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Theory of spin excitations and the microwave response of cylindrical ferromagnetic nanowires
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We develop the theory of exchange/dipole spin wave excitations of ferromagnetic nanowires of cylindrical
cross section, where the magnetization is parallel to the axis of the wire. In addition, we provide the theory of
the microwave response of such structures, for the case where the nanowire is also a conductor. We present
explicit calculations of both the mode structure of nanowires, and also their ferromagnetic resonance spectrum,
with attention to recent experimental studies. We compare differences between the physical picture appropriate
for the cylinder, with the well studied case of the ferromagnetic film.
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[. INTRODUCTION spin wave modes of uniformly magnetized ferromagnets of
various shape%, with explicit attention to cylindrical

In recent years, very considerable attention has been deamples’ However, little attention has been devoted to the
voted to the study of ultrathin ferromagnetic films, and mag-inclusion of exchange, since these early studies were moti-
netic multilayers formed from such films. Such systems havevated by applications to ferrite samples of rather large di-
unique physical properties, by virtue of the fact that a largemensions. The structure of the spin wave modes accessible
fraction of the magnetic ions reside in low symmetry sites ato microwave excitation in such samples are influenced little
the film surfaces, thus providing strong anisotropies noby exchange. In the particular case of samples of cylindrical
found in bulk magnetic matter constructed from the sameshape, one study of the exchange dipole modes has
ions. Also, in multilayers, exchange couplings between nearappeared; so far as we know, the text is not available in
est neighbor films provide for diverse magnetic phases, spii&nglish, so its content is of limited accessibility.
reorientation transitions induced by very modest applied There are two interesting implications of the mode struc-
magnetic fields, and other phenomena as well. Finally, imture of the ferromagnetic nanowires. First, as we shall see
portant applications of magnetic multilayers have been realbelow, at long wavelengths, the dispersion is controlled by
ized, and more are envisioned. the long ranged dipolar fields. While details are different,

Other forms of magnetic nanostructures can be fabricatedery much as in ultrathin films® the dipolar contribution
and studied as well. For example, Ebels and Wigeave  can produce downward curvature in the dispersion relation at
created arrays of very long ferromagnetic nanowires of Nilong wavelengths. At larger wave vectors, the curvature is
permalloy and Co, with diameters in the range of 30 to 50Calways positive, as a consequence of the presence of ex-
nm. These are very uniform in cross section, with lengths irchange. Thus, one realizes short wavelength spin-wave
the range of 20 microns. They thus are realizations oimodes degenerate in frequency with the uniform mode of the
nanowires one can reasonably view as infinite in length, taylinder excited in ferromagnetic resonance. If the cylinder
excellent approximation. These authors have carried out feisurfaces are not perfectly smooth, the two magnon dipolar
romagnetic resonance studies of their samples, which consistechanism operative in ultrathin filh§should then also be
of nanowire arrays, with individual entities accurately paral-“active” in the ferromagnetic nanowires. This will lead to
lel to each other, but arranged randomly over a plane. extrinsic contributions to the ferromagnetic resonance line-

The diameter range explored in these studies is such thatidth similar to those demonstrated to be substantial in ul-
when one considers the spin wave modes of an isolatettathin ferromagnetic films.
nanowire, it is necessary to include both exchange and dipo- Also, when the ferromagnetic resonance mode of the
lar contributions to their excitation energy. The present papenanowire is excited, the precession of the magnetization
presents the theory of such dipole/exchange spin wavkeads to large magnetic fields outside the sample, in contrast
modes of isolated ferromagnetic nanowires of circular crosso the case of thin films, where the field is confined to the
section, for the case where the magnetization is parallel téilm interior. There should then be strong interactions be-
the symmetry axis of the wire. In addition, we provide atween nanowires, in dense arrays such as those explored by
description of the ferromagnetic resonance absorption spe&bels and Wiget.The consequence of these interactions is
trum, for the case where, as in the samples discussed abovegt explored here, though our formal structure can be used
the materials are metallic in nature. It is thus important tofor this purpose.
take into account the influence of the finite skin depth, par- In the discussion above, we have discussed on the experi-
ticularly for the larger diameters explored in these particulamental studies of Ebels and Wigérit should be remarked
studies. that Demokritov and Hillebran8shave carried out extensive

There is a long history of the study of the magnetostaticstudies of nanowire arrays. Their nanowires have rectangular
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cross section, however. It would be highly desirable to de- hd(r)= —Vd (), ®)
velop a theory of the dipole/exchange modes of such entities. ) _ .
We shall address such questions in future studies. where againby, (r) = ®y(x,y)exp(kz). Inside the nanowire,

. . _ d . . _ d
The outline of this paper is as follows. In Sec. II, we the inductionb=h"+4zm, while outsideb=h". The mag-

present the theory of the exchange/dipole spin wave mode8&tostatic theory of spin waves, with exchange ignored, fol-
and in Sec. Il we provide numerical studies of the spin wavdOWs by exploring the solutions & - b=0 everywhere, with
dispersion and ferromagnetic resonance response. We allftf solution subject to the condition that the norrfratlial,
discuss differences between the mode structure and respori8ethis cas¢ component ofb be continuous across Ehe sur-
characteristics of the nanowire, and the well known case ofece, While tangentialazimuthal,z) components oh® are
the thin film. In regard to the microwave response, for thecontinuous. Inside the cylinder, the magnetic potential satis-
case where the sample is made of conducting material, thef&&s Walker's equatich

are very substantial differences between the two cases. Sec- 2 P
tion IV is devoted to concluding remarks. [1+47x(Q)]

Dy (X,y) —K2Dy(x,y)=0

—+
x> ay?
Il. THEORETICAL DISCUSSION )

. . ) . while outside, one setg;({}) to zero. We letu,(Q)=1
In this section, we first present the theory of the spin- %1(4) #a(€2)

e . . - o +4 Q) and u,(Q2)=4 Q) in what follows.
wave excitations of a long ferromagnetic nanowire with cir- mx1(() and up() =4 mxo(0)

