts to follow the
finite between the two transitions. For the smallest domairAFM order on average. The orientation gfdoes not follow
sizes only one transition is appar&nwith an onset approxi- that of N perfectly. A side-by-side comparison of Figgdb
mately that of the transition temperature in the absence aind 2 shows that even for these relatively large domains, the
coupling to the SBFT. different orientation of the SBF in adjacent domains forces a
The twisting and flapping of the two superconducting or-compromise in the orientation af as it twists from domain
der parameterg, and 7, across the domain walls is appar- to domain. For exampley makes a 45° angle with respect to
ent in the plots of the relative phase angldetweenp, and  the SBF at the center of the domain-{Q0,0-10) in Fig.
7, in Figs. 4 and 5. The flapping or unwinding of the relative 5(d). For temperatures below the second phase transition, the
phase in Fig. 4 follows the antiferromagnetism on averagesuperconducting phase is essentiallyi X yith a small per-
producing reasonable narro@rder ~¢,) superconducting turbation from the AFM order. This is evident from Figs. 4
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FIG. 5. Domain structure of the Model | superconducting state induced by the coupling to homogeneous AFM domains &f size 10
X 10¢, with three equivalent orientations 0 120° of the SBF. Distances are in units&f. (a): Contour plot of| (r)|/{| (r)|), at steps
0.999(solid), 1.000(dash, 1.001(dot), 1.002(dash do, and 1.003dash dot dgtat temperaturé=6. | 5| is minimum in the domain center.
(b): Contour plot of| 5(r)|/{| 5(r)|), at steps 0.8@solid), 0.85(dash, 0.90(dot), 0.95(dash do), 1.00(dash dot dgt and 1.05light solid)
at temperaturé=1. | g| is maximum in the domain centec) and(d): The complex order parameter components(light) and », (dark)
are plotted as two-dimensional vectors, where the relative size of the vector is proportional to its magnitude. In the low-temperature phase

t=6 in (c), 7,L 1, on average, while in the high-temperature phas@)jnz,|| 7, almost always. The orientation of the SBF is the same as
in Fig. 2.

and 5c), which show a sizeable phase angler/2 between age way, the extent to which the superconducting order pa-
the 7, and », components. At high temperature, the orderrameter tracks the twisting of the SBF, afig,,{(r)), mea-
parameter is mildly suppressed at the domain walls whersures the energy cost of twisting the order parameter. The
the relative phase angle between theand 77, components  ratio (fg,(r)), /(fgadr)), plotted in Fig. 6 is largely tem-
is sizeable, reaching- /2 at the corners, indicative of the perature independent and insensitive to domain size near
appearance of time-reversal symmetry-breaking phases in tfie., , i.e.,t—0 for large domains. For the smallest domain
domain walls. size, the ratio is significantly larger owing mostly to a
For various domain sizes, the nature of the spatially inhosmaller(fq,{r)), and the stiffness of the condensate. This
mogeneous superconducting state is reflected in the ratisuggests the appearance of a qualitatively different phase—a
(Fsplr))r /(T grad))r» Where(fg,{r)), measures, in an aver- strongly disordered superconducting ph#sas can be seen
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FIG. 7. The specific heat for af,,, superconductor computed
from weak-coupling BCS theory for various SBF coupling strengths
10" . . ‘ . . e (symbolsg, and from GL theory for a single AFM domain. The
00 10 20 30 40 50 6.0 BCS-theory temperature dependence can be approximately recov-

t ered from the GL-theory specific heat using a multiplicative factor
that is linear inte.
FIG. 6. The ratio of the contributions to the free energy from the

SBF coupling term and the gradient teiy,(r)), /(fgadr)), for domains, only a single phase transition would appear in these
Model | and for various domain sizes. Note that for the smallestcalculations. This reflects the relative stiffness of the super-
domains the ratio is significantly larger at high temperatare8,  conducting order parameter as compared to the condensation
reflecting a new(strongly disorderedstate in which the twisting of energy gained from orienting the superconducting order pa-
the order parameter decouples from the AFM order and on averageymeter in a direction favorable to the local AFM order pa-
(m(r))e~(L). rameter.

