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Experimental and theoretical study of quantized spin-wave modes
in micrometer-size permalloy wires
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Using Brillouin light scattering measurements, we have studied the properties of the spin waves in various
arrays of Permalloy wires showing widths of 0.5, 1, and &b. When the transferred in-plane wave vector
K, specified by the experimental setup, is perpendicular to the wires, a sampling of the Damon-Eshbach
surface mode branch giving rise to a set of discrete dispersionless modes is observed. We attribute this
behavior to a lateral quantization of the wave veaipof the magnetic excitations. The frequency separation
between two adjacent modes is found to decrease when the Ridththe wires increases. However, this
frequency dependence does not simply follow the expected one assuming the usual naive gglation
=nw/D, which would not allow one to give account of the behavior of the lowest mod®. We have
performed numerical calculations of the dynamical magnetization response functions of these rectangular cross
section wires using the method of finite elements. The magnetic parameters used in these calculations were
derived from the experimental Brillouin spectra of the unpatterned films. Both our experiments and our
calculations agree with the results expected from the unpatterned film assuming the following discrete val-
ues: (,0=0, g, ,=m(n+B)/D. The zero value observed for the lowest mode0 simply results from the
calculation and does not need for an additional hypothesis as previously proposed.
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[. INTRODUCTION this material. In the case of wire arrays, if the thickndss
each wire is small enough compared to its wiBththe fre-

In the last decade potential applications in magnetic storguencies of the quantized modes can be estimated by insert-
age devices and sensbfsand the availability of fabrication ing the usual discrete values qf (q; ,=n=/D, wheren is

technique¥” have increased the interest of the study of bothd" iNt€ger into the well-known relation providing for the
statid?® and dynami® ** magnetic properties of micron- frequencies of the DE mode of a continuous layer in the

scale-size elements. From a more fundamental point of vie dipolar approximation and in _the absence of amsotr’(?py_.
- » . . ! owever, this model is approximate and an exact calculation
periodic arrays of micron-size-wide wires or dots are gooly the eigenfrequencies is necessary to allow a rigorous in-
candidates to point out the striking physical changes inducegbrpretation of the experimental results. To our knowledge up
by the reduction of the dimensionality compared to two-to date, the few published theoretical studies describing the
dimensional infinite layers. For instance, the study of thespin waves in wires only concerned axially magnetized cyl-
high-frequency dynamic properties of such arrays using thénders showing an elliptical cross section and used the dipo-
Brillouin light scattering(BLS) technique allows one to de- lar approximation in the abseriéeor, rather recently, in the
rive basic information about the parameters monitoring theipresence of anisotropy.But there are no published calcula-
magnetic properties such as magnetic anisoffbPy**or the  tions of the spin-wave spectrum in a ferromagnetic wire
size-dependent demagnetizing fi@id+*>throughout the in- showing a rectangular cross section. This is one of the points
vestigation of the long-wavelength spin waves propagatinghat we treat in this paper. The derivation of the frequencies
in these reduced systems. In laterally confined magnetiéf the eigenmodes using a complete numerical approach, in
structures, if the involved in-plane wave vector is parallel tothe absenqe of exchange, is aphieved and compared to our
the reduced dimension and is associated with a wavelengfLS experimental results obtained on a set of uncoupled
comparable to the size of the object under investigation, th@ermalloy wires showing various widths. The investigation
observed spin waves are expected to be satisfactorily dé)_fdlfferen.t arrays also allowed us to study the dependence of
scribed by the quantization of the wave vectpr, which the quantized modes frequencies upon the widtlof the

specifies the magnetic modes of the continuous $ifiThis wires. This information was missing in previously reported

generates a sampling of the magnetostatic surface modkorks dealing with the experimentally observed spin-wave

branch[so-called Damon-EshbadiiDE) modd in a set of guanti_zation,msince only a single value of width was
discrete, dispersionless magnetic excitations associated Wi{ﬂve§t|gate(f.' A more figorous quantization condition for
discrete values, , of the modulusy, of g, . However, in the the m-pla_ne wave vector is presented and compared to the
case of a strong magnetic anisotopy and of a broad expertiSudl naive correspondence, =n=/D) based on reso-
mental DE linewidth in the continuous film, observed, for "@Nce geometrical conditions.

