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Dynamics and transport in random quantum systems governed by strong-randomness fixed point
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We present results on the low-frequency dynamical and transport properties of random quantum systems
whose low temperature (T), low-energy behavior is controlled by strong-disorder fixed points. We obtain the
momentum- and frequency-dependent dynamic structure factor in the random singlet~RS! phases of both
spin-1/2 and spin-1 random antiferromagnetic chains, as well as in the random dimer and Ising antiferromag-
netic phases of spin-1/2 random antiferromagnetic chains. We show that the RS phases are unusual ‘‘spin
metals’’ with divergent low-frequency spin conductivity atT50, and we also follow the conductivity through
‘‘metal-insulator’’ transitions tuned by the strength of dimerization or Ising anisotropy in the spin-1/2 case, and
by the strength of disorder in the spin-1 case. We work out the average spin and energy autocorrelations in the
one-dimensional random transverse-field Ising model in the vicinity of its quantum critical point. All of the
above calculations are valid in the frequency-dominated regimev*T, and rely on previously available renor-
malization group schemes that describe these systems in terms of the properties of certain strong-disorder
fixed-point theories. In addition, we obtain some information about the behavior of the dynamic structure factor
and dynamical conductivity in the opposite ‘‘hydrodynamic’’ regimev,T for the special case of spin-1/2
chains close to the planar limit~the quantumx-y model! by analyzing the corresponding quantities in an
equivalent model of spinless fermions with weak repulsive interactions and particle-hole symmetric disorder.

DOI: 10.1103/PhysRevB.63.134424 PACS number~s!: 75.10.Jm, 78.70.Nx, 75.50.Ee, 71.30.1h
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I. INTRODUCTION

Disorder effects arising from quenched randomness ar
the heart of many interesting and novel phenomena obse
in condensed matter systems: examples include Griffiths
gularities near phase transitions in disordered magnets~and
the related phenomenon of local-moment formation in dis
dered electronic systems1!, metal-insulator transitions in dis
ordered electronic systems,2 and two-dimensional phenom
ena such as weak localization and the quantum Hall pla
transitions.3

In particular, the interplay between disorder and quant
interference leads to unusual dynamics and transport in t
systems. Such effects are well understood for disorde
quantum systems in which many-body correlations are
significant ~such as disordered Fermi liquids!. In contrast,
relatively little is reliably known about the effects of stron
disorder in the presence of strong correlations~say, due to
electron-electron interactions in an itinerant electronic s
tem, or due to exchange interactions in a system with lo
ized spin degrees of freedom!.

However, there does exist one class of systems wh
theoretical tools are available to analyze this interplay
tween strong disorder, correlations, and quantum fluc
tions; important examples include one-dimensional rand
antiferromagnetic spin chains4,5 and random quantum Isin
models in one and two dimensions.6,7 In these quantum sys
tems, it is possible to systematically treat disorder and c
relation using a strong-disorder renormalization group~RG!
technique that is designed to be accurate when the stre
of the disorder, as measured by the widths of the distri
tions of the various couplings, is large. Such a stro
disorder approach works in these problems because t
systems, when studied at ever larger length scales~and cor-
0163-1829/2001/63~13!/134424~29!/$20.00 63 1344
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respondingly lower energy scales!, appear more and mor
disordered. More precisely, the low-energy effective the
obtained from the RG has the remarkable property that
widths of the distributions of the various couplings in th
theory grow rapidly as the energy cutoff is lowered; thi
means that the RG procedure gives reliable results for
effective Hamiltonian that governs the low-energy propert
of the system. Moreover, the extremely strong disor
present at low energies in the effective theory actually allo
one to straightforwardly calculate some thermodynam
properties and ground-state correlators within the effec
theory—this is, in essence, because strong disorder imp
that some particular terms in the effective Hamiltonian dom
nate over all others; calculations can then be performed
treating these terms first and including the effects of
other terms perturbatively. This approach has been used
cessfully in the past to obtain a wealth of information abo
the low-temperature thermodynamics and ground-state c
elators in such systems.6,4,8,9,7

Here, we exploit this simplicity that emerges at stro
disorder to obtain the analytical results on the low-frequen
dynamics and transport in these systems at low tempera
T. Most of our results are obtained forT50; these are ex-
pected to be exact at zero temperature in the low-freque
limit, and to remain valid at nonzero temperatures for lo
frequenciesv*T. Moreover, in certain special cases, we c
also access the regimev,T.

In the remainder of this section, we introduce the vario
systems that are studied in this paper, and describe the o
nization of the rest of the paper. A brief summary of some
our results has already appeared elsewhere.10

Our focus is on three model systems. The first model
consider is the one-dimensional random antiferromagn
XXZ spin-1/2 chain with the Hamiltonian
©2001 The American Physical Society24-1
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HXXZ5(
j

@Jj
'~sj

xsj 11
x 1sj

ysj 11
y !1Jj

zsj
zsj 11

z #, ~1!

wheresW j are spin-1/2 operators at lattice sitesj separated by
spacinga, and bothJj

' andJj
z are random positive exchang

energies drawn from some probability distributions. Suc
Hamiltonian describes the low-energy~magnetic! dynamics
of insulating antiferromagnetic spin-1/2 chain com
pounds11,12 with chemical disorder that affects the bon
strengths. We will also consider chains with slightly differe
probability distributions of the even and the odd bonds a
study the effects of suchenforced dimerization. The strength
of the dimerization in the bonds is conveniently charact
ized by a dimensionless parameterd defined as

d5
ln Je2 ln Jo

var~ ln Je!1var~ ln Jo!
, ~2!

whereJe (Jo) represents even~odd! bonds, and the overba
and ‘‘var’’ denote correspondingly the average and varia
over the distribution of bonds. Thus, we haved.0 (d,0) if
even~odd! bonds are stronger on average. For future re
ence, we also introduce the basic length scale in this sys

l v5
2a

var~ ln Je!1var~ ln Jo!
. ~3!

Detailed information about the spin dynamics in such s
tems can be obtained by inelastic neutron scattering~INS!
experiments that directly probe the frequency- a
momentum-dependent dynamic structure factorSab(k,v).
At T50, Sab(k,v) has the spectral representation

Sab~k,v!5
1

L (
m

^0uŝ2k
a um&^muŝk

bu0&d~v2Em!, ~4!

whereŝk
a5( je

ikxjsj
a , and$um&% denote the exact eigenstat

of the system with excitation energiesEm relative to the
ground stateu0&. The symmetry ofHXXZ under rotations
about thez axis implies that we can restrict our attention
two independent componentsSzz and S12. The same sym-
metry also implies that the totalstot

z 5( j sj
z is conserved—it

then makes sense to talk of the spin transport in such a
tem. We characterize the transport ofsz in terms of the dy-
namical spin conductivitys(v). The real parts8(v) of
s(v) is defined by the relationP(v)5s8(v)u¹Hu2(v),
whereP(v) is the power absorbed per unit volume by t
system when a magnetic field with a uniform gradie
¹H(v) ~with the fieldH always in thez direction! oscillat-
ing at frequencyv is applied along the length of the chai
From standard linear-response theory, we have the follow
Kubo formula fors8(v) at T50:

s8~v!5
1

vL (
m

ZK mU(
j 51

L

t jU0L Z2d~v2Em!. ~5!

In the above,t j5 iJ j
'(sj

1sj 11
2 2sj 11

1 sj
2)/2 is the current op-

erator on linkj that transfers one unit of thesz from one site
to the next. Here and everywhere in the following, the f
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quencyv is taken as positive for notational convenienc
Note that bothSab(k,v) ands8(v) as defined here are sel
averaging in the thermodynamic limit.

The second model we consider is the random antife
magnetic Heisenberg spin-1 chain with the Hamiltonian

HS15(
j

JjSW j•SW j 11 , ~6!

whereSW j are spin-1 operators on lattice sitesj, and theJj are
random positive nearest-neighbor exchanges; randomne
the system is characterized by a widthW of the correspond-
ing distribution of log-exchanges ln(Jj). As in the spin-1/2
case, we can characterize spin dynamics and transpo
terms of the dynamic structure factor and the dynamical c
ductivity; the definitions remain the same except for the o
vious replacement of all spin-1/2 operators with their spin
counterparts. Experimental realizations of pure Heisenb
spin-1 chains are known,13 and experimental studies of sys
tems with randomness have also been reported in the re
literature.14 We caution, however, that the degree of disord
needed to destroy the gapped Haldane phase of a pure s
chain appears to be quite strong,15 and that all our calcula-
tions are done only in this strong-disorder regime.

The third problem that we consider is the one-dimensio
random transverse-field Ising model

HRTFIM52(
j

Jjs j
zs j 11

z 2(
j

hjs j
x , ~7!

with random ferromagnetic interactionsJj and positive ran-
dom transverse-fieldshj ; here s j are Pauli spin matrices
The strong-disorder RG approach, and its consequence
the low-temperature thermodynamics and static correlat
have been analyzed in greatest detail for this particu
model.16 Also, there are extensive numerical results availa
for some dynamical properties.17 This model thus serves as
benchmark to test reliability of our approach to the calcu
tion of dynamical properties in these strong-disorder s
tems; we will analyze various average autocorrelation fu
tions in considerable detail and compare our results with
earlier numerical work.

The paper is organized as follows: We begin in Sec
with a general discussion of the various types of states
we encounter in these models, along with an overview of
most important results for the dynamics and transport in v
ous regimes; the last part of this section is devoted t
general outline of the basic approach that is used to ob
these results. Sections III, IV, and V present careful deri
tions of our results for the zero-temperature dynamical pr
erties of the three model systems that we consider, with e
section starting with a review of the basic RG approach u
to study the corresponding system. In Sec. III we evalu
the dynamic structure factor and the dynamical conductiv
in the various phases of the randomXXZ spin-1/2 chain.
This is followed, in Sec. IV, by an analysis of the spin co
ductivity in the strongly-random Heisenberg antiferroma
netic spin-1 chains, and, in Sec. V, by an analysis of
average local dynamical properties of the random quan
4-2
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Ising model in the vicinity of its critical point. Section VI is
devoted to a qualitative analysis of the dynamical and tra
port properties of theXXZ spin-1/2 chains at nonzero tem
peratures in the regimev,T, along with some quantitative
calculations in theXX spin-1/2 chain that are possible in th
case because of the mapping to free fermions. We concl
in Sec. VII, with a discussion of the possible experimen
tests of some of our predictions for the one-dimensio
random-exchange antiferromagnetic spin chains. Some t
nical details are relegated to the Appendix.

II. OVERVIEW

Broadly speaking, our results are for two types of sta
First, there are ground states governed~and therefore bes
described by some suitable strong-disorder RG approach! by
infinite-randomness fixed points; examples include the r
dom singlet states of the spin-1/2 antiferromagnetic cha
and the critical point of the random transverse-field Is
model. Then, there are the so-called ‘‘Griffiths’’ phases
the immediate vicinity of these critical states; in the
phases, the low-energy renormalized randomness is str
but not infinite.

In both cases the low-energy excitations are localized,
with a characteristic ‘‘localization length,’’ i.e., the ‘‘size o
the excitation,’’ that diverges as a power of lnv for energy
v→0. @We emphasize that this is the statement about
~rare! low-energy excitations and is indeed valid in the Gr
fiths phases, even though in this case all equal-time corr
tors atT50 indicate a finite localization length; for detai
see the main body of the paper.# Apart from this logarithmi-
cally divergent ‘‘localization length,’’ we can also defin
from the integrated density of statesnv for excitations up to
energyv, a lengthLv[nv

21/d that is the typical spacing be
tween these excitations ind dimensions~the results we repor
here are ford51, but similar phases do occur7 for d.1).

For a ground state governed by an infinite-randomn
fixed point,Lv diverges at low energies with the same pow
of ln v as the typical size of the excitation. This means
strongly divergent density of states at low energy, wh
allows the system to behave as a conductor if there
conserved quantity~e.g., spin or particle number! to be trans-
ported. In a Griffiths phase, on the other hand,Lv;v21/z,
with z a nonuniversal dynamical exponent that varies c
tinuously within the phase. Here, the low-energy excitatio
are rare; they are typically spaced by distanceLv , which
diverges as a power-law at low energy and thus is m
larger than the excitation’s typical size, which is divergi
only logarithmically. In the RG language, the Griffith
phases are governed by lines of fixed points ending in
infinite-randomness critical fixed point; along such a line,
dynamical exponentz varies continuously and diverges ne
the critical point.

In terms of the original microscopic model, the low-lyin
excitations in the Griffiths phases come from regions wh
the local-quenched random variables deviate strongly fr
their global averages. These deviations are such that the
averages would put that region in a different phase. If
system is not at a phase transition, the probability of suc
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rare region occurring and being of linear sizeL is e2c1Ld
for

large L, for some constantc1. Such a rare region typically
results in a low-lying mode with a sharply defined~in the
sense thatc2, introduced below, is sharply defined! charac-

teristic frequency proportional toe2c2Ld
. This gives rise to a

power-law low-energy density of states, with the dynami
exponentz being determined by the ratio of the constan
c1 /c2. For a disordered Griffiths phase, the rare regions
finite ‘‘islands’’ of either an ordered phase, or a differe
disordered phase. The resulting low-lying excitations loc
ized on these rare regions produce a low-frequency cond
tivity s8(v) or scaled dynamic structure factorvS(k,v)
vanishing asv1/z at low frequencies~apart from possible
logarithmic factors attributable to singular low-energy b
havior of the relevant matrix elements that may, in so
cases, be sensitive to the logarithmically divergent size of
relevant excitations!.

For one-dimensional systems, there are also power-
Griffiths effects in Ising-ordered phases. These occur
cause of rare regions locally in the disordered phase.
low-energy excitation associated with such a region is a
main wall ~or ‘‘kink’’ !. To produce a single such low-energ
domain wall requires flipping the spontaneous magnetiza
on one side of the the wall, which is tantamount to flipping
semi-infinite piece of the chain. Such a flip of an infini
domain cannot occur at a finite~nonzero! frequency. The
leading contribution to the low-frequency dynamics is th
associated withtwo nearby such rare low-energy doma
walls that allow the ordered domain between them to flip
a low but nonzero frequency. The result of this is that t
low-frequencys8(v) and vS(k,v) vanish asv2/z at low
frequency in these one-dimensional Ising-ordered Griffi
phases~we are again ignoring possible logarithmic facto
that can arise for precisely the same reasons as in the d
dered phase!. Note, however, that the Griffiths singularitie
in Ising-ordered phases ind.1 are of a very different char
acter; in these cases, the low-energy density of states
ishes faster than any power ofv, as is discussed in Ref. 7.

In Secs. III–V we will provide a detailed justification o
these general observations by explicitly calculating the lo
frequency dynamical properties in a variety of cases. In
rest of this section, we review the phase diagrams of
model systems, and highlight our most important results
each case.

A. Random antiferromagnetic XXZ spin-1Õ2 chains

1. Phase diagram

The phase diagram of the random antiferromagneticXXZ
spin-1/2 chains is best understood as a product of the c
petition between the transverse part of the couplingJ',
which favors singlet formation, and the ‘‘classical’’ intera
tion Jz, which favors a ground state with Ising antiferroma
netic order.

When theJ' dominate, the ground state can be loose
thought of as being made up of singlet pairs. In this rand
4-3
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singlet ~RS! state, the interplay of disorder and quantu
fluctuations locks each spin into a singlet pair with anot
spin; the two spins in a given singlet pair can have arbitra
large spatial separation, with the disorder determining
particular pattern of the singlet bonds in a given sample.
the other hand, when theJz dominate, the system has Isin
antiferromagnetic~IAF! order in the ground state~with the
spins all oriented parallel to thez axis!, although Griffiths
effects can fill in the gap leading to an IAF-ordered Griffit
phase.

These two states are separated by a quantum phase
sition that occurs when the couplingsJ' andJz have roughly
similar distributions~have roughly equal strengths!. A spe-
cial feature of this system is that the ground state at any p
on the critical manifold is also a random singlet state, thou
the details of the excitation spectrum are somewhat differ

If we now turn on enforced bond dimerization startin
with the RS state that obtains for smallJz, or the RS state of
the Heisenberg chain, the system moves into a Griffi
phase dubbed the random dimer~RD! phase; in this phase
the singlet bonds in the ground state now preferentially s
on one sublattice and end on the other.

Schematic phase diagrams summarizing the above
shown in Figs. 1 and 2.

2. Spin transport

We characterize the spin transport properties of the v
ous phases in terms of the low-frequency behavior of
dynamical conductivity: We find that theT50 dynamical
conductivitydivergesat low frequencies in the RS phase
well as at the RS critical points as

FIG. 1. Schematic phase diagram of random antiferromagn
XXZ spin-1/2 chains obtained in Ref. 4, showing the three differ
RS fixed points and RG flows. Our prediction for the low-frequen
behavior of the dynamical conductivity is indicated for each pha
For details, see Sec. III; herez5z(d IAF) is a ~continuously varying!
dynamical exponent in the IAF Griffiths phase.

FIG. 2. The random dimer phases forXX or Heisenberg spin-
1/2 antiferromagnetic chains, represented as lines of fixed po
ending in the critical fixed point labeled RS that describes the r
dom singlet state at zero dimerization~Ref. 9!; herez5z(d) is a
dynamical exponent in the RD Griffiths phase.
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s8~v!5KRSl vGv , ~8!

where we have taken the opportunity to introduce the l
energy scale

Gv[ ln~V0 /v!. ~9!

Here and henceforth we useV0 to denote the nonuniversa
microscopic energy cutoff, which corresponds roughly to
energy scale in the bare Hamiltonian for our various mod
also, we usel v to denote the nonuniversal microscopic leng
scale in the problem. For theXXZ spin-1/2 system near th
RS phase and with sufficiently strong disorder, which is w
we assume in the following, the microscopic lengthl v is
given by Eq.~3!. ~If, on the other hand, the bare disorder
weak and the system flows to strong disorder, thenl v is the
length scale at which the strength of the disorder become
order one.! KRS in Eq. ~8! is an order-one numerical con
stant. The RS phase and the RS critical points separatin
from the IAF phase are thus unusualspin conductors.