I i d tizati lel to it . For the problem of interest, we use cylindrical coordi-
cular cross section, and magnetization parallel 10 1IS axiS,5ia5  and seek solutions for which the magnetic potential

Then we turn to a description of its response to a spatiall)f1as the formd ,(p, &) = f( p) expme). We shall focus our

uniform microque field, appropriatg to a ferromagneticattemion here on the frequency regime wheréQ) is posi-
resonance experiment. Throughout this section, the magnertli—Ve Then inside the nanowire, one has=(p)
. 1 m

zation is assumed parallel to th@xis, which is also parallel — Al [kp/ i (Q)Y2] while outside one has - (p)

to the symmetry axis of the nanowire. o
As mentioned in Sec. |, we develop here the theory of the_ BKm(kp), wherel, andK, are the modified Bessel func-

spin waves of the nanowire, with emphasis on the regimd©ns- y .
where both exchange and dipolar couplings between the Application of the bound'ary conditions described above
spins are comparable in magnitude. However, before we turfit the surface of the nanowire, where R, leads one to the

to this general analysis, it will be useful for what follows to MPliCit dispersion relation from which the frequency of the

have in hand a summary of the theory of dipolar spin Wavesmagnetostatic modes are found:

in the absence of exchange. This will serve also to introduce ,
[ Moy Km(kR)

kR Ky(kR)

: | (KR 1)
notation used throughout the paper. 12 m L
In the linearized version of spin wave theory, when a I (KR 1)
mode is excited the magnetization of the sample is given an this expression,,

®

andK;, are derivatives of the modified
M (r,t)=2M g+ Xmy(r)exp —iQt) +ym,(r)exp —iQt), Bessel functions with respect to their argument. .
(1) For what follows, our interest will reside in the behavior

i i . of the magnetostatic modes at very long wavelengths, in the
where for any nanowire of uniform cross section, jagimekR<1. Through use of the appropriate series expan-
M, (X,y,2) =m,(x,y)exp(kz), wherek is the wave vector of  gjons for the modified Bessel functions in &), one may
the mode, in the direction parallel to the axis of symmetry.qptain analytic expressions for the frequencies of the various
The precession of the magnetization generates a magnetigodes. We denote, for a given choice of the wave vektor

field of dipolar origin, with frequency). We call thish®.  and the azimuthal quantum numberthe frequency of the
The dependence of the dipolar field ois the same as that mode by(,,(k). One then has

given above. In the absence of exchange, the components of

the dipolar field and those of the transverse magnetizatior ) 2
are linked by the constitutive relations, suppressing explici Qy(K)[==Qy(K)=Ho+27Ms— 7M(kR)*In kr/ T
reference to time dependence for brevity, (6a)
my(X,Y) = x1( DDy +ixa(Q)h(x,y) (28  while form=>1
and s 5
|Qm(k)|=—wm(k)=Ho+27TMS—(mz—_l)(kR) +eee

m,(%,Y) = x2(Q)hy(x.y) —ixz(D)hi(xy),  (2b) (6b)

where for a ferromagnety;(Q)=Q,Qy/(Q%—Q% and  These results require some comment. First of all, when the
x2(Q)=00,/(Q3—Q3?). If yis the gyromagnetic ratio azimuthal quantum number is positive, as assumed in deriv-
andHg, an applied dc magnetic field parallel to the magneti-ing Egs. (6), the frequencies are all negative, as one sees
zation, we have introduced)y=yHy and Qy=yMs. from these results. These modes all describe a circulation of
Within the magnetostatic approximation, the dipole fieldenergy in the counterclockwise sense around the cylinder, as
may be expressed as the gradient of the magnetic potentiabne looks down the magnetization. If we had chosen the
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azimuthal quantum number negative, the frequencies woulthrized variablesn, —=m,*im,, and similarly for the di-
have all been positive; the frequency is an odd functiomof pole field components. Then EdS3) are replaced by
as one can appreciate from the structure of @Y. Thus the
entire spectrum of magnetostatic modes describes a circula- (Q+Ho—DVHm, = Mshi ' (8a)
tion of_energy around the magnetization, with the counter- (Q—Hy+DV?)m_=— Msh‘i , 8b)
clockwise sense.

As the wave vectok—O0, all the magnetostatic modes and
approach the frequendyy+27Mg. This is the ferromag-
netic resonance frequency of the cylindrical nanowire. When  v2d,— 27
this uniform ferromagnetic resonance mode is excited, the
transverse magnetization engages in circular precession
about the static magnetization, and generates an interndl} what follows, we shall utilize the identities

[FgimelE -
&—IW m, + 1“7_X+IW m_|=0.
(80

spatially uniform demagnetizing field of strengthr®1 5 as it

- . J d g 4
does so. As we move off to finite wave vectors, the magnetic ——i—|hl=|—=+i—|hi=-V20,,, (9)
dipole interactions produce a negative dispersion initially, so X ady ox. ady

the frequency of the spin wave modes drops below that ofyhere V2 = (5%/9x?+ 9%/ dy?). We next introduce the auxil-
the ferromagnetic resonance mode. We will see below thagry quantities

when exchange is added, a positive contribution to the dis-
persion is produced for many of the modes, so the minimum _ (i—i i) m (103
frequency can lie away frork=0. lox oyt
A complete description of the spin-wave modes of the
cylinder requires us to include the influence of exchange. We

now turn to this question. Jd . d
_=l—=4i—=—|m_. (10b)
ax ay
A. Spin wave dispersion in the presence of exchange Then one may rewrite Eq8c) to read