instance, in cobalt, such quantization effects are smeared
out’ In contrast, Permalloy appears to be a good candidate
to investigate them because of its negligible anisotropy and The native sample consisted ofia= 29 nm thick Permal-
of the sharpness of the observed magnetic Brillouin lines irloy layer deposited on a @00 wafer. The wire arrays were

II. EXPERIMENT
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ing beam and the direction normal to the plane of the thin
layer; 6 could be swept by rotating the sample around an
in-plane axis parallel té1. The amplitude ol is related to
the angle of incidencé by the relationx;= (47/\)sin 6; its
order of magnitude is about 16m™1. This special attention
to the behavior of the spectra versus the difference between
(@) (b) © the wave vectors of the incident illuminating beam and of the
scattered collected beatmore specifically of their projec-
FIG. 1. SEM micrographs of Permalloy wires arraysa) 1.5  tions parallel to the filmsprovided for rather precise disper-
#m width, (b) 1 um width, and(c) 0.5 um width. sion curves in the case of continuous films: in this case,
indeed, we simply have to apply the conservation lgw
fabricated utilizing electron beam lithography and ion beam= ;. As discussed below, for patterned structures we de-
sputtering. First, a resist mask is realized by irradiation of dived pseudodispersion curves. Finally, the sample could be
100-nm-thick methyl-methacrylat®MMA) film in a scan-  rotated around an axis normal to the layer, allowing a varia-
ning electron microscopSEM). The irradiated resist is then tion of the directions ofi; (and of H) with respect to the
removed using a soft chemical solution, and the sample igrientation of the wires.
mounted in a ultrahigh-vacuum chamber where the realized
masks are transferred into the magnetic layer using an Ar
ion beam sputtering. Finally, the remaining resist is removed
in trichloroethylene and the engraved structure is controlled A. Eigenfrequencies in rectangular cross section wires
by SEM observation. The details of our fabrication method

are presented eIsewhér@he prepared patterned SUUCHUreS s in structured layers is complicated so as, to date, the
CQT]S'S'[.Zdh oEthrfee pirgodlc arl;ayls of QzBa;jspacoeg WIrES iterature is still poor in this field. An expression describing
with widt is F9 @ 7 h'“m' ( )SEI(/Im'q’ an (? e pm, i ge spin-wave modes in an axially magnetized cylinder with
rgspec}ll\r/]e Y- |gured Shows a image of t ehs'ehs'tu '®dn elliptical cross section, using the dipolar approximation
wires. The patterned areas were 50@X500'““m’ WRICNIS — 3nd in the absence of anisotropy and of exchange, has been
enough to allow Brillouin measurements, since the laseyqiveq by De Wames and Wolfrdfrand we have general-
beam is focused on an area of about 308 diameter. An ;o4 jt for nonzero uniaxial anisotrop§.However, a rigor-
unpatterned area undergoing all the fabrication process wag,s antitative analysis of the spin-wave spectrum of wires
malr?tame(: c;]n the layer in order to compare its BLS spectrg,ying a rectangular cross section, which is the case of the
to El'r?seBI?St € arrays. formed resently studied wire arrays, cannot use these former re-
et meas%remenlis Were performe atdroom tergper ults. Below, we present a completely numerical approach
ture using a Sandercock-type X3)-pass tandem Fabry- aqeq on the resolution, using the finite-elements method, of
Peot interferometer characterized by a contrast ratio highef,o equations characterizing the spin waves in order to cal-