On the other hand, the IAF Griffiths phase is aspin insu-
lator with the low-frequencyT50 dynamical conductivity

s8~v!5KIAFl v~v/V0!2/zIAF ln2~V0 /v!, ~10!

wherezIAF(d IAF) is a ~continuously varying! dynamical ex-
ponent diverging at the critical point aszIAF;d IAF

2(22c)/l , and
KIAF is a nonuniversal amplitude vanishing at the transit
asKIAF;d IAF

(22c)/l . Here we parametrized the distance fro
the transition to the RS phase byd IAF[D2Dc ~where D
[Jz/J'). The exponentl is the relevant RG eigenvalue con
trolling the flow away from the critical fixed point describin
the generic transition between the RS phase and the
phase, and the exponentc characterizes the low-energ
spectrum above the RS ground state at this critical point~see
Ref. 4 and Sec. III A for details!. The above result is ex
pected to hold in the frequency regimev!Vd IAF

with the

crossover scale Vd IAF
given in terms of d IAF as

ln(V0 /VdIAF
);d IAF

2(22c)/l .
Similarly, the RD phases are alsospin insulators, with the

T50 low-frequency dynamical conductivity

s8~v!5KRDl v~v/V0!1/zRD ln2~V0 /v!; ~11!

the dynamical exponentzRD(d) in the RD phase diverges a
the transition aszRD;udu21, and the nonuniversal amplitud
KRD vanishes at the transition asKRD;udu. As in the IAF
phase, this result is valid at frequencies well below the c
responding crossover scaleVd ~which can be also viewed a
the conductivity pseudogap scale!; in the RD phases
ln(V0 /Vd);1/udu.

Thus, in both the IAF phase and the RD phase, the c
ductivity has the functional form

s8~v!;va ln2v, ~12!

with the nonuniversal exponenta vanishing at the corre-
sponding transition. Note that a similar form but with fixe
a52—the Mott formula—is obtained via the usual Mo
argument for theT50 dynamical conductivity of the one
dimensional Anderson insulator~the fixed value ofa in this
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case simply reflects the fact that low-energy density of sta
in the Anderson insulator isconstant, in contrast to the situ-
ation in the Griffiths phases of interest to us here!.

3. Spin dynamics

Turning to the spin dynamics, we find that theT50 dy-
namic structure factor in the RS states in the vicinity ofk
5p/a can be written in the following unusualscaling form

SabS k5
p

a
1q,v D5

A
l vv ln3~V0 /v!

F@ uqlvu1/2 ln~V0 /v!#

~13!

for uqu!a21 and v!V0; here ab[12 or zz, A is an
order-one numerical constant,l v is the microscopic length
defined earlier, andF(x) is the fully universal function ex-
plicitly calculated in Sec. III. A plot of the momentum de
pendence of the dynamic structure factor neark5p/a ~at
fixed low frequency! is shown in Fig. 3; an interesting aspe
is the nonmonotonic nature of the line shape. We will see
Sec. III that this oscillatory behavior becomes more p
nounced and leads to a really striking structure in the m
mentum dependence of the dynamic structure factor
~fixed! low frequencyv!Vd in the random dimer phases;
plot of the expectedk dependence is shown in Fig. 4. A ve
similar dependence is also predicted in the IAF Griffit
phase close to the transition to the RS state.

As mentioned earlier, these results are expected to rem
valid at small nonzero temperatures so long as the freque

FIG. 3. Sketch of the dynamic structure factor at fixedv!V0 in
the RS states.

FIG. 4. Sketch of the dynamic structure factor at fixedv!Vd in
the RD phases.
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v satisfiesv*T. In Sec. VI, we will see that we can par
tially overcome even this restriction in the vicinity of theXX
point.

B. Spin-1 Heisenberg antiferromagnetic chains

1. Phases

The effect of randomness on antiferromagnetic Heis
berg spin-1 chains is even more interesting. For spin-1, th
are, in general three distinct phases possible in the pres
of disorder. If the disorder is weak, and the support of
probability distributionP(J) of the exchanges is confined t
a narrow-enough region near the mean, then the system
mains in the usual gapped, topologically ordered Halda
state. For stronger disorder, or whenP(J) has tails to large
or small enoughJ, one has the ‘‘gapless Haldane’’~GH!
phase in which the system still has the topological order t
characterizes the Haldane state, but becomes gapless d
Griffiths effects. Finally, if the disorder is extremely stron
with the ~bare! distribution of exchanges broad on a logarit
mic scale, a random singlet state completely analogous to
one encountered in the spin-1/2 case is obtained. While
GH state and the RS state are separated by a quantum cr
point with universal critical properties~these properties are
in fact controlled by a strong-disorder fixed point5,8!, the
corresponding transition between the gapped and gap
Haldane states is a nonuniversal feature of the phase
gram, depending sensitively on the nature of the initial d
tribution of couplings~see Fig. 5 for a summary of the un
versal aspects of the phase diagram!.

2. Overview of results

In the spin-1 RS state, we obtain the same results for
dynamic structure factor and spin conductivity as in the sp
1/2 RS state, as the low-energy behavior of the RS state d
not depend on the spin magnitude except through the va
of some microscopic scale factors. Unfortunately, once
move away from the random singlet state, it is difficult
discuss reliably the momentum dependence of the dyna
structure factor of the original spin-1 chain, because our
tual calculations are done in aneffective model~see Sec.
IV A and Refs. 5 and 8 for details! in which much of the
spatial information about the original system is missing.

However, it is still possible to calculatetransportproper-
ties, such as the dynamical conductivity, that are insensi
to the details of the spatial structure~this is, in essence, a
consequence of spin conservation!. At the critical point sepa-
rating the gapless Haldane state from the random sin
state, we find forv!V0

FIG. 5. Schematic phase diagram of the strongly disorde
Heisenberg spin-1 chain~Ref. 5!, along with our results for the
dynamical conductivity in various regimes. Moving to the rig
along the horizontal axis corresponds to increasing disorder.
4-5
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s8~v!5KHYl v ln2~V0 /v!, ~14!

which is a stronger divergence than in the strong-disord
RS phase; herel v is the nonuniversal microscopic leng
scale beyond which the effective model applies,V0 is the
corresponding microscopic energy scale, andKHY is an
order-one numerical constant. Thus, the critical point se
rating the RS phase from the GH phase is also an uncon
tional ‘‘spin metal.’’ The GH phase, on the other hand, is
‘‘spin insulator,’’ not unlike the RD phase of spin-1/2 chain
We find for the conductivity in the GH phase

s8~v!;KGHl v~v/V0!1/zGH ln2~V0 /v!. ~15!

The dynamical exponentzGH varies continuously in the gap
less Haldane phase, diverging at the critical point aszGH
;(Wc2W)2n/3, while the nonuniversal amplitudeKGH(W)
remains nonzero as one approaches the critical point. In
above,Wc is the critical value of the bare disorder~the pa-
rameterW has already been defined in Sec. I!, and the cor-
relation length exponentn56/(A1321) is known from the
analyses in Refs. 5 and 18.

C. Random quantum Ising spin chains

1. Phases

The self-dual nature of the random transverse field Is
model in one dimension implies that the system will be in
critical state if the distributions of bonds and fields are ide
tical. The deviation from criticality may be parametrized

d5
ln h2 ln J

var~ ln h!1var~ ln J!
, ~16!

with d.0 corresponding to the quantum disordered pa
magnet, andd,0 corresponding to the ordered ferromagn
~Note that we use ‘‘d ’’ both as a dimensionless measure
dimerization in spin-1/2 chains, and in the present conte
there is however no cause for confusion and the mean
will always be clear from the context in what follows.!

This quantum critical point is flanked, for smalludu on
either side, by paramagnetic and ferromagnetic Griffi
phases with gapless excitations.

2. Overview of results

As mentioned earlier, these Griffiths phases and the qu
tum critical point separating them are among the be
understood examples of such strong-randomness phen
ena. However, all previous analyses of the dynam
properties relied on numerical results supplemented by s
ing ideas.

In contrast, our approach allows us to analytically calc
late the average local autocorrelations of both the spin
the energy operators at, and in the vicinity of, the quant
critical point, as well as obtain the scaling behavior of t
dynamic structure factor of the spins. The main features
the average autocorrelations~as well as distributions of au
tocorrelations, which we do not address here! have already
been noted in the earlier numerical work~Ref. 17!, while our
results on the dynamical structure factor are new. Here,
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only highlight some of the subtleties, missed in these
merical studies, that our analytical work has uncovered
garding the autocorrelations—a complete tabulation of
predictions~and their interpretation in terms of Griffiths e
fects! is given in Sec. V.

Our results for theT50 imaginary-time off-critical spin
autocorrelation in the bulk have the form

@Cloc#av~t!;
u ln tu

tn/z(d)
, ~17!

wherez(d) is the continuously varying dynamical expone
characterizing the Griffiths phases~from the results of Ref. 6,
z21'2udu, for small enoughd). In the above, the paramete
n distinguishes between the disordered and ordered ph
with n51 in the disordered phase andn52 in the ordered
phase. Thus, the exponent controlling the power-law de
in the ordered Griffiths phase istwice z21, while the corre-
sponding exponent in the paramagnetic Griffiths phase
z21. This reflects the physical distinction between the dis
dered and the Ising ordered Griffiths phases noted in
general discussion at the beginning of this overview. Mo
over, the autocorrelations in the Griffiths phases arenot pure
power law, but have a logarithmic correction, which refle
the fact that the appropriate ‘‘spin’’ degrees of freedom r
evant at a time-scalet have an effective moment of orde
u ln tu. Both these subtleties have been ignored when extr
ing the dynamical exponent from the numerical results
the average spin autocorrelations via the ansatz@Cloc#av(t)
;1/t1/z(d), and this could account for some of the discrepa
cies observed in the numerical studies. Similar remarks ap
to other average autocorrelations considered, and we ref
Sec. V for details.

D. The basic strategy

We conclude with an overview of the basic strategy int
duced by us in Ref. 10 for the calculation of dynamical a
transport properties—we will be using this approach o
and over again in what follows, and while the details w
differ from calculation to calculation, the basic approach w
remain unchanged.

Consider, for concreteness, the calculation of the dyna
structure factorSab(k,v) for the HamiltonianHXXZ . The
basic idea is to eliminate high-energy degrees of freed
using an appropriate strong-disorder renormalization gr
procedure~in this case, the singlet RG reviewed in Se
III A !, and trade in the spectral sum Eq.~4! for a sum over
the eigenstates of the renormalized HamiltonianH̃XXZ ,
which has fewer degrees of freedom and renormalized b
strengths. This renormalized spectral sum must use the
trix elements of therenormalized versionsof the spin opera-
tors; these renormalized operators are of course define
the requirement that their matrix elements between
eigenstates of the renormalized problem reproduce the
trix elements of the original operators between the cor
sponding eigenstates of the original problem. In the syste
of interest to us, the low-energy renormalized randomnes
very large. In the renormalized problem at the energy cu
4-6
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V!V0, the effective bonds thus have a very broad distrib
tion characteristic of the fixed point to which the syste
flows in the low energy limit. This allows us to reason
follows: Focus on pairs of spins coupled by ‘‘strong’’ bon
in the renormalized problem, with strengths equal to the c
off V. The broad distribution of bonds implies that the
pairs are effectively isolated from their neighbors. It is the
fore possible to unambiguously identify the excited states
these pairs with excitations of the full system at the sa
energies and work out the matrix elements connecting th
to the ground state using the renormalized operators. Thu
calculate the spectral sum Eq.~4!, the RG is run till the
cutoff V equalsVfinal , and the problem is reduced to calc
lating the renormalized spectral sum in this new theo
Vfinal is chosen so that the energy of such excited sta
~associated with these strong bonds! measured from the
ground state equalsv. The calculation ofSab(k,v) then
becomes a counting problem. One uses the known statis
properties of the renormalized bonds in the theory with c
off Vfinal to calculate the number of such strong bonds, a
simply adds up their contributions weighted by the cor
sponding matrix elements to obtain the required result. T
result is expected to be asymptotically accurate in the li
of small v, since these contributions clearly dominate in t
low-frequency limit. A certain simplicity thus emerges whe
the low-energy effective theory has strong disorder, and
will exploit this to the fullest in what follows.

III. DYNAMICS AND TRANSPORT
IN THE sÄ1Õ2 XXZ CHAINS

A. Detailed characterization of the phases

1. Singlet RG description of the random singlet states: A revie

We begin by noting that the weak-randomness analysi
Doty and Fisher19 implies that randomness is relevant f
pure antiferromagneticXXZ spin-1/2 chains for 0<Jz/J'

<1; any amount of randomness is thus expected to drive
system to strong disorder in this entire regime.

In the strong-disorder regime, the singlet RG proceed
follows:20,4 We look for the bond with the largestJ' cou-
pling, sayJ23

' between spins 2 and 3; this sets the ene
cutoff V[max$Jj

'%. We first solve the corresponding two
spin problem and introduce the neighboring bonds later a
perturbation. So long as theJz couplings are not large com
pared to theJ' couplings, the ground state of the two-sp
problem will always be a singlet separated by a large
from the triplet excited states. We can then trade our orig
Hamiltonian in for another Hamiltonian~determined pertur-
batively in the ratio of the neighboring bonds to the strong
bond! that acts on a truncated Hilbert space with the t
sites connected by the ‘‘strong’’ bond removed. To lead
order, this procedure renormalizes the Hamiltonian

H4sites5(
j 51

3

@Jj
'~sj

xsj 11
x 1sj

ysj 11
y !1Jj

zsj
zsj 11

z #

to
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H̃145 J̃1
'~s1

xs4
x1s1

ys4
y!1 J̃1

zs1
zs4

z

with J̃1
'5J1

'J3
'/(J2

'1J2
z) and J̃1

z5J1
zJ3

z/2J2
' ; note that the

length of this new bond isl̃ 15 l 11 l 21 l 3. This procedure, if
it remains valid upon iteration, thus ultimately leads to t
random singlet state described in the overview.

A complete understanding of the possible phases then
quires an analysis of the effects of iterating the basic
procedure. Such an analysis was performed in Ref. 4 lea
to the following conclusions~see Fig. 1!: So long as theJz

couplings do not dominate over theJ' couplings and there-
fore do not produce a state with Ising antiferromagnetic
der, the ground state is a random singlet state. In this cas
detailed characterization of the low-energy effective Ham
tonian is best couched in terms of logarithmic variables
follows: Let V[max$Jj

'% at any given stage of the RG, an
define the log-cutoff G[ ln(V0 /V). Also define log-
couplings z j[ ln(V/Jj

') and log-anisotropy parametersD j

[ ln(Dj), whereD j[Jj
z/Jj

' . As G increases, the fraction o
remaining sitesnG at log-cutoff scaleG is given asnG

;1/G2. When theJ' couplings dominate, the system rapid
flows to the ‘‘XX-RS’’ fixed point and the probability distri-
bution P(z,D,l uG) that determines the strengths and leng
of the bonds connecting the remaining sites in the effec
Hamiltonian quickly converges to the following scaling for
characteristic of theXX-RS fixed point: P(z,D,l uG)
5(1/G3)P1(z/G,l /G2)3d(D). The function P1 has been
characterized in detail in Ref. 4; here we only note th
*dyP1(x,y)5e2x. Between the IAF phase and thisXX-RS
phase lie two kinds of critical points. If the initial problem
has full Heisenberg symmetry (Jz5J' for each bond!, the
low-energy effective Hamiltonian preserves this symme
and has bond strengths and lengths drawn from the s
probability distribution:P(z,l uG)5(1/G3)P1(z/G,l /G2). In
the RG language, the Heisenberg system is critical an
controlled by the ‘‘XXX-RS’’ critical fixed point. Finally, in
this language, the generic critical point between the I
phase and theXX-RS phase is controlled by th
‘‘ XXZC-RS’’ fixed point—the low-energy effective theor
has bond strengths and lengths drawn from a distribu
P(z,D,l uG)5(1/G31c)P2(z/G,D/Gc,l /G2) with c,1 and
*dyP2(x,y,z)5P1(x,z). Notice that these scaling forms im
ply that the distributions of the couplings become infinite
broad asV→0; thus, the RG becomes asymptotically exa
at low energies and, in particular, predicts the ground-s
properties and low-temperature thermodynamics correctl

2. Scaling description of the Ising antiferromagnet

On the Ising antiferromagnet side, the singlet RG b
comes invalid at low energies, and the system has a gro
state with IAF order. The proper characterization of the s
tem at these low energies is in terms of IAF-ordered s
clusters, as well as the domain-wall excitations that ac
disrupt this order. This section is devoted to providing suc
description. In what follows, we will be considering main
the IAF phaseclose to the transition to the RS state. In this
regime, the system will ‘‘look’’ IAF ordered only well below
a crossover energyVd IAF

, while resembling acritical system
4-7
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controlled by theXXZC critical point above the crossove
scale.Vd IAF

is the scale at which the singlet RG breaks do
and is thus determined by the properties of the RG flows
the vicinity of theXXZC critical point. The corresponding
log-energy scaleGd IAF

[ ln(V0 /VdIAF
) is given as4 Gd IAF

;d IAF
2u , with u5(22c)/l, wherel is the leading relevan

RG eigenvalue at theXXZC fixed point andc has already
been defined in the previous section. Below, we constru
scalingdescription of the IAF phase near criticality by com
bining information obtained from the singlet RG about t
nature of the system at this crossover scale, with a ‘‘clus
RG’’ approach that is designed to work in the limit of lo
energies~well below Vd IAF

) above the IAF-ordered groun
state.

