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Theory of spin excitations and the microwave response of cylindrical ferromagnetic nanowires
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We develop the theory of exchange/dipole spin wave excitations of ferromagnetic nanowires of cylindrical
cross section, where the magnetization is parallel to the axis of the wire. In addition, we provide the theory of
the microwave response of such structures, for the case where the nanowire is also a conductor. We present
explicit calculations of both the mode structure of nanowires, and also their ferromagnetic resonance spectrum,
with attention to recent experimental studies. We compare differences between the physical picture appropriate
for the cylinder, with the well studied case of the ferromagnetic film.
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I. INTRODUCTION

In recent years, very considerable attention has been
voted to the study of ultrathin ferromagnetic films, and ma
netic multilayers formed from such films. Such systems h
unique physical properties, by virtue of the fact that a la
fraction of the magnetic ions reside in low symmetry sites
the film surfaces, thus providing strong anisotropies
found in bulk magnetic matter constructed from the sa
ions. Also, in multilayers, exchange couplings between ne
est neighbor films provide for diverse magnetic phases, s
reorientation transitions induced by very modest appl
magnetic fields, and other phenomena as well. Finally,
portant applications of magnetic multilayers have been r
ized, and more are envisioned.

Other forms of magnetic nanostructures can be fabrica
and studied as well. For example, Ebels and Wigen1 have
created arrays of very long ferromagnetic nanowires of
permalloy and Co, with diameters in the range of 30 to 5
nm. These are very uniform in cross section, with lengths
the range of 20 microns. They thus are realizations
nanowires one can reasonably view as infinite in length
excellent approximation. These authors have carried out
romagnetic resonance studies of their samples, which co
of nanowire arrays, with individual entities accurately par
lel to each other, but arranged randomly over a plane.

The diameter range explored in these studies is such
when one considers the spin wave modes of an isola
nanowire, it is necessary to include both exchange and d
lar contributions to their excitation energy. The present pa
presents the theory of such dipole/exchange spin w
modes of isolated ferromagnetic nanowires of circular cr
section, for the case where the magnetization is paralle
the symmetry axis of the wire. In addition, we provide
description of the ferromagnetic resonance absorption s
trum, for the case where, as in the samples discussed ab
the materials are metallic in nature. It is thus important
take into account the influence of the finite skin depth, p
ticularly for the larger diameters explored in these particu
studies.

There is a long history of the study of the magnetosta
0163-1829/2001/63~13!/134439~11!/$20.00 63 1344
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spin wave modes of uniformly magnetized ferromagnets
various shapes,2 with explicit attention to cylindrical
samples.3 However, little attention has been devoted to t
inclusion of exchange, since these early studies were m
vated by applications to ferrite samples of rather large
mensions. The structure of the spin wave modes acces
to microwave excitation in such samples are influenced li
by exchange. In the particular case of samples of cylindr
shape, one study of the exchange dipole modes
appeared;4 so far as we know, the text is not available
English, so its content is of limited accessibility.

There are two interesting implications of the mode stru
ture of the ferromagnetic nanowires. First, as we shall
below, at long wavelengths, the dispersion is controlled
the long ranged dipolar fields. While details are differe
very much as in ultrathin films,5,6 the dipolar contribution
can produce downward curvature in the dispersion relatio
long wavelengths. At larger wave vectors, the curvature
always positive, as a consequence of the presence of
change. Thus, one realizes short wavelength spin-w
modes degenerate in frequency with the uniform mode of
cylinder excited in ferromagnetic resonance. If the cylind
surfaces are not perfectly smooth, the two magnon dipo
mechanism operative in ultrathin films6,7 should then also be
‘‘active’’ in the ferromagnetic nanowires. This will lead t
extrinsic contributions to the ferromagnetic resonance li
width similar to those demonstrated to be substantial in
trathin ferromagnetic films.7

Also, when the ferromagnetic resonance mode of
nanowire is excited, the precession of the magnetiza
leads to large magnetic fields outside the sample, in cont
to the case of thin films, where the field is confined to t
film interior. There should then be strong interactions b
tween nanowires, in dense arrays such as those explore
Ebels and Wigen.1 The consequence of these interactions
not explored here, though our formal structure can be u
for this purpose.

In the discussion above, we have discussed on the exp
mental studies of Ebels and Wigen.1 It should be remarked
that Demokritov and Hillebrands8 have carried out extensiv
studies of nanowire arrays. Their nanowires have rectang
©2001 The American Physical Society39-1
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cross section, however. It would be highly desirable to
velop a theory of the dipole/exchange modes of such enti
We shall address such questions in future studies.

The outline of this paper is as follows. In Sec. II, w
present the theory of the exchange/dipole spin wave mo
and in Sec. III we provide numerical studies of the spin wa
dispersion and ferromagnetic resonance response. We
discuss differences between the mode structure and resp
characteristics of the nanowire, and the well known case
the thin film. In regard to the microwave response, for
case where the sample is made of conducting material, t
are very substantial differences between the two cases.
tion IV is devoted to concluding remarks.

II. THEORETICAL DISCUSSION

In this section, we first present the theory of the sp
wave excitations of a long ferromagnetic nanowire with c
cular cross section, and magnetization parallel to its a
Then we turn to a description of its response to a spati
uniform microwave field, appropriate to a ferromagne
resonance experiment. Throughout this section, the mag
zation is assumed parallel to thez axis, which is also paralle
to the symmetry axis of the nanowire.

As mentioned in Sec. I, we develop here the theory of
spin waves of the nanowire, with emphasis on the reg
where both exchange and dipolar couplings between
spins are comparable in magnitude. However, before we
to this general analysis, it will be useful for what follows
have in hand a summary of the theory of dipolar spin wav
in the absence of exchange. This will serve also to introd
notation used throughout the paper.

