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Experimental and theoretical study of quantized spin-wave modes
in micrometer-size permalloy wires

Y. Roussigne´,* S. M. Chérif, C. Dugautier, and P. Moch
CNRS, Laboratoire PMTM (UPR 9001), Universite´ Paris-Nord, 93430 Villetaneuse, France

~Received 8 September 2000; revised manuscript received 13 November 2000; published 14 March 2001!

Using Brillouin light scattering measurements, we have studied the properties of the spin waves in various
arrays of Permalloy wires showing widths of 0.5, 1, and 1.5mm. When the transferred in-plane wave vector
ki , specified by the experimental setup, is perpendicular to the wires, a sampling of the Damon-Eshbach
surface mode branch giving rise to a set of discrete dispersionless modes is observed. We attribute this
behavior to a lateral quantization of the wave vectorqi of the magnetic excitations. The frequency separation
between two adjacent modes is found to decrease when the widthD of the wires increases. However, this
frequency dependence does not simply follow the expected one assuming the usual naive relationqi ,n

5np/D, which would not allow one to give account of the behavior of the lowest moden50. We have
performed numerical calculations of the dynamical magnetization response functions of these rectangular cross
section wires using the method of finite elements. The magnetic parameters used in these calculations were
derived from the experimental Brillouin spectra of the unpatterned films. Both our experiments and our
calculations agree with the results expected from the unpatterned film assuming the following discrete val-
ues: qi ,050, qi ,n5p(n1b)/D. The zero value observed for the lowest moden50 simply results from the
calculation and does not need for an additional hypothesis as previously proposed.

DOI: 10.1103/PhysRevB.63.134429 PACS number~s!: 75.40.Gb, 79.60.Jv, 78.35.1c
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I. INTRODUCTION

In the last decade potential applications in magnetic s
age devices and sensors1,2 and the availability of fabrication
techniques3–7 have increased the interest of the study of b
static1,2,8 and dynamic9–13 magnetic properties of micron
scale-size elements. From a more fundamental point of v
periodic arrays of micron-size-wide wires or dots are go
candidates to point out the striking physical changes indu
by the reduction of the dimensionality compared to tw
dimensional infinite layers. For instance, the study of
high-frequency dynamic properties of such arrays using
Brillouin light scattering~BLS! technique allows one to de
rive basic information about the parameters monitoring th
magnetic properties such as magnetic anisotropy10,11,14or the
size-dependent demagnetizing field10,11,15throughout the in-
vestigation of the long-wavelength spin waves propaga
in these reduced systems. In laterally confined magn
structures, if the involved in-plane wave vector is parallel
the reduced dimension and is associated with a wavele
comparable to the size of the object under investigation,
observed spin waves are expected to be satisfactorily
scribed by the quantization of the wave vectorqi , which
specifies the magnetic modes of the continuous film.9,16 This
generates a sampling of the magnetostatic surface m
branch @so-called Damon-Eshbach~DE! mode# in a set of
discrete, dispersionless magnetic excitations associated
discrete valuesqi ,n of the modulusqi of qi . However, in the
case of a strong magnetic anisotopy and of a broad exp
mental DE linewidth in the continuous film, observed, f
instance, in cobalt, such quantization effects are sme
out.17 In contrast, Permalloy appears to be a good candid
to investigate them because of its negligible anisotropy
of the sharpness of the observed magnetic Brillouin lines
0163-1829/2001/63~13!/134429~8!/$20.00 63 1344
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this material. In the case of wire arrays, if the thicknessd of
each wire is small enough compared to its widthD, the fre-
quencies of the quantized modes can be estimated by in
ing the usual discrete values ofqi (qi ,n5np/D, wheren is
an integer! into the well-known relation providing for the
frequencies of the DE mode of a continuous layer in
dipolar approximation and in the absence of anisotrop18