0 . .
than 16° and by a finesse of 100. For typically used geo-cjate the impulse responses. These responses are related to
metrical conditions, this finesse corresponds to the instrug,o amplitudes of the existing spin waves through the fluc-
mental linewidth at half maximurffull width at half maxi-  yation dissipation theorem and then enable us to evaluate
mum (FWHM)] of 0.15 GHz observed for the elastically {he frequencies of the eigenmodes. Indeed, since we were
scattered light; the magnetic Brillouin lines obtained in ouriarested in comparing our numerical results to experimen-
Permalloy structures are brogdﬁ_\NHM around 0.5 G'_")Z_ tal data obtained withw; perpendicular to the wire, we
Anyway, this broadening, which is probably due to dissipa-geeyeq for functions independent of the positiomiong the
tive terms difficult to evaluate, is significantly smaller than in wire (in the general case, the translational invariance aiong
the case of cobalt patterned films, as pointed out in the Ing o5 one to define a one-dimensional wave vector for any
troduction. The samples were illuminated by a single-mode, cjtation: in the studied case, the canceling of this wave

b .
Ar’ ion laser, using a power of 50 mW at the wavelengthy e ior results from conservation laws fer perpendicular to
A=5145A. Cross polarizations between the incident andhe wire).

scattered beams were used in order to practically SUPPress \ye have calculated the frequencies in the dipolar approxi-

the light scattered by phonons: = as well known, in metallicy4tion . n this case, the Landau-Lifshitz equation can be
films the main contribution to phonon scattering arises from,itten in the absence of anisotropy as

the ripple mechanism at the surfaayhich, at least in the

absence of optical anisotropy at the laser wavelength, cancels

for cross polarizations; a small additional elasto-optic contri- i @ m=mxH+MXh 1)
bution is sometimes observétibut with cross polarizers, it '

is too weak to give rise to a measurable intensity. The back-

scattering geometrical setup was chosen such as the in-plamghere » is the angular frequencyy is the gyromagnetic
transferred wave vectot; remained perpendicular to the ex- factor, m is the oscillating magnetizatiorM is the static
ternal magnetic fieldd applied along the wire axes. The magnetizationH is the applied field, and is the oscillating
variations of the Brillouin spectra versus are derived from  demagnetizing field.

their study versus the angtebetween the incident illuminat- Inside the magnetic wire,

IIl. RESULTS AND DISCUSSION

The theoretical study of the spin-wave magnetic excita-
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1 ' < ' d=29nm and to a widtlb of 1 um. The amplitude of the

n=0 X 200 response depends on the excitation point: however, the posi-
tions of the maxima are always at the same frequencies. Each
calculated frequency is labeled by an integer0. The mag-
netic parametergsee figure captionone has to know are the
saturation magnetizatioM and the gyromagnetic factoy.
They were deduced from the fit of the experimental disper-
sion curve of the infinite layer as shown in the next para-
graph. The taketd value in the calculations corresponds to
the experimentally measured one using a calibrated probe.
The calculated frequencies of the quantized modes are re-
ported in Table I. Notice that the frequency of the lowest
mode (=0) does not depend on the width of the wires.
Frequency (GHz) This is not surprising: it corresponds to a well-known bulk

. . . mode of the unpatterned continuous film, which shows the
FIG. 2. Calculated response function for wires showing a reCtTrequency

angular cross section characterized by a thickmes29 nm and a

0.6 -

0.4+

Amplitude (arb.units)

0.2 r

Width D=1um. The externz_;ll magngtic field, equal to 550 Oe, is w=9[H(H +477M)]1/2. (6)
applied parallel to the wires axis. ™M =7.8kOe, y=1.87
X 10" Hz/Oe. The eigenmodes are labeled by an integeo. On the other hand, the frequency separation between two
adjacent quantized modes increases when the vildihthe
b=h+4mm. 2 wires decreases. Also notice that, for a given width, the fre-

quency separation is a decreasing functiom.of
In previous works®23 the frequencies of the quantized
b=h. (3) modes were estimated _by inserting d_iscrete \{amg,sof the
surface wave vectog into the relation providing for the
Moreover, frequencies of the DE mode of a continuous layer in the
dipolar approximation and in the absence of anisotropy. For
V-b=0, VXh=0. 4 an infinite layer of thicknesd, this frequency is given B

In the magnetostatic approximation, one introduces a poten- ) 2.0y 112
tial ® in order to replacé by V inside the magnetic wire, w=y[H(H+47M)+(27M)*(1-e "] (7)
and a potential¥’ in order to replacéh by V¥ outside the
magnetic wire.