In the linearized version of spin wave theory, when
mode is excited the magnetization of the sample is given

M ~r ,t !5 ẑMS1 x̂mx~r !exp~2 iVt !1 ŷmy~r !exp~2 iVt !,
~1!

where for any nanowire of uniform cross sectio
ma(x,y,z)5ma(x,y)exp(ikz), wherek is the wave vector of
the mode, in the direction parallel to the axis of symmet
The precession of the magnetization generates a mag
field of dipolar origin, with frequencyV. We call thish¢d.
The dependence of the dipolar field onz is the same as tha
given above. In the absence of exchange, the componen
the dipolar field and those of the transverse magnetiza
are linked by the constitutive relations, suppressing exp
reference to time dependence for brevity,

mx~x,y!5x1~V!hx
d~x,y!1 ix2~V!hy

d~x,y! ~2a!

and

my~x,y!5x1~V!hy
d~x,y!2 ix2~V!hx

d~x,y!, ~2b!

where for a ferromagnet,x1(V)5VHVM /(VH
2 2V2) and

x2(V)5VVH /(VH
2 2V2). If g is the gyromagnetic ratio

andH0 an applied dc magnetic field parallel to the magne
zation, we have introducedVH5gH0 and VM5gMS .
Within the magnetostatic approximation, the dipole fie
may be expressed as the gradient of the magnetic poten
13443
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hd~r !52“FM~r !, ~3!

where againFM(r )5FM(x,y)exp(ikz). Inside the nanowire,
the inductionb5hd14pm, while outsideb5hd. The mag-
netostatic theory of spin waves, with exchange ignored,
lows by exploring the solutions of“•b50 everywhere, with
the solution subject to the condition that the normal~radial,
in this case! component ofb be continuous across the su
face, while tangential~azimuthal,z! components ofhd are
continuous. Inside the cylinder, the magnetic potential sa
fies Walker’s equation2

@114px1~V!#S ]2

]x2 1
]2

]y2DFM~x,y!2k2FM~x,y!50

~4!

while outside, one setsx1(V) to zero. We letm1(V)51
14px1(V) andm2(V)54px2(V) in what follows.

For the problem of interest, we use cylindrical coord
nates, and seek solutions for which the magnetic poten
has the formFM(r,f)5 f m(r)exp(imf). We shall focus our
attention here on the frequency regime wherem1(V) is posi-
tive. Then inside the nanowire, one hasf m

,(r)
5AIm@kr/m1(V)1/2# while outside one has f m

.(r)
5BKm(kr), whereI m andKm are the modified Bessel func
tions.

Application of the boundary conditions described abo
at the surface of the nanowire, wherer5R, leads one to the
implicit dispersion relation from which the frequency of th
magnetostatic modes are found:

m1
1/2H I m8 ~kR/m1

1/2!

I m~kR/m1
1/2!J 2

mm2

kR
5

Km8 ~kR!

Km~kR!
. ~5!

In this expression,I m8 andKm8 are derivatives of the modified
Bessel functions with respect to their argument.

For what follows, our interest will reside in the behavi
of the magnetostatic modes at very long wavelengths, in
regimekR!1. Through use of the appropriate series exp
sions for the modified Bessel functions in Eq.~5!, one may
obtain analytic expressions for the frequencies of the vari
modes. We denote, for a given choice of the wave vectok
and the azimuthal quantum numberm the frequency of the
mode byVm(k). One then has

uV1~k!u52V1~k!5H012pMS2pMs~kR!2 lnS 2

kRD1¯ ,

~6a!

while for m.1

uVm~k!u52vm~k!5H012pMS2
pMS

~m221!
~kR!21¯ .

~6b!

These results require some comment. First of all, when
azimuthal quantum number is positive, as assumed in de
ing Eqs. ~6!, the frequencies are all negative, as one s
from these results. These modes all describe a circulatio
energy in the counterclockwise sense around the cylinde
one looks down the magnetization. If we had chosen
9-2
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azimuthal quantum number negative, the frequencies wo
have all been positive; the frequency is an odd function om
as one can appreciate from the structure of Eq.~5!. Thus the
entire spectrum of magnetostatic modes describes a circ
tion of energy around the magnetization, with the count
clockwise sense.

As the wave vectork→0, all the magnetostatic mode
approach the frequencyH012pMS . This is the ferromag-
netic resonance frequency of the cylindrical nanowire. Wh
this uniform ferromagnetic resonance mode is excited,
transverse magnetization engages in circular preces
about the static magnetization, and generates an inte
spatially uniform demagnetizing field of strength 2pMS as it
does so. As we move off to finite wave vectors, the magn
dipole interactions produce a negative dispersion initially,
the frequency of the spin wave modes drops below tha
the ferromagnetic resonance mode. We will see below
when exchange is added, a positive contribution to the
persion is produced for many of the modes, so the minim
frequency can lie away fromk50.

A complete description of the spin-wave modes of t
cylinder requires us to include the influence of exchange.
now turn to this question.

A. Spin wave dispersion in the presence of exchange

In the macroscopic description of the spin excitations,
magnetic fieldhd inside and outside the cylinder is still de
scribed through introduction of a magnetic potential as in
~3!, and we still require that“•b50 everywhere, just as
before. However, we no longer can utilize Eqs.~2! to relate
the transverse magnetization components to the dipolar fi
We must resort to the Landau-Lifshitz equation of moti
instead, and in this one incorporates the exchange fie
given spin experiences from its neighbors. This may be d
by replacing the spatially uniform dc magnetic field by t
effective fieldẑ(H02D¹2), whereD is the exchange stiff-
ness. This leads us to the following relations:

iVmx5~H02D¹2!my1MS

]FM

]y
, ~7a!

2 iVmy5~H02D¹2!mx2MS

]FM

]x
~7b!

while inside the material, the¹•b50 condition becomes

¹2FM24pS ]mx

]x
1

]my

]y D50. ~7c!

Outside the material, the magnetic potential satis
Laplace’s equation. Of course, when the exchange stiffn
is set to zero, Eqs.~7a! and~7b! produce results equivalent t
those in Eq.~2!.