However, this model is approximate and an exact calcula
of the eigenfrequencies is necessary to allow a rigorous
terpretation of the experimental results. To our knowledge
to date, the few published theoretical studies describing
spin waves in wires only concerned axially magnetized c
inders showing an elliptical cross section and used the d
lar approximation in the absence19 or, rather recently, in the
presence of anisotropy.20 But there are no published calcula
tions of the spin-wave spectrum in a ferromagnetic w
showing a rectangular cross section. This is one of the po
that we treat in this paper. The derivation of the frequenc
of the eigenmodes using a complete numerical approach
the absence of exchange, is achieved and compared to
BLS experimental results obtained on a set of uncoup
permalloy wires showing various widths. The investigati
of different arrays also allowed us to study the dependenc
the quantized modes frequencies upon the widthD of the
wires. This information was missing in previously report
works dealing with the experimentally observed spin-wa
quantization, since only a single value of width w
investigated.9,16 A more rigorous quantization condition fo
the in-plane wave vector is presented and compared to
usual naive correspondence (qi ,n5np/D) based on reso-
nance geometrical conditions.

II. EXPERIMENT

The native sample consisted of ad529 nm thick Permal-
loy layer deposited on a Si~100! wafer. The wire arrays were
©2001 The American Physical Society29-1
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fabricated utilizing electron beam lithography and ion be
sputtering. First, a resist mask is realized by irradiation o
100-nm-thick methyl-methacrylate~PMMA! film in a scan-
ning electron microscope~SEM!. The irradiated resist is the
removed using a soft chemical solution, and the sampl
mounted in a ultrahigh-vacuum chamber where the reali
masks are transferred into the magnetic layer using an1

ion beam sputtering. Finally, the remaining resist is remo
in trichloroethylene and the engraved structure is contro
by SEM observation. The details of our fabrication meth
are presented elsewhere.7 The prepared patterned structur
consisted of three periodic arrays of 0.3-mm-spaced wires
with widths D of ~a! 1.5 mm, ~b! 1 mm, and ~c! 0.5 mm,
respectively. Figure 1 shows a SEM image of these stud
wires. The patterned areas were 500mm3500mm, which is
enough to allow Brillouin measurements, since the la
beam is focused on an area of about 100mm diameter. An
unpatterned area undergoing all the fabrication process
maintained on the layer in order to compare its BLS spe
to those of the arrays.

The BLS measurements were performed at room temp
ture using a Sandercock-type (233)-pass tandem Fabry
Pérot interferometer characterized by a contrast ratio hig
than 1010 and by a finesse of 100. For typically used ge
metrical conditions, this finesse corresponds to the ins
mental linewidth at half maximum@full width at half maxi-
mum ~FWHM!# of 0.15 GHz observed for the elastical
scattered light; the magnetic Brillouin lines obtained in o
Permalloy structures are broader~FWHM around 0.5 GHz!.
Anyway, this broadening, which is probably due to dissip
tive terms difficult to evaluate, is significantly smaller than
the case of cobalt patterned films, as pointed out in the
troduction. The samples were illuminated by a single-mo
Ar1 ion laser, using a power of 50 mW at the waveleng
l55145 Å. Cross polarizations between the incident a
scattered beams were used in order to practically supp
the light scattered by phonons: as well known, in meta
films the main contribution to phonon scattering arises fr
the ripple mechanism at the surface,21 which, at least in the
absence of optical anisotropy at the laser wavelength, can
for cross polarizations; a small additional elasto-optic con
bution is sometimes observed,22 but with cross polarizers, i
is too weak to give rise to a measurable intensity. The ba
scattering geometrical setup was chosen such as the in-p
transferred wave vectork i remained perpendicular to the e
ternal magnetic fieldH applied along the wire axes. Th
variations of the Brillouin spectra versuski are derived from
their study versus the angleu between the incident illuminat

FIG. 1. SEM micrographs of Permalloy wires arrays:~a! 1.5
mm width, ~b! 1 mm width, and~c! 0.5 mm width.
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ing beam and the direction normal to the plane of the t
layer; u could be swept by rotating the sample around
in-plane axis parallel toH. The amplitude ofki is related to
the angle of incidenceu by the relationk i5(4p/l)sinu; its
order of magnitude is about 105 cm21. This special attention
to the behavior of the spectra versus the difference betw
the wave vectors of the incident illuminating beam and of
scattered collected beam~more specifically of their projec-
tions parallel to the films! provided for rather precise dispe
sion curves in the case of continuous films: in this ca
indeed, we simply have to apply the conservation lawqi

5ki . As discussed below, for patterned structures we
rived pseudodispersion curves. Finally, the sample could
rotated around an axis normal to the layer, allowing a va
tion of the directions ofki ~and of H! with respect to the
orientation of the wires.