from Fig. 3, neafT, this phase differs from that for larger
domains, because time-reversal symmetry is broken globally C. Model Il—“Swiss Cheese”
and not just in the spatially restricted regions between super- The superconducting state of Model | is very sensitive to

conducting domains. the size of the AFM domains. To explore the response of an

Since GL theory does .n.ot predict the proper tempefat“r%ZU superconductor to different spatial AFM configurations,
dependence of the specific heat, we apply a correction to

recover the correct temperature dependence near the double

transitions so that GL results may be compared with experi- 1.5 === homog.
ment. We compute the specific heat self-consistently within ‘15%2
weak-coupling BCS theory for a homogeneous single AFM — 20&:
domain for different sets of; splittings in the clean limit ® expt. (raw)
and compare it with the GL result. A reasonable approxima-—, O expt. (scaled)
tion to the BCS theory temperature dependence for a smalg 107 go"
temperature range below the normal-superconducting phas = Coao
transition can be obtained by multiplying the homogeneous’g 0%
GL result by a factor proportional tet, as shown in Fig. 7. — 0o© &
Our results are shown together with specific-heat experi—s 05 | o' ¢
ments in Fig. 8. For ease of comparison, the experimenta< .o“'
results have been scaled so that the peak in the specific he ¢
at the lower phase transition agrees with the corresponding
feature for a homogeneous SBF. Calculations for domain &
sizes ~6&£,—20¢, show two phase transitions that are 0.0 : ; ; -0l
D ; . . 0.60 0.70 0.80 0.90 1.00 1.10
blurred by the spatial inhomogeneity of the magnetic order in T/Thim

a way that resembles experiments. From the comparison, we

deduce that the coupling to the symmetry-breaking field is G, 8. calculated specific heat for Model I for a single domain

small,e~18 mK, compared td ., ~540 mK. and for various domain sizes in comparison with experintited
The domain sizes consistent with specific-heat expericircleg normalized byCy /T (Ref. 14. For ease of comparison, the

ments, 1@,—20¢, (~30&,—60&y), are much larger than experimental data scaled by a numerical fadtmpen circle are

the uniformly sized §,—2¢, (~3&,—6&,) domains attrib-  also presented. ThE dependence of the GL results has been cor-

uted to neutron-scattering experiments. For the latter smatkected according to Fig. 7.
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FIG. 9. The spatial orientation of the SBF for the randomly
dispersed nanodomaiiismall arrows in the presence of a uniform
SBF in the backgroun¢big arrow) of Model .

FIG. 10. A typical spatial distribution of cross-shaped nan-

we consider a model that represents what might be viewed aslomains(nanodefectscovering approximately 44% of the 82
an opposite extreme from the abutting uniformly sized do-x32¢, numerical mesh in the presence of a uniform AFM back-
mains of Model I. In Model Il, nanoscale-sized AFM do- ground.
mains permeate a large singlénfinite” ) AFM domain like
the holes in Swiss cheese. This picture is motivated by th&on in the splitting ofT. and only a single phase transition is
observation ofntrinsic defects(most likely dislocation lines observed for a nanodomain density larger than5%. The
or stacking faults in high-quality and high-purity URt temperature evolution of the spatially averaged spontaneous
sample®’~>1 and by the observation that neutron-scatteringmagnetization shown in Fig. 11 indicates that the low-
data cannot distinguish between the commonly accepted pitemperature transition that separates two superconducting
ture of abutting uniform domains with small moments andstates is second order. As expected, the rapid increase in the
small domains with significantly larger moments. Thé@se spontaneous magnetization is correlated with the appearance
trinsic defects may act as nucleation centers for the randonmef a jump in the heat capacity, as shown in the top panel of
field-like symmetry-breaking field, “nanodomains,” and Fig. 11. Note that time-reversal symmetry is broken for the
may provide a natural explanation for the linewidth broadensingle transition that occurs at high nanodomain densities.
ing of the AFM Bragg peak in reciprocal space as seen in In contrast to Model I, the contribution to the free energy
neutron-diffraction measuremertts. from the symmetry-breaking field dominates that from the