Some manipulation is required to cast Eqs.~7! into a form
where one may extract the structure of the solution, for
geometry of present interest. We first rewrite the equatio
to express them in terms of the right and left circularly p
13443
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larized variablesm1,25mx6 imy , and similarly for the di-
pole field components. Then Eqs.~7! are replaced by

~V1H02D¹2!m15MSh1
d , ~8a!

~V2H01D¹2!m252MSh2
d , ~8b!

and

¹2FM22pF S ]

]x
2 i

]

]yDm11S ]

]x
1 i

]

]yDm2G50.

~8c!

In what follows, we shall utilize the identities

S ]

]x
2 i

]

]yDh1
d 5S ]

]x
1 i

]

]yDh2
d 52¹'

2 FM , ~9!

where¹'
2 5(]2/]x21]2/]y2). We next introduce the auxil-

iary quantities

f 15S ]

]x
2 i

]

]yDm1 ~10a!

and

f 25S ]

]x
1 i

]

]yDm2 . ~10b!

Then one may rewrite Eq.~8c! to read

f 11 f 25
1

2p
¹2FM , ~11!

while Eqs.~8a! and ~8b! may be rearranged to state

V~ f 11 f 2!1~H02D¹2!~ f 12 f 2!50 ~12a!

and

V~ f 12 f 2!1~H02D¹2!~ f 11 f 2!522MS¹'
2 FM .

~12b!

Upon combining Eq.~12a! with Eq. ~12b!, one may relate
( f 12 f 2) to the potentialFM . When this statement and Eq
~11! are substituted into Eq.~21a!, we obtain a homogeneou
equation that must be satisfied by the magnetic potentia

@~D¹22H0!~D¹22B0!#¹2FM

14pMS~D¹22H0!
]2

]z2 FM50. ~13!

In Eq. ~13!, we introduceB05H014pMS .
One finds that Eq.~13! admits solutions of the form

FM~r,f,z!5Jm~kr!exp~ imf1 ikz!. ~14!

If Eq. ~14! is inserted into Eq.~13!, and one notes that

F1

r

d

dr
r

d

dr
1S k22

m2

r2 D GJm~kr!50, ~15!

then for Eq.~14! to be a solution of Eq.~13!, k must be a
root of

D2~k21k2!31D~H01B0!~k21k2!2

1~H0B02V224pMSDk2!~k21k2!24pMSH0k250.

~16!
9-3
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Since Eq.~16! is a cubic equation ink2, for each choice ofm
and k, there are three linearly independent solutions of
~14!. Thus, we write the magnetic potential inside the ma
rial in the form

FM~r,f,z!5(
i 51

3

AiJm~k ir!exp~ imf1 ikz!. ~17!

Outside the cylinder, the magnetic potential satisfi
Laplace’s equation precisely as in the magnetostatic the
so once again forr.R we have

FM~r,f,z!5BKm~kr!exp~ imf1 ikz!. ~18!

To find the dispersion relation of the spin waves, throu
application of the boundary conditions, we shall obtain fo
homogeneous equations for the four coefficients in the m
netic potential, as displayed in Eqs.~17! and~18!. Two of the
boundary conditions are continuity of the magnetic poten
~this assures continuity of tangential components ofhd) and
continuity of br . We shall have two other boundary cond
tions on the transverse components of magnetization, st
below. To apply the boundary conditions, within the mater
we need explicit expressions for the radial and azimut
components of the transverse magnetization. To obtain th
we expand these components in a Bessel function series
use Eqs.~8a! and ~8b!, noting Eq.~15!. The following op-
erator identities are useful:

]

]x
1 i

]

]y
5eifS ]

]r
2

i

r

]

]f D ~19a!

and

]

]x
2 i

]

]y
5e2 ifS ]

]r
1

i

r

]

]f D . ~19b!

One finds the following expressions for the two compone
of magnetization:

m1~r,f,z!52
MS

4p S (
i 51

3
k iAiJm11~k ir!

@D~k i
21k2!1H01V#

D
3exp@ i ~m11!f1 ikz# ~20a!

and

m2~r,f,z!52
MS

4p S (
i 51

3
k iAiJm21~k ir!

@D~k i
21k2!1H02V#

D
3exp@ i ~m21!f1 ikz# ~20b!

The two boundary conditions which supplement those
magnetostatics refer to the behavior of the magnetizatio
the cylinder surface. If one considers an idealized Heis
berg ferromagnet, and examines the behavior of the s
wave eigenfunction at the sample surface, in the long w
length limit, it is well know that one must require that th
normal derivative of the transverse components of magn
zation vanish there. We wish to consider the possibility t
surface anisotropy is present on the cylinder surface; its p
ence influences the boundary condition. We assume tha
13443
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surface anisotropy contributes a term to the surface energ
our cylinder in the form2KS(mr /MS)2, where the units of
KS is ergs/cm2. WhenKS is positive, the normal to the sur
face is an easy axis, and when it is negative, the norma
the surface is a hard axis. In terms of the standardly defi
exchange stiffness used often in the literature on ferrom
netism!, then the boundary conditions for the transve
magnetization become

S ]mf

]r D
r5R

50, ~21a!

AS ]mr

]r D
r5R

2S 2KS

MS
Dmrur5R50. ~21b!

The exchange stiffnessD in our formulas has units o
Ga-cm2. It is proportional toA, and in factD52A/mBMS ,
wheremB is the Bohr magneton.

This completes our discussion of the formalism for t
description of the exchange/dipole spin wave excitations o
ferromagnetic nanowire of cylindrical cross section. We d
scribe numerical calculations based on this description
Sec. III. We turn next to the theory of the microwave r
sponse of a conducting ferromagnetic nanowire, before
present the numerical results.