III. RESULTS AND DISCUSSION

A. Eigenfrequencies in rectangular cross section wires

The theoretical study of the spin-wave magnetic exc
tions in structured layers is complicated so as, to date,
literature is still poor in this field. An expression describin
the spin-wave modes in an axially magnetized cylinder w
an elliptical cross section, using the dipolar approximat
and in the absence of anisotropy and of exchange, has
derived by De Wames and Wolfram19 and we have general
ized it for nonzero uniaxial anisotropy.20 However, a rigor-
ous quantitative analysis of the spin-wave spectrum of w
showing a rectangular cross section, which is the case of
presently studied wire arrays, cannot use these former
sults. Below, we present a completely numerical appro
based on the resolution, using the finite-elements method
the equations characterizing the spin waves in order to
culate the impulse responses. These responses are rela
the amplitudes of the existing spin waves through the fl
tuation dissipation theorem and then enable us to eval
the frequencies of the eigenmodes. Indeed, since we w
interested in comparing our numerical results to experim
tal data obtained withki perpendicular to the wire, we
seeked for functions independent of the positionz along the
wire ~in the general case, the translational invariance alonz
allows one to define a one-dimensional wave vector for a
excitation: in the studied case, the canceling of this wa
vector results from conservation laws forki perpendicular to
the wire!.

We have calculated the frequencies in the dipolar appro
mation. In this case, the Landau-Lifshitz equation can
written in the absence of anisotropy as

i
v

g
m5m3H1M3h, ~1!

where v is the angular frequency,g is the gyromagnetic
factor, m is the oscillating magnetization,M is the static
magnetization,H is the applied field, andh is the oscillating
demagnetizing field.

Inside the magnetic wire,
9-2
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EXPERIMENTAL AND THEORETICAL STUDY OF . . . PHYSICAL REVIEW B 63 134429
b5h14pm. ~2!

Outside the magnetic wire,

b5h. ~3!

Moreover,

“•b50, “3h50. ~4!

In the magnetostatic approximation, one introduces a po
tial F in order to replaceh by “F inside the magnetic wire
and a potentialC in order to replaceh by “C outside the
magnetic wire.

The boundary conditions derive from the continuities
the tangential components ofh and of the normal componen
of b:

“F3n5“C3n, “F•n14pm•n5“C•n, ~5!

wheren is a unit vector normal to the surface of the magne
wire.

In order to obtain the appropriate response functions,
add a local probe fieldhp to h: at any point, the responsem
is a function ofv. The eigenfrequencies correspond to t
maxima of the amplitude of the response. The detail of
numerical calculation is presented in the Appendix.

Figure 2 displays an example of an appropriate correla
function related to the spectra corresponding to the thickn

FIG. 2. Calculated response function for wires showing a re
angular cross section characterized by a thicknessd529 nm and a
width D51 mm. The external magnetic field, equal to 550 Oe,
applied parallel to the wires axis. 4pM57.8 kOe, g51.87
3107 Hz/Oe. The eigenmodes are labeled by an integern>0.
13442
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d529 nm and to a widthD of 1 mm. The amplitude of the
response depends on the excitation point: however, the p
tions of the maxima are always at the same frequencies. E
calculated frequency is labeled by an integern>0. The mag-
netic parameters~see figure caption! one has to know are the
saturation magnetizationM and the gyromagnetic factorg.
They were deduced from the fit of the experimental disp
sion curve of the infinite layer as shown in the next pa
graph. The takenH value in the calculations corresponds
the experimentally measured one using a calibrated pro
The calculated frequencies of the quantized modes are
ported in Table I. Notice that the frequency of the lowe
mode (n50) does not depend on the width of the wire
This is not surprising: it corresponds to a well-known bu
mode of the unpatterned continuous film, which shows
frequency

v5g@H~H14pM !#1/2. ~6!

On the other hand, the frequency separation between
adjacent quantized modes increases when the widthD of the
wires decreases. Also notice that, for a given width, the f
quency separation is a decreasing function ofn.