We used a standard pseudorandom number generator gpadient term as reflected in the large ratios
uniformly distribute the nanodomains on our computationakfg,{r)) /{fgadr)) shown in Fig. 12. The superconducting
mesh, and to assign a random orientation for the direction ofrder parameter is on average aligned relative to(lbizek-
N for each nanodomain relative t of the “background” ground AFM order except in a region- ¢, around a nan-
antiferromagnetism[ #(r)=*120°]. On a mesh of 160 odomain.
X160 points (32,X32¢,) approximately 3400 nan- In Fig. 13 we compare our results of the specific heat with
odomains(nanodefectsare needed to cover all three orien- measurements on high-quality crystals. Since the heat jumps
tations of the SBF equally. An example configuration of theare very insensitive to the density of nanodomains, a wide
AFM order appears in Fig. 9. In Fig. 10 we show a typicalrange ofe values and nanodomain concentrations are con-
distribution of nanodefects on a mesh ofé3X 32¢, with a  sistent with experiments. In particular, an SBF coupling
concentration of defects that covers approximately 44% ot/T,=0.0633 requires a concentration of roughly 36% in
the mesh. Each nanoscale defect has a cross-shaped fiwder to account for the observed sharp double transition in
point layout on the mesh. Interactions between adjacent déreat-capacity measurements.
fects or between clusters of defects were neglected. Figure It is natural to expect that disorder will drive the lower-
11 shows the specific heat as a function of temperature oliemperature phase transition from being second order to first
tained by heating from deep in the low-temperature phaseorder or possibly a glass transition. Our numerical heating
Two phase transitions are signaled by heat-capacity jumpand cooling cycles have shown that upon heating up and
that remain sharp, consistent with second-order phase trangrossing the low-temperature phase transition, the entropy is
tions, even in the presence of a high density of nanoscalalways smooth and hence the transition is second order.
defects. Increasing nanodomain density does lead to a redutlowever, when starting the cooling cycle abdve we find
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06 f T
e FIG. 12. The ratio of the contributions to the free energy from
e (fspr))r @and(fyadr)), . A large ratio reflects a stiff condensate; it
% of defects . . .

204 | | is energetically less favorable for the superconducting order param-
E" ’ /’ 0% eter to twist near the nanodomains. Note that the second transition
Y 4. — %% can be described hy =exp(1—xX/x.]In 3), wherex.,~88% is the

77 — 18% critical concentration of nanoscale defects, where there is only one
0.2 r I/ [ A B R [P 449 |1 superconducting transition.
]
] ==== 69%
1 . . . .
[ 9% eter: Model I, abutting AFM domains of uniform size
- o 50 o 50 i equally distributed over the three possible orientations of the

(b) t AFM order parameter, and Model I, small domains with

dimensions of the order of the superconducting coherence

FIG. 11. Top: The specific heat for Model Il in units of length (nanodomains randomly dispersed through a single
AC™TY™ for the nanoscale defect model for various defect den-AFM domain. Our numerical solutions of the Ginzburg-
sities on a 32,x32¢, lattice. Bottom: The orbital magnetization |andau equations show that Model | is very sensitive to
for the same model and set of parameters as in the top panel.  domain size. Phase transitions are rapidly broadened and

a glasslike, frustrated, and strongly disordered solution for
the order parameter, which gives rise to a discontinuity in the
entropy upon crossing._ . This discontinuity is consistent

with a first-order transition. However, a comparison of the
calculated free energies shows that the latter is energeticall'_
less favorable than the solution with a smooth transition and2 1.0
signals that the glasslike solution is metastable. Assumingg_

B=0.5

\
\
_—

&/T,=0.0633

com==e’

that the metastable glasslike solution is experimentally ob-g 0% defects
servable when rapidly cooling down, our calculations give a— — 9%

small latent heat=T,_AS=uT,_AC_, wherepisanu- & o5 || s

merical factor of orde~0.01. In other words, the latent < —— 69% .

heat is a small fraction of the overall measured specific hea == 79% ’@
Q~T.,Cn=200 mJ/mol, withl/Q<1% or even less. In a ;ZP: gzvl)ed) >

carefully devised heat-capacity measurement this small la: ' e o

tent heat should be observable if indeed a glasslike phas 99 &5 0.70 0.60 0.90 60 =

transition occurs. T/T,,

IV. CONCLUSIONS FIG. 13. Calculated specific heat as a function of temperature
for Model Il for various concentrations of nanodomains, shown in
We have explored the effect of spatially inhomogeneougomparison with experimertfilled circles normalized byCy /T
antiferromagnetic order coupled to the superconducting or¢Ref. 14. For ease of comparison, the experimental data scaled by
der parameter of ak,, superconductor in two models rep- a numerical factor(open circle} is also presented. ThE depen-
resenting limiting configurations of the AFM order param- dence of the GL result has been corrected according to Fig. 7.