B. The microwave response of an isolated ferromagnetic
nanowire

In this section, we present the theory of the microwa
response of the nanowire considered above, with excha
and the presence of surface anisotropy included. The ge
etry is the same as that considered in the previous sec
We have a nanowire, whose saturation magnetization is
rected parallel to its symmetry axis. It is the case as well t
the samples employed in the experiments which motiva
this study are metallic in nature, so we wish to include t
influence of the conductivity of the wire on its response.
essence, the microwave fields to which the wire is expo
create eddy currents which produce a finite skin depth. T
influences the spatial profile of the exciting field within th
sample, though the discussion presented in Sec. III will sh
that the influence of the skin depth is much more modest
the cylindrical geometry, compared to the ultrathin film.

In what follows, it is assumed that the microwave ma
netic field of interest is spatially uniform far from the wire
and is parallel to thex direction. All quantities will be as-
sumed independent ofz in what follows. Such a microwave
field excites the magnetization of the sample, of course
the field is inhomogeneous near the wire, but always in
plane, and independent ofz. By Faraday’s Law, the time
varying magnetic field generates an electric field, paralle
z. It is this electric field which is responsible for the edd
currents in the conducting material that lead to the skin
fect.

We may describe these fields by introducing the vec
potential

A~x,y;t !5 ẑA~x,y!exp~2 iVt !. ~22!
9-4
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Then, upon dropping explicit reference to the time dep
dence of various quantities once again, the electric field
given by

e~x,y!5 i
V

c
ẑA~x,y!. ~23!

The magnetic fieldh is linked to the electric field via

¹3h5
4p

c
j5

4ps

c
ẑe5

2i

d0
2 ẑA, ~24!

wheres is the conductivity of the material. We have intro
duced the classical skin depthd05c/(2psV)1/2. In Eq.
~24!, we ignore the displacement current term in the Ma
well equation. If this were to be included, its influence can
absorbed into a correction to the formula for the skin dep
The correction is of no quantitative importance at microwa
frequencies, for typical metals.

The magnetic inductionb5¹3A, and of courseh5b
24pm. When these statements are combined with Eq.~24!,
and it is noted that all quantities are independent ofz, we find

F¹'
2 1

2i

d0
2GA54pF]mx

]y
2

]my

]x G , ~25!

where the operator¹'
2 is introduced just after Eq.~9!. Addi-

tional relations between the magnetization and the ve
potential follow from the Landau Lifshitz equations. We u
analogs of Eq.~7!, where now the fieldh5¹3A24pm,
rather than2“fM as earlier, and we also add to the rig
hand side the damping term (G/MS

2)(M3dM /dt), with G
the Gilbert damping factor. We then find, with all quantiti
once again expressed in magnetic field units

iVmx5@B̃02D¹'
2 #my1MS

]A

]x
. ~26a!

and

iVmy52@B̃02D¹'
2 #mx1MS

]A

]y
. ~26b!

We have introducedB̃05H014pMS1 igV, where g
5G/gMS . After a bit of manipulation, from Eq.~26!, we
may obtain the statement that

@~B̃02D¹'
2 !22V2#S ]mx

]y
2

]my

]x D2MS~B̃02D¹'
2 !¹'

2 A

50, ~27!

which when combined with Eq.~25! provides us with two
equations that link the vector potential with the quantity

F~x,y!5
]mx

]y
2

]my

]x
. ~28!

For constructing explicit expressions for the components
transverse magnetization, it is useful to note the relation
13443
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iVS ]mx

]x
1

]my

]y D5@B̃02D¹'
2 #F1MS¹'

2 A. ~29!

The combination of Eqs.~25! and~27! admit solutions of the
form

A5aJm~kr!exp~ imf! ~30a!

and

F5bJm~kr!exp~ imf!. ~30b!

When these forms are substituted into the two equations
find thatk satisfies

D2k61F2~H̃012pMS!D2
2iD 2

d0
2 Gk41F B̃0H̃02

4iDB̃0

d0
2

2V2Gk22
2i

d0
2 @B̃0

22V2#50. ~31!

Here we haveH̃05H01 igV. Notice in the limit that the
skin depth is allowed to become infinite and also wh
damping is ignored, Eq.~31! reduces to Eq.~13! if there we
setk equal to zero.

There are three independent solutions of Eq.~31! for k.
Thus, the most general solution for the vector potential in
medium, with the azimuthal variation as given in Eq.~30a!,
is

A~r,f!5(
i 51

3

aiJm~k ir!exp~ imf!. ~32!

For the purpose of applying boundary conditions at the s
face of the cylinder, we require explicit expressions for t
magnetization, and for the components of magnetic fi
generated by the motion of the magnetization. It is m
convenient for these to be expressed in cylindrical com
nents. After some algebra which employs standard Be
function identities, we find

mr~r,f!5 i
MS

2
(
i 51

3

aik iH Jm11~k ir!

B̃01Dk i
21V

1
Jm21~k ir!

B̃01Dk i
22V

J exp~ imf!, ~33a!

mf~r,f!5
MS

2
(
i 51

3

aik iH Jm11~k ir!

B̃01Dk i
21V

2
Jm21~k ir!

B̃01Dk i
22V

J exp~ imf!, ~33b!

br~r,f!5
im

r (
i 51

3

aiJm~k ir!exp~ imf!, ~34a!
9-5
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bf~r,f!52
1

2 (
i 51

3

aik i$Jm11~k ir!

2Jm21~k ir!%exp~ imf!, ~35a!

and the electric field is given in Eq.~23!. We now need to
match the interior solutions just described to the fields o
side the cylindrical nanowire. It is a simple matter to gen
ate expressions for the magnetic and electric field in
vacuum outside, following a simplified version of th
method just given. One may generate an expression for
vector potential in spherical coordinates through the w
equation in vacuum, then use this to find the component
the various fields. We do this assuming the limitVR/c!1
applies for the nanostructures of interest; in the near vicin
of the nanowire, the incident microwave field is viewed
spatially uniform, with magnitudeh0 , and also parallel to the
x axis. We have outside the cylinder the incident fie
supplemented by that generated by the motion of the ma
tization in the nanowire; the latter will vary with the az
muthal angle as exp(6if) in the limit the incident field is
approximated as spatially uniform outside the wire. Then
the fields outside we find

hr
.~r,f!5h0 cos~f!1 i

b1

r2 exp~ if!1 i
b2

r2 exp~2 if!,

~36a!

hf
.~r,f!5h0 sin~f!1

b1

r2 exp~ if!1
b2

r2 exp~2 if!