In previous works,16,23 the frequencies of the quantize
modes were estimated by inserting discrete valuesqi ,n of the
surface wave vectorqi into the relation providing for the
frequencies of the DE mode of a continuous layer in
dipolar approximation and in the absence of anisotropy.
an infinite layer of thicknessd, this frequency is given by18

v5g@H~H14pM !1~2pM !2~12e22qi,d!#1/2. ~7!

In order to fit our obtained frequencies to the values wh
would result from Eq.~7! using an appropriate quantizatio
of the wave vector, it is convenient to defineGn ,

Gn5 lnF ~2pM !2

~H12pM !22~vn /g!2G , ~8!

and to evaluateGn for each numerically calculated fre
quency. In Fig. 3, we reportGn as a function of the integern
for the ~a! D50.5mm, ~b! D51 mm, and ~c! D51.5mm
wide wires. It can be easily noticed from Eqs.~7! and~8! that
Gn can be identified with 2qi ,nd where qi ,n is an ad hoc
equivalent wave vector. The analysis of Fig. 3 shows th
for the three wire arrays and fornÞ0, we obtain a relation

Gn5a~n1b!, ~9!

t-
l
TABLE I. Comparison of the calculated and measured frequencies in the Permalloy~29-nm! wire arrays forH5550 Oe applied paralle
to the wires axis andki perpendicular to it. Calculations using 4pM57.8 kOe andg51.873107 Hz/Oe~values experimentally derived from
the continuous film!.

n50 n51 n52 n53 n54

Calc. Expt. Calc. Expt. Calc. Expt. Calc. Expt. Calc. Expt.

0.5 mm 6.37 6.45 8.42 8.4 10.12 10.2 11.13 11.15
1 mm 6.37 7.56 7.42 8.75 8.63 9.64 9.65 10.3 10.33
1.5 mm 6.37 7.2 7.18 8.13 8.07 8.84 8.8 9.46 9.4
9-3
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ROUSSIGNÉ, CHÉRIF, DUGAUTIER, AND MOCH PHYSICAL REVIEW B63 134429
wherea is equal to 0.354, 0.178, and 0.121, respectively,
the 0.5-, 1-, and 1.5-mm-wide wires. This provides us with
an excellent approximation

a52p
d

D
. ~10!

Moreover,b was found to be constant in the wires studie
The quantization condition can then be related to an effec
wave vector of the infinite layer obeying

qi ,n5
Gn

2d
5

p

D
~n1b!, ~11!

where apparentlyb is nearly equal to2 1
3 .

Our calculations show that the quantization conditi
does not require additional hypotheses in contrast with p
viously published interpretations,23 where Rado-Weertman
conditions have been invoked. Finally, a simple interpre
tion based on resonance geometrical conditions is appr
mately valid.

Now let us focus on the lowest moden50: it corre-
sponds toG050, which means that it is associated wi
qi ,050. It is interesting to notice thatv12v0 is found to be
reduced compared to the difference related to a wave ve
separation ofp/D, which would result from the application
of expression~11! to n50 as well as ton51. This reduction
is experimentally observed, as reported in the next pa
graph. Such a peculiarity of the moden50 has been experi

FIG. 3. Gn as a function ofn ~see text!: ~a! 0.5-mm-wide
wires,~b! 1-mm-wide wires, and~c! 1.5-mm-wide wires. From mea-
surements: open symbols. From numerical calculations: s
symbols. The quantization condition can be related to
effective wave vector involved in a continuous layer obeyingqi ,n

5(p/D)(n1b), except atn50, for which qi ,050. The lines ex-
hibit a linear variation versusn.
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mentally observed elsewhere:16,23 it was attributed to pin-
ning conditions or, alternatively, derived from approxima
anterior calculations concerning the uniform modes
wires.24 To obtain the correct result, we do not need su
more or less justified approximations.