134502-10



ANTIFERROMAGNETIC DOMAINS AND . .. PHYSICAL REVIEW B63 134502

smeared as the domain size is decreased. For domain sizgpt, at low temperature and therefore transport properties
less than~2¢, only one transition is evident. The results of that are in good agreement with experiment. In the tempera-
our calculations in two dimensions are in qualitative agreetyre region that includes the two phase transitions, Model |
ment with those of the simple one-dimensional model ofgppears to be too sensitive to SIAFM while Model Il is per-
Garg. In contrast, Model 1l shows sharp phase transitions fohaps not sensitive enough. It is, thus, more likely that
all nanodomain densities up to the point where the doublé|aFM is not arranged in abutting domains of uniform size,
phase transition gives way to a single phase transition. Ousyt rather, there is a distribution of AFM domain sizes
calculations for Model Il show that low-lying metastable peaked around a particular size. Further calculations are re

states affect the thermodynamic properties of the system asdired to properly consider this possibility, which we will
is cooled, and suggest the possibility that the lower transitioxamine in forthcoming work.

may be weakly first order. In contrast, our calculations for

Model | show no evidence of a first-order transition. Al-

though both quels can yield s_h'arp phgse tran3|t|ons like ACKNOWLEDGMENTS

those observed in the heat capacities of high-quality samples,

neither of them can account for the change in the heat capac- We thank J.A. Sauls for enlightening discussions early in
ity on annealing if the magnetic moments and domain sizethis work and P. Kumar and H. Rer for many stimulating

do not change as a result of annealing. The qualitative difdiscussions. M.J.G. acknowledges the support of Los Ala-
ference in the results for our two models does caution thamos National Laboratory under the auspices of the Depart-
simplistic models involving domairsomogeneouin size do  ment of Energy and D.W.H. acknowledges the support of the
not rule out the possibility oE,,, superconductivity in URt  Office of Naval Research. This work was supported in part
The relative insensitivity of the low-temperature time- by a grant of computer time from the DoD High Perfor-
reversal symmetry-breaking phases to SIAFM in both modimance Computing and Modernization Program on the Naval
els provides a natural explanation of how By, supercon- Research Laboratory’s Origin 2000 and SUN Wildfire com-
ductor can provide a good description of the gap structure ogputers.

1G. Aeppli, E. Bucher, C. Broholm, J.K. Kjems, J. Baumann, and Dalmas de Retier and A. Yaouanc, Phys. Lett. 205 239

J. Hufnagl, Phys. Rev. Let60, 615 (1988. (1999; R.A. Fisher, B.F. Woodfield, S. Kim, N.E. Phillips, L.
2E.D. Isaacs, P. Zschack, C.L. Broholm, C. Burns, G. Aeppli, A.P. Taillefer, A.L. Giorgi, and J.L. Smith, Solid State Comm&®,
Ramirez, T.T.M. Palstra, R.W. Erwin, N. ®fweli, and E. 263(1991); J.P. Vithayathil, D.E. Maclaughlin, E. Koster, D.L.
Bucher, Phys. Rev. Let5, 1178(1995. Williams, and E. Bucher, Phys. Rev.4}, 4705(1991); M. Lee,
3S.M. Hayden, L. Taillefer, C. Vettier, and J. Flouquet, Phys. Rev. G.F. Moores, Y.Q. Song, W.P. Halperin, W.W. Kim, and G.R.
B 46, 8675(1992. Stewart,ibid. 48, 7392(1993.