The boundary conditions derive from the continuities of
the tangential components bfand of the normal component
of b:

Outside the magnetic wire,

In order to fit our obtained frequencies to the values which
would result from Eq(7) using an appropriate quantization
of the wave vector, it is convenient to defihg,

27M)?
I',=In ( )

, 8
VdXxn=VW¥xn, V®.-n+d4mm-n=V¥.n, (5 (H+27M)*—(w,/y)? ®

wheren is a unit vector normal to the surface of the magneticand to evaluatel’,, for each numerically calculated fre-
wire. quency. In Fig. 3, we repolit,, as a function of the integer

In order to obtain the appropriate response functions, wéor the (& D=0.5um, (b) D=1 um, and(c) D=1.5um
add a local probe fielt, to h: at any point, the response  wide wires. It can be easily noticed from E¢g) and(8) that
is a function ofw. The eigenfrequencies correspond to thel’,, can be identified with 8, ,d whereq, , is anad hoc
maxima of the amplitude of the response. The detail of theequivalent wave vector. The analysis of Fig. 3 shows that,

numerical calculation is presented in the Appendix. for the three wire arrays and for# 0, we obtain a relation
Figure 2 displays an example of an appropriate correlation
function related to the spectra corresponding to the thickness I',=a(n+pB), 9

TABLE I. Comparison of the calculated and measured frequencies in the Perrt28toyn wire arrays forH =550 Oe applied parallel
to the wires axis ane; perpendicular to it. Calculations using-M = 7.8 kOe andy=1.87x 10" Hz/Oe(values experimentally derived from
the continuous film

n=0 n=1 n=2 n=3 n=4
Calc. Expt. Calc. Expt. Calc. Expt. Calc. Expt. Calc. Expt.
0.5um 6.37 6.45 8.42 8.4 10.12 10.2 11.13 11.15
1 pum 6.37 7.56 7.42 8.75 8.63 9.64 9.65 10.3 10.33
1.5 um 6.37 7.2 7.18 8.13 8.07 8.84 8.8 9.46 9.4
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1 ; . w7 mentally observed elsewhet2?® it was attributed to pin-
(a)/ ning conditions or, alternatively, derived from approximate
/ anterior calculations concerning the uniform modes in
wires?* To obtain the correct result, we do not need such
more or less justified approximations.

osl V. B. Experimental study

v As a result of the above described geometrical arrange-
n (b)// ment, ifk;,; denotes the projection of the wave vector of the
/ A incident illuminating beam on the film surface, the observed
0.4 / Vs T excitations in the continuous film are characterized by a
/ / (c) 4 wave vector q=*x==*2k;; (with indeed k
/ /5 e =44 sind/\). Concerning the selection rules for Brillouin
S scattering, the usual wave vector conservation law is no
02r / // /’"A | longer meaningful for finite sizes: one then expects to ob-
/ ﬁ/// serve a discrete spectrum consisting of the sampling of the
///‘ DE mode branch in a few lines related to quantized values of
7 the in-plane wave vector. Strictly speaking, in a wire one can
0 ; > 3 4 only specify a one-dimensional wave vector for the observed
excitations, which is equal to 0 in the present case. However,
n one suspects that the characteristics of the involved spin
FIG. 3. T, as a function ofn (see text (a) 0.5um-wide Waves show reminiscences of the magnons propagating in an
wires, (b) 1-um-wide wires, andc) 1.5-um-wide wires. From mea-  infinite continuous layer with a wave vectq: more spe-
surements: open symbols. From numerical calculations: soli¢ifically, the Brillouin line intensity corresponding to each
symbols. The quantization condition can be related to theémagnetic mode, is expected to be related togjtg value,
effective wave vector involved in a continuous layer obeyipg defined above through Eg&8) and(11), and, consequently,
=(m/D)(n+ B), except an=0, for which g, ,=0. The lines ex- to be non-negligible only fok, lying in the neighborhood of
hibit a linear variation versus. 0yn- This intensity then depends upahand presents a
maximum at 6y, where singy=(N/4m7)q, ,. We have re-
wherea is equal to 0.354, 0.178, and 0.121, respectively, forcently derived a semiquantitative model of tike depen-
the 0.5, 1-, and 1.m-wide wires. This provides us with dence of the Brillouin spectra in wirés.