We begin with a sketch of our cluster RG approach. C
sider the HamiltonianHXXZ with Jz couplings completely
dominating theJ' couplings. Now, spins tend to order an
ferromagnetically, and we can try formulating a cluster R
similar to that for the ordered phase of the rando
transverse-field Ising model. Consider combining two su
spins, says2 ands3, coupled by a strong bondJ2

z into a new

‘‘superspin’’ s̃(23) . If we identify the two statesu⇑ (23)& and
u⇓ (23)& of this superspin with the statesu↑2↓3& and u↓2↑3&
~which is not a unique choice!, and treat theJ' couplings to
second order in perturbation theory, the effective Ham
tonian that we obtain is

H̃1(23)45 J̃1
zs1

zs̃(23)
z 2 J̃3

zs4
zs̃(23)

z 1h̃(23)s̃(23)
x 2

2 J̃1(23)4
' ~s1

1s̃(23)
2 s4

21s1
2s̃(23)

1 s4
1!,

whereh̃(23)5J2
' , J̃1(23)4

' 5J1
'J3

'/J2
z , J̃1

z5J1
z1(J1

')2/J2
z , and

J̃3
z5J3

z1(J3
')2/J2

z . Thus, we see that new terms, not pres
in the original Hamiltonian, are generated: an effective tra
verse field, which acts to flip the new spin, and also a thr
spin exchange interaction. Before we proceed, a couple
comments regarding the new terms: The effective transv
field appears because the ground state ofH23 is not exactly a
degenerate doublet~the two lowest eigenstates, which are t
symmetric and antisymmetric combinations ofu↑2↓3& and
u↓2↑3&, are actually split by a small energyJ2

'). Note also
that the three-spin term doesnot violate spin conservation
for example, if we consider coupling the conserved totalstot

z

to a magnetic field, we immediately realize that the supers
s̃(23) doesnot couple to this field.

In principle, we may proceed with such a clustering p
cess, keeping track of all additional one- or two- or mu
spin-flip terms that are generated. While this RG is not a
lytically tractable, we do not expect the generated terms
have any drastic consequences, since they generally bec
weaker and weaker, while theJz couplings remain almos
unchanged. Alternatively, we can remedy this proliferat
of new couplings by combining an odd number of spins a
time—because of the symmetries of the Hamiltonian, a
odd length chain will have a degenerate pair of ground st
with the totalstot

z 56 1
2 . In addition, three-spin terms of th

form encountered previously will now be forbidden by sp
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conservation. More explicitly, if we combine three spins, s
s2 , s3, ands4, with relatively strong couplingsJ2

z and J3
z ,

into a new superspins̃2[ s̃(234) , and treat theJ' couplings
perturbatively, theXXZ form of the effective Hamiltonian is

preserved, with the new couplingsJ̃12
z 5J1

z1(J1
')2/(2J2

z),

J̃25
z 5J4

z1(J4
')2/(2J3

z), J̃12
' 522J1

'J3
'/J2

z , and J̃25
'

522J2
'J4

'/J3
z .

Either way, we will have effective spin-half objects wit
dominant Ising AF interactions. Almost always, we will b
decimating strongJz couplings making larger and large
clusters, with the otherJz couplings remaining essentiall
unchanged, and the remainingJ' couplings growing weaker
and weaker. Only rarely will there be a bond with aJ'

coupling large compared to the neighboring couplings, a
this will then produce a singlet. Thus, the picture th
emerges is very reminiscent of the ordered phase in
RTFIM.

We may now combine this schematic cluster RG desc
tion valid at low energies, with information about the cros
over region obtainable from the singlet RG. At the crosso
scale, the distribution ofzz[ ln(VdIAF

/Jz) is given as

P(zzuGd IAF
);Gd IAF

21 exp(2zz/GdIAF
). Roughly speaking, be

yond the crossover scale, the cluster RG merely elimina
the strongest bonds from this distribution, but keeps the lo
energy tail of the distribution unchanged. We thus expec
line of ~classical! IAF fixed points, with properties varying
smoothly with the distance from the criticality. The dens
of spin degrees of freedomnG in the renormalized theory is
expected to decrease asnG;Gd IAF

22 e2cG/Gd IAF below the cross-

over scaleVd IAF
, wherec is some order-one constant. Th

immediately gives us the density of statesr(v)
;v21nGv

Gd IAF

21 ;d IAF
3u v2111/zIAF, with the continuously

varying dynamical exponentzIAF;d IAF
2u . The typical size of

the excitations dominating the density of states scales
l dw(v); l vGd IAF

Gv and is much smaller than their typica

separation;v21/zIAF. This can be readily seen from th
qualitative picture of ‘‘preformed tails:’’ the lengthl dw(v)
of a renormalized bond withzz50 in the theory with cutoff
v!Vd IAF

scales in the same way as the length of a bo

with zz; ln(VdIAF
/v) in the theory at the crossover sca

Vd IAF
. On the other hand, the distribution of the lo

couplingsz'[ ln(V/J') is expected to broaden exponential
as a function ofG: for example, when we combinen spins
that are active at the crossover scale into a cluster, the e
tive transverse coupling acting on this cluster will be of ord
z';nGd IAF

. This then is our scaling picture for the IAF
phase; the important conclusion that emerges from
analysis is the fact that the transition to the RS state is p
ceded by a Griffiths phase—the IAF Griffiths phase—with
continuously varying power-law singularity in the low
energy density of states.

Finally, it is also possible to obtain a rather direct iden
fication of the low-energy modes in terms of the rare regio
that dominate the low-energy dynamics; we conclude
sketching this briefly here. The RG picture suggests tha
4-8
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the IAF phase the typical excitations at low energiesv are
classical domain-wall excitations that live on the effecti

bonds with weak effective couplingsJ̃z;v. Such a weak

effective J̃z can appear only across a long region that
locally in the RS phase. More quantitatively, a region
lengthL locally in the RS phase effectively corresponds to

weak bond withJ̃z;V0e2czL. The number density of suc
regions is roughly;pL for somep,1. The density of such

regions withJ̃z&v is thus some power ofv that we choose
to write asn(v);v1/z with some exponentz; the most nu-
merous such regions will have some ‘‘optimal’’~for a given
d IAF) microscopic structure, but whatever this structure
the corresponding optimal exponentz can be directly identi-
fied with the dynamical exponentz(d IAF) of this phase. This
picture thus predicts that the typical separation of such
gions is of orderv21/z, while their lengths are only of orde
u ln vu, in complete agreement with the schematic RG
proach.

3. Singlet RG description of the random dimer phases: A revie

While the effects of dimerization are not understood
detail in all regimes, it is possible9 to use the singlet RG an
follow the flows for a chain with full Heisenberg symmet
and for a chain in the vicinity of theXX-RS point. In these
cases, a mapping to the off-critical flows of the RTFIM pr
vides a detailed characterization of the so-called RD pha
that result. In either case, the picture that emerges can
summarized as follows:9 For concreteness, assumed.0. If
disorder is strong andd!1, then the even and the odd bon
renormalize essentially as in the corresponding RS state
the log-energy scaleG;Gd[1/d. Beyond this scale, the re
maining odd bonds rapidly become much weaker relative
the remaining even bonds; the distribution of the even l
couplingsPe(zuG)5*dlPe(z,l uG) approaches some limiting
distribution with a finite but large width, while distributio
of the odd log-couplingsPo(zuG)5*dlPo(z,l uG) grows in-
finitely broad. In the RG language, the system renormali
to some point on a line of RD fixed points~from this point of
view, the RS states atd50 represent critical points separa
ing RD fixed points with opposite dimerization, see Fig.!.
The corresponding joint distributions of the log-couplin
and the lengths have been worked out in Ref. 6; here we o
note that Pe(zuG)5t0(G)e2zt0(G) with t0(G)'2d, while
Po(zuG)5u0(G)e2zu0(G) with u0(G)'2de22dG. The
ground state again consists of singlet pairs made up of
spin on an even sitei and a second spin on some odd sitej.
Note, however, that whilei . j andi , j are equally probable
in the RS state, in the RD phase withd.0 one almost al-
ways hasj . i ~with the exception of a few high-energy pai
of small spatial extent!.

B. Dynamic structure factor

In this section, we summarize our calculations of the d
namic structure factor in the different regions of the pha
diagram of spin-1/2XXZ chains. Our approach has alrea
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been reviewed in general terms in Sec. II D, and our cal
lations here represent one of the simplest examples of
approach at work.

We begin by considering only the leading term in t
perturbative expansion for the renormalized spin operat
the results obtained in this manner give the correct lead
behavior at low frequencies~some justification of this is
given in Sec. III E, where we discuss the role of higher-ord
terms!.

1. Random singlet states

The leading-order ‘‘operator renormalizations’’ need
are particularly simple: the spin operatorsW remains un-
changed for each of the ‘‘surviving’’ spins and is effective
zero for each of the ‘‘decimated’’ spins~i.e., spins that are
already locked into singlets with other spins!.

Consider firstSzz(k,v); in our formulation of the singlet
RG, Sec. III A, the following analysis applies to a gene
XXZ singlet state~i.e., remains valid so long as the groun
state does not have IAF order!. Consider two spinsL andR

connected by a strong bond (J̃',J̃z) in the renormalized
theory with cutoffVfinal . The spin operatorssL/R

z connect the
singlet ground state of this pair only to the triplet stateut0&
~with mz50), which is separated from the singlet state by
gap J̃'. Therefore, the energy-scaleVfinal at which we stop
the RG isVfinal5v in this case~remember that the cutof
was defined asV5max$J'%). We thus consider the renorma
ized spectral sum

Szz(k,v)5
1

L (
m

; ZK mU(
j

;

eikxj S̃j
zU0L Z2d(v2Ẽm),

~18!

where the tildes remind us of the fact that this spectral s
now refers to the new Hamiltonian with energy cuto
Vfinal5v; this renormalized Hamiltonian hasnGv

spins per
unit length with the distribution of couplings and bon
lengths characteristic of the fixed point to which the syst
flows in the low-energy limit. The sum in Eq.~18! is domi-
nated by the excitations to the triplet stateut0& of pairs of
spins connected by the~renormalized! bonds with J̃'5v;
these pairs are precisely the ones that are being eliminate
this energy scale. The corresponding matrix element for e
such pair is simply (12eik l̃ )/2, wherel̃ is the length of the
bond connecting the pair; this allows us to write

Szz~k,v!;n~Gv!E dldzu12eikl u2P~z,l uGv!d~v2ve2z!

~19!

for v!V0 in any RS state.
The calculation ofS12(k,v) is more involved since the

gap to the relevant triplet excited stateut1& ~with mz51) of a
pair of spins connected by a strong bond (J̃',J̃z) is now
( J̃'1 J̃z)/2. We consider each of the three cases (XX, XXX,
andXXZC) separately:~1! In theXXX case, the Heisenber
symmetry of the problem guarantees thatSxx5Syy5Szz. ~2!
4-9
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When the system approaches theXX point at low energies,
we haveJ̃z! J̃' implying that the relevant gap is approx
mately J̃'/2. Thus, to calculateS12(k,v) we now have to
stop the RG at the scaleVfinal52v. From Eq.~19!, it is clear
that this leaves our answer unchanged except for the va
of various non-universal scale factors.~3! TheXXZCcritical
point needs special attention. In this caseJ̃z/ J̃' can have a
range of values. As a result, the excited states that domi
the spectral sum Eq.~4! are not simply obtained by stoppin
the RG at any particularVfinal and looking at the singlets
forming only at this scale. Instead, for anyVfinalP(0,2v)
there will be some singlets formed at this scale that w
contribute to the spectral sum, namely, the pairs coupled
strong bonds withJ̃'5Vfinal and J̃z52v2Vfinal . Note that
there is no double-counting here since we are conside
only the pairs that are being eliminated at each energy sc
Thus, we have

S12~k,v!;E dGdldDn~G!u12eikl u2P~0,D,l uG!

3d~v2V0e2G@11eD#/2!. ~20!

Rewriting this in terms of the scaling probability distributio
P2 and using the delta function to do theG integral gives us

S12~k,v!;
1

vGv
E d l̄ dD̄

n@GvYv~D̄ !#

Yv
31c~D̄ !

u12eik̄ l̄ u2

3P2S 0,
D̄

Yv
c~D̄ !

,
l̄

Yv
2 ~D̄ !

D , ~21!

where we have definedD̄5D/Gv
c , l̄ 5 l /Gv

2 , k̄5kGv
2 , and

Yv~D̄ !511
ln~11eD̄Gv

c
!2 ln 2

Gv
. ~22!

Now, sincec,1, it is permissible to take theGv→` limit
of Yv(D̄) before doing theD̄ integral, in other words, we
can replaceY by 1 in the low-energy limit. TheD̄ integral
can then be done trivially, and the final expression is ide
cal in form to Eq. ~19!. More physically, a given bond
(J',Jz) is described fairly well~on a logarithmic scale! by
one of these two couplings; we chose the characteristic s
to beJ'. Now, the random anisotropy leads to an uncertai
u ln(Jz/J')u;Gc in the corresponding log-energy scale. Th
uncertainty is much smaller than the already existing typ
spread in the log-energies or the typical log-energies th
selves, which are both of orderG. The leading behavior a
low frequencies is therefore not affected.

Thus, in the limit of low frequencies bothSzz(k,v) and
S12(k,v) can be expressed in terms of the scaling proba
ity distribution P1 as

S~k,v!;
n~Gv!

vGv
E d l̄ u12eik̄ l̄ u2P1~0,l̄ !. ~23!
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Let us first focus on the regimeuqu[uk2p/au!a21. Note
that allunscaledlengthsl areoddmultiples of the unit length
a, and thereforeeikl52eiql . The integral in Eq.~23! can be
evaluated using the characterization of the functionP1(0,y)
available in Ref. 6; the result is the following rather unusu
scaling form at all three RS fixed points:

SS k5
p

a
1q,v D5

A
l vv ln3~V0 /v!

F@ uqlvu1/2 ln~V0 /v!#.

~24!

Note that we have suppressed the component labels
S(k,v) as the two independent components obey the sa
scaling form, but with different values in general of the n
merical constantA and the microscopic length-scalel v . The
universalfunction F(x) can be written as

F~x!511x
cos~x!sinh~x!1sin~x!cosh~x!

cos2~x!sinh2~x!1sin2~x!cosh2~x!
. ~25!

The resultingS(k,v) is shown on Fig. 3. There is a fairly
straightforward interpretation of the main features of this li
shape: The peak atq50 ~i.e., at k5p/a) reflects the pre-
dominantly antiferromagnetic character of the low-ener
fluctuations; in our language, this is a direct consequenc
the fact that the~renormalized! bonds all have odd lengths i
units of a. The strongly damped oscillations with the perio
and the decay scale both of orderGv

22 express the propertie
of the distribution of lengths of the strong bonds: both t
average and the RMS fluctuation of this distribution
lengths are of orderGv

2 .
While this result is interesting, one needs to analyze

effects of higher-order terms in the operator renormalizati
before accepting its consequences for possible neutron
tering experiments. We will argue in Sec. III E that highe
order corrections do not modify the functional form~25! of
the features inS(k,v) at fixedv but only add an ‘‘incoher-
ent’’ background~of strength comparable to that of the fe
tures! and suppress the amplitude of the features by a n
universal multiplicative factor of order one.

A similar scaling function can be derived for the regim
uku!a21. Repeating the above analysis gives

S~k,v!5
A8

l vv ln3~V0 /v!
F̃@ uklvu1/2 ln~V0 /v!#, ~26!

with F̃(x)522F(x), andA8 an order-one numerical con
stant. This scaling functionvanishesfor k→0; for smallk we
haveS(k,v); l vk2 ln(V0 /v)/v. We must therefore conside
the possibility that higher-order corrections may overwhe
this scaling result and render it irrelevant. This is inde
expected to happen forS12(k,v) away from theXXX point.
However, we expect the scaling result to be valid quite g
erally for Szz(k,v) because spin conservation guarantees
the higher-order corrections toSzz(k,v) must also vanish as
k→0 ~see Sec. III E for a detailed discussion of this poin!.
4-10
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2. Dynamic structure factor in random dimer phases:
‘‘Sharpness’’ of the Griffiths regions

Next, we consider the spin dynamic structure factor in
XX and XXX random dimer phases introduced in Se
III A 3. The same approach as for the RS states goes o
unchanged, and we write

S~k,v!;n~Gv!E dldzu12eikl u2

3@P0~z,l uGv!1Pe~z,l uGv!#

3d~v2ve2z! ~27!

for both Szz(k,v) andS12(k,v) in both theXX andXXX
RD phases.~We are again being sloppy about the distincti
betweenGv andGv/2 , as this can be absorbed in the defin
tion of the nonuniversal scale factors that enter our exp
sions.!

Using the results of Ref. 6, it is a simple matter to obta
the full crossover from the RS-like behavior of the structu
factor in the regime 1!Gv&Gd to the behavior characteris
tic of the RD phase in the regimeGv@Gd . Here, we focus
on the behavior in the regimeGv@Gd , as this exhibits some
rather unusual features. At these low energies, the e
bonds dominate over the odd bonds, and the contributio
the odd bonds to the sum Eq.~27! is negligible ~we are
assumingd.0 for concreteness!. For wave vectors in the
vicinity of k5p/a with uqu[uk2p/au!d2/ l v ~i.e., probing
lengths larger than the correlation lengthjav; l v /d2) we ob-
tain

S~k,v!5
Cudu3V0

21/zRD

l vv121/zRD
@11cos~ l vqGv /udu!e2clv

2q2Gv /udu3#,

~28!

whereC and c are some order-one constants, and we h
chosen to write the power-law prefactor in terms of the d
namical exponentzRD. ~As far as our RG calculations ar
concerned,zRD

2152udu for small udu. However, the effective
value ofd that enters this expression is expected to acqui
nonuniversal multiplicative renormalization from the hig
energy physics, and the only reliable statement we can m
is thatzRD

21;udu for small enoughudu.! This result has a strik-
ing oscillatory structure~see Fig. 4! that is not suppressed
significantly by the exponential factor, sinceAGv /udu3
!Gv /udu in the regime under consideration. This is best u
derstood as a novel signature of the sharply defined geom
of the rare Griffiths regions that contribute to the scatter
at a given low energy~i.e., that arefiltered outby their en-
ergy!. More precisely, the average length of such region
of order l vGd

2(Gv /Gd)5 l vGv /udu, while the root-mean-
square fluctuations in the length are only of ord
l vGd

2AGv /Gd5 l vAGv /udu3. Our results thus suggest th
low-energy INS experiments would be able to pick up t
sharply defined geometry of such Griffiths regions in the R
phases in one dimension.