4B.S. Adenwalla, S.W. Lin, Q.Z. Ran, Z. Zhao, J.B. Ketterson, A, Yaouanc, P.D. de Reotier, F.N. Gygax, A. Schenck, A. Amato,
J.A. Sauls, L. Taillefer, D.G. Hinks, M. Levy, and B.K. Sarma, C. Baines, P.C.M. Gubbens, C.T. Kaiser, A. de Visser, R.J.

Phys. Rev. Lett65, 2298(1990. Keizer, and A. Huxley, Phys. Rev. Le@4, 2702(2000.
5G. Bruls, D. Weber, B. Wolf, P. Thalmeier, and B thiy Phys. ~ '’A. Sulpice, P. Gandit, J. Chaussy, J. Flouquet, D. Jaccard, P.
Rev. Lett.65, 2294(1990. Lejay, and J.L. Tholence, J. Low Temp. Phgg, 39 (1986.
6M. Boukhny, G.L. Bullock, B.S. Shivaram, and D.G. Hinks, 18R J. Keizer, A. de Visser, A.A. Menovsky, J.J.M. Franse, B Fa
Phys. Rev. Lett73, 1707(1994); Phys. Rev. B50, 8985(1994); and J.-M. Mignot, Phys. Rev. B0, 6668(1999.
D.S. Jin, S.A. Carter, B. Ellman, T.F. Rosenbaum, and D.G!°B. Lussier, L. Taillefer, W.J.L. Buyers, T.E. Mason, and T. Peter-
Hinks, Phys. Rev. Lett68, 1597 (1992. son, Phys. Rev. B4, R6873(1996.
7J.A. Sauls, Adv. Phys43, 113(1994. 20N.H. van Dijk, B. F&, L.P. Regnault, A. Huxley, and M-T.
8R.H. Heffner and M.R. Norman, Comments Condens. Matter Fernadez-Daz, Phys. Rev. B8, 3186(1998.
Phys.17, 361(1996. 213, Moreno and J.A. Sauls, Phys. Rev6B 024419(200).
9K. Machida, M. Ozaki, and T. Ohmi, J. Phys. Soc. Jp8.4116  22G.E. Volovik, J. Phys. @1, L221 (1988.
(1989. 23D.W. Hess, T.A. Tokuyasu, and J.A. Sauls, J. Phys.: Condens.
0p.-C. Chen and A. Garg, Phys. Rev. LetD, 1689 (1993; A. Matter 1, 8135(1989; Physica B163 720 (1990.
Garg and D.-C. Chen, Phys. Rev.4B, 479 (1994). AT A, Tokuyasu, D.W. Hess, and J.A. Sauls, Phys. ReW1B
11R. Heid, Ya.B. Bazaliy, V. Martisovits, and D.L. Cox, Phys. Rev.  8891(1990.
Lett. 74, 2571(1995. 25R. Joynt, V.P. Mineev, G.E. Volovik, and M.E. Zhitomirsky,
12M.E. Zhitomirsky and K. Ueda, Phys. Rev. 5, 6591 (1996. Phys. Rev. B42, 2014(1990.
13A. Garg, J. Phys.: Condens. Mattk0, 4223(1998. 26E |, Blount, C.M. Varma, and G. Aeppli, Phys. Rev. Let,
R.J. Keizer, A. de Visser, M.J. Graf, A.A. Menovsky, and J.M.  3074(1990.
Franse, Phys. Rev. B0, 10527(1999. 2T\M.R. Norman, Physica @94, 203(1992.
H. Tou, Y. Kitaoka, K. Asayama, N. Kimura, Y. Onuki, E. Yama- 28I. Luk’yanchuk and M.E. Zhitomirsky, Physica @06, 373
moto, and K. Maezawa, Phys. Rev. LetZ, 1374 (1996; P. (1993.

134502-11



MATTHIAS J. GRAF AND DARYL W. HESS

2K A. Park and R. Joynt, Phys. Rev. 33, 12 346(1996.

30K. Machida and M. Ozaki, Phys. Rev. Le@6, 3293(1991); T.
Ohmi and K. Machidajbid. 71, 625 (1993; K. Machida, T.
Nishira, and T. Ohmi, J. Phys. Soc. Ji8, 3364 (1999.