an excellent approximation It is important to recall here that, in addition to the dis-
cussed dipolar modes, there also exist exchange mades
(FZWE_ (10) ten called standing spin waveshe characteristics of which
D strongly depend upon the thickness of the samples and upon

Moreover, 8 was found to be constant in the wires studied.tN€ magnetic exchange value: for the chosen thickness (

The quantization condition can then be related to an effective_ 29, nm), thgy Ii.e at frequencies significantly h'igher tha_n
wave vector of the infinite layer obeying the lines studied in this paper. We observed the first standing

mode around 18 GHz as expected. They are not present in

r, = the spectra in this paper and will not be discussed in the
Q=54 p (A (1) following.
Figure 4 shows the anti-Stokes sides of BLS spectra of the
where apparentlys is nearly equal to- 3. unpatterned film and of the 1 &/m-wide wires obtained with

Our calculations show that the quantization conditionH =550 Oe and#=11° (i.e., k,=0.46x10° cm™Y). In order
does not require additional hypotheses in contrast with preto increase the signal-to-noise ratio, the scanning speed of
viously published interpretatiorfs, where Rado-Weertman the Fabry-Peot interferometer was reduced by a factor of 10
conditions have been invoked. Finally, a simple interpretain the frequency region of interest. One can see that the usual
tion based on resonance geometrical conditions is approxBE line of the infinite continuous lay¢Fig. 4a@)] is replaced
mately valid. in the patterned structurd=ig. 4(b)] by two well-separated

Now let us focus on the lowest mode=0: it corre- lines. This splitting is directly connected to the quantization
sponds tol'g=0, which means that it is associated with induced by the finite widtD: in the experimental condi-
0y0=0. It is interesting to notice thab,; — wg is found to be  tions studied, only two mode@ssociated with two distinct
reduced compared to the difference related to a wave vectaalues ofn corresponding to values af , in the vicinity of
separation ofr/D, which would result from the application the imposedk;) show a measurable intensity. To ensure that
of expressior(11) to n=0 as well as tom=1. This reduction  such quantized discrete modes are originating from the finite
is experimentally observed, as reported in the next parawidth of the wires, we have investigated their frequencies
graph. Such a peculiarity of the mode=0 has been experi- versus the angle of incidence. To illustrate this study, Fig. 5
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(a) : continuous layer (@):3° +

(b) : 1.5 pm wide wires

Intensity (arb. unit)

(b) : 7°

/\_ n 1 n 1
0 5 10 15
Frequency (GHz)

FIG. 4. Anti-Stokes parts of Brillouin spectra obtained from
Permalloy (29 nm) samples. Backscattering wit#=11°, H
=550 0e applied along the wires axis, argl perpendicular to
it:  (a) unpatterned aredb) patterned area.

o
a
-
o
=y
o

¢):15°
displays the observed spectra on tharh-wide wires array ©
at different angles of incidence), The frequencies do not
depend upor, in contrast with the relative intensities of the
lines: the lowest modegsmalln) appear at low values df;
with increasingd, higher modes are activated, while the low-
est vanish. The frequency shift between adjacent lines de-
creases versus. Due to the resolving power limited by the
FWHM of each line, for largen their separation cannot be
put in evidence and, above an angle of incidence of about
35°, the spin-wave spectra and their variation verglsok
like the observed ones in an infinite continuous layer. An
illustration of the above-mentioned features is given in Fig. 6
where we present the results obtained (®rthe native Per-
malloy film, (b) the 1.um-wide wires, andc) the 1.5um-
wide wires. The wire arrays clearly exhibit the expected
splitting of the dipolar surface lin€DE modg into a set of
guantized dispersionless lines. This figure shows that the
eigenfrequencies of the quantized modes depen® @nd
that the frequency separation between two adjacent modes
decreases wheD increases(and, consequentlys/D de-
creasep