This feature of the Griffiths regions in one dimension w
noted in Ref. 6, Sec. IVB, in the context of the RTFIM
13442
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where it was conjectured also that other properties of s
low-energy regions are likewise sharply defined: for e
ample, in the disordered phase of the RTFIM, the magn
moment of the Griffiths regions with agiven characteristic
energy is sharply defined21 and proportional to the~sharply
defined! length of such regions.~In fact, similar ‘‘sharpness’’
is expected to hold for any bond ‘‘property’’ that ‘‘rides’’ on

top of the singlet RG via recursion relationx̃5x11x3

1Yx2 when bondJ2 is eliminated.! We expect to see a
signature of this sharpness of the Griffiths regions also in
dynamic structure factorSzz in the IAF Griffiths phase~see
below! and also in the Griffiths phases of the on
dimensional RTFIM~Sec. V C!. Finally, an interesting ques
tion, which we leave unanswered for now, is whether sim
sharpness in the properties of the Griffiths regions at a gi
energy occurs and has observable consequences in h
dimensions as well, e.g., in the disordered phase of
d.1 RTFIM.

3. IAF Griffiths phase

Let us first considerSzz(k,v) in the IAF Griffiths phase.
As discussed in Sec. III A 2, the dominant low-energy ex
tations in this phase are classical domain walls. Howeve
is clear that such excitations do not contribute at all
Szz(k,v), since they cannot be excited from the ground st

by the action of operators likeŝk
z , which conserve the tota

stot
z . The leading excitations that do contribute toSzz can

clearly be identified in the RG picture with themz50 ex-
cited states of pairs of superspins, with each pair conne

by a bond withJ̃';v and forming a singlet~note that this is

trueregardlessof the value of the correspondingJ̃z). Now, it

is easy to generate a weakJ̃' coupling of orderv in the IAF
phase, since any typical region of lengthL will have an ef-

fective J̃' of order V0e2cxL ~and an effectiveJ̃z typically
much stronger!. What is more difficult is toisolate such a
region from becoming a part of a larger cluster, otherw
this region cannot support spin fluctuations at frequencyv.
For this, we need two rare RS-like segments~domain walls!
with J̃z&v, one on each side of our~typical! region. Thus,
we need two domain walls, which are usually separated b
large distance of orderv21/z, to occur close to each othe
the ‘‘density’’ of such occurrences is;v2/zIAF. The separa-
tion of the two domain walls—the length of the IAF-ordere
cluster that they isolate—must be of orderu ln vu. More pre-
cisely, if the IAF-ordered cluster has lengthL, it can be
thought of as consisting of then;L/Gd IAF

2 strongly Ising-

coupled spins that are active at the crossover scale; the
fective bonds connecting these spins at the crossover s
typically satisfy ln(J̃'/J̃z);2GdIAF

. The requirement that the

spin-flip coupling for this cluster isv fixes the length of this
cluster to beL5 l vGvGd IAF

, while the uncertainty in this

length can only be of orderl vAGvGd IAF

3 ! l vGvGd IAF
.

We are now ready to calculateSzz(k5p/a1q,v) in the
regimeuqu21@ l vGd IAF

2 , in addition tov!Vd IAF
. The leading-
4-11



a
ly

ef

we
b

ti
m

r

ll
e
th

e
rie

n
e-

c

to

nts
ities:
rel-
u-
e
r
ns-
re-

to

OLEXEI MOTRUNICH, KEDAR DAMLE, AND DAVID A. HUSE PHYSICAL REVIEW B 63 134424
order renormalization of thesj
z in the cluster RG is simple:sj

z

is renormalized to (21) j sc
z for each spinj that is active in

some clusterc, and renormalizes to zero for every spin th
forms a singlet. Assuming that such clusters ‘‘look’’ fair
uniform on the length scales larger thanl vGd IAF

2 , and adding

up the contributions from all such isolated clusters with
fective spin fluctuation frequencyv, we obtain

SzzS k5
p

a
1q,v D5

C8ud IAFu7uV0
22/zIAF

q2l v
3v122/zIAF

3@12cos~qlvGv /ud IAFuu!

3e2cq2l v
2Gv /ud IAFu3u

#, ~29!

whereC8 andc are some order-one constants and the po
of the d IAF that appears in the prefactor has been fixed
demanding consistency with the off-critical scaling form

SzzS k5
p

a
1q,v D5

A
l vvGv

3
CS Gv

Gd IAF

,uqlvu1/2GvD , ~30!

with C(0,y)5F(y). Note also that the overall 1/q2 depen-
dence is a consequence of the fact that the spins contribu
to the scattering have been taken to be distributed unifor
over a sharply defined region~the cluster!; we expect this to
cross over to a much faster decay at large momenta~such
that uqu21; l vGd IAF

2 ) well outside the range of validity of ou

scaling picture.
The situation is quite different forS12(k,v). As we shall

see in Sec. III C, the renormalization of thesj
6 spin operators

is quite nontrivial, and we are unable to make an equa
detailed prediction forS12. However, we expect that th
matrix element for producing domain-wall excitations wi
energies of orderv by the action ofs6 on the ground state is
strongly suppressed as some power ofv, giving rise to a
correspondingly small value forS12(k,v) at smallv.

C. Average local autocorrelations

The same approach can be used to calculate averag
tocorrelation functions, and this section is devoted to a b
account of our results.

We consider the local dynamical susceptibilities

x j j
aa~v!5(

m
u^musj

au0&u2d~v2Em!, ~31!

where a5z or a5x. A knowledge of the low-frequency
behavior of these susceptibilities can immediately be tra
lated into information about the long-time limit of the corr
sponding imaginary-time autocorrelation functions

Cj j
aa~t!5^sj

a~t!sj
a~0!&. ~32!

1. RS states and RD phases

As long as one is interested only in averages of such lo
quantities~over different realizations of disorder!, it again
suffices to consider only the leading-order spin-opera
13442
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renormalizations. We thus already have all the ingredie
needed to calculate these average dynamical susceptibil
our basic approach is familiar enough by now, and the
evant results of Ref. 4 for the renormalized bond distrib
tions have already been reviewed in Sec. III A. Below, w
will be correspondingly brief. We first give our results fo
the average local dynamical susceptibilities and then tra
late these to results for the long-time behavior of the cor
sponding average autocorrelation functions.22 The leading
behavior is the same for botha5z anda5x, so we drop all
superscripts.

For abulk-spin, we obtain

@x loc#av~v!;
n~Gv!

v
@P0

e~Gv!1P0
o~Gv!#. ~33!

For thecritical RS states (Pe5Po) we find

@x loc#av~v!;
1

vu ln vu3
,

@Cloc#av~t!;
1

u ln tu2
, ~34!

while off-critical—in the RD phases—we find

@x loc#av~v!;
udu3

v121/zRD
,

@Cloc#av~t!;
udu3

t1/zRD
. ~35!

Similarly, for anend-spin s1 of a semi-infinite chain~with
j >1) we obtain

@x1#av~v!;
P0

e~Gv!P0
o~Gv!

v
. ~36!

For the RS states we find

@x1#av~v!;
1

vu ln vu2
,

@C1#av~t!;
1

u ln tu
, ~37!

and in the RD phases

@x1#av~v!;
d2

v121/zRD
,

@C1#av~t!;
d2

t1/zRD
. ~38!

2. IAF Griffiths phase

In the IAF phase, unlike in the singlet states, we need
make a distinction betweenxzz and xxx. Consider first
4-12
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@x loc
zz #av(v). From our previous discussion of the IAF phas

it is clear that, in the regimev!Vd IAF
, the dominant contri-

butions come from IAF-ordered clusters of lengt
;GvGd IAF

~i.e., with effective spin-flip couplings of orderv)
that are isolated from the rest of the system by domain w
with J̃z&v on either side. From the scaling picture of th
phase, we get

@x loc
zz #av~v!;d IAF

4u
V0

22/zIAF ln~V0 /v!

v122/zIAF
,

@Cloc
zz #av~t!;d IAF

4u ln~V0t!

~V0t!2/zIAF
. ~39!

The analysis is more complicated for@x loc
xx #av(v), and we

can only make a plausible estimate for this quantity. This
because thex andy components of the spin operators reno
malize in a nontrivial way under the cluster RG. The orig
of this difficulty may be seen as follows: Consider, for e
ample, combining three spinss2 , s3, ands4, connected by
strongJ2

z andJ3
z , into a superspins̃(234) . To zeroth order, all

three operatorss2
1 , s3

1 , ands4
1 renormalize to zero. To firs

order, s2
1 and s4

1 renormalize to (s2
1)eff52s1

1J1
'/J2

z

2 s̃(234)
1 2J3

'/J2
z , (s4

1)eff52s5
1J4

'/J3
z2 s̃(234)

1 2J2
'/J4

z , while
s3

1 renormalizes to zero to this order. Roughly speaking, the
original spin-flip operators of the~active! spins have projec-
tions onto the remaining effective cluster spin-flip operat
with components given by the ratio of the correspond
effective spin-flip couplings to the original spin-flip cou
plings.

Now, the dominant contributions to@x loc
xx #av(v) come

from the low-energy~of order v) domain-wall excitations,
which are represented in the RG picture by the bonds w
J̃z;v connecting the effective spins~clusters! in the effec-
tive theory with the renormalized cutoffv. The matrix ele-
ment for producing such an excitation by a bare spin-
operator of a spin active in one of these clusters will be
order of the correspondingJ̃', while the number of such
spins contributing will be of order of some effective ‘‘mo
ment’’ mx of this cluster. Because of the matrix eleme
proportional toJ̃', there will be a significant contribution
only if this J̃' is also of orderv. As we have already seen
this can happen only if such an IAF-ordered cluster h
length of orderGv and is isolated from the rest by RS-lik
regions ~domain walls! with Jz&v on either side. We al-
ready know how to estimate the number density of su
Griffiths regions. As far as the effective momentmx of such
an IAF cluster is concerned, we can only make a crude e
mate that bounds it from above by the number of spins
are active in this cluster:mx(v)&Gv ; however, we are un-
able to obtain the precise power of the logarithm that en
the energy dependence of the effective moment. We th
fore leave out the logarithmic correction, and only write t
dominant power-law part of our estimate:
13442
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@x loc
xx #av~v!;v112/zIAF,

@Cloc
xx #av~t!;

1

t212/z
. ~40!

D. Spin transport

This section is devoted to a discussion of the dynam
spin conductivitys8(v) in the spin-1/2XXZ chains. Our
task here is to evaluate the Kubo formula Eq.~5! in the
low-frequency limit. For the RS and RD states, we will u
information available from the scaling solutions to the s
glet RG recursion relations to achieve this, while in the IA
phase, we will use the scaling picture of the Griffiths pha
we have developed earlier. Our results for the dynam
conductivity are summarized in Figs. 1 and 2.

1. Random singlet states

We first need to work out the rules that govern the ren
malizations of the current operators. Assume once again
J23

' is the strongest bond. We wish to work out perturbative

the renormalized operatorst̃1/2/3 that we trade int1/2/3 for,
when we freeze spins 2 and 3 in their singlet ground s
~the other current operators to the left and right of this s
ment are left unchanged to leading order by the renormal
tion!. Now, note that these other operators have overall s
factors in them that are nothing but the correspondingJ'

couplings. In order to be consistent, we clearly need to w
out t̃1/2/3 correct toO( J̃14

' ) ~whereJ̃14 is the effective bond
connecting spins 1 and 4 after we freeze out spins 2 an!
by adding the effects of virtual fluctuations to the projectio
of t1/2/3 into the singlet subspace. An explicit calculatio
gives the simple result that all three operators renormaliz
the same operatort̃1/35 t̃25 i J̃14

' (s1
1s4

22s4
1s1

2)/2, which we

will denote henceforth byt̃1 for consistency of notation.
As we carry out the RG, the above result implies that

total current operator( j 51
L t j entering Eq.~5! renormalizes to

(̃ j l̃ j t̃ j , wherej now labels the remaining sites of the reno
malized system, and thel̃ j are the lengths of the correspon
ing renormalized bonds.~Note that this result makes sens
physically and is a consequence of spin conservation: wh
magnetic field with a uniform gradient is applied along t
length of the chain, the effective lengthsl̃ j measure the
‘‘phase’’ along the chain of this ‘‘driving potential.’’! Con-
sider two spins connected by a strong bond (J̃',J̃z) in the
renormalized theory with cutoffVfinal . Since the current op-
erator living on this bond connects the singlet ground state
the pair only to the triplet stateut0& separated from the sin
glet by a gapJ̃', we chooseVfinal5v and consider the
renormalized spectral sum

s8~v!5
1

vL(
m

; ZK mU(
j

;

l̃ j t̃ jU0L Z2d~v2Ẽm!. ~41!

This spectral sum is dominated by precisely theut0& triplet
excitations of pairs of spins that are connected by the~effec-
4-13
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tive! bonds withJ̃'5v and are being eliminated at this e
ergy scale; the corresponding matrix element is justl̃ v/2,
where l̃ is the length of the bond connecting the pair. In t
thermodynamic limit, we thus have

s8~v!;
n~Gv!

v E dldzv2l 2P~z,l uGv!d~v2ve2z!.

~42!

This immediately yields our central result

s8~v!5KRSl v ln~V0 /v!, ~43!

valid for v!V0. Here,KRS is an order-one numerical con
stant,l v is the microscopic length-scale defined earlier, a
V0 is the microscopic energy cutoff. Notice that this analy
holds equally well at all three RS fixed points, which diff
only in the corresponding values of the nonuniversal sc
factors.

A brief digression is in order, before we go on to discu
this result: The real part of the dynamical conductivity c
be related ~on general grounds! to the behavior of the
dynamic-structure factorSzz(k,v) neark50

s8~v!5v
1

2

d2

dk2
Szz~k,v!; ~44!

this can be checked by comparing directly the correspond
spectral sums and noticing that the action of the two ope
torsT5( jt j andV5( j j s j

z on the eigenstates of the Hami
tonianH are related throughT5 i @H,V#. It is easy to check,
using the scaling form Eq.~26!, that our result for the con
ductivity is consistent, as it must be, with our previous
derived result for the dynamic structure factor.

Going back to Eq.~42!, we see thats8(v) diverges loga-
rithmically for small v in the unusual ‘‘spin-metal’’ phase
controlled by theXX fixed point as well as at the critical
points(XXX andXXZC) separating this phase from the ‘‘in
sulating’’ phase with Ising antiferromagnetic order in t
ground state. Note that this ‘‘metal-insulator’’ transition h
the curious feature that the quantum critical points separa
the conducting phase from the insulating phase have
sameT50 transport properties as the conducting phase.

2. IAF Griffiths phase

On the insulating side, we expects8(v) to be suppressed
below the crossover scaleVd IAF

; the dominant contributions

for v!Vd IAF
come from some rare regions that contain lo

finite segments locally in the ‘‘metallic’’ phase.
We begin by providing a rough estimate of these con

butions tos8(v): In our sample, consider a~large! region of
lengthL locally in the RS phase; the number density of su
regions is roughlypL, with somep,1 ~which depends on
the distance from the transition!. If these regions are effec
tively isolated from the rest of the system, the average po
absorption per spin in each such region is proportional to
finite-size conductivity calculated in the Appendix:

W5LsRS8 ~v,L !;L3/2exp~2cu ln vu2/L !, ~45!
13442
d
s

le

s

g
a-

g
e

-

h

er
e

where we have assumed thatL, although large, satisfiesL
!u ln vu2 ~this assumption will turn out to be self-consisten!.
The total power absorbed in the sample is then obtained
summing over all such regions:

s8~v!;E dLpLL3/2exp~2cu ln vu2/L !. ~46!

Evaluating this integral by a saddle-point method, we fi
that the lengths that dominate are of orderu ln vu ~our as-
sumption about the lengths is thus valid!, and arrive at the
following estimate

s8~v!;vau ln vu2, ~47!

where a5a(d IAF).0 is a continuously varying exponen
vanishing at the transition. While this argument is sugg
tive, we find it more convincing23 to take an alternative route
based on the scaling picture we have developed earlier
the IAF phase, which has the added advantage of allowin
to relate the exponenta to the dynamical exponentz(d IAF).
This is what we turn to next.

We have already seen that the most numerous low-en
excitations in the IAF Griffiths phase are domain walls, w
the integrated density of statesnv;v1/zIAF. Suchclassical
Ising excitations, however, do not contribute to the dynam
cal conductivity. The dominant contributions come fro
IAF-ordered clusters of lengthsL;GvGd IAF

~i.e., with effec-

tive spin-flip couplings of orderv) that are isolated from the
rest of the system by domain walls withJz&v. Remember-
ing that the number density of such Griffiths regions
;v2/zIAF, and noting that the corresponding ‘‘phase length
are of orderL;u ln vu, we immediately obtain Eq.~47! with
a52/zIAF . More formally, we sum over the possible sepa
tions of two such domain walls, with the constraint that t
typical IAF-ordered region isolated by the two has sign
cant spin fluctuations at the characteristic frequencyv:

s8~v!;
nv

2

v E dLv2L2d~v2V0e2cxL!. ~48!

We thus obtain for the dynamical conductivity in the IA
phase

s8~v!5KIAFl v~v/V0!2/zIAF ln2~V0 /v!, ~49!

whereKIAF is a numerical prefactor that depends contin
ously ond IAF . The scaling ofKIAF with d IAF for small d IAF
can be obtained by demanding consistency with the
critical scaling form for the conductivity

s8~v!5KRSl v ln~V0 /v!S IAF~Gv /Gd IAF
!, ~50!

which immediately implies thatKIAF;d IAF
(22c)/l;zIAF

21 .