31A recent high-energy x-ray-scattering experiment, Ref. 49, claims
that the originalDg, symmetry classification for URis incor-
rect and that the correct crystal symmetry is trigonal. Theg
symmetry group contains a single two-dimensioBakpresen-
tation. The GL theory for a superconducting order parameter
that transforms like this representation is formally identical to
the E,, representation that we consider. The calculations we
present here are applicable without modification td&Egrsuper-
conducting state ob 5y, .

32M.J. Graf, S.-K. Yip, and J.A. Sauls, J. Low Temp. Phy62,
367(1996; 106, 727E) (1997; 114, 257 (1999.

33M.J. Graf, S.-K. Yip, and J.A. Sauls, Physica2B0, 176 (2000.

34C.H. Choi and J.A. Sauls, Phys. Rev. L&6, 484(1991); Phys.
Rev. B48, 13 684(1993.

35M.J. Graf, S.-K. Yip, and J.A. Sauls, Phys. Rev.68, 14 393
(2000.

36D.W. Hess, Physica B94-196 1419(1994.

373.A. Sauls, Phys. Rev. B3, 8543(1996.

38N. Keller, J.L. Tholence, A. Huxley, and J. Flouquet, Phys. Rev.
Lett. 73, 2364(1994); 74, 2148E) (1995.

3%v.P. Mineev, Physica BL71, 138(1991).

4OM.J. Graf and D.W. Hes&unpublishedl

41G. Aeppli and C. Broholm, irHandbook on the Physics and
Chemistry of Rare Earthsedited by K.A. Gschneider, L. Ey-
ring, G.H. Lander, and G.R. ChoppitElsevier, New York,
1994, Vol. 19, p. 123.

421t is worth noting that Eq(6) is by design traceless and does not
include a possible coupling term proportional|tg?|N|2. This
term is implicitly absorbed into the definition @Y, as has been

PHYSICAL REVIEW B63 134502

conclusions. Since this term is important in determining the tem-
perature dependence ¢ below the superconducting phase
transition[see for example, the superconducting glass model of
B. Kishore and P. Singh, PhysicaZl5 59(1993], such a term
must be explicitly included in any self-consistent model of
coupled E-representation superconductivity and AFM order.
Such a program was carried out for the single-domain
E-representation models of Ref. 29 to make a quantitative analy-
sis of theH-P-T phase diagram. Our work suggests that a quan-
titative E-representation model of thel-P-T phase diagram
should take the spatial dependence of the AFM order into ac-
count; one cannot assume that the equations of a single-domain
model with “renormalized couplings” will be valid.

43J.A. Sauls, J. Low Temp. Phy85, 153(1994.
443.P. Brison, N. Keller, P. Lejay, J.L. Tholence, A. Huxley, N.

Bernhoeft, A.l. Buzdin, B. Fak, J. Flouquet, and L. Schmidt, J.
Low Temp. Phys95, 145(1994.

45R.N. Kleiman, C. Broholm, G. Aeppli, E. Bucher, N. 8heli,

D.J. Bishop, K.N. Clausen, K. Mortensen, J.S. Pedersen, and B.
Howard, Phys. Rev. Let69, 3120(1992.

“6Note that the specific-heat curves in Ref. 13 are labeled by a

parameter that corresponds to the square of the domain size in
our units.

47Small computational meshes may artificially suppress a transition

to a glass phase.

“48This phase is apparently not a glass, becdugl + 0 according

to the Edwards-Anderson definition of a superconducting glass
order parameter.

4p.A. Walko, J.-1. Hong, T.V.C. Rao, Z. Wawrzak, D.N. Seidman,

W.P. Halperin, and M.J. Bedzyk, Phys. Rev. @, 054522
(2001.

0p A. Midgley, S.M. Hayden, L. Taillefer, B. Bogenberger, and H.
von Lohneysen, Phys. Rev. Leff0, 678 (1993.

done in Ref. 23. An explicit accounting of this term is not rel- >'B.G. Demczyk, M.C. Aronson, B.R. Coles, and J.L. Smith, Phi-

evant to the central focus of this work and does not affect its

los. Mag. Lett.67, 85(1993.

134502-12