The solid line of Fig. 6a) provides the best fit with the
experimental data of the unpatterned region recordeld at
=0.55kOe: it leads to #M=7.8kOe and y=1.87
X 10" Hz/Oe(g factor: 2.0}. These values are in complete
agreement with the reported ones in our previous study
concerning square dots elaborated in the same native layer.
They alsograt?]er satisfactorily agree with the published d?i/ta Frequency (GHZ)
in bulk Permalloy: y=1.9x10"Hz/Oe (g factor: 2.05 FIG. 5. Anti-Stokes parts of Brillouin spectra obtained from
and 4rM =10kOe. Notice, however, a slight reduction of 1-um-wide wires at various angles of incidence whih=550 Oe
47M compared to the bulk, which was previously reportedapplied along the wires axis an¢ perpendicular to it. The arrows
in thin Permalloy films> indicate the quantized modes.

Intensity (arb. unit)

0 5 10 15
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pletely confirmed by our experimental results, and the par-
ticular behavior of the lowest moda€0) is clearly exhib-
ited.

IV. CONCLUSION

We have fabricated patterned structures consisting of
three periodic arrays of 0.@m-spaced Permalloy wires with
widthsD of 1.5, 1, and 0.5um, respectively. Using Brillouin
light scattering measurements, we have investigated the
properties of the spin waves. Special attention was paid to
the behavior of the spectra versus the involved in-plane wave
vector which would describe the dispersion curves in the
case of continuous films. When the transferred in-plane wave
vector k;, specified by the experimental setup, is perpen-
dicular to the wires, a quantization of the DE surface mode
resulting in a set of discrete dispersionless modes was ob-
served. This was attributed to a lateral quantization of the
in-plane wave vectog, of the magnetic excitations. The nar-
rower the wires, the greater was the frequency separation
between two adjacent modes. However, the quantization is
more complicated than the one derived using the naive rela-
tion g, ,=n=/D. Our measurements, as well as our calcula-
tions for wires showing rectangular cross section using the
finite-elements method, have shown that the discrete values
of the in-plane effective wave vector obey the relatopn,
=(#w/D)(n+ B), except for the fundamental mode=0)
where g, p=0. We have shown that the observed behavior
for the lowest mod@&=0 is not related to additional hypoth-
eses proposed in previously published works dealing with
guantization effects in arrays of Permalloy wires.
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FIG. 6. Spin-wave dispersion for the Permall@®9-nm) layer
obtained with an external magnetic fidit=550 Oe applied along
the wires axis andk, perpendicular to it: (a) continuous layer(b)
1-um-wide wires, andc) 1.5-um-wide wires. For the continuous Inside the magnetic domain, we assume a static feld
layer, the solid line represents the best fit obtained withv4  along the wire axigz axis) and a probe fieldh, along thex
=7.8kOe andy=1.87x10" Hz/Oe. For the wires, the magnetic axis (x is the thickness directionthe Landau-Lifshitz rela-
field is parallel to their axis and labels the quantized modes. tion yields

APPENDIX: FORMULATION OF
THE FINITE-ELEMENTS METHOD

Let us now focus our attention on the frequencies of the
discrete modes. Experimentally, large times of accumulation my
were used in order to minimize errors in the determination of
these frequencies. For each mode, they were measured at
angles where their relative intensity is maximum in order to my,
obtain the best available precisisee Fig. 5. The measured
values of the frequencies of the observed quantized modeghere() is the ratiow/y.
are reported in Table I. This table shows that the experimen- e introduce the coefficienfsandr to write the previous
tal and calculated values of the frequencies are in very googklations as
agreement. This is illustrated by Fig. 3, where we have re-
ported both experimental and calculatEg [derived from
Eq. (8) using the experimental and the calculated values of
w,, respectively. the calculated quantization gf is com-

M[H(é’x<1>+hp)—iQ ﬁyCID]
= H2_(? )

M[H&y<b+iﬂ(&xd>+ hp)]
= HZ_- (2 ,

(A1)

m,=p(d®P+h,)—ir 4,P,
my=ir (dx®+hp)+p . (A2)
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Thus we obtain from Eq2)
by=(1+4mp)d®+4mph,—idar 9, P,
by=(1+4mp)d,®+idmr(dd+h,).
According to Eq.(4), we derive
(1+4mp)dye®+ (1+47p)dy2d
=—4mpdh,—idmr djh,.
Outside the magnetic domain,
b,=d¥ and b,=4,V.
From Eq.(3) results

32V + 3,2V =0.