~36b!

and for the magnitude of the electric field, we have

e~r,f!5 i
V

c H h0r sin~f!1
b1

r
exp~ if!1

b2

r
exp~2 if!J .

~36c!

Our next task is to apply the boundary conditions. The so
tions inside the medium are formed by superimposing
m511 andm521 forms given above. Thus, we have s
unknown amplitudes associated with the solution in the in
rior of the wire, and as one sees from Eq.~36! there are two
more associated with the fields outside, for a total of 8. T
boundary conditions on the fields are of course that the m
nitude of the~tangential! electric field be conserved acros
the boundary, along with continuity ofbr andhf . The con-
servation ofbr and tangential electric field yield identica
constraints, so from the field conservation conditions,
have two independent statements. We also apply the bo
ary conditions on the magnetization given in Eq.~21!. When
these four statements are broken down, with compon
proportional to and components proportional to exp(1if)
separated, we obtain eight inhomogeneous equations
which the unknown amplitudes may be expressed in term
h0 . We will not quote the explicit form of these statemen
here, since they may be derived readily from the informat
given above. As remarked earlier, in Sec. III, we presen
series of numerical studies based on the formalism
given.
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III. NUMERICAL STUDIES OF THE EXCHANGE ÕDIPOLE
SPIN WAVE MODES AND THE MICROWAVE

RESPONSE OF FERROMAGNETIC NANOWIRES

A. The nature of the spin wave modes

First, we begin with some general remarks. An interest
question is the initial behavior of the spin wave dispers
curves in the limit of small wave vectork. If initially, there is
downward curvature, then the minimum frequency of a giv
branch will be at a finite, nonzero wave vector, since we c
expect exchange to dominate at large values of the w
vector. Conversely, if the initial curvature is positive, the
we may expect the minimum to reside at zero wave vect

To examine this behavior, as one sees from Eqs.~6!, we
need to consider the casem51 separately from the cas
wherem.1. As we have seen from Sec. II B, the zero wa
vector modes withm51 are the modes excited by a spatia
uniform microwave field.

We may expect exchange to add a term to the disper
relation proportional toDk2, of course. If we then examine
Eq. ~6a!, we see that by virtue of the logarithmic term, in th
long wavelength limit, the negative dispersion from the
polar contribution will always dominate that from exchang
However, since the prefactor of the logarithm is proportion
to (kR)2, for nanowires of small radii the dipolar term wi
assert itself only at very small values of the wave vector. O
sees easily that the dipolar term will dominate the lo
wavelength form of the dispersion relation only whenk
,(2/R)exp(2D/pMSR2). Thus, while form51, we expect
the minimum frequency of the magnetostatic mode to alw
lie away from zero wave vector, but in numerical calcu
tions for nanowires of small radii, the initial negative dispe
sion will be a subtle feature. At larger values of the radi
we will see the negative dispersion clearly.

For the modes withm.2, from Eq.~6b!, we see that the
dipolar contributions to the dispersion provide negative d
persion in the form of a term quadratic in the wave vect
with prefactor scaling also asR2. Since an exchange contr
bution Dk2 is independent of radius, we expect to see po
tive dispersion in these modes for nanowires of small ra
and then for nanowires of larger radii, we will realize neg
tive dispersion initially, with the minimum frequency of
given branch shifted away from zero wave vector.

One may cast the discussion of the spin-wave dispers
relation in terms of two-dimensionless parametersh
5H0/4pMS and p5 l /R, and, wherel 5(D/4pMS)1/2 is an
exchange length. For Ni, the exchange length is roughly
A, while for Fe it is 35 A. In what follows, we use the
reduced frequencyv5V/4pMS , and the frequencies will be
plotted against the logarithm ofkR.

In Fig. 1~a!, for m51 and forh50.19 ~this corresponds
to an applied dc field of 4 kG for Fe!, we show the spin wave
dispersion for the case wherep52. Within the range of fre-
quencies displayed, there is one mode only, which in
limit of zero wave vector approaches the FMR frequen
which in our dimensionless units has the frequencyh11/2.
The negative dispersion at small wave vectors discus
above does not show, on the scale of this plot. Clearly, by
time the parameterkR approaches unity, the excitation en
9-6
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THEORY OF SPIN EXCITATIONS AND THE . . . PHYSICAL REVIEW B 63 134439
ergy of the spin wave is dominated by exchange for nan
ires of such small radius. In Fig. 1~b!, for the same applied
magnetic field, and again form51, we show dispersion
curves for nanowires of much larger radius, wherep50.2.
We now see several standing wave exchange branc
whose frequency at zero wave vector is above that of
FMR mode. Also, at these larger radii, for the mode th
approaches the FMR frequency at long wavelengths,
negative dispersion at small wave vectors is now eviden
the plot.

We find very interesting behavior at much larger radii,
illustrated in Fig. 2. These calculations again are form51
and h50.19, but now we havep50.05. In the case of Ni,
this would describe a nanowire whose radius is a bit un
1200 A. We now have a larger number of more clos
spaced exchange branches, as expected, but now notice
there are two exchange modes which lie below the ferrom
netic resonance frequency, in the limit of zero wave vec
The magnetostatic mode that approaches the FMR frequ
ask→0 shows large negative dispersion at small wave v
tors, until exchange takes over, and in fact we see that
magnetostatic mode hybridizes with the low frequency
change modes, as the wave vector increases.