3. Dynamical conductivity in RD phases

We now calculate the dynamical spin conductivity in t
XX andXXX random dimer phases. Here, the same sing
RG can be employed all the way across the crossover s
Gd[1/udu, and into the energy regime of a well-develop
RD phase. The dynamical conductivity is given by the sa
4-14
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expression~42! as for the RS states: we simply add cont
butions from the even (Pe) and the odd (Po) bonds in com-
plete analogy with the calculation of the dynamic structu
factor. Using the scaling solutions of Ref. 6, it is quite simp
to calculate the full scaling function for the dynamical co
ductivity

s8~v,d!5KRSl v ln~V0 /v!SRD@ udu ln~V0 /v!#. ~51!

Here, we restrict ourselves to noting thatSRD(x);const for
x!1, while for x@1, SRD(x) scales asSRD(x);xe22x.
Thus, at frequenciesv well below the crossover scaleVd ,
we have

s8~v!5KRDl v~v/V0!1/zRD ln2~V0 /v!, ~52!

with the numerical prefactorKRD;udu and the dynamical-
exponentzRD;udu21 for small udu. We can now interpret this
form directly in terms of the rare regions that dominate
conductivity: Assume, for concreteness, thatd.0, i.e., that
the even bonds are dominating; the main contribution to
dynamical conductivity at frequencyv!Vd then comes
from the even bonds with effectiveJ̃e5v. Such weak even
bonds are generated only across rare long regions tha
locally in the opposite dimerized phase, and these are
cisely the regions that dominate the low-energy density
states and thus determine the dynamical exponentzRD(d);
this explains the factorv1/zRD in Eq. ~52!. Moreover, all such
bonds have a well-defined length proportional to ln(V0 /v),
which explains the ln2(V0 /v) in Eq. ~52!.

4. Perspective: Spinless interacting fermions with particle-hole
symmetric disorder

To put these transport properties in perspective, we re
that the spin-1/2XXZ chain is equivalent, via the usua
Jordan-Wigner transformation, to a system of spinless in
acting fermions with particle-hole symmetric disorder. Mo
specifically, we write the spin operatorssj

6[sj
x6 isj

y in
terms of fermion creation~annihilation! operatorscj

† (cj ) as

sj
15 )

j 8, j

~122nj 8!cj
† ,

sj
25 )

j 8, j

~122nj 8!cj , ~53!

while sj
z5nj21/2 ~herenj[cj

†cj is the fermion number op
erator at sitej ). In this language,HXXZ can be written as

H5 (
j 51

L21

@ t j~cj 11
† cj1cj

†cj 11!1Vj~nj21/2!~nj 1121/2!#,

~54!

with t j5Jj
'/2 andVj5Jj

z . The couplingJz thus controls the
strength of the nearest-neighbor particle-hole–symmetric
pulsive interaction between the fermions. The IAF phase
obtains for largeJz corresponds to a charge-density-wa
state stabilized by interactions. In the absence of interact
(XX chain! we obtain a free-fermion random-hopping pro
lem at zero chemical potential.
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This free-fermion problem has been extensively studied
the past, and is known to have rather unusual localiza
properties due to the additional particle-hole symme
present.24,25 For instance, an elementary calculation imme
ately reveals that the zero-temperature average Land
conductance@gL#av of a finite segment of lengthL connected
to perfect leads scales as@gL#av;1/AL, in sharp contrast to
the usual exponentially-localized behavior in one dimensi
the corresponding conductivity, of course, scales asAL.
Now, the strong-disorder RG predicts that lengths scale
the square of the logarithm of the energy scale in the lo
energy effective theory describing theXX-RS state; our re-
sult for the dynamical conductivity is thus consistent with t
elementary Landauer calculation~see also our explicit finite-
size scaling calculations in the Appendix!.26 Notice, how-
ever, that our approach is not limited to the noninteract
case. It allows us to reliably treat the effects of interactio
and follow the dynamical conductivity through a ‘‘meta
insulator’’ transition that is driven by strong interactions
the presence of strong disorder.

5. Numerical study of the dynamical conductivity
at the XX fixed point

At the XX point, the Hamiltonian Eq.~54! describes non-
interacting fermions with random hopping amplitudes, a
we are essentially faced with the problem of finding the lo
energy eigenvalues and eigenstates of the correspon
single-particle Hamiltonian~an L3L matrix operator! H
5( j 51

L21t j (u j 11&^ j u1u j &^ j 11u), which defines the Schro¨-
dinger equation for this problem. Any fermionic state c
then be represented as a Slater determinant of the co
sponding~normalized! single-particle eigenstatesufm& with
eigenenergiesem . In the single-particle language, the Kub
formula for the conductivitys8(v) at zero chemical poten
tial and at a finite temperatureT reads

s8~v!5
1

vL (
m1 ,m2

ZK fm2U(j
T~ j !Ufm1L Z2

3@ f ~em1
!2 f ~em2

!#d~v2em2
1em1

!, ~55!

where T( j )[ i t j (u j &^ j 11u2u j 11&^ j u)is the current opera-
tor on the linkj and f (e)[1/(ee/T11). ~This version of the
Kubo formula will also prove useful when we analyze t
full temperature dependence of the dynamical conductiv
in Sec. VI.!

Here, we test theT50 predictions by evaluatings8(v)
using exact numerical diagonalization of finite systems. T
results of such calculations for system sizesL5128, 256,
and 512 with the hopping amplitudest j drawn independently
from a uniform distribution over@0,1# are shown in Fig. 6,
where we have averaged over 100 000 samples for eachL. In
an infinite sample we expect the conductivity to diver
logarithmically, but with the system sizes studied here,
cannot quite probe this infinite-sample regime 1! ln(V0 /v)
!AL, rather, we are in the regime 1! ln(V0 /v)&AL. Nev-
ertheless, the numerical results of Fig. 6 clearly show that
dynamical conductivity increases as the frequency is lowe
4-15



ee
o

la
ha
or

d

ct
io

a

-
l-

nu-

ng
tical
ce

nu-
s-
ons

der
we

use
and
ues
re-
pro-
y
g-

n be
ch.
ire
RG

ic
ula-
ed

asily
is-

ins
glet

-

il-

na

m
le
re

d

lly

f
e

pl
em

n
ai

OLEXEI MOTRUNICH, KEDAR DAMLE, AND DAVID A. HUSE PHYSICAL REVIEW B 63 134424
all the way to the crossover scale ln(V0 /v);AL, thus sup-
porting our claim thats8(v) diverges logarithmically at low
frequencies.

For a more detailed test of our theoretical results, we n
to quantitatively analyze the effects of a finite system size
our predictions for the dynamical conductivity. The calcu
tion is summarized in the Appendix. Here, we only note t
this analysis allows us to write the following scaling form f
the conductivity:

s8~v,L !5 l v ln~V0 /v!Q@ l v ln2~V0 /v!/L#; ~56!

the scaling functionQ is characterized in the Appendix, an
the above result is expected to hold for large enoughL and
ln(V0 /v) @with no restrictions on the ratio ln2(V0 /v)/L].
However, the numerical results cannot be compared dire
with this scaling result since it assumes that the distribut
of bond lengths has reached the form characteristic of theXX
fixed point, which is not the case for the sizes that we c

FIG. 6. Scaling plot of the dynamical conductivitys8(v,L) at
theXX point for finite systems of sizesL5128, 256, and 512, with
free boundary conditions, calculated by exact numerical diago
ization and, forexactly the samesystems, by the finite-size RG
analysis of the Appendix. Free-fermion hopping amplitudest j are
drawn independently from a uniform distribution over@0,1#, and
the ~bare! phase lengths are set tol j51. We usedV052 corre-
sponding to the initial energy cutoff in the equivalent spin syste
also, we usedl v51 corresponding to the microscopic length sca
in the problem. The agreement of the RG predictions with the
sults of the exact diagonalization is fairly good~given the not-so-
strong initial disorder!, and the dynamical conductivity is indee
increasing all the way to the~finite-size! crossover scale ln(V0 /v)
;AL/ l v. Note that with the sizes studied, we can only partia
access the bulk scaling regime ln(V0 /v)!AL/ l v, in which we ex-
pects8(v,L); ln(V0 /v) and which on the plot is toward the left o
the horizontal axis. Also note that in the opposite regim
ln(V0 /v).AL/ l v, unlike in the bulk regime,s8(v,L) is not self-
averaging; in this regime, the plotted average over different sam
represents roughly the distribution of the lowest gap in the syst
Inset shows how theL→` scaling form~thick line! is approached
by the finite-sizes8(v,L) calculated from the RG for the give
initial conditions~the lines plotted here are the same as in the m
panel!. Note that the vertical scale is set by the~numerical! prefac-
tor of the scaling function in the bulk scaling regime@where
s8(v)' 7

180 ln(V0 /v)].
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diagonalize numerically: the ‘‘length part’’ of the distribu
tion P(z,l uG) is still evolving toward the corresponding sca
ing form from the initial conditionP(z,l uG I)5e2zd( l 21).
Nevertheless, we can compare the results of the exact
merical diagonalization with the~formal! predictions of the
RG for thesamesystems. This can be done by either runni
the RG on the same samples or by evaluating the analy
~within the RG! expression, given by the inverse Lapla
transform Eq.~A9! for these initial conditions. In Fig. 6, we
compare the RG result obtained in this manner with the
merically evaluated conductivity. Given that the initial di
order is not very strong, the agreement of the RG predicti
with the s8(v,L) from the exact diagonalization is fairly
good.

E. On validity of results

So far, our calculations have relied on the leading-or
renormalizations of the spin operators; in this subsection
will try to justify validity of this approximation. We will not
address the corresponding question for the RG itself beca
this has been analyzed with great care in Refs. 6 and 4,
we have nothing to add here. Instead, we focus on iss
specific to our calculation of dynamical quantities, and the
fore not addressed as such in previous work. Here, we
vide a ~partial! justification of our leading-order results b
analyzing the effects of the first corrections to the leadin
order expressions for the renormalized operators; this ca
done consistently within the framework of the RG approa
Any consistent analysis of further corrections would requ
that we also consider higher-order corrections to the
rules themselves, and we stop well short of doing that.27

As an illustrative example, we consider the dynam
structure factor in the RS states. Our leading-order calc
tions used only the zeroth-order result for the renormaliz
spin operators. The renormalized operators can also be e
worked out to first order; these were considered in the d
cussion of typical correlations in Ref. 4. When a pair of sp
2 and 3 connected by a strong bond is frozen into a sin
state, the neighboring spin operatorssW1 andsW4 do not change
even to first order, while the spin operatorssW2 andsW3 renor-
malize to

~s2
z!eff52~s3

z!eff52
J1

z

2J2
'

s1
z1

J3
z

2J2
'

s4
z ,

~s2
1!eff52~s3

1!eff52
J1

'

J2
'1J2

z
s1

11
J3

'

J2
'1J2

z
s4

1 . ~57!

Thus, the decimated spinssW2 and sW3 obtain small ‘‘compo-
nents’’ of orderJ1 /J2 , J3 /J2, onto the neighboring spinssW1

andsW4. As we run the RG and renormalize down to scaleG,
the system consists ofnG active spins per unit length, sepa
rated from each other by ‘‘dead’’ regions~with lengths of
orderG2) of decimated spins. Each decimated spinr in the
dead region between two remaining active spinsj and k
~wherej andk are nearest neighbors in the effective Ham
tonian at scaleG) will have some componentsCr j andCrk

l-

;

-

es
.

n
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on spinssW j andsWk . From the point of view of calculating the
spectral sum Eq.~4!, each active spinj acquires some
(k-dependent! effective momentm̃ j (k) coming from all deci-
mated spins with nonzero components onsW j :

m̃ j~k!511 ( 8
i 1,r , i 2

Cr j e
ik(r 2 j ), ~58!

where the sum is over all previously decimated spinsr be-
tween the effective neighborsi 1 and i 2 of the spinj, i 1, j
, i 2. The componentsCr j are simply the ground-stat
correlations28 ^srsj&; such typical correlators decay as
stretched exponential2@ ln Crj#av;ur 2 j u1/2. Note that the
characteristic length scale for this decay is themicroscopic
length scalel v . It is thus clear that the sum overr in Eq. ~58!
converges quickly, and the renormalization of the mom
m̃ j away from its bare value of 1 comes mainly from t
nearby spins that were decimated early in the RG. T
renormalization is of order one, but only weaklyk depen-
dent.

We now analyze the consequences of this renormaliza
of the moments for the two scaling forms of the dynam
structure factor derived earlier in the limit of low freque
cies, one in the vicinity ofk5p/a, and the other in the
vicinity of k50. First, considerk5p/a1q, with uqu! l v

21 .
For such small values ofq, we can neglect theq dependence
of the moments and evaluate them atk5p/a. To evaluate
the spectral sum Eq.~4!, we need to add up the contribution
coming from the strong bonds at scaleVfinal . Each strong
bond contributesum̃L1m̃Reiql u2, wheremL and mR are the
moments~evaluated atk5p/a) of the two spins connecte
by this strong bond. We can now proceed in two steps: F
we fix l and average over the moments of all strong bo
with a given length. This gives us a quantityc11c2u1
1eiql u2 that we now need to average over the length dis
bution of the strong bonds; herec1 and c2 are now some
fixed numbers of order one, since we expect that the m
renormalization of each moment comes from few nea
spins and is roughly independent of the lengths of the adj
ing bonds. Thus, we see that Eq.~24!, with F given by Eq.
~25!, indeed describes the dynamic structure factor fok
close top/a and a fixed lowv; the higher-order correction
renormalize the overall amplitude by a factor of order o
and also produce an ‘‘incoherent’’ background of a com
rable strength that depends only weakly onk ~i.e., that
changes significantly only whenk is changed by an amoun
of order l v

21).
For k! l v

21 ~i.e., in the scaling regime neark50), the

discussion is very similar; each strong bond contributesum̃L

2m̃Reikl u2, where the moments are now evaluated atk50.
This again gives us a quantityc11c2u12eikl u2 to be aver-
aged over the length distribution of the strong bonds. In g
eral ~away from theXXX point!, we now have to conside
the Szz(k,v) component separately from theS12(k,v)
component, since the totalstot

z conservation constrains th
constantc1 to be identically zerofor the case ofSzz(k,v).
Thus, in the case ofSzz(k,v), higher-order corrections only
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produce an order one renormalization to the overall scale
our scaling result Eq.~26!; of course, there will be additiona
corrections, but these will vanish faster than the scaling
sult in the low-frequency limit. In the case ofS12(k,v), an
inspection of the renormalization rules Eq.~57! shows that to
this orderc1 will be zero forS12(k,v) as well, even in the
absence of full Heisenberg symmetry; however, this is
expected to be true in general~to all orders!, and we expect
a small but nonzero background to be present in the gen
case. Thus,S12(k,v) neark50 will in general consist of
two parts: the scaling part given by Eq.~57! with an order
one nonuniversal overall scale~this part vanishes as;k2 for
small k), and a nonscaling, weaklyk-dependent additive
background of the same order as the scaling part.

The above arguments typify the general logic behind
justification of the leading-order results for all of our calc
lations; in some cases such a program can be carried
analytically,29 while in other cases we have to be satisfi
with arguments like the ones presented above. Such a
ments can also be bolstered by numerically implementing
higher-order operator renormalizations to calculate corr
tions within the RG to our leading order results@indeed, we
have confirmed that such a numerical check forS(k,v) in
the Heisenberg model is in qualitative agreement with
arguments presented above#.

IV. TRANSPORT IN STRONGLY RANDOM SPIN-1
CHAINS

A. Singlet RG description of the phases: A review

The strong-randomness quantum critical point, wh
controls the transition from the Haldane state to the rand
singlet state in the spin-1 chains, and the immediate vicin
of this critical point, can be analyzed by a somewhat e
tended RG procedure introduced in Refs. 18 and 5, or b
variant of the same used in Ref. 8.

The basic idea is to replace the original spin-1 chain by
effective modelthat is argued to describe the low-ener
physics of the original system. As we shall see later, t
effective model can be made plausible by thinking in ter
of a bond-diluted chain~it is also possible to arrive at esse
tially the same model by starting with a random antiferr
magnetic spin-1 chain and using theapproximate30 RG pro-
cedure of Ref. 8!. This effective model is written entirely in
terms of spin-1/2 degrees of freedom coupled by near
neighbor Heisenberg exchange couplings. Allevenbonds are
alwaysantiferromagneticand are drawn from an appropria
distribution of positive bonds, whileodd bonds can be of
either sign and are drawn from a different distribution.

This effective model can be analyzed using the extens
of the singlet RG introduced in Refs. 18 and 5. One beg
by looking for the largestantiferromagneticbond in the sys-
tem, sayJ2 connecting spins 2 and 3; this defines our ba
energy-cutoffV0. Further analysis can be split into thre
cases:~i! If the bonds adjacent to the largest AF bond a
smaller in magnitude, the two spins are frozen into a sing
state and an effective couplingJ̃14 is generated betwee
spins 1 and 4 exactly as in the singlet RG for the spin-
4-17
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chain.~ii ! If both the adjacent bonds are larger in magnitu
thanJ2, then spins 1 and 2 and spins 3 and 4 are first co
bined to make effective spin-1 objects~since in this caseJ1
and J3 are necessarily ferromagnetic!, and these effective
spin-1 degrees of freedom are then frozen into a singlet s
generating an effective couplingJ̃0554J0J4/3J2 between
spins 0 and 5.~iii ! If only one of the adjacent bonds, sayJ3,
is larger in magnitude thanJ2, then spins 3 and 4 are firs
combined into an effective spin-1 object. The system is th
frozen into the subspace in which spin 2 and this effect
spin-1 object are coupled together to form an effective sp
1/2 object that we label ass2 for consistency of notation. The
corresponding renormalized couplings are given asJ̃12

52J1/3 andJ̃2552J4/3. This procedure is now iterated wit
the energy-cutoffV being gradually reduced. It is importan
to note that there is no inconsistency in leaving ferrom
netic bondsJ,2V untouched that are not adjacent to a
antiferromagnetic bonds at the cutoff scale; we could equ
well have combinedall pairs of spins connected by suc
strong ferromagnetic bonds into effective spin-1 objects
the cost of cluttering up our notation.