B. Experimental study

As a result of the above described geometrical arran
ment, if k i i denotes the projection of the wave vector of t
incident illuminating beam on the film surface, the observ
excitations in the continuous film are characterized by
wave vector qi56k i562k i i ~with indeed ki

54p sinu/l). Concerning the selection rules for Brilloui
scattering, the usual wave vector conservation law is
longer meaningful for finite sizes: one then expects to
serve a discrete spectrum consisting of the sampling of
DE mode branch in a few lines related to quantized value
the in-plane wave vector. Strictly speaking, in a wire one c
only specify a one-dimensional wave vector for the obser
excitations, which is equal to 0 in the present case. Howe
one suspects that the characteristics of the involved s
waves show reminiscences of the magnons propagating i
infinite continuous layer with a wave vectorqi : more spe-
cifically, the Brillouin line intensity corresponding to eac
magnetic mode, is expected to be related to itsqi ,n value,
defined above through Eqs.~8! and ~11!, and, consequently
to be non-negligible only fork i lying in the neighborhood of
qi ,n . This intensity then depends uponu and presents a
maximum atuM where sinuM5(l/4p)qi ,n . We have re-
cently derived a semiquantitative model of thek i depen-
dence of the Brillouin spectra in wires.17

It is important to recall here that, in addition to the di
cussed dipolar modes, there also exist exchange modes~of-
ten called standing spin waves!, the characteristics of which
strongly depend upon the thickness of the samples and u
the magnetic exchange value: for the chosen thicknessd
529 nm), they lie at frequencies significantly higher th
the lines studied in this paper. We observed the first stand
mode around 18 GHz as expected. They are not presen
the spectra in this paper and will not be discussed in
following.

Figure 4 shows the anti-Stokes sides of BLS spectra of
unpatterned film and of the 1.5-mm-wide wires obtained with
H5550 Oe andu511° ~i.e., k i50.463105 cm21). In order
to increase the signal-to-noise ratio, the scanning spee
the Fabry-Pe´rot interferometer was reduced by a factor of
in the frequency region of interest. One can see that the u
DE line of the infinite continuous layer@Fig. 4~a!# is replaced
in the patterned structure@Fig. 4~b!# by two well-separated
lines. This splitting is directly connected to the quantizati
induced by the finite widthD: in the experimental condi-
tions studied, only two modes~associated with two distinc
values ofn corresponding to values ofqi ,n in the vicinity of
the imposedk i) show a measurable intensity. To ensure th
such quantized discrete modes are originating from the fi
width of the wires, we have investigated their frequenc
versus the angle of incidence. To illustrate this study, Fig

id
e
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EXPERIMENTAL AND THEORETICAL STUDY OF . . . PHYSICAL REVIEW B 63 134429
displays the observed spectra on the 1-mm-wide wires array
at different angles of incidence,u. The frequencies do no
depend uponu, in contrast with the relative intensities of th
lines: the lowest modes~smalln! appear at low values ofu;
with increasingu, higher modes are activated, while the low
est vanish. The frequency shift between adjacent lines
creases versusn. Due to the resolving power limited by th
FWHM of each line, for largen their separation cannot b
put in evidence and, above an angle of incidence of ab
35°, the spin-wave spectra and their variation versusu look
like the observed ones in an infinite continuous layer.
illustration of the above-mentioned features is given in Fig
where we present the results obtained for~a! the native Per-
malloy film, ~b! the 1-mm-wide wires, and~c! the 1.5-mm-
wide wires. The wire arrays clearly exhibit the expect
splitting of the dipolar surface line~DE mode! into a set of
quantized dispersionless lines. This figure shows that
eigenfrequencies of the quantized modes depend onD and
that the frequency separation between two adjacent mo
decreases whenD increases~and, consequently,p/D de-
creases!.

The solid line of Fig. 6~a! provides the best fit with the
experimental data of the unpatterned region recorded aH
50.55 kOe: it leads to 4pM57.8 kOe and g51.87
3107 Hz/Oe~g factor: 2.01!. These values are in comple
agreement with the reported ones in our previous stud11

concerning square dots elaborated in the same native la
They also rather satisfactorily agree with the published d
in bulk Permalloy: g51.93107 Hz/Oe ~g factor: 2.05!
and 4pM510 kOe. Notice, however, a slight reduction
4pM compared to the bulk, which was previously report
in thin Permalloy films.25