In the macroscopic description of the spin excitations, the 1
magnetic fieldh? inside and outside the cylinder is still de- fit ffszz‘DM, (11
scribed through introduction of a magnetic potential as in Eq.
(3), and we still require tha¥-b=0 everywhere, just as While Egs.(8a and(8b) may be rearranged to state
before. However, we no longer can utilize E¢®). to relate Of . +f )+ (H—DV2)(f.—f )=0 12
the transverse magnetization components to the dipolar field. (fe 1)+ (Ho )(f 1) (123
We must resort to the Landau-Lifshitz equation of motionand
instead, and in this one incorporates the exchange field a Q(fF. —f )+ (H—DV2)(f.+f )=—2MV2P
given spin experiences from its neighbors. This may be done (e =1+ (Ho ASAR St M('12b)

by replacing the spatially uniform dc magnetic field by the . )
effective field2(Ho—DV?), whereD is the exchange stiff- UPon combining Eq(124 with Eq. (12b), one may relate

ness. This leads us to the following relations: (f.—1f_) to the potentiatb . When this statement and Eq.
9 (11) are substituted into Eq213), we obtain a homogeneous

equation that must be satisfied by the magnetic potential

oD
. _ 2 M
IQmX—(HO_DV )my+Msw, (73) [(DVZ_Ho)(DVZ_Bo)]VZq)M
(92
9D +4mMg(DV?—Hg) —5 ®y=0. (13
—i0m, = (Hy=DV?)m,~Ms—" (7b) ° * oz T

In Eq. (13), we introduceBy=Hy+47Mg.

while inside the material, th€ -b=0 condition becomes One finds that Eq(13) admits solutions of the form

Dy(p,d,z)=Jn(kp)expimep+ikz). (19
VZ(I)M_47T( ﬁﬁﬁ):x n ?) -0 (70 IfEq. (14) is inserted into Eq(13), and one notes that
Y 1d d , m B
Outside the material, the magnetic potential satisfies [;_) %pﬁJr “ _?) Im(p) =0, (15

Laplace’s equation. Of course, when the exchange stiffnesgan for Eq.(14) to be a solution of Eq(13), « must be a
is set to zero, Eqg7a) and(7b) produce results equivalentto ot of

those in Eq.(2).

Some manipulation is required to cast E@®.into aform  D?(x?+k?)3+D(Hg+ Bo)(x*+k?)?
where one may extract the structure of the solution, for the 2 N, 212 5
geometry of present interest. We first rewrite the equations, +(HoBo— Q7= 4mMDK) (k°+ k%) —4mMsHk"=0.
to express them in terms of the right and left circularly po- (16
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Since Eq(16) is a cubic equation im?, for each choice ofn  surface anisotropy contributes a term to the surface energy of
andk, there are three linearly mdependent solutions of Eqour cylinder in the form—Kg(m, IMg)2, where the units of

(14). Thus, we write the magnetic potential inside the mateK g is ergs/cri. WhenKg is positive, the normal to the sur-

rial in the form face is an easy axis, and when it is negative, the normal to
the surface is a hard axis. In terms of the standardly defined
. . exchange stiffness used often in the literature on ferromag-
@M(p,qﬁ,z):; Aidm(kip)expime+ikz).  (17) netism'g then the boundary conditions for the transvers%

, ) . ) magnetization become
Outside the cylinder, the magnetic potential satisfies

3

Laplace’s equation precisely as in the magnetostatic theory, am,
so once again fop>R we have (W) =0, (219
=R
Py(p,¢,2)=BKy(kp)explime+ikz). (18
To find the dispersion relation of the spin waves, through A<ﬂ> (2K5>m |p r=0. (21b)
application of the boundary conditions, we shall obtain four p Ms

homogeneous equations for the four coefficients in the mag.i_h h tiffnes® i f las h its of
netic potential, as displayed in Eqd47) and(18). Two of the € rfgrxc ange stliness) in our formulas has units o
boundary conditions are continuity of the magnetic potentlap"’1 cnt. It is proportional toA, and in factD =2A/ugMs,

(this assures continuity of tangential component&®fand whereug is the Bohr magneton. .

continuity ofb,. We shall have two other boundary condi- Th|_s _completes our d|scu33|on of_the formallgm_for the
tions on the transverse components of magnetization, stat scription of the exchange/dipole spin wave excitations of a

below. To apply the boundary conditions, within the material erromagnetic nanowire OT cylindrical cross section. .W.e de_-
we need explicit expressions for the radial and azimutha cribe numerical calculations based on this description in
E ec. lll. We turn next to the theory of the microwave re-

components of the transverse magnetization. To obtain thes onse of a conducting ferromagnetic nanowire, before we
we expand these components in a Bessel function series aﬁg 9 9
resent the numerical results.

use Eqgs.(8a and (8b), noting Eq.(15). The following op- P

erator identities are useful:
B. The microwave response of an isolated ferromagnetic

0 _& R O A nanowire
(199

In this section, we present the theory of the microwave
response of the nanowire considered above, with exchange
and the presence of surface anisotropy included. The geom-
d d a i 4d etry is the same as that considered in the previous section.
—~ = _'d’<a +— 7 ) (19D we have a nanowire, whose saturation magnetization is di-

p pig : e
rected parallel to its symmetry axis. It is the case as well that
One finds the following expressions for the two componentshe samples employed in the experiments which motivated
of magnetization: this study are metallic in nature, so we wish to include the
influence of the conductivity of the wire on its response. In
essence, the microwave fields to which the wire is exposed

and

ax gy

(i KiAIm+1(Kip)

m.(p.$.2) [D(K2+ k?)+Ho+ Q] create eddy currents which produce a finite skin depth. This
influences the spatial profile of the exciting field within the
xexdi(m+1)¢+ikz] (208 sample, though the discussion presented in Sec. Ill will show
and that the influence of the skin depth is much more modest for
the cylindrical geometry, compared to the ultrathin film.
3 KA 1(kip) In what follows, it is assumed that the microwave mag-
m_(p,$,2) (Z 7> ) netic field of interest is spatially uniform far from the wire,
=1 [D(«i+k%)+Ho—Q] and is parallel to the direction. All quantities will be as-

sumed independent afin what follows. Such a microwave
field excites the magnetization of the sample, of course, so
The two boundary conditions which supplement those othe field is inhomogeneous near the wire, but always in the
magnetostatics refer to the behavior of the magnetization gilane, and independent af By Faraday’s Law, the time
the cylinder surface. If one considers an idealized Heisenvarying magnetic field generates an electric field, parallel to
berg ferromagnet, and examines the behavior of the spim. It is this electric field which is responsible for the eddy
wave eigenfunction at the sample surface, in the long waveurrents in the conducting material that lead to the skin ef-
length limit, it is well know that one must require that the fect.