A detailed analysis of this iterative procedure can be su
marized as follows:18,5,8 Let G[ ln(V0 /V) and letnG be the
fraction of active spins at log-cutoffG. For the even bonds
we introduce the distributionP(zuG) of the corresponding
logarithmic couplingsz[ ln(V/J). For the odd bonds, le
N(G) be the fraction of odd bonds at scaleG that are
stronglyferromagnetic withJ,2V; for largeG, the remain-
der of the odd bonds are symmetrically distributed ab
zero and are therefore described by a distribution foruJu that
we characterize by the distributionQ(zuG) of the corre-
sponding logarithmic couplingsz[ ln(V/uJu). When W, the
width of the distribution of the log-exchanges in the origin
spin-1 Hamiltonian Eq.~6!, exceeds a critical valueWc , the
system is in a spin-1 random singlet phase. In the langu
of the spin-1/2 effective model, this RS phase is described
a fixed point withP(zuG)5G21e2z/G, N(G)51, nG;1/G2,
andQ(zuG)5Q0e2Q0z for largeG @Q0 is some nonuniversa
O~1! number#. As W is decreased, the system undergoe
quantum phase transition to the so-called gapless Hald
phase; both the quantum critical point and the GH phas
the vicinity of it are still controlled by strong-disorder fixe
points. At the critical fixed point~which is an infinite-
disorder fixed point! we have P(zuG)5Q(zuG)
52G21e22z/G, nG;1/G3, andN(G)51/2. The GH phase in
the vicinity of the quantum critical point is controlled by
line of fixed points; each point on this line is characteriz
by some constantP0 ~which depends on the strength of di
order W). At a point labeled byP0, we have P(zuG)
5P0e2P0z, Q(zuG)5Q0(G)e2Q0(G)z where Q0(G)
;e2P0G, N(G)→0, and nG;P0

3e2P0G. The continuously
varying P0(W) vanishes at the transition asP0;(Wc
2W)n/3, wheren is the correlation length exponent obtain
in Refs. 18 and 5; the GH phase is thus similar to the dim
ized phases of the spin-1/2 chains.

B. Spin transport

1. Doing calculations in the effective model

Before we calculate anything, we need to describe h
we think about the spin transport in this case. This is som
13442
e
-

te,

n
e
-

-

ly

t

-

t

l

ge
y

a
ne
in

r-

w
e-

what nontrivial, for we are working in an effective model o
spin-1/2 degrees of freedom, and some thought is require
decide what is the correct quantity to calculate.

For this, we go back for a moment to the original rando
spin-1 chain and review an intuitive construction that lea
to the effective model in terms of spin-1/2 variables on
Consider the case of dilute randomness,18 that is, consider a
uniform spin-1 chain with a small fraction of very wea
bonds that effectively break the chain into pure finit
segments weakly coupled with each other. The low-ene
effective degrees-of-freedom of such a segment are two h
spins localized near the two edges of the segment—these
the spin-1/2’s of the effective model. The coupling of th
edge spins on neighboring segments is given roughly by
original coupling of the two segments, and is alwa
antiferromagnetic—these are the even bonds of the effec
model. On the other hand, the coupling of the two edge-sp
of the same segment can be either antiferromagnetic or
romagnetic depending on whether the length of the segm
is even or odd; these couplings are represented by the
bonds in the effective model.

We now need to express dynamical properties of the s
tem in terms of these effective spin-1/2 degrees of freed
In particular, we want to analyze the low-frequency pow
absorption when an oscillating magnetic field with a unifo
gradient is applied to the system; this will give us the d
namical conductivity s8(v). Since the magnetic field
couples to the conserved ‘‘charge’’ in the system, the cor
sponding current operators that we need to use when w
ing out the Kubo formula for the effective model a
uniquely determined by spin conservation: The current
erator on the odd bonds connecting the edge half-spinssW1

andsW2 of the same segment~which represents the total-spi
current operator of this segment! is tW5J12l 12sW13sW2; hereJ12
is the corresponding effective coupling andl 12 is some ef-
fective phase lengththat we expect to be given roughly b
the length of the segment. Naturally, the current operators
the even bonds connecting the edge half-spins of the ne
boring segments have a similar form.~The argument in this
case is even simpler: one only needs to know that the
edge spin-1 operator of a segment ‘‘projects’’ onto the c
responding effective edge spin-1/2 operator with an am
tude of order one.! Note that the precise values of the pha
lengths in the initial effective model~for the dilute spin-1
chain! are not important, since at still lower energies w
expect the distributions of couplings and the correspond
bond lengths to approach some universal distributions c
acteristic of the appropriate fixed point.

2. Dynamical conductivity

Having identified the appropriate current operators in
effective problem, we now work out the rules that gove
their renormalization in the RG scheme used to analyze
effective model. As in the spin-1/2 case, and as discus
above, we write the part of the total current operator@in the
spectral sum Eq.~5!# that is associated with a given bon
( j , j 11) in the forml jtW j wheretW j is the usual bond operato
tW j5JjsW j3sW j 11 and l j is the appropriate phase length. W
4-18
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can then follow renormalizations of the needed operators
keeping track of the phase lengths, in addition to the vari
bond-strengths. Unlike the spin-1/2 chains, these ph
lengths need not equal the physical distances between
corresponding spins; in fact, even the physical position of
effective half-spin often cannot be specified unambiguou
as, for example, when this half-spin appears as an effec
doublet formed by combining~via a strong AF bond! an
effective spin-1~which is an intermediate construction in th
Hyman-Yang RG rules! and a neighboring spin-1/2. In suc
cases, our rules can actually be used to assign some me
to the physical position of such an effective half-spin.

The rules for the phase lengths can be easily stated: In
cases~i! and ~ii !, when in the final step we form a single
from either two spin-1/2 objects or two spin-1 objects, t
phase length of the new effective bond is simply the sum
the phase lengths of all the bonds that are eliminated. In
case~iii ! the phase lengths associated with effective bo
J̃12 and J̃25 are l̃ 125 l 11(4/3)l 21(2/3)l 3 and l̃ 255 l 4
2(1/3)l 21(1/3)l 3, respectively.

The rules for the phase lengths in the case~iii ! are some-
what unusual; for example, negative phase lengths can
produced. Note, however, that there are many factors
prevent this from happening too often, and the phase len
will in many instances coincide with the corresponding ge
metrical lengths: decimations in the cases~i! and~ii ! tend to
‘‘correct’’ deviations of the phase lengths from the geome
cal lengths, and in both the RS and GH phases there
simply no decimations of type~iii ! at low-enough energies
Also, the lengthsl 2 and l 3 in the above rule for the case~iii !
are the lengths of the strong bonds that are eliminated
are therefore usually smaller than the lengthsl 1 andl 4 of the
more typical bonds. Finally, one can argue generally that
phase positionsof the spins as dictated by the phase leng
have to agree, at least roughly, with theirgeometrical posi-
tions as inferred from the order of the~remaining! spins in
the chain~i.e., from the spin labels!.31 All of this implies that
the phase lengths are roughly given by the geometrical
tances between the spins; in particular their scaling withG is
given by the inverse of the density of the remaining spi
l;n(G)21.

We can now immediately deduce behavior of the dyna
cal conductivity in the different phases exactly as in our p
vious calculations for the spin-1/2 model; as the method
mains the same, and the relevant details about the stati
of the fixed point Hamiltonians have already been summ
rized, we merely state our results.

In the RS phase the same result Eq.~42! applies, as is true
for an RS state of an arbitrary-S spin chain at a strong
enough randomness.

At the critical point separating the RS phase from the G
phase, we find

s8~v!5KHYl v ln2~V0 /v!, ~59!

which is astronger divergencethan in the RS phase~note
that this difference from the result in the RS states can
traced to the fact that the density of the remaining sp
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behaves asnG;1/G3 at the critical point, in contrast to the
1/G2 decay of the corresponding quantity in the RS state!.

Finally, in the GH phases parametrized byP0 we find

s8~v!5KGHl v~v/V0!1/zGH ln2~V0 /v!, ~60!

where we have introduced the continuously varyi
dynamical-exponentzGH[P0

21, andKGH is an order-one nu-
merical prefactor that goes to a constant asW→Wc . @Note
that the factor ln2(V0 /v) appears for exactly the same re
sons as in the RD phases of the spin-1/2 chains: the len
of the singlets that are decimated at scalev are roughly
; ln(V0 /v).#

V. DYNAMICS IN THE RANDOM TRANSVERSE-FIELD
ISING CHAIN

A. Strong-disorder RG description of the phases: A review

The strong-randomness cluster RG of Ref. 6, from wh
the low-energy long-distance behavior of a system near
critical point (udu!1) can be obtained, proceeds as follow
One finds the largest coupling in the system, with ene
V0[max$hj ,Jj%. If the largest coupling is a field, sayh2 on
spin 2, this spin is frozen into thes2

x511 ground state of
the local field term and is eliminated from the system leav
an effective couplingJ̃135J12J23/h2 between the neighbor
ing spins 1 and 3. If the largest coupling is an interactio
sayJ12 between spins 1 and 2, the two spins are combin
into one new spin—a cluster—with an effective spin variab
s̃ (12) ~representing the two classical minimum-energy sta
s1

z5s2
z561) and an effective transverse fieldh̃(12)

5h1h2 /J12; the couplings of this new spin to the neighbo
remain unchanged to leading order. Each such clusterc has a
momentm̃c given by the number of initial spins in the clus
ter; when two clusters are combined to form a bigger clus
their moments add:m̃ (12)5m11m2. This procedure is now
iterated with the energy-cutoffV[max$h̃j ,J̃j% of the new,
effective Hamiltonian being gradually lowered.

A detailed analysis of this procedure was given in Ref.
of which a summary follows: Define the log-couplingsb i
[ ln(V/hi), z i[ ln(V/Ji), and also the log-cutoff G
[ ln(V0 /V); also, let nG be the number-density per un
length of the~remaining! clusters at scaleG. The essential
feature of the RG near the critical point is that the distrib
tions of the log-couplingsR(buG) and P(zuG) become
broader and broader as the energy cutoff is lowered; the
flows are characterized by a special family of scaling so
tions with R(buG)5R0(G)e2R0(G)b and P(zuG)
5P0(G)e2P0(G)z. At the critical point, d50, we have
R0(G)5P0(G)51/G; thus the widths of the two distribu
tions grow without limit, and the number density decreas
asnG;1/G2. Also, magnetic moments of the clusters scale
m;Gf, with f5(11A5)/2. In the disordered phase,d.0,
beyond the crossover scaleGd[1/udu, the width of the field
distribution saturates, withR0(G)'2d for G@Gd , while the
width of the bond distribution grows without limit, with
P0(G)'2de22dG. In the ordered phase,d,0, the situation
is reversed:R0(G)'2udue22uduG and P0(G)'2udu for G
4-19
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@Gd . In both phases, we havenG;udu2e22uduG. Note also
that the clusters that are being eliminated at scaleG@Gd all
have a fairly well-defined length of orderudu21G and mag-
netic moment of orderudu12fG.

B. Average autocorrelations

In this section, we obtain the long-time asymptotics
average imaginary-time autocorrelations in the critical reg
of the RTFIM—we will be heavily using results of Ref.
referring to sections in that paper by, e.g., F Sec. IVB. At
end of the section, we compare our predictions with the
merical results17 available in the literature.

We consider the local dynamical susceptibilities

x j j
aa5(

m
u^mus j

au0&u2d~v2Em!, ~61!

where the sum is over all excited statesum& with excitation
energiesEm , anda5x or a5z. The low-frequency behav
ior of these susceptibilities determines the long-time asym
totics of the corresponding imaginary-time autocorrelat
functions

Cj j
aa~t!5^s j

a~t!s j
a~0!&, ~62!

with a5z ~local-magnetic-moment autocorrelation! or a
5x ~local-energy autocorrelation!; we are considering her
only the fluctuating~time-dependent! parts of autocorrela-
tions and will ignore any constant~time-independent! parts
~such a constant part in, for example, spin autocorrela
represents a nonzero magnetization density in the system
is a static property!. In the following, we simply write
Cloc(t) for the local magnetic moment autocorrelatio
Cj j

zz(t) and Cloc
e (t) for the local-energy autocorrelation

Cj j
xx(t) ~and similarly for susceptibilities!. We first obtain

~using our basic strategy! results for average susceptibilitie
which can be conveniently defined as

@x loc
aa#av~v!5

1

L (
j

x j j
aa~v!, ~63!

whereL is the size of the system~in the thermodynamic limit
of L→` this definition coincides with an ensemble avera
over disorder realizations!. We also consider a semi-infinit
chain, j >1, and calculate average dynamical susceptibilit
x1

aa of the boundary spins1 ~in this case, the average is ov
disorder realizations!. These results are then immediate
translated to the corresponding statements about the l
time behavior of average autocorrelations. As long as we
interested only in the asymptotic behavior of the avera
dynamical susceptibilities and autocorrelations, it suffices
use the leading-order results for the renormalization of
corresponding operators.29

Before we plunge into the details below, it is worth em
phasizing that the calculations in this section are closely
lated to the discussion in Ref. 6 of static response functi
at finite temperatureT: Such static response properties a
calculated by assuming thatall effective degrees of freedom
that are present~in the sense of the RG! at energy-scaleT
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contribute freely to the response at this temperature, whil
our calculations of the dynamical properties at frequencyv
only the degrees of freedom that are being decimated at s
v contribute to the dynamical response at this frequen
~The connection is even more apparent when the dynam
susceptibilities are translated to the imaginary-time autoc
relations, since average autocorrelations at timet acquire
contributions from all frequencies smaller than 1/t.! Our aim
here is to present a unified approach,within the RG of Ref. 6,
to the analytical calculation of such average dynamical pr
erties. Also, these calculations, together with a detai
physical picture developed in Ref. 6 of the phases of
system near the critical point, serve as a valuable guide
our intuition in identifying the relevant Griffiths regions tha
dominate a particular response; on some occasions in
previous sections~particularly in the IAF phase of spin-1/2
chains!, such Griffiths arguments were our only source
information about the behavior of dynamical quantities, a
the opportunity to compare such suggestive argume
against the results of controlled calculations is most w
come.

1. Average local-spin autocorrelation†Cloc‡av„t…

The leading-order renormalizations of thesz spin opera-
tors are particularly simple: As long as a given spinj is
active, the operators j

z is renormalized to the ‘‘spin’’ opera-

tor s̃c
z of the clusterc that the spinj belongs to; when this

cluster is decimated, the corresponding operator renorm
izes to zero.

To calculate@x loc#av(v), we run the RG down to energ
scaleVfinal5v/2, and rewrite the spectral sum in terms
the degrees of freedom of the renormalized problem; exc
tions that contribute to this new sum are clearly thes̃x

511 excitations of the spin clusters that are being froz
into their s̃x521 states by the transverse fields at this sca
and the spectral sum is now easily evaluated:

@x loc#av~v!5
1

L(
m

;

(
c

;

m̃cz^mus̃c
zu0& z2d~v2Ẽm!

;
n~Gv!

v
R0~Gv!m̄0~Gv!, ~64!

where we used the fact that allm̃c spins that are active in an
effective clusterc contribute identically, andm̄0(G) is the
average magnetic moment of the clusters that are be
eliminated at scaleG. ~Note that here, and in the following
we simply writeGv instead ofGv/2 to avoid clutter in our
notation; since we are interested only in the leading beh
ior, the difference is not important for our purposes.!

At criticality (d50), we obtain

@x loc#av~v!;
1

vu ln vu32f
, ~65!

for v!V0. For the average spin autocorrelation in imag
nary timet@V0

21 we then find
4-20



u-
e
e

l-

tl
e

ly

sit
,

be

g

-

o
lo

th

he

t
b
t

if

g

ela-
that

of

sity
g
etic

f
n

s is
s,
han
of

op-

a-

d

nt
e-

tion

e

a
e

DYNAMICS AND TRANSPORT IN RANDOM QUANTUM . . . PHYSICAL REVIEW B63 134424
@Cloc#av~t!;
1

u ln tu22f
. ~66!

In the disordered phase(d.0), we obtain

@x loc#av~v!;d42f
u ln vu

v121/z(d)
,

@Cloc#av~t!;d42f
u ln tu

t1/z(d)
, ~67!

for v!Vd and t@Vd
21 . Here, we have used scaling sol

tions for the off-critical flows to write the answer for th
local susceptibility and have chosen to express the pow
law in terms of the dynamical exponentz(d). From the scal-
ing solution to the RG flow equations, we havez2152udu;
this is to be thought of as the leading term in a smald
expansion forz21. Written in terms ofz(d), our result Eq.
~67! is valid more generally, and can be understood direc
in the simple picture of the disordered phase given in F S
IVB: The average spin autocorrelation at large timet is
dominated by the~rare! spins that belong to the rare strong
coupled clusters~Griffiths regions! with low effective ‘‘flip-
ping rates’’ ~i.e., effective transverse fields! smaller thanv
;1/t. The density of such clusters, which is also the den
of the most numerous excitations at these low energies
n(v);v1/z ~this is fixed by the relationshipt; l z between
length and time scales, which serves as the definition ofz).
Most of these clusters have their effective flipping rates
tween v and some fraction ofv, and therefore effective
moments of orderu ln vu ~since all clusters that are bein
eliminated at a fixed energy-scaleV have roughly the same
magnetic moment proportional tou ln Vu). Estimating the con-
tribution of such Griffiths regions clearly gives us Eq.~67!
including the factor ofu ln tu.