FIG. 4. Anti-Stokes parts of Brillouin spectra obtained fro
Permalloy ~29 nm! samples. Backscattering withu511°, H
5550 Oe applied along the wires axis, andk i perpendicular to
it: ~a! unpatterned area,~b! patterned area.
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FIG. 5. Anti-Stokes parts of Brillouin spectra obtained fro
1-mm-wide wires at various angles of incidence withH5550 Oe
applied along the wires axis andki perpendicular to it. The arrows
indicate the quantized modes.
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ROUSSIGNÉ, CHÉRIF, DUGAUTIER, AND MOCH PHYSICAL REVIEW B63 134429
Let us now focus our attention on the frequencies of
discrete modes. Experimentally, large times of accumula
were used in order to minimize errors in the determination
these frequencies. For each mode, they were measure
angles where their relative intensity is maximum in order
obtain the best available precision~see Fig. 5!. The measured
values of the frequencies of the observed quantized mo
are reported in Table I. This table shows that the experim
tal and calculated values of the frequencies are in very g
agreement. This is illustrated by Fig. 3, where we have
ported both experimental and calculatedGn @derived from
Eq. ~8! using the experimental and the calculated values
vn , respectively#: the calculated quantization ofqi is com-

FIG. 6. Spin-wave dispersion for the Permalloy~29-nm! layer
obtained with an external magnetic fieldH5550 Oe applied along
the wires axis andki perpendicular to it: ~a! continuous layer,~b!
1-mm-wide wires, and~c! 1.5-mm-wide wires. For the continuou
layer, the solid line represents the best fit obtained with 4pM
57.8 kOe andg51.873107 Hz/Oe. For the wires, the magnet
field is parallel to their axis andn labels the quantized modes.
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pletely confirmed by our experimental results, and the p
ticular behavior of the lowest mode (n50) is clearly exhib-
ited.

IV. CONCLUSION

We have fabricated patterned structures consisting
three periodic arrays of 0.3-mm-spaced Permalloy wires with
widthsD of 1.5, 1, and 0.5mm, respectively. Using Brillouin
light scattering measurements, we have investigated
properties of the spin waves. Special attention was paid
the behavior of the spectra versus the involved in-plane w
vector which would describe the dispersion curves in
case of continuous films. When the transferred in-plane w
vector ki , specified by the experimental setup, is perpe
dicular to the wires, a quantization of the DE surface mo
resulting in a set of discrete dispersionless modes was
served. This was attributed to a lateral quantization of
in-plane wave vectorqi of the magnetic excitations. The na
rower the wires, the greater was the frequency separa
between two adjacent modes. However, the quantizatio
more complicated than the one derived using the naive r
tion qi ,n5np/D. Our measurements, as well as our calcu
tions for wires showing rectangular cross section using
finite-elements method, have shown that the discrete va
of the in-plane effective wave vector obey the relationqi ,n
5(p/D)(n1b), except for the fundamental mode (n50)
where qi ,050. We have shown that the observed behav
for the lowest moden50 is not related to additional hypoth
eses proposed in previously published works dealing w
quantization effects in arrays of Permalloy wires.

ACKNOWLEDGMENTS

The authors would like to thank Dr. H. Niedoba for pr
viding us with the Permalloy films used in this work, Dr. S
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APPENDIX: FORMULATION OF
THE FINITE-ELEMENTS METHOD

Inside the magnetic domain, we assume a static fieldH
along the wire axis~z axis! and a probe fieldhp along thex
axis ~x is the thickness direction!; the Landau-Lifshitz rela-
tion yields

mx5
M @H~]xF1hp!2 iV ]yF#

H22V2 ,

my5
M @H]yF1 iV~]xF1hp!#

H22V2 , ~A1!

whereV is the ratiov/g.
We introduce the coefficientsp andr to write the previous

relations as

mx5p~]xF1hp!2 ir ]yF,

my5 ir ~]xF1hp!1p ]yF. ~A2!
9-6
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Thus we obtain from Eq.~2!

bx5~114pp!]xF14pphp2 i4pr ]yF,

by5~114pp!]yF1 i4pr ~]xF1hp!. ~A3!