normal derivative of the transverse components of magneti- We may describe these fields by introducing the vector
zation vanish there. We wish to consider the possibility thapotential

surface anisotropy is present on the cylinder surface; its pres-

ence influences the boundary condition. We assume that the A(X,y;t)=ZA(X,y)exp —it). (22

Xexgi(m—1)¢+ikz] (20b)
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Then, upon dropping explicit reference to the time depen- _[am, dm, - ) )
dence of various quantities once again, the electric field is Q) ——+ W) =[Bo—DVIIF+MsViA. (29
given by
o The combination of Eq€25) and(27) admit solutions of the
exy) =i —ZAXY). (29 form
A=al exp(im 30
The magnetic fieldh is linked to the electric field via nl kp)EXRIMS) (303
and
v h_47T__47TO'A —ZiAA 04
*h=rgi=—gzemgoh @9 F=bJn(kp)eXpima). (30b)

where o is the conductivity of the material. We have intro- When these forms are substituted into the two equations, we

duced the classical skin depthy=c/(2mcQ)¥2 In Eq. find that« satisfies
(24), we ignore the displacement current term in the Max-

well equation. If this were to be included, its influence can be 6 ~ 2iD? 4z = 4iDB,
absorbed into a correction to the formula for the skin depth. D"+ |2(Ho+27Mg)D — —5—| "+ BoHo— —=
The correction is of no quantitative importance at microwave 0 0
frequencies, for typical metals. 2i

The magnetic inductiob=V XA, and of courseh=b -0? Kz—gg[BS—QZFO- (32)

—47m. When these statements are combined with(E24),

and it is noted that all quantities are independerz, @fe find Here we haverly=H+ig. Notice in the limit that the

skin depth is allowed to become infinite and also when
, (25)  damping is ignored, Eq31) reduces to Eq(13) if there we
setk equal to zero.

2. . . There are three independent solutions of B{) for «.
¥iv:nea:|e :2; t?(?rfsra;(ft\iv (—I:‘Se;mtrr?gurizg rJIL(J;itZzEg:”\ E;{nQ(;. Qid'\;ecto'#hus, the most general solution for the vector potential in the
potential follow from the Landau Lifshitz equations. We useisedlum’ with the azimuthal variation as given in £803),
analogs of Eq(7), where now the fielh=VXA—4mm,
rather than—V ¢, as earlier, and we also add to the right 3
hand _S|de the de_tmplng temG(MS)(M_de_/dt), with G A(p,¢)=z aJn(kip)expime). (32
the Gilbert damping factor. We then find, with all quantities i=1
once again expressed in magnetic field units

gm,  om,

, 2
it® By o

A=14
82 7

For the purpose of applying boundary conditions at the sur-
5 IA face of the cylinder, we require explicit expressions for the
iQmX=[BO—DVf]my+MSW. (268  magnetization, and for the components of magnetic field
generated by the motion of the magnetization. It is most
and convenient for these to be expressed in cylindrical compo-
nents. After some algebra which employs standard Bessel
_ IA function identities, we find
imez—[Bo—DVf]mﬁ—Ms&—. (26b)
y 3
Mg JIm+1(kip)
We have introducedBy=Hy+47Mg+igQ, where g my(p,#) =1 7,221 aiKi B +Dk2+ 0
=G/yMg. After a bit of manipulation, from Eq(26), we ot Dt

may obtain the statement that 3 s(kip)
T —rexpime), (333
~ Jm am ~ + 2_
[(Bo—DVE)Z—Qz](—X— —y)—MS(BO—va)VfA Bo+Dxi—0
ay ox
3
= M J s
-0 @7 my(p, )= — >, ajk, M
. . . . . 2 i=1 BO+DK-2+Q
which when combined with Eq25) provides us with two i
equations that link the vector potential with the quantity J (kip)
om0 - texgim¢), (33D
= mx_ﬂ BO+DKi_Q
F(xy)= ay  ox (28)
. 3
For constructing explicit expressions for the components of b _m aJe( k. o)exdim 34
transverse magnetization, it is useful to note the relation o(p: ) p 21 iIm(kip)expime), (343
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13 ll. NUMERICAL STUDIES OF THE EXCHANGE /DIPOLE
by(p,)=— EE aiki{Im+1(kip) SPIN WAVE MODES AND THE MICROWAVE
=1 RESPONSE OF FERROMAGNETIC NANOWIRES

—Jm-1(kip)}expiime), (359 A. The nature of the spin wave modes

and the electric field is given in E¢23). We now need to First, we begin with some general remarks. An interesting
match the interior solutions just described to the fields outquestion is the initial behavior of the spin wave dispersion
side the cylindrical nanowire. It is a simple matter to gener-curves in the limit of small wave vectér If initially, there is

ate expressions for the magnetic and electric field in thejownward curvature, then the minimum frequency of a given
vacuum outside, following a simplified version of the pranch will be at a finite, nonzero wave vector, since we can
method just given. One may generate an expression for théxpect exchange to dominate at large values of the wave
vector potential in spherical coordinates through the wavesector. Conversely, if the initial curvature is positive, then
equation in vacuum, then use this to find the components afie may expect the minimum to reside at zero wave vector.
the various fields. We do this assuming the lifiiR/c<1 To examine this behavior, as one sees from E6s.we
applies for the nanostructures of interest; in the near vicinittheed to consider the case=1 separately from the case
of the nanowire, the incident microwave field is viewed aswherem> 1. As we have seen from Sec. Il B, the zero wave
spatially uniform, with magnitudly, and also parallel to the vector modes wittm=1 are the modes excited by a spatially

x axis. We have outside the cylinder the incident field,yniform microwave field.