Using a parametric representation of the boundéyybe-

PHYSICAL REVIEW B 63 134429

where the double integration is performed over the magnetic
domain.
We develop Eq(A9), and using Eq(A4), we obtain

(A3)
$r ux(t),y(O)[—x"()(1+4mp)d,d
+y'(t)(1+4mp)a,d]dt
(A4) =(1+47Tp)f f AU 9P dx dy
(A5) +(1+477p)f finayu dy® dx dy—f finu(47rp axhy
+idar ayhy)dx dy. (A10)
(A6)

In the same way, we obtain

tween the magnetic domain and vacuu@r{t),y(t)), and

assumindh, to be equal to zero along the boundary, we have

to write two boundary condition5):
D (x(1),y() =T (x(t),y(1)),
y' (O[(1+4mp) @ —idmr 9, O]—x'(1)
X{[(1+4mp)dy®+idar 9,1}
=y (D)oY —x'(t)a, ¥,

ie.,

do
=X ()(1+47p)dy @+’ (1)(1+4mp)dyP —idmr =

=—x"()ay, ¥ +y' (), W.

$ru(y’ oV —x"g,¥V)dt—=¢p u(y’9,¥ —x"g,¥)dt

=f f (dyu W+ dyu gyW)dx dy, (A11)
out

where the double integration is performed over a finite do-
main around the magnetic domain. This domain admits the
circle I', of radiusR as an external boundary. One usually

assumes the following conditidf:

4
(y' oW —x"9,¥W)=— (A12)

(A7) Therefore we can write

In the following, we transform the problem into an inte-
gral formulation. For any functiom(x,y), we derive from gsrlu(y’&x\lf—x’ay\lf)dt

the boundary condition6A7):
$r, ux(t),y()[—x"(1)(1+4mp) sy P

+y' (1) (1+4mp)a,P]dt

_ do
—idargr ux(t),y(t)) Edt

=$r, ux(t),y(O)[—X' (1) ¥ +y’ (1) 9,V ]dt.

Using the Green relation, we can write
$r ux(t),y(O) —x'(t)(1+4mp)d,P
+y'(t)(1+4mp)o,P]dt

:(1+4wp)J fmo’!x(u a,P)dx dy

+(1+4rrp)f f dy(ud,®)dx dy,

1
T ﬁSﬁFZU\P dt= f fout(axu aX\P+ ayu ay\P)dX dy.
(A13)

Finally,

(1+47-rp)j f dyu o, ® dx dy
in

(A8)
+(1+4rrp)f j dyu 9, ® dx dy—J f u(4mp achy,
in n
. , dd
+idmr dhp)dx dy—|4wrgﬁrlumdt
1
=— ﬁgﬁrzu\lf dt— j Lm(axu @+ dyu 9, ®)dx dy,
(A9)

ie.,
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This latest equation enables us to transform the initial
(1+47Tp)f J dyu d,® dx dy problem into a linear system of equations: one divides the
" magnetic domain and the outside domain into a set of tri-
) do angles; one expands the functiohsand ¥ as linear combi-
+ (1+47Tp)j fin‘?y“ dy® dx dy—idmrgp u--dt nations of elementary functions equal to 1 at the vertek
L and equal to zero at the nearest vertices; inside the triangle
kim, the functionu,(x,y) is equal toaym,+ bxmX+ CrmY,
+ ﬁfﬁrzuw dt+f fout(ﬂxu P+ dyu 5, ®)dx dy where the coefficientsy,,, bym, andcy, are chosen so
that u, (X ,Yi) =1, u(x;,y,)=0, anduy(Xy,,Ym) =0; out of
(A14) the triangles containing the vertéxthe functionu, is equal

= 4mp d.hn,+idamr o,h,)dx dy.
fﬁnu( P dxhp 14t dyhp)dx dy. to zero.
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