This set of dispersion curves, and the comparison betw
Fig. 2 and Fig. 1~b! requires some comment. Let us consid
the basic solutions we encounter in the limit the wave vec
k is zero. If we think of infinitely extended ferromagnet
matter for the moment, then we shall have spin waves
propagate within thexy plane, whose frequency is given b
the well known expression V(k)5@(H01Dk2)(H0
14pMS1Dk2)#1/2, where we denote them in plane wav
vector ask. When such a wave is confined to within a cy

FIG. 1. For the case wherem51, and for h5H0/4pMS

50.19, we show the spin-wave frequencies plotted as a functio
ln(kR) for ~a! p52 and ~b! p50.2, wherep is the ratio of the
exchange length defined in the text and the radius of the nanow
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inder of finite radiusR, k will obtain quantized values in the
range ofk5kn5np/R, where the lowest standing mode h
n51. There is in addition a uniform mode of the cylinde
wherein the magnetization engages in perfectly circularly
larized precession at the FMR frequencyH012pMS ,
which, it will be noted, lies higher in frequency thanV(k
50). In the cylinder, in the presence of the boundaries,
boundary conditions mix the uniform FMR mode with th
standing wave exchange modes, so to speak. Now if the
dius of the nanowire is so small thatV(k5p/R) lies above
the FMR frequency, we have a situation where one of
modes, which we have referred to above as the magnetos
mode, approaches the FMR frequency ask→0, while all the
standing wave exchange modes lie above this freque
This is the case for the example given in Fig. 1~b!. Now as
the radius of the cylinder is increased, one or more of
modes of frequencyV(kn) will drop below the FMR fre-
quency. In the limitk→0, we thus have standing wave e
change modes which lie below the FMR frequency. This
the case for the example in Fig. 2. The magnetostatic mo
which approaches the FMR frequency in this limit, exhib
negative dispersion at small wave vectors as expected f
Eq. ~6a!, and the boundary conditions lead to the hybridiz
tion with the exchange modes evident in Fig. 2.

The situation just described is very different than realiz
in the much studied case of the thin film magnetized para
to its surfaces. We still have the in plane standing wa
exchange modes, with the frequencyV~k! just as above, but
now the uniform mode that mixes with these is elliptica
polarized, with frequency@H0(H014pMS)#1/2[V(0). The
standing wave spin waves always lie above the ferrom
netic resonance frequency.

These comments have implications for ferromagne
resonance studies for nanowires, where the response o
sample is probed at fixed frequency, and the external
magnetic field is swept. In the thin film, the standing wa
exchange resonances are always found at resonance
below the main FMR resonance field~provided, of course,
there are no perturbations at the boundary so large a

of

re.

FIG. 2. For m51, h50.19, andp50.05, we show the spin-
wave frequencies of the nanowire plotted as a function of ln(kR).
9-7
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produce spin waves tightly bound to the surface!. It will be
the case as well that in nanowires of small radius, the sta
ing wave resonances will lie lower in field than the ma
FMR line. However as the radius of the nanowire is
creased, one reaches a point where one may find stan
wave resonances of the structure at fields above the F
field; such lines will be produced by the exchange mo
that have dropped below the FMR frequency.

In Fig. 3 and in Fig. 4, we show dispersion curves f
modes withm52 andm53, respectively. One sees that f
the samples of small diameter, the dispersion is positive
long wavelengths, whereas one sees negative dispersio
larger radii, as expected from the discussion above.

B. The microwave response of conducting ferromagnetic
nanowires

We next turn to studies of the microwave response
ferromagnetic nanowires, utilizing the formalism given
Sec. II B. All computations below use parameters appropr
to Ni at room temperature, with the experiments of Ref. 1
mind. We takeMS5480 G, theg factor to be 2.15, the spin
wave exchange stiffness asD5231029 G-cm2 and for the
purposes of including the influence of the skin depth on
response, the electrical resistivity is 7 mi Ohm cm. This giv
a classical skin depth in the range of a micron at 10 G
which is very much larger than the radii of the nanowir
considered here.

For the purposes of calculating the FMR spectra, we c
sider a quantityG defined as follows. As we have seen
Sec. II B, the precessing magnetization of the wire create
strong magnetic field outside the wire, which falls off i

FIG. 3. Form52, h50.19 and~a! p50.2 and~b! p50.05, we
show the spin wave frequencies plotted as a function of ln(kR).
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versely with the square of the distance from the axis of sy
metry, as we see from Eqs.~36a! and~36b!. The coupling of
the nanowire to a detector will scale as the square of
strength of this field. We defineG to be G5^(hr)2

1(hf)2&p5R1 /h0
2, where the angular brackets denote an a

erage over the circumference of the wire.
Before we present our results, we comment on the role

the spin depth in the present analysis. Our point is tha
differs qualitatively for nanowires from the case of the th
film. First of all, in a conducting magnetic medium, the sk
depth is influenced not only by the conductivity of the m
terial, but by its magnetization as well. To goo
approximation,9 in place of the classical skin depthd0
5c/(2pvs)1/2, penetration of microwave fields is con
trolled by dM5c/(2pvsmV)1/2, wheremV5(m1

22m2
2)/m1

is the Voigt susceptibility. Herem15114px1 , and m2
54px2 , with x1 andx2 the dynamic susceptibilities define
in Eq. ~2!. For the picture used here in Sec. II A, one h
mV5(B0

22V2)/(H0B02V2).
Now if we wish to consider the ferromagnetic resonan

response of thin films, note that their resonance frequenc
(H0B0)1/2. At precisely this frequency, the Voigt susceptib
ity diverges, if we examine the simple expression above
consequence is the skin depth collapses to zero. Of cou
dissipative effects not included in the simple expression
given limit the divergence, but it is the case that the s
depth collapses to a small value, as one scans through r
nance. In a high quality ferromagnetic metal such as Fe,
effective skin depth on resonance can be as small as 50
in the 10 GHz frequency range. The very strong frequen
dependence of the skin depth as one scans through reson
means it is essential to include its role, in the discussion
microwave response of thin, conducting ferromagnetic film

FIG. 4. Form53, h50.19, and~a! p50.2 and~b! p50.05, we
show the spin wave frequencies plotted as a function of ln(kR).
9-8
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THEORY OF SPIN EXCITATIONS AND THE . . . PHYSICAL REVIEW B 63 134439
In Ref. 9 and earlier references cited therein, one sees st
influences of the frequency dependence of the skin de
including the ‘‘window’’nearB0 where the skin depth be
comes very large.