supplemented by that generated by the motion of the magne- Wwe may expect exchange to add a term to the dispersion
tization in the nanowire; the latter will vary with the azi- relation proportional tdk?, of course. If we then examine
muthal angle as exp{i¢) in the limit the incident field is  Eq.(6a), we see that by virtue of the logarithmic term, in the
approximated as spatially uniform outside the wire. Then foriong wavelength limit, the negative dispersion from the di-

the fields outside we find polar contribution will always dominate that from exchange.
b b However, since the prefactor of the logarithm is proportional
2 . .. . .
h*(p.d)=hyco it exn(id) +i — exn —i ’ to (kR)4, for nanowires of small radii the dipolar term will
p (P #)=hocosd) ;2_ Mid)+1 7 exp=id) assert itself only at very small values of the wave vector. One

(368  sees easily that the dipolar term will dominate the long
5 b wavelength form ofREhe dispersion relation only wh&n
> _ ; + : - , <(2/R)exp(—D/mMgR?). Thus, while form=1, we expect
hy(p.d)=hosin($)+ pTeXp(I ¢+ ?exp(— 2 the minimum frequency of the magnetostatic mode to always
(36b) lie away from zero wave vector, but in numerical calcula-
tions for nanowires of small radii, the initial negative disper-
sion will be a subtle feature. At larger values of the radius,
0 b, b_ we will see the negative dispersion clearly.
e(p,p)=i—1 hgpsin(¢p)+ —explig)+ —exp—ig);. For the modes wittm>2, from Eq.(6b), we see that the
¢ p p dipolar contributions to the dispersion provide negative dis-
(360 persion in the form of a term quadratic in the wave vector,
Our next task is to apply the boundary conditions. The soluwith prefactor scaling also @?. Since an exchange contri-
tions inside the medium are formed by superimposing théution Dk? is independent of radius, we expect to see posi-
m=+1 andm=—1 forms given above. Thus, we have six tive dispersion in these modes for nanowires of small radii,
unknown amplitudes associated with the solution in the inteand then for nanowires of larger radii, we will realize nega-
rior of the wire, and as one sees from E86) there are two tive dispersion initially, with the minimum frequency of a
more associated with the fields outside, for a total of 8. Thegiven branch shifted away from zero wave vector.
boundary conditions on the fields are of course that the mag- One may cast the discussion of the spin-wave dispersion
nitude of the(tangential electric field be conserved across relation in terms of two-dimensionless parametdns
the boundary, along with continuity &, andh,. The con-  =Hg/4mMg andp=I/R, and, wherd =(D/47Mg)"?is an
servation ofb, and tangential electric field yield identical exchange length. For Ni, the exchange length is roughly 58
constraints, so from the field conservation conditions, weA, while for Fe it is 35 A. In what follows, we use the
have two independent statements. We also apply the boundeduced frequency=Q/47Mg, and the frequencies will be
ary conditions on the magnetization given in E2{1). When plotted against the logarithm &R
these four statements are broken down, with components In Fig. 1(@), for m=1 and forh=0.19 (this corresponds
proportional to and components proportional to exjpgf)  to an applied dc field of 4 kG for Fewe show the spin wave
separated, we obtain eight inhomogeneous equations fromtispersion for the case whepe=2. Within the range of fre-
which the unknown amplitudes may be expressed in terms ajuencies displayed, there is one mode only, which in the
ho. We will not quote the explicit form of these statementslimit of zero wave vector approaches the FMR frequency,
here, since they may be derived readily from the informationwhich in our dimensionless units has the frequeheyl/2.
given above. As remarked earlier, in Sec. Ill, we present &he negative dispersion at small wave vectors discussed
series of numerical studies based on the formalism jusabove does not show, on the scale of this plot. Clearly, by the
given. time the parametekR approaches unity, the excitation en-

and for the magnitude of the electric field, we have
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%2 FIG. 2. Form=1, h=0.19, andp=0.05, we show the spin-
1 wave frequencies of the nanowire plotted as a function d&fRn(
-1 0 1 inder of finite radiusR, k will obtain quantized values in the
Log(kR) range ofx= k,=n=/R, where the lowest standing mode has

FIG. 1. For the case wheren=1, and for h=Hy/4mMs n=1. There is in addition a uniform mode of the cylinder,

=0.19, we show the spin-wave frequencies plotted as a function O\fvh_ereln the magnetlzatlon engages in perfectly circularly po-
In(kR) for () p=2 and(b) p=0.2, wherep is the ratio of the larized precession at the FMR frequené¢yo+2mMs,

exchange length defined in the text and the radius of the nanowirdVhich, it will be noted, lies higher in frequency thah(x
=0). In the cylinder, in the presence of the boundaries, the

ergy of the spin wave is dominated by exchange for nanowboundary conditions mix the uniform FMR mode with the
ires of such small radius. In Fig(ld), for the same applied standing wave exchange modes, so to speak. Now if the ra-
magnetic field, and again fom=1, we show dispersion dius of the nanowire is so small th@i(x= 7/R) lies above
curves for nanowires of much larger radius, where0.2.  the FMR frequency, we have a situation where one of the
We now see several standing wave exchange branchesodes, which we have referred to above as the magnetostatic
whose frequency at zero wave vector is above that of thenode, approaches the FMR frequencykasO0, while all the
FMR mode. Also, at these larger radii, for the mode thatstanding wave exchange modes lie above this frequency.
approaches the FMR frequency at long wavelengths, th&his is the case for the example given in Figb)l Now as
negative dispersion at small wave vectors is now evident irthe radius of the cylinder is increased, one or more of the
the plot. modes of frequency)(«,) will drop below the FMR fre-