According to Eq.~4!, we derive

~114pp!]x2F1~114pp!]y2F

524pp ]xhp2 i4pr ]yhp . ~A4!

Outside the magnetic domain,

bx5]xC and by5]yC. ~A5!

From Eq.~3! results

]x2C1]y2C50. ~A6!

Using a parametric representation of the boundaryG1 be-
tween the magnetic domain and vacuum„x(t),y(t)…, and
assuminghp to be equal to zero along the boundary, we ha
to write two boundary conditions~5!:

F„x~ t !,y~ t !…5C„x~ t !,y~ t !…,

y8~ t !@~114pp!]xF2 i4pr ]yF#2x8~ t !

3$@~114pp!]yF1 i4pr ]xF#%

5y8~ t !]xC2x8~ t !]yC,

i.e.,

2x8~ t !~114pp!]yF1y8~ t !~114pp!]xF2 i4pr
dF

dt

52x8~ t !]yC1y8~ t !]xC. ~A7!

In the following, we transform the problem into an int
gral formulation. For any functionu(x,y), we derive from
the boundary conditions~A7!:

rG1
u„x~ t !,y~ t !…@2x8~ t !~114pp!]yF

1y8~ t !~114pp!]xF#dt

2 i4pr rG1
u„x~ t !,y~ t !…

dF

dt
dt

5rG1
u„x~ t !,y~ t !)@2x8~ t !]yC1y8~ t !]xC#dt.

~A8!

Using the Green relation, we can write

rG1
u„x~ t !,y~ t !…@2x8~ t !~114pp!]yF

1y8~ t !~114pp!]xF#dt

5~114pp!E E
in

]x~u ]xF!dx dy

1~114pp!E E
in

]y~u ]yF!dx dy, ~A9!
13442
e

where the double integration is performed over the magn
domain.

We develop Eq.~A9!, and using Eq.~A4!, we obtain

rG1
u„x~ t !,y~ t !…@2x8~ t !~114pp!]yF

1y8~ t !~114pp!]xF#dt

5~114pp!E E
in

]xu ]xF dx dy

1~114pp!E E
in

]yu ]yF dx dy2E E
in

u~4pp ]xhp

1 i4pr ]yhp!dx dy. ~A10!

In the same way, we obtain

rG2
u~y8]xC2x8]yC!dt2rG1

u~y8]xC2x8]yC!dt

5E E
out

~]xu ]xC1]yu ]yC!dx dy, ~A11!

where the double integration is performed over a finite d
main around the magnetic domain. This domain admits
circle G2 of radiusR as an external boundary. One usua
assumes the following condition:26

~y8]xC2x8]yC!52
C

R
. ~A12!

Therefore we can write

rG1
u~y8]xC2x8]yC!dt

52
1

R
rG2

uC dt2E E
out

~]xu ]xC1]yu ]yC!dx dy.

~A13!

Finally,

~114pp!E E
in

]xu ]xF dx dy

1~114pp!E E
in

]yu ]yF dx dy2E E
in

u~4pp ]xhp

1 i4pr ]yhp!dx dy2 i4pr rG1
u

dF

dt
dt

52
1

R
rG2

uC dt2E E
out

~]xu ]xF1]yu ]yF!dx dy,

i.e.,
9-7
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~114pp!E E
in

]xu ]xF dx dy

1~114pp!E E
in

]yu ]yF dx dy2 i4pr rG1
u

dF

dt
dt

1
1

R
rG2

uC dt1E E
out

~]xu ]xF1]yu ]yF!dx dy

5E E
in

u~4pp ]xhp1 i4pr ]yhp!dx dy. ~A14!
1

1

13442
This latest equation enables us to transform the ini
problem into a linear system of equations: one divides
magnetic domain and the outside domain into a set of
angles; one expands the functionsF andC as linear combi-
nations of elementary functionsuk equal to 1 at the vertexk
and equal to zero at the nearest vertices; inside the tria
klm, the functionuk(x,y) is equal toaklm1bklmx1cklmy,
where the coefficientsaklm , bklm , and cklm are chosen so
that uk(xk ,yk)51, uk(xl ,yl)50, anduk(xm ,ym)50; out of
the triangles containing the vertexk, the functionuk is equal
to zero.
v.
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