In the ferromagnetic nanowires, we are concerned w
much higher frequencies, nearH012pMS , where there is
no particular resonance or strong frequency dependenc
the Voigt susceptibility. The penetration depth of the fie
differs only nominally for that expected in the absence of
magnetic response. Thus, for nanowires with radius sm
compared to the classical skin depth, their finite, meta
conductivity has at most a modest influence on their
sponse.

Further comments along these lines are of interest.
return to the case of the thin metallic film, if the film ha
thickness small compared to the renormalized skin depth
resonance, a situation encountered commonly in the stud
the FMR of ultrathin films, one might suppose that within t
film, the microwave exciting field is uniform to excellen
approximation. This is not the case, if the film is illuminat
by a microwave field incident from one side. In such a ca
it is an elementary matter to see that within the film, if
thicknessd is thin compared to the skin depth, and also t
skin depth is thin compared to a vacuum wavelength,
spatial variationh(z) of the microwave magnetic field within
the films is well approximated by, withk05V/c,

h~z!52h0

~12z/d!1k0dM
2 /2d

11k0dM
2 /d

. ~37!

Thus, even if the film is very thin compared to the sk
depth, the field drops linearly from a value very close to 2h0

at the surface exposed the microwaves, toh0k0dM
2 /d at the

back surface; the field is highly non uniform within the film
until one reaches thicknesses wherek0dM

2 /d is of order unity.
The physical origin of the highly nonuniform magnet

field distribution within a film illuminated from one side
even though its thickness may be small compared to the
depth, is the poor impedance mismatch between the ele
magnetic disturbance within the film, and the transmit
wave on the output surface. The magnetic field thus dr
from a value roughly twice that of the incident field on th
illuminated surface, to a very small value on the backside
the film. Quite in contrast to this, our conducting nanowire
embedded in a spatially uniform magnetic field, so the p
file within the wire is not influenced by such consideration
If the wire radius is small compared to the classical s
depth, the exciting field the wire will be rather uniform
character.

We now present a summary of our studies of the mic
wave response. The principal conclusions can be sum
rized quite briefly.

First of all, we have seen that the nanowire admits a r
spectrum of exchange dipole modes in the vicinity ofk50
for the modes with azimuthal quantum numberm51. We
have modes both above and below that of the ferromagn
resonance frequency, for nanowire diameters in the rang
a few hundred Angstroms or more. However, if we assu
that the surface anisotropyKS vanishes, then the only mod
13443
ng
h,

h

in
s
e
ll

c
-

o

n
of

,

e
e

in
ro-
d
s

f

-
.

-
a-

h

tic
of
e

we see in the calculated spectrum is the main ferromagn
resonance mode itself. We have searched even for w
structures from exchange/dipole modes removed from
main FMR mode, to find no evidence of absorption featur
It is very much as if there is a hidden theorem we have n
been able to prove analytically which forbids all modes oth
than the FMR mode to be active in microwave excitatio
whenKS50. It is well known that in the elementary Heisen
berg ferromagnet, the standing spin wave resonances are
lent’’ in the absence of surface spin pinning produced
surface anisotropy, in the limit the microwave exciting fie
may be viewed as uniform within the film. We were su
prised to see the complete absence of all modes except
main FMR mode in our numerical studies of the ide
nanowire, with surface anisotropy absent. In our minds,
existence of a selection rule is not obvious.

We illustrate these remarks in Fig. 5, which shows a po

FIG. 5. We illustrate the role of surface anisotropy in activatin
the standing wave exchange/dipole satellite modes in the ferrom
netic resonance spectrum of the nanowire. The calculations are
a Ni nanowire with radius 1000 Å, and focus on the low field win
of the absorption line. We calculate the derivative with respect to
field of the ratioG defined in the text for~a! the case where the
surface anisotropy is zero, and~b! whereKS520.3 ergs/cm2. The
two insets show the inverse of the determinant of the matrix t
must be inverted to solve for the magnetization amplitude. T
peaks are the positions of the spin wave normal modes. We h
used the rather small valueG50.53108 sec21 for the Gilbert
damping function, to enhance the satellite features.
9-9
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RODRIGO ARIAS AND D. L. MILLS PHYSICAL REVIEW B 63 134439
tion of the low field wing of the main FMR line of a N
nanowire 1000 Å in diameter. We have assumed the
quency is 34.4 GHz, as utilized in Ref. 1. Thus, the re
nance field is a bit above 8 kG, for our parameters. In F
5~a!, we show a region of the low frequency wing, calculat
for the case where surface anisotropy is absent. One
perceive no structure whatsoever from exchange/dip
modes. Yet modes exist in this field regime, and illustrated
the inset, where we plot the inverse of the determinant
must be evaluated to find the various field amplitudes in S
II B. This determinant has a peak at the field where an
change dipole mode occurs.

If surface anisotropy is introduced, then the exchange
pole modes ‘‘light up’’ as illustrated in Fig. 5~b!. The results
displayed here are for the choiceKS520.3 ergs-cm2, which
is a substantial value of the surface anisotropy. Spin pinn
to this degree may be realized at the surface if, for exam
an oxide layer is present. The principal satellite at the hig
field has an intensity of about 1% of that of the main FM
line.

In situations where the nanowire radius is such that
exchange/dipole mode lies quite close in frequency to
FMR mode, the mixing of the two by the boundary cond
tions can endow the satellite with appreciable integra
strength. This is illustrated in spectra taken by Ebels a
Wigen.1 These authors explore the FMR spectra of
nanowires with radius 350, 800, 2700, and 5000 Å. With
exception of the 800 Å sample, a single absorption line
observed. However, for the 800 Å sample, there is a c
doublet. In Fig. 6, we show calculations of the spectrum
three of the sample radii, and indeed we find a doublet v
similar in character to that observed. The relative oscilla
strength of the two modes is given nicely, when theory
compared to experiment. Not displayed is the calculation
the 5000 Å case, which also shows a single feature as in
data. The calculations in Fig. 6 useKS520.85 ergs/cm2,
corresponding to a hard axis normal to the nanowire surfa
This is again a large value of the surface anisotropy, app
priate to a case where oxide is present on the surface.