We find very interesting behavior at much larger radii, asquency. In the limitk— 0, we thus have standing wave ex-
illustrated in Fig. 2. These calculations again are rfor 1 change modes which lie below the FMR frequency. This is
andh=0.19, but now we hav@=0.05. In the case of Ni, the case for the example in Fig. 2. The magnetostatic mode,
this would describe a nanowire whose radius is a bit undewhich approaches the FMR frequency in this limit, exhibits
1200 A. We now have a larger number of more closelynegative dispersion at small wave vectors as expected from
spaced exchange branches, as expected, but now notice t&j. (6a), and the boundary conditions lead to the hybridiza-
there are two exchange modes which lie below the ferromagion with the exchange modes evident in Fig. 2.
netic resonance frequency, in the limit of zero wave vector. The situation just described is very different than realized
The magnetostatic mode that approaches the FMR frequendy the much studied case of the thin film magnetized parallel
ask—0 shows large negative dispersion at small wave vecto its surfaces. We still have the in plane standing wave
tors, until exchange takes over, and in fact we see that thexchange modes, with the frequer@yx) just as above, but
magnetostatic mode hybridizes with the low frequency exnow the uniform mode that mixes with these is elliptically
change modes, as the wave vector increases. polarized, with frequencjH(Ho+47Mg)]¥?=0Q(0). The

This set of dispersion curves, and the comparison betweestanding wave spin waves always lie above the ferromag-
Fig. 2 and Fig. 1b) requires some comment. Let us considernetic resonance frequency.
the basic solutions we encounter in the limit the wave vector These comments have implications for ferromagnetic
k is zero. If we think of infinitely extended ferromagnetic resonance studies for nanowires, where the response of the
matter for the moment, then we shall have spin waves thatample is probed at fixed frequency, and the external dc
propagate within they plane, whose frequency is given by magnetic field is swept. In the thin film, the standing wave
the well known expression Q(x)=[(H,+Dx?)(H, exchange resonances are always found at resonance fields
+47Mg+D«k?)]Y? where we denote them in plane wave below the main FMR resonance fie{drovided, of course,
vector ask. When such a wave is confined to within a cyl- there are no perturbations at the boundary so large as to
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FIG. 3. Form=2,h=0.19 and(@ p=0.2 and(b) p=0.05, we  ghq the spin wave frequencies plotted as a function &R)(

show the spin wave frequencies plotted as a function dRn(
versely with the square of the distance from the axis of sym-
produce spin waves tightly bound to the surfadewill be ~ metry, as we see from Eq&6a and(36b). The coupling of
the case as well that in nanowires of small radius, the standhe nanowire to a detector will scale as the square of the
ing wave resonances will lie lower in field than the main strength of this field. We defind” to be I'=((h,)?
FMR line. However as the radius of the nanowire is in-+(hg) >p r+ /h2, where the angular brackets denote an av-
creased, one reaches a point where one may find standigage over the circumference of the wire.
wave resonances of the structure at fields above the FMR Before we present our results, we comment on the role of
field; such lines will be produced by the exchange modeshe spin depth in the present analysis. Our point is that it
that have dropped below the FMR frequency. differs qualitatively for nanowires from the case of the thin
In Fig. 3 and in Fig. 4, we show dispersion curves forfilm. First of all, in a conducting magnetic medium, the skin
modes withm=2 andm= 3, respectively. One sees that for depth is influenced not only by the conductivity of the ma-
the samples of small diameter, the dispersion is positive derial, but by its magnetization as well. To good
long wavelengths, whereas one sees negative dispersion approximatior?, in place of the classical skin depth,
larger radii, as expected from the discussion above. =c/(2mwo)Y? penetration of microwave fields is con-
trolled by 6y =c/(2mwomy)*? where uy=(ui— u3)/ u,
is the Voigt susceptibility. Hereu;=1+4my,, and wu,
=4yx,, With y; andy, the dynamic susceptibilities defined
in Eq. (2). For the picture used here in Sec. Il A, one has
We next turn to studies of the microwave response of,u\,z(BS—Qz)/(HOBO—QZ).
ferromagnetic nanowires, utilizing the formalism given in  Now if we wish to consider the ferromagnetic resonance
Sec. Il B. All computations below use parameters appropriateesponse of thin films, note that their resonance frequency is
to Ni at room temperature, with the experiments of Ref. 1 in(H,B,)*2. At precisely this frequency, the Voigt susceptibil-
mind. We takeM s=480 G, theg factor to be 2.15, the spin- ity diverges, if we examine the simple expression above. A
wave exchange stiffness &=2x10°G-cn? and for the  consequence is the skin depth collapses to zero. Of course,
purposes of including the influence of the skin depth on thalissipative effects not included in the simple expression just
response, the electrical resistivity is 7 mi Ohm cm. This givegyiven limit the divergence, but it is the case that the skin
a classical skin depth in the range of a micron at 10 GHzdepth collapses to a small value, as one scans through reso-
which is very much larger than the radii of the nanowiresnance. In a high quality ferromagnetic metal such as Fe, the
considered here. effective skin depth on resonance can be as small as 500 A,
For the purposes of calculating the FMR spectra, we conin the 10 GHz frequency range. The very strong frequency
sider a quantityl” defined as follows. As we have seen in dependence of the skin depth as one scans through resonance
Sec. Il B, the precessing magnetization of the wire creates means it is essential to include its role, in the discussion of
strong magnetic field outside the wire, which falls off in- microwave response of thin, conducting ferromagnetic films.