Finally, in theordered phase(d,0), we obtain

@x loc#av~v!;udu42f
u ln vu

v122/z(d)
,

@Cloc#av~t!;udu42f
u ln tu

t2/z(d)
, ~68!

for v!Vd and t@Vd
21 . In contrast to the case of the dis

ordered phase, the interpretation of Eq.~68! in terms of the
picture of the ordered phase presented in F Sec. IVA is m
subtle. In the ordered phase, the typical excitations at
energiesv!Vd are classical—they are ‘‘domain walls’’
that ‘‘break’’ large clusters apart in the places where
clusters are held together by weak~effective! bonds of
strength of orderv. Such weak effective bonds represent t
rare, large regions~Griffiths regions! that are locally in the
disordered phase. These domain-wall excitations are
most numerous excitations that define the relationship
tween the energy and the length scales and determine
dynamical exponentz(d). Such excitations, however, even
they are localized in the neighborhood of sitej, do not con-
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tribute to x j j
zz(v) since they cannot be ‘‘excited’’ from the

~classical! ground state by the action ofs j
z . Excitations that

do contribute involvemuch more rareferromagnetic clusters
that are flipping back and forth in isolation, with flippin
rates of orderv;1/t or slower~of course, we exclude the
macroscopic-cluster flipping at a rate of ordere2cL as we are
subtracting out the time-independent part of the autocorr
tion!. In the RG language, these are precisely the clusters
are decimated at energy scales of orderv, i.e., that happen to
have~at these scales! anomalously strong transverse fields
order v ~remember that we are in the ordered phase!. A
simple construction, however, clearly shows that the den
of such regions is indeed;v2/z, as predicted by the scalin
solution: For such a cluster to occur we need a ferromagn
segment of length;u ln vu ~which is not rare in the ordered
phase! that is isolated~from eventually becoming a part o
the macroscopic cluster! on each side by a disordered regio
of comparable length. Each of the two disordered region
actually a ‘‘typical’’ Griffiths region at these energy scale
and the two are required to occur much closer together t
their typical separationv21/z; this explains the appearance
the power 2/z in Eq. ~68!. The factoru ln tu again comes from
the typical magnetic moments of such ferromagnetic dr
lets.

2. Average local-energy autocorrelation†Cloc
e
‡av„t…

We begin by working out the leading-order renormaliz
tions of thesx operators: When a given spinj is combined
with another spink into a new cluster~i.e., when the strong
bondJjk is being eliminated! the operators j

x renormalizes to

(h̃( jk) /hj )s̃ ( jk)
x , wherehj is the transverse field on the spinj

before the decimation,h̃( jk) is the effective transverse fiel
on the new cluster (jk), ands̃ ( jk)

x is the effective ‘‘spin-flip’’
operator of this cluster~this rule ignores a constant term
proportional to the identity operator, which is unimporta
for our purposes as we are not interested in the tim
independent constant piece of the energy autocorrela
function!. On the other hand, when the spinj is eliminated,
the operators j

x becomes effectively zero to first order in th
nearby interactions~we again ignore any constants!. Iterating
this, the operators j

x is renormalized to (h̃c /hj
(0))s̃c

x if the

spin j is active in some clusterc with the effective fieldh̃c ,
and is renormalized to zero if the spin is not active; herehj

(0)

is the original~bare! transverse field on the spinj.
We now run the RG down to energy scaleVfinal5v/2 and

rewrite the spectral sum as

@x loc
e #av~v!5

1

L(
m

;

(
c

;

g̃cz^mus̃c
xu0& z2d~v2Ẽm!, ~69!

where

g̃c5(
j Pc

S h̃c

hj
(0)D 2

. ~70!

In the last equation( j Pc is over all spins that are active in
given cluster c. Note that at low energies the effectiv
4-21
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cluster-field h̃c is only weakly correlated with each of th
bare fieldshj

(0) ; if the bare-field distribution is not too broad

we can approximatehj
(0);V0, and write g̃c;m̃c(h̃c /V0)2,

wherem̃c is the moment of the clusterc. Doing this clearly
misses some nonuniversal numerical factor of order one
depends on the bare~high-energy! physics. This factor is, in
principle, a random quantity that differs from one cluster
another; however, this number is expected to be roughly
same for all clusters that contribute to the spectral sum at
frequencies due to averaging, since such clusters are
large, and in some sense similar. Thus, we expect that
low-frequency behavior is not affected.~Note that we would
have been spared this discussion if we were to analyze
spectral sum with matrix elements ofhj

(0)s j
x , which is any-

way a more natural operator to consider when thinking of
local energy fluctuations.! The excitations that contribute t
the spectral sum Eq.~69! correspond to transitions from th
s̃ j

z5s̃k
z states to thes̃ j

z52s̃k
z states of two~effective! spins

j and k that are being combined into one clusters̃ ( jk) by a
strong bond at the energy-scaleVfinal . Since the log-field
distribution is broad~we are near the critical point and at lo
energy scales!, for such a pair of spins to contribute signifi
cantly the transverse field on at least one of the two sp
involved must be of orderv; thus, we have

@x loc
e #av~v!;

v

V0
2

n~Gv!P0~Gv!R0~Gv!m̄0~Gv!, ~71!

from which we immediately read-off our results.
At criticality, for v!V0 andt@V0

21, we obtain

@x loc
e #av~v!;

v

u ln vu42f
,

@Cloc
e #av~t!;

1

t2u ln tu42f
. ~72!

Away from the critical point, both in the disordered phas
and in the ordered phase, we obtain

@x loc
e #av~v!;udu52fv112/z(d)u ln vu,

@Cloc
e #av~t!;udu52f

u ln tu

t212/z(d)
, ~73!

for v!Vd and t@Vd
21 ; in the last formula we again use

z(d) as a more physical parameter characterizing the G
fiths phase at a givend. The off-critical energy autocorrela
tion function thus behaves similarly in the two phases,
expected from duality. It is again possible to interpret the
results in terms of the statistical properties of appropri
rare regions that dominate the average energy autocorrel
at long times. As the results~and their interpretation! are
identical in either phase, we sketch only the interpretation
the ordered side: As we have already noted, for a regio
have significant energy fluctuations at the frequency scal
orderv, it must contain two adjoining segments both havi
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a characteristic energy of orderv—a predominantly disor-
dered segment~in the RG language, an effective bond wi
J̃;v across this segment! and a predominantly ordered se
ment~in the RG language, a cluster withh̃;v). Clearly, the
predominantly ordered segment with effective transve
field ;v can exist only if it is also isolated on the other sid
from the rest of the system by another predominantly dis
dered segment having the same characteristic energy s
This situation has already been analyzed in the context of
spin autocorrelations in the ordered phase, and clearly
recovers precisely Eq.~73! from such an analysis.

3. Autocorrelations of the boundary spin

So far, we have calculated average autocorrelations
the spins in the bulk. Calculations for the first spins1 in a
semi-infinite chainj >1 proceed analogously~using the de-
tailed characterization of the boundary spin from F Sec.!,
and we will simply state the results.

For thespin autocorrelationwe find,at criticality,

@C1#av~t!;
1

u ln tu
, ~74!

while away from the critical point

@C1#av~t!;
d2

t1/z(d)
. ~75!

As in the bulk case, we can interpret the average off-criti
spin autocorrelation Eq.~75! in terms of the rare instance
that dominate this average. In this case, the correspon
rare regions must start ats1—this explains the absence of
u ln tu factor in Eq.~75! compared to the bulk results Eqs.~67!
and ~68!. The only other difference is that in the ordere
phase we do not need to isolate the ferromagnetic dro
~containings1) from the left.

For theenergy autocorrelationwe find,at criticality,

@C1
e#av~t!;

1

t2u ln tu3
, ~76!

while in thedisordered phase

@C1
e#av~t!;

d3

t212/z(d)
, ~77!

and in theordered phase

@C1
e#av~t!;

udu3

t211/z(d)
. ~78!

The average off-critical energy autocorrelation of the bou
ary spin differs from that of the bulk spins in exactly th
same way~and for the same reasons! as in the case of the
spin autocorrelation.

4. Comparison with numerics

The first paper of Ref. 17 computed average spin autoc
relations~in both phases for the boundary spin, but only
4-22
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the disordered phase for bulk spins!. For the boundary spin
the fits for 1/z using the scaling form identical to our Eq.~75!
in both ordered and disordered phases were in good ag
ment with other measures of 1/z. For bulk spins, similar fits
produced values of 1/z consistently smaller than obtained b
other means. This could be explained by the logarithmic f
tor, predicted by our Eq.~67!, which would cause a powe
law fit to underestimate 1/z. We are not aware of numerica
data for the bulk-spin autocorrelation in the ordered pha
where we predict a scaling form with a power of 2/z, Eq.
~68!, different from the naive expectation of 1/z.

The second paper of Ref. 17 computed the average b
energy autocorrelation in the disordered phase, fitting
Gloc

e ;1/t211/z. We predict instead Eq.~73!, with a different
power 1/t212/z and an additional lnt factor, due to the prop-
erties of the Griffiths regions that dominate here. We sugg
that the numerical evidence in that paper is probably affec
by the finite-size effects and the missing logarithmic fact
which always tends to underestimate the ‘‘apparent’’ ex
nents of the fitted power laws. We also predict a differe
power for the end-spin-energy autocorrelation in the dis
dered phase, Eq.~77!. For the end-spin case, the fittin
should be more straightforward, since there are no additio
logarithmic factors. It is hoped that future numerical wo
will reexamine this question in view of our new results.

C. Dynamic structure factor of the spins

Let us now briefly consider the dynamic structure fac
Szz(k,v) defined as

Szz~k,v!5
1

L (
m

ZK mU(
j

eikxjs j
zU0L Z2d~v2Em!.

~79!

Szz(k,v) characterizes the spatial structure of the excitati
at energyv. Proceeding as before, we find

Szz~k,v!;
n~Gv!

v
R0~Gv!um0~k!u2~Gv!, ~80!

where um0(k)u2(G) is the average modulus squared of t
effective magnetic moment at wave vectork for the clusters
that are being eliminated at scaleG; for a given clusterc, this
effective moment is defined asmc(k)5( j Pce

ikxj . The dy-
namic structure factor can also be written in terms of
function D(b,xuGv) defined in F Sec. III B 4; we have

Szz~k,v!;
D̂~0,kuGv!

v
, ~81!

whereD̂(0,kuGv) is the Fourier transform ofD(0,xuGv) at
wave vector k. We have not attempted to analyz
D(b,xuGv), even though a detailed characterization is like
to be possible~see F Sec. III B 4!. Instead, we will only ana-
lyze the behavior of the dynamic structure factor in so
limiting cases using the scaling picture.

First, consider the system at criticality. Fix wave vectork.
Then, for G!Gk[1/Ak the effective cluster moments a
wave vectork ‘‘add coherently’’ ~more precisely, the rea
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parts of the effective moments of the clusters that are be
combined into bigger clusters are of the same sign! and
therefore scale asGf. At scalesG@Gk , the effective mo-
ments atk ‘‘add incoherently’’~the real parts of the moment
being combined can be of any relative sign! and therefore
scale as Gk

f(G/Gk)
fsym, where fsym5(11A5)/4 is the

growth exponent for the cluster moments distributed sy
metrically around zero~see Appendix of Ref. 4!. Thus, we
arrive at the following scaling form for the dynamic structu
factor at criticality

Szz~k,v!;
Gv

2f

vGv
3

F~kGv
2 !, ~82!

where F(x);const for x!1 and F(x);1/xf2fsym for x
@1. We cannot, however, address the regimekGv

2 ;1 by
such a scaling analysis.

Now, consider the system that is not critical, either in t
disordered or in the ordered phase, in the regimeGv@Gd .
The length and the magnetic moment of a cluster tha
eliminated at scaleG@Gd are sharply defined:l 0(G)
5cl(G/Gd)Gd

21O(AG/GdGd
2) and m0(k50,G)5cm(G/Gd)Gd

f

1O(AG/GdGd
f), wherecl andcm are numerical constants o

order one. Such a cluster has some internal structure on
length scales below the correlation length;d22, but
‘‘looks’’ fairly uniform on larger length scales. Then, for th
wave vectorsk!d2 we have

um0~k!u2~G!;
d422f

k2
@11cos~clkG/udu!e2ck2G/udu3#;

~83!

note the oscillatory behavior atk;udu/G due to the ‘‘sharp-
ness’’ of the lengthsl 0 of the clusters; the gradual suppre
sion of this oscillatory behavior at larger wave vectors com
from the uncertainty inl 0, which is much smaller thanl 0
itself. To obtain the dynamic structure factorSzz(k,v) we
simply need to multiply this ‘‘cluster structure factor’’ by th
density r(v) of such clusters at energyv: r(v)
;d3/v121/z(d) in the disordered phase andr(v)
;d3/v122/z(d) in the ordered phase.

VI. A DISCUSSION OF TÅ0 PROPERTIES

So far we have calculated various dynamical and trans
quantities atT50. These results are clearly valid even atT
Þ0 so long as the probe frequencyv satisfiesT&v. Unfor-
tunately, it is not straightforward to generalize our calcu
tions to the complementary low-frequency regime (v!T)
dominated by thermal effects. There is, however, one exc
tion. As mentioned earlier, the spin-1/2XX chain is equiva-
lent to a model of spinless fermions with random neare
neighbor hopping and zero chemical potential. It sho
come as no surprise that the free-fermion nature of this pr
lem allows us to straightforwardly calculate some dynami
and transport properties at small nonzero temperature.
begin this section by formulating a fermion analog of the R
procedure used for the spin chains. We will then use this
approach to work out the low-frequency, low-temperatu
4-23
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dynamical conductivity and thezz component of the dy-
namic structure factor for the spin-1/2XX chain without any
restriction on the relative magnitudes ofv andT ~the calcu-
lation of the perpendicular component of the structure fac
for v,T is much more complicated, and we will only b
able to discuss its qualitative behavior!. Naturally, these re-
sults are not at all generic, relying as they do on the fr
fermion nature of the problem. On the other hand, a weakJz

coupling, which corresponds to the nearest-neighbor inte
tion between the fermions, is strongly irrelevant in the R
sense at the free-fermion point, and the system flows to
noninteracting point. Since this noninteracting limit is sing
lar as far as finite-temperature transport properties are
cerned, we have here an example of a ‘‘dangerously ir
evant operator,’’ and the important physical question is h
this weak, irrelevant interaction affects theTÞ0 transport
near the noninteracting point.32 This is what we turn to at the
end of this section.

A. Free-fermion RG

The free-fermion problemH5( j t j (cj
†cj 111cj 11

† cj ) has
been the subject of extensive investigation in the past usi
variety of techniques~see, e.g., Ref. 25 and referenc
therein!. For our purposes, it is most convenient to introdu
a RG procedure analogous to the singlet RG used in the
problem. We formulate this procedure directly in terms
the corresponding single-particle Shro¨dinger problem H
5( j t j (u j &^ j 11u1u j 11&^ j u); this RG is, for the case of the
Hamiltonian above, essentially just an efficient way of~ap-
proximately! diagonalizing random symmetric tridiagon
matrices with zeroes on the diagonal. We begin with
observation that the particle-hole symmetry of the probl
causes eigenstates to occur in pairs, with energies6e. The
strong-randomness RG proceeds by eliminating, at each
such a pair of states with energies at the top and bottom
the band: One finds the largest~in absolute value! hopping
amplitude in the system, sayt2 connecting sites 2 and 3; thi
defines the bandwidthV0523max$utju% of the original prob-
lem. If the distribution of thet j is broad, the symmetric an
antisymmetric wave functions living on these two sites w
be good approximations to eigenstates with energies6V0/2,
as t1/3 will typically be much smaller in magnitude thant2.
The couplingst1/3 can then be treated perturbatively, a
eliminating the high-energy states living on the sites 2 an
results in an effective hopping amplitudet̃ 152t1t3 /t2 be-
tween the neighboring sites 1 and 4. More precisely, in
effective Hamiltonian that describes the remainingL22
states, the block 1-2-3-4 is represented asH̃124

5 t̃ 1(u1̃&^4̃u1u4̃&^1̃u), where the statesu1̃& andu4̃& are essen-
tially the original u1& and u4& states up toO(t1/3/t2) correc-
tions. This rule is essentially identical to the rule for t
singlet RG at theXX point, as the additional minus sign ca
be ‘‘gauged away’’ in the nearest-neighbor model in o
dimension; we will, in fact, only keep track of the absolu
values of thet j . The distribution ofut j u in the renormalized
problem with bandwidthV will thus be the same as th
renormalized distribution ofJ' at cutoff scaleV in the sin-
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glet RG for the spin problem. The analysis of the asympto
validity of this approach thus carries over unchanged fr
the singlet RG.

This procedure can therefore be iterated to reach lo
and lower energies; at each stage we trade in our cur
problem for a new problem defined on two fewer sites. T
new problem will have the same low-energy eigenvalues
our original problem. However, evaluating matrix elemen
of operators between two low-energy states requires s

care, as the statesu j̃ & in terms of which the renormalized
problem is written are different from the statesu j & of the
original problem. As in the singlet RG, this is best handl
by renormalizing theoperatorsas we go along, so that th
matrix elements of the renormalized operators between
states of the new problem are the same as the matrix
ments of the bare operators between the corresponding s
of the original problem. This allows us to calculate vario
dynamical properties by evaluating the corresponding sp
tral sums exactly as in the spin language. AtT50, this
amounts to nothing more than a restatement in terms of
fermions of our previous calculations. The new langua
however, has one important advantage: thermal effects
easily incorporated into this framework, essentially beca
the noninteracting nature of the problem is made expli
@We emphasize again that the RG findsall eigenstates of the
free-fermion problem. The corresponding statement can
be made in terms of the singlet RG on theXX spin chain:
when eliminating a pair of spins 2 and 3 the effective Ham
tonians inall sectors~corresponding to the statesus0&, ut0&,
andut61&, of the pair! are identicalup to a sign ofJ̃14

' in the
ut61& sector.#

Finally, we note in passing that this RG procedure can
generalized to analyze other particle-hole symmetric fr
fermion problems in one and two dimensions~which are not
immediately equivalent to any quantum-spin problem! as
well as analyze the general properties of the Bogoliubov
Gennes equation for quasiparticles in a one-dimensional
perconducting wire in the absence of spin-rotation symme
~the results of such an analysis will be published separate!.