IV. CONCLUDING REMARKS

We have developed the theory of the exchange/dip
spin wave modes of ferromagnetic nanowires of circu
cross section, along with that of their response to spati
uniform microwave exciting fields. We also have presen
studies of both the excitations in and the microwave respo
of samples quite similar to those explored in Ref. 1, a
compared the differences between the wire and the w
know case of the thin film. We conclude with some ad
tional remarks.

The origin of the linewidth in such samples is of intere
Of course, there is the intrinsic linewidth, described in o
phenomenology by the damping term in the Landau Lifsh
equation of motion. In addition, there will be extrins
mechanisms operative as well. For the case of ultrathin
romagnetic films, in recent work we have shown6 that the
two magnon mechanism considered many years ago as
source of extrinsic linewidth in the garnets9 can operate in
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the ultrathin films as well, by virtue of the fact that in tw
dimensions, the long ranged dipolar interaction in combi
tion with exchange produces an off center minimum in t
spin wave dispersion relation, for a range of propagat
directions. This leads to spin wave modes of finite, nonz
wave vector degenerate with the zero wave vector FM
mode. Surface defects~or defects of any other sort! may then
scatter energy from the FMR mode to the finite wave vec
modes, producing a dephasing contribution to the linewid
Our predictions seem confirmed by recent experiments.7 One
can inquire if the two magnon mechanism is operative
nanowires as well.

In principle, this mechanism should be operative. Fi
suppose we have a nanowire with undulating surfaces
such character that the wire is still form invariant under
tations about thez axis. Then from symmetry consideration
there will be a nonzero matrix element for scattering ene
from the zero wave vector FMR mode ofm51 character, to
m51 modes of finite wave vector on the FMR branch whi
are degenerate with the FMR mode. We see when Eq.~6a! is

FIG. 6. For three values of the radius of Ni nanowires,~a! 350 Å
~b! 800 Å, and~c! 2700 Å, we show calculated ferromagnetic res
nance spectra. The calculations employG52.53108 sec21 which is
a realistic value for Ni, and we have takenKS520.85 ergs/cm2.
9-10
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THEORY OF SPIN EXCITATIONS AND THE . . . PHYSICAL REVIEW B 63 134439
supplemented by an exchange term that scales asDk2, there
is always a minimum in the dispersion relation ofm51 spin
waves away from zero wave vector, and thus there alw
will be finite wave vector modes degenerate with the FM
mode. However, whenR,RC5(D/pMS)1/2, from the struc-
ture of the dispersion curve the minimum will lie quite ne
zero wave vector, and the number of degenerate modes
be rather small. WhenR.RC , the minimum will be in the
vicinity of k51/R, and we expect the mechanism to be mo
efficient. For Ni,RC is roughly 100 Å, and for Fe perhaps
factor of 2 shorter.

If the surface has, say, roughness of random characte
that azimuthal symmetry is no longer present, then the
trix element for scattering energy from them51 FMR mode
to modes withm.1 is nonzero. The criterionR.RC re-
mains relevant, in that it is for these larger radii that t
dispersion relation for them.1 magnetostatic modes~those
which approach the FMR frequency as the wave vector v
ishes! has an off center minimum. Also, this is a crude c
terion for the appearance of zero wave vector modes be
the FMR frequency of the cylinder, which is another sou
of finite wave vector modes degenerate with the FMR mo

The above discussion suggests that the two mag
mechanism should be relatively inefficient in very small
dius nanowires withR,RC , but for larger nanowires we
suggest it should be quite efficient. A detailed theory, beyo
the scope of the present paper, will be required to exp
this question further.

Another aspect of the geometry considered here is
large microwave magnetic field created outside the wire,
the precession of the magnetization. We see from Eq.~18!
that for a spin wave with finite wavek, we have a field that
falls off as exp(2kr)/r1/2 far from the wire. For long wave-
length modes, this field has a very long range. In the limit
zero wave vector, we see from Eqs.~36! that the field created
by the precession of the magnetization falls off invers
with the square of the distance from the center of the w
The existence of this large field outside the nanowire i
substantial difference that the situation with thin films. If, f
.

in
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the thin film, we consider the uniform precession mode
cited in an FMR experiment, the macroscopic magnetic fi
created by precession of the magnetization is comple
confined to within the film. There are ‘‘magnetic poles’’ o
the film surfaces associated with the precessing magne
tion, but the field generated by these is confined to within
film itself, as in a condensor plate problem. If we conside
spin wave whose wave vector parallel to the film surface
k, there is a macroscopic field outside with the spatial va
tion exp(2kz) if the film surfaces are parallel to thexy plane,
but the prefactor which controls the strength of this fie
scales as 4pMS(kd), where d is the film thickness. This
field is thus very weak in the thin film limit, or whenever th
wavelength of the spin wave is large compared to the fi
thickness.

The existence of these large fields outside the nanow
have interesting implication for samples such as those
plored by the authors of Ref. 1. We have long ranged in
actions between the nanowires, so one is led to explore
collective excitations of the nanowire array. In the particu
case of the samples used by Ebels and Wigen, the nanow
are accurately parallel to each other, but randomly arra
over a plane. We thus have a random two-dimensional~2D!
system with long ranged interactions. Indeed, if one were
excite spin waves of variable wavelengthk, as in a light
scattering experiment, then the ratio of the average interw
separation to the range of interaction can be varied. Ther
an analogy between this system, and the vortex glass sta
2D superconductors, where here the average vortex sep
tion can be varied, but the range of the interaction if fixed
the London penetration depth. In the case of nanowire arr
the nature of their collective excitations will be a most inte
esting topic, for ordered and disordered arrays.
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