B. The microwave response of conducting ferromagnetic
nanowires
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In Ref. 9 and earlier references cited therein, one sees stror
influences of the frequency dependence of the skin deptt
g
D

including the “window”near B, where the skin depth be- 3 ‘
comes very large. 012 | | 1

In the ferromagnetic nanowires, we are concerned witt . o[ }(

. . . a  UNITS)

much higher frequencies, nebly+27Mg, where there is i
no particular resonance or strong frequency dependence - " { /‘\ /
the Voigt susceptibility. The penetration depth of the fields Gauss® . ' _ _
differs only nominally for that expected in the absence of the
magnetic response. Thus, for nanowires with radius sma N
compared to the classical skin depth, their finite, metallic L
conductivity has at most a modest influence on their re 0.00
sponse. 6.0

Further comments along these lines are of interest. Ti
return to the case of the thin metallic film, if the film has
thickness small compared to the renormalized skin depth o (b)
resonance, a situation encountered commonly in the study ¢ T T T T
the FMR of ultrathin films, one might suppose that within the
film, the microwave exciting field is uniform to excellent
approximation. This is not the case, if the film is illuminated 0.20 o
by a microwave field incident from one side. In such a case 4r L i
it is an elementary matter to see that within the film, if its  gx 0
thicknessd is thin compared to the skin depth, and also the
skin depth is thin compared to a vacuum wavelength, the
spatial variatiorh(z) of the microwave magnetic field within 0.00
the films is well approximated by, witky=Q/c,

Ho(kg)

(1—2z/d) +ko6%/2d : . ) : Ho(kg)

0 . 8.0
1+kodny/d S ¥ "0
FIG. 5. We illustrate the role of surface anisotropy in activating

Thus, even if the film is very thin compared to the skin the standing wave exchange/dipole satellite modes in the ferromag-
depth, the field drops linearly from a value very close g 2 netic resonance spectrum of the nanowire. The calculations are for
at the surface exposed the microwavesh@boéfA/d at the  a Ni nanowire with radius 1000 A, and focus on the low field wing
back surface; the field is highly non uniform within the film, of the absorption line. We calculate the derivative with respect to dc
until one reaches thicknesses thééf/l/d is of order unity. ~ field of the ratiol’ defined in the text fo(a) the case where the

The physical origin of the highly nonuniform magnetic Surface anisotropy is zero, arft) whereKs=—0.3 ergs/ct The
field distribution within a film illuminated from one side, two insets show the inverse of the determinant of the matrix that
even though its thickness may be small compared to the skifpust be inverted _tc_> solve for th(_e magnetization amplitude. The
depth, is the poor impedance mismatch between the electr@eaks are the positions of the spin wave nggmal modes._ We have
magnetic disturbance within the film, and the transmittedtSed the rather small valug=0.5x10"sec" for the Gilbert
wave on the output surface. The magnetic field thus drop§2MPing function, to enhance the sateliite features.
from a value roughly twice that of the incident field on the
illuminated surface, to a very small value on the backside ofve see in the calculated spectrum is the main ferromagnetic
the film. Quite in contrast to this, our conducting nanowire isresonance mode itself. We have searched even for weak
embedded in a spatially uniform magnetic field, so the prostructures from exchange/dipole modes removed from the
file within the wire is not influenced by such considerations.main FMR mode, to find no evidence of absorption features.
If the wire radius is small compared to the classical skinlt is very much as if there is a hidden theorem we have not
depth, the exciting field the wire will be rather uniform in been able to prove analytically which forbids all modes other
character. than the FMR mode to be active in microwave excitation

We now present a summary of our studies of the microwhenKg=0. It is well known that in the elementary Heisen-
wave response. The principal conclusions can be summadperg ferromagnet, the standing spin wave resonances are “si-
rized quite briefly. lent” in the absence of surface spin pinning produced by

First of all, we have seen that the nanowire admits a rictsurface anisotropy, in the limit the microwave exciting field
spectrum of exchange dipole modes in the vicinitykef0 may be viewed as uniform within the film. We were sur-
for the modes with azimuthal quantum number=1. We  prised to see the complete absence of all modes except the
have modes both above and below that of the ferromagnetimain FMR mode in our numerical studies of the ideal
resonance frequency, for nanowire diameters in the range afanowire, with surface anisotropy absent. In our minds, the
a few hundred Angstroms or more. However, if we assumexistence of a selection rule is not obvious.
that the surface anisotropgys vanishes, then the only mode  We illustrate these remarks in Fig. 5, which shows a por-

h(z)=2h,
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tion of the low field wing of the main FMR line of a Ni

nanowire 1000 A in diameter. We have assumed the fre- @

quency is 34.4 GHz, as utilized in Ref. 1. Thus, the reso-

nance field is a bit above 8 kG, for our parameters. In Fig.

5(a), we show a region of the low frequency wing, calculated a

for the case where surface anisotropy is absent. One can dH 0.00

perceive no structure whatsoever from exchange/dipole gt

modes. Yet modes exist in this field regime, and illustrated in

the inset, where we plot the inverse of the determinant that

must be evaluated to find the various field amplitudes in Sec. L Hy(kg)

[I1B. This determinant has a peak at the field where an ex- 6 7 3 9 10

change dipole mode occurs.
If surface anisotropy is introduced, then the exchange di- T T

pole modes “light up” as illustrated in Fig.(b). The results 004 ¢ R=80nm

displayed here are for the choikg= —0.3 ergs-cry, which

is a substantial value of the surface anisotropy. Spin pinning

to this degree may be realized at the surface if, for example, —

an oxide layer is present. The principal satellite at the higher

field has an intensity of about 1% of that of the main FMR  Gauss®

line.

0.05

-0.05

In situations where the nanowire radius is such that an Hy(ka)
exchange/dipole mode lies quite close in frequency to the
FMR mode, the mixing of the two by the boundary condi- ©
tions can endow the satellite with appreciable integrated 0.3 N L
strength. This is illustrated in spectra taken by Ebels and 0.2
Wigen! These authors explore the FMR spectra of Ni T ’
nanowires with radius 350, 800, 2700, and 5000 A. With the — — 0.1
exception of the 800 A sample, a single absorption line is aH 0.0 '
observed. However, for the 800 A sample, there is a clear Gauss® )
doublet. In Fig. 6, we show calculations of the spectrum for 0.1
three of the sample radii, and indeed we find a doublet very 02
similar in character to that observed. The relative oscillator H. (kg)
strength of the two modes is given nicely, when theory is 0.3 P 7 ' '8 e 1 ¢

compared to experiment. Not displayed is the calculation for
the 5000 A case, which also shows a single feature as in the FIG. 6. For three values of the radius of Ni nanowir@s 350 A

data. The calculations in Fig. 6 ud¢s=—0.85 ergsicfi (1) 800 A, and(c) 2700 A, we show calculated ferromagnetic reso-
corresponding to a hard axis normal to the nanowire surfacance spectra. The calculations empy: 2.5x 1¢8 sec  which is
This is again a large value of the surface anisotropy, approa realistic value for Ni, and we have taki= —0.85 ergs/crh
priate to a case where oxide is present on the surface.