B. TÅ0 dynamics and transport at theXX point

Let us begin by working out the fullT andv dependence
of the dynamical conductivity, Eq.~55!, at the free fermion
point. Our first task is to work out the rules that govern t
renormalization of the current operatorsT( j ). Assume once
again that the hopping elementt2 has maximum magnitude
We wish to work out what operators we should use in pla
of T(1), T(2), and T(3) when we renormalize down to
lower energies by eliminating the corresponding two state
the top and bottom of the band~the other current operators t
the left and right of this segment will be unchanged to lea
ing order by this elimination!. An explicit perturbative cal-
culation immediately yields T̃(2)5T̃(1/3)
5 i t̃ 1(u1̃&^4̃u2u4̃&^1̃u); this is completely analogous to th
rule obtained in the spin representation, and as before,
will call this operatorT̃(1) for consistency of notation.
4-24
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As we carry out the RG and reduce the bandwidth
removing states from the top and bottom of the band,
above result implies that( jT( j ) renormalizes to(̃ j l̃ j T̃( j ),
where j now labels the sites of the renormalized proble
with bandwidthV, and thel̃ j are the lengths of the renor
malized bonds in this problem. With this in hand, we run t
RG until the bandwidth is reduced toVfinal5v and rewrite
the spectral sum Eq.~55! as

s8(v)5
1

vL (
m1 ,m2

; ZK f̃m2U(j

;

l̃ j T̃( j )Uf̃m1L Z2
3@ f ~em1

!2 f ~em2
!#d~v2em2

1em1
!. ~84!

Because of the extremely broad distribution of thet̃ j , the
dominant contribution to the sum Eq.~84! comes from tran-
sitions between the two members, one at the bottom and
other at the top of the renormalized band, of each pair
states that is being eliminated at this energy scale. The
trix element for this transition is justl̃ uvu/2, where l̃ is the
length of the hop in question. In the thermodynamic lim
we thus have

s8~v!5@ f ~2v/2!2 f ~v/2!#

3
n~Gv!

v E dldzv2l 2P~z,l uGv!d~v2ve2z!

5
sinh~v/2T!

2 cosh2~v/4T!
sT508 ~v!, ~85!

which is the leading behavior forv,T!V0. This result
smoothly interpolates between the logarithmic frequency
pendence seen earlier forv@T and the limiting form
s8(v);v ln(V0 /v)/T valid for v!T—a plot of this fre-
quency dependence is shown in Fig. 7.

Let us now turn to theTÞ0 spin dynamic structure facto
at low frequencies in the vicinity ofk5p/a. In the single-
particle language, the spectral representation forSzz(k,v)
reads

FIG. 7. A plot of the frequency dependence ofs8(v) at low
TÞ0 at theXX point. Note that this result is expected to bre
down below a frequency scale 1/t tr!T when a small but nonzero
Jz interaction is turned on~see Sec. VI C!.
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Szz~k,v!5
1

~12e2v/T!L
(

m1 ,m2

z^fm2
uŜz~k!ufm1

& z2

3@ f ~em1
!2 f ~em2

!#d~v2em2
1em1

!. ~86!

Here Ŝz(k)[( jS
z( j )eikxj is the Fourier transform of the

position-dependent matrix operatorSz( j ); in the real-space
basis Sz( j )5n( j )21/2, wheren( j )5u j &^ j u. This spectral
sum can also be evaluated within our RG approach. T
leading-order operator renormalizations in this case are
complete analogy with the spin problem, very simple: ea
Sz( j ) remains unchanged unless a state living on sitej is
eliminated, in which caseSz( j ) renormalizes to a multiple o
the identity. As before, we run the RG till the bandwidth
reduced toVfinal5v and do the spectral sum with the reno
malized operators in the new problem. This renormaliz
sum may be evaluated by again recognizing that it is do
nated by transitions between pairs of states with ener
6v/2 that live on pairs of sites connected by ‘‘strong’’ ho
ping amplitudes~of magnitudev/2) in the renormalized
problem. The corresponding matrix element is just
2eik l̃ )/2, where l̃ is the length of the hop in question
Counting the contributions exactly as in our zer
temperature calculations, we thus get

Szz~k,v!5
1

~11e2v/2T!2
ST50

zz ~k,v!. ~87!

Thus, we see thatSzz is essentially unaffected by therma
fluctuations at theXX point; in particular, the low-frequency
divergence isnot cut off by temperature effects even whe
v!T.

A similar analysis can clearly be performed in theXX-RD
phase. Again, boths8(v) andSzz(k,v) at T.0 are simply
given by the corresponding expressions atT50 multiplied
by simple functions ofv/T, exactly as in Eqs.~85! and~87!.
Thus, though temperature effects are simple to work ou
the XX point and in theXX-RD phase, the results are rath
special due to the free-fermion character of the problem.

C. Going beyond the free-fermion results

What happens when we turn on the nearest-neighbor
teraction? This is the question we need to address next.

Let us first consider the effects of smallJz couplings
added on to theXX model. The analysis of Ref. 4 shows th
this term is irrelevant in the RG sense; the typical value
J̃z/ J̃' at log-cutoff G scales as (J̃z/ J̃');u0 exp(2cGf),
where c is an O(1) constant,f is the golden mean (1
1A5)/2, andu0 is the typical value ofJz/J' in the micro-
scopic model. A useful way of thinking about the low
frequency behavior of the conductivity is as follows: Ima
ine running the RG till the cutoffV;T. In this renormalized
problem the typical (J̃z/ J̃');u0 exp(2cGT

f), where GT

[ ln(V0 /T). In the fermion language, this is the typical valu
of the ratio of the nearest-neighbor interactions to the h
ping amplitudes. In this renormalized problem, a naive F
mi’s golden rule estimate of the corresponding inelastic c
4-25
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lision rate due to interactions gives 1/tcoll

;u0
2T exp(22cGT

f). This gives us a frequency scale belo
which our TÞ0 free-fermion results are expected to bre
down as a result of the residual interaction effects.

Unfortunately, we are unable to do a controlled calcu
tion that determines the transport properties in the freque
regimev,1/tcoll . The best we can do is to work out what
naive scaling argument would predict for the dc limit of t
conductivity. The basic idea is as follows: The collision ra
may be converted into a corresponding dephasing lengthLcoll
by appealing to the activated scaling that is a characteristi
our problem. This givesLcoll; ln2(tcoll);GT

2f . This is the
length scale beyond which quantum coherence is lost du
inelastic collisions. Now, we can imagine breaking up t
system into blocks of lengthLcoll . A dc currentI passing
through the system will see a chain of resistors correspo
ing to these blocks; the resistance values of each of th
blocks is simply given by theT50 Landauer resistance o
the corresponding system of lengthLcoll . The voltage devel-
oped across a system of total lengthL will therefore beV
5I ( j 51

L/LcollRj5ILRav(Lcoll)/Lcoll . Since Rav(Lcoll)
;ec1Lcoll @wherec1 is anO(1) scale factor#, the dc conduc-
tivity works out to be sdc;Lcolle

2c1Lcoll

; ln2f(V0 /T)e2c8 ln2f(V0 /T). Note that in the absence of inte
actions, we had earlier founds8(v)→0 asv→0 at T.0;
our scaling argument implies that interactions render
conclusion invalid. Unfortunately, while this scaling arg
ment is certainly plausible, the question of the true lo
frequency limit can only be settled by a controlled calcu
tion in the regimev!1/tcoll , which is beyond our curren
capabilities.

The above arguments also suggest thatSzz(k,v) will de-
viate from theTÞ0 free-fermion result forv,1/tcoll . In
particular, one expects that thev→0 divergence ofSzz

would be cut off below this frequency scale. Similar beha
ior is also expected ofS12, but again, what is really neede
is a controlled calculation as opposed to a scaling argum
Note also that we expect something different at theXXX and
XXZCquantum critical points: since the theory at these cr
cal points already includes interactions, one expects
1/tcoll;T, and the relaxational behavior characteristic of
interacting system at finite temperature will set in forv;T,
in contrast to the behavior in the vicinity of theXX point.

VII. PROSPECTS FOR EXPERIMENTAL TESTS

Previous experimental work on one-dimensional rando
exchange Heisenberg antiferromagnetic spin chains has c
acterized the dynamics of these systems in terms of the
served NMR 1/T1 relaxation rate,33 and ESR relaxation rate
and linewidths.11

As far as the NMR measurements are concerned, our
culations are unfortunately not directly relevant to the e
perimental measurements of 1/T1. This may be seen as fol
lows: In the usual case of a pure, translationally invari
system, 1/T1 is directly related, by Fermi’s golden rule, t
the local dynamic structure factorSloc evaluated at frequenc
v equal to the nuclear-resonance frequencygNH, wheregN
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is the nuclear magnetic moment andH is the external field.
In a random system, with a broad variation in the value
Sloc(v), the following question immediately arises: wh
measure of the distribution ofSloc(v) does the experimen
tally measured 1/T1(H) reflect?

Now, we have seen that the averageSloc(v) diverges
strongly asv→0 at T50. Naively, one might have though
that this would imply a corresponding divergence in 1/T1 at
small H, at least whenT!H. However, the divergence in
Sloc(v) comes from a few very rare sites that give a ve
large contribution. Clearly, the observed 1/T1 will be com-
pletely insensitive to this effect, since all that will happen
that a tiny fraction of nuclear spins~in the neighborhoods o
those rare electron spins that have significant spin fluc
tions at the frequencyv5gNH) will flip almost instanta-
neously, while the rest of the nuclear spins will have
extremely small probability to flip, and this is what will b
reflected in the spin relaxation experiments. In this sens
is the typical value ofSloc(v) that is more relevant for com
parisons with NMR 1/T1 data. A typical nuclear spin will in
fact have essentially no spin fluctuations to couple to at
quencyv5gNH, it can therefore relax only by paying a
activation energy that is set bygeH ~wherege@gN is the
electron magnetic moment! since the external field acts t
freeze out all modes below this energy scale in most of
system~with the exception of the rare regions alluded
above!. The experiments actually do see activated behav
for 1/T1 at finite temperature. However, the activation g
seems to scale asD;H1.6; the rough argument above o
course cannot explain this non-trivialH dependence of the
observed activation energy.

Our second remark relates to the ESR linewidth meas
ments by Tippie and Clark.11 Here, again, our results do no
address the experimentally relevant questions. This is
cause all our calculations for theXXX case are done within
the context of the simple Heisenberg exchange Hamilton
while the observed linewidth in the experiments is det
mined by other effects such as dipolar interactions or ani
ropy.

Inelastic-neutron-scattering experiments, on the ot
hand, if they can be done on these systems, provide a d
testing ground for our predictions. We conclude with som
remarks on the relevance of our calculations of the dyna
structure factor to such experiments. First of all, note that
considered randomness in the exchanges only, with the s
themselves assumed positioned on regular lattice sites; t
our results are restricted to compounds withchemicaldisor-
der in exchanges. It is clear that small randomness in
positions of spins~e.g., due to thermal fluctuations! will re-
sult only in some further suppression~by the standard
Debye-Waller factor at wave vectork) of the features rela-
tive to an overall background. In the dimer phase, a poss
difference in the lengths of even and odd bonds will res
only in some phase factor in the cosine of Eq.~28!. Also note
that the nonmagnetic neutron scattering from such s
chains will actually be suppressed neark5p/a, and this may
facilitate a possible experimental observation of the p
dicted features. We caution, however, that while it would
extremely interesting to see the sharp oscillatory struct
4-26
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predicted in the Griffiths phases, this may be difficult
achieve without going to very low temperatures and ene
transfers. Regarding transport, we hope that our results
motivate experiments to probe the spin conductivity in th
systems.
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APPENDIX: FINITE-SIZE SCALING FUNCTION
FOR THE CONDUCTIVITY

Consider a finite chain with an even number of sitesNI
5L11, whereL is the length of the chain, and with fre
boundary conditions~a similar analysis can be carried out f
chains with an odd number of sites, and also for chains w
periodic boundary conditions!. We want to calculate the rea
part of the dynamical conductivity averaged over the dis
bution of bond strengths in the limit of low frequencies a
largeL. We work this out for theXX chain; the result in the
presence ofJz couplings will differ only in the values of
some non-universal scale factors so long as the system
not develop Ising antiferromagnetic order in the thermo
namic limit. To proceed, we need to keep track of the jo
distribution at scaleG of the number of remaining spinsN,
the N21 couplingsz i , and the corresponding bond lengt
l i . In a finite system, the couplings become correlated du
the constraint imposed by the finite length of the syste
However, following Fisher and Young,34 we note that the
couplings remain ‘‘quasi-independent,’’ and can be d
scribed in terms of the infinite-chain distributionP(z,l uG)
exactly as in Ref. 34. More precisely, if we also keep track
the lengthsl F and l R of the ‘‘dead’’ regions~consisting of
singlet pairs formed at higher energy-scales! at the left and
right ends of the chain, then a distribution of the form

dProb@N;z1 ,l 1•••zN21 ,l N21 ; l F ,l RuL,G#

5aN~LuG!P~z1 ,l 1!dz1•••P~zN21 ,l N21!dzN21

3L~ l F!L~ l R!d l 11•••1 l N211 l F1 l R ,L ~A1!

for evenN>2 has its from preserved under renormalizati
if aN(LuG) is independent ofN with

1

a

da

dG
52P0~G!52E dlP~0,l !. ~A2!

Here, P(z,l uG) satisfies the same flow equation as in t
infinite chain, andL( l uG) satisfies

]L
]G

5L~• !* l P~0,• !* lE
0

`

P~z,• !dz2P0L. ~A3!

In the above, theG dependence is left implicit, and
f (•)* lg(•) is used to denote a~discrete! convolution in the
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length variables. For clarity, we work explicitly with discre
lengths, with l F and l R even, andl i odd integers; this is
clearly preserved under the RG.

We start the RG withV051, G I50, the initial bond dis-
tribution P(zuG I)5e2z ~this corresponds simply to choosin
the initial J' to be uniformly distributed in the interva
@0,1#), l i51, l F5 l R50, andNI[L11; with initial distri-
butionsP(z,l uG I) andL( l uG I) normalized to unity, the nor-
malization factor isa(G I)51. The dynamical conductivity is
now given by

s8~v,L !5
1

4

a~Gv!

L
A~LuGv!, ~A4!

with a(G)5(G11)2 ~for our specific choice of initial con-
ditions!, and

A~LuG!5 (
N52

L11

8~N21! (
l 1 ,l 2 , . . . ,l N21 ,l F ,l R

P~0,l 1!l 1
2

3E
0

`

P~z2 ,l 2!dz2•••E
0

`

P~zN21 ,l N21!dzN21

3L~ l F!L~ l R!d l 11 l 21•••1 l N211 l F1 l R ,L , ~A5!

where the sum is over evenN.
Now, multiplying A(LuG) by e2yL and summing over

odd L>1, i.e., doing a~discrete! Laplace transform inL,
removes the constraint on the lengths, and we find

A~yuG!5L 2~y!Q~y!
11T2~y!

@12T2~y!#2
, ~A6!

where Q(y) and T(y) are respectively the Laplace tran
forms of P(0,l ) l 2 and *0

`P(z,l )dz. Thus, we can straight
forwardly work outA(y), givenP(z,y) andL(y). Using the
results of Refs. 34 and 6, we can write the following expli
expressions for these two functions:

P~z,yuG!5Y~yuG!e2zu(yuG), ~A7!

L~yuG!5
u~0uG!u~yuG I !

u~yuG!u~0uG I !
L~yuG I !, ~A8!

where u(yuG)5D(y)coth@D(y)(G1C(y))# and Y(yuG)
5D(y)/sinh@D(y)„G1C(y)…#. The functions D(y) and
C(y) depend on the initial distributionP(z,yuG I), and in our
case are given byD(y)5A12e22y and D(y)C(y)5y
1 ln(11A12e22y). Also, L(yuG I)51.

With this in hand, it is a relatively simple matter to wor
out A(LuG), L odd, by performing the inverse Laplace tran
form:

A~L !5
1

p i Ec2 ip/2

c1 ip/2

A~y!eyLdy. ~A9!

In Sec. III D 5, we evaluated this integral numerically
compare the RG predictions with the results of the exa
diagonalization studies~note that in the main body of the
paper we didn’t make a distinction betweenNI andL, since
4-27
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it is irrelevant in the thermodynamic limit; in the more d
tailed notation of this appendix, our numerical results of S
III D 5 are for system sizesNI5128, 256, and 512).

In the scaling limitG@1, L@1, the integral Eq.~A9! for
A(LuG) is dominated by smally and can be approximated b

A~LuG!52LT21A~yuG!, ~A10!

where LT21 denotes the inverse of the continuous Lapla
transform. Moreover, in this limit,A(y) may be worked out
using the following scaling forms forL(y) andP(z,y):

L~yuG!5
1

GA2y coth@GA2y#
, ~A11!

P~z,yuG!5
A2y

sinh@GA2y#
e2zA2y coth[GA2y] . ~A12!

Putting everything together, we can now writeA(L,G)
5G f (G2/L), which immediately implies a scaling form fo
the conductivity:s8(v,L)5GvQ(Gv

2 /L). Thus, we see tha
the dynamical conductivity in a finite system satisfies a sc
ing form that reflects the activated dynamical scaling at
i
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l-
e

XX fixed point. Note that while the scaling form holds mo
generally, the values of the nonuniversal scale factors tha
have used are specific to our choice of initial distributio
Analyzing the behavior starting with an arbitrary initial di
tribution allows one to relate these nonuniversal scale fac
to the properties of the initial distributionunder the assump
tion that ‘‘bad decimations’’ early in the RG do not affec
these values. Such an analysis allows us to writes8(v,L)
5 l v ln(V0 /v)Q@lv ln2(V0 /v)/L#, with the microscopic
energy-scaleV0 and the microscopic length-scalel v pre-
cisely as defined in the main text. Moreover, it is clear th
the same scaling function also describes the low-freque
dynamical conductivity in a large but finite system even
the presence ofJz interactions as long as the system is in
random singlet state; only the values of the nonuniver
scale factors are expected to change.

While it is possible to calculate the full scaling-functio
Q(x) by a detailed analysis of the inverse Laplace transfo
we will confine ourselves here to working outQ(x) in two
limiting cases: Forx!1, Q(x)57/180 ~which correctly re-
produces the infinite-size result, as it must!, while in the limit
x@1 we haveQ(x)5e2x/2/A2px. This is the result used in
the Griffiths argument in Sec. III D.
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