the ultrathin films as well, by virtue of the fact that in two
dimensions, the long ranged dipolar interaction in combina-
tion with exchange produces an off center minimum in the

We have developed the theory of the exchange/dipolepin wave dispersion relation, for a range of propagation
spin wave modes of ferromagnetic nanowires of circulardirections. This leads to spin wave modes of finite, nonzero
cross section, along with that of their response to spatiallyvave vector degenerate with the zero wave vector FMR
uniform microwave exciting fields. We also have presentednode. Surface defectsr defects of any other sgnnay then
studies of both the excitations in and the microwave responsgcatter energy from the FMR mode to the finite wave vector
of samples quite similar to those explored in Ref. 1, andnodes, producing a dephasing contribution to the linewidth.
compared the differences between the wire and the welDur predictions seem confirmed by recent experiméaae
know case of the thin film. We conclude with some addi-can inquire if the two magnon mechanism is operative in
tional remarks. nanowires as well.

The origin of the linewidth in such samples is of interest.  In principle, this mechanism should be operative. First
Of course, there is the intrinsic linewidth, described in oursuppose we have a nanowire with undulating surfaces of
phenomenology by the damping term in the Landau Lifshitzsuch character that the wire is still form invariant under ro-
equation of motion. In addition, there will be extrinsic tations about the axis. Then from symmetry considerations,
mechanisms operative as well. For the case of ultrathin ferthere will be a nonzero matrix element for scattering energy
romagnetic films, in recent work we have shéwhat the from the zero wave vector FMR mode wi=1 character, to
two magnon mechanism considered many years ago as tme=1 modes of finite wave vector on the FMR branch which
source of extrinsic linewidth in the garn&tsan operate in are degenerate with the FMR mode. We see wher(@jis

IV. CONCLUDING REMARKS
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supplemented by an exchange term that scalékds there  the thin film, we consider the uniform precession mode ex-
is always a minimum in the dispersion relationmf1 spin  cited in an FMR experiment, the macroscopic magnetic field
waves away from zero wave vector, and thus there alwaysreated by precession of the magnetization is completely
will be finite wave vector modes degenerate with the FMRconfined to within the film. There are “magnetic poles” on
mode. However, wheR<R.=(D/7Mg)*? from the struc- the film surfa_ces associated with thej prece_ssing mggnetiza—
ture of the dispersion curve the minimum will lie quite near tion, but the field generated by these is confined to within the

zero wave vector, and the number of degenerate modes willm itself, as in a condensor plate problem. If we consider a
be rather small. WheR>R- . the minimum will be in the SPin wave whose wave vector parallel to the film surfaces is
vicinity of k=1/R, and we ecxioect the mechanism to be morek' there is a macroscopic field outside with the spatial varia-
efficient. For Ni,Rc is roughly 100 A, and for Fe perhaps a 10N €xp(k3) if the film surfaces are parallel to the plane,
factor of 2 shorter. but the prefactor which controls the strength of this field
If the surface has, say, roughness of random character, §§2/eS as #Mg(kd), whered is the film thickness. This
that azimuthal symmetry is no longer present, then the mal€ld is thus very wealf in the th_ln film limit, or whenever the
trix element for scattering energy from the=1 FMR mode wgvelength of the spin wave is large compared to the film
to modes withm>1 is nonzero. The criterioR>R. re- th|<_:rkhness._  these | field de th .
mains relevant, in that it is for these larger radii that the e existence of these large fields outside the nanowire
dispersion relation for then>1 magnetostatic modethose have interesting implication for samples such as thos.e ex-
which approach the FMR frequency as the wave vector Vanplored by the authors of Ref. 1. We haV‘? long ranged inter-
ishes has an off center minimum. Also, this is a crude cri- actions between the nanowires, so one is led to explore the

terion for the appearance of zero wave vector modes belo\5‘:/ollect|ve excitations of the nanowire array. In the particular

the FMR frequency of the cylinder, which is another sourcec@S€ Of the samples used by Ebels and Wigen, the nanowires

of finite wave vector modes degenerate with the FMR mode?re accurately parallel to each other, but ra_ndom!y arrayed
ver a plane. We thus have a random two-dimensiG2ia)

The above discussion suggests that the two magnoﬂ ; ith | dint " Indeed. if ¢
mechanism should be relatively inefficient in very small ra-SyStem with long ranged interactions. indeed, it one were 1o

dius nanowires withR<R:, but for larger nanowires we excite _spin waves of variable wa_velength as in a _Iight .
suggest it should be quite efficient. A detailed theory, beyon&catte”r_]g experiment, then the ratio of the average interwire
the scope of the present paper, will be required to exploréeparat'on to the range of interaction can be varied. There is
this question further, an analogy between this system, and the vortex glass state of
Another aspect of the geometry considered here is th D supercondgctors, where here the average _vort.ex' separa-
large microwave magnetic field created outside the wire, b lon can be varied, b.Ut the range of the interaction ”.C fixed as
the precession of the magnetization. We see from (E8§). he London penetration d_epth. Ir! th_e case_of hanowire arrays,
that for a spin wave with finite wavie we have a field that thel nature of their collective excitations will be a most inter-
falls off as expt kp)/p*? far from the wire. For long wave- esting topic, for ordered and disordered arrays.
length modes, this field has a very long range. In the limit of
zero wave vector, we see from E¢36) that the field created
by the precession of the magnetization falls off inversely This research was stimulated by conversations with Dr.
with the square of the distance from the center of the wireUrsula Ebels and Professor P. E. Wigen. Support was pro-
The existence of this large field outside the nanowire is avided by the U.S. Army Research Offi¢Burhan), under
substantial difference that the situation with thin films. If, for Contract No. CS0001028.
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