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We present results on the low-frequency dynamical and transport properties of random quantum systems
whose low temperaturel(), low-energy behavior is controlled by strong-disorder fixed points. We obtain the
momentum- and frequency-dependent dynamic structure factor in the random $R@lgthases of both
spin-1/2 and spin-1 random antiferromagnetic chains, as well as in the random dimer and Ising antiferromag-
netic phases of spin-1/2 random antiferromagnetic chains. We show that the RS phases are unusual “spin
metals” with divergent low-frequency spin conductivity Bt 0, and we also follow the conductivity through
“metal-insulator” transitions tuned by the strength of dimerization or Ising anisotropy in the spin-1/2 case, and
by the strength of disorder in the spin-1 case. We work out the average spin and energy autocorrelations in the
one-dimensional random transverse-field Ising model in the vicinity of its quantum critical point. All of the
above calculations are valid in the frequency-dominated regiead’, and rely on previously available renor-
malization group schemes that describe these systems in terms of the properties of certain strong-disorder
fixed-point theories. In addition, we obtain some information about the behavior of the dynamic structure factor
and dynamical conductivity in the opposite “hydrodynamic” regime<T for the special case of spin-1/2
chains close to the planar limithe quantumx-y mode) by analyzing the corresponding quantities in an
equivalent model of spinless fermions with weak repulsive interactions and particle-hole symmetric disorder.

DOI: 10.1103/PhysRevB.63.134424 PACS nuniber75.10.Jm, 78.70.Nx, 75.50.Ee, 71.30.

I. INTRODUCTION respondingly lower energy scajesppear more and more
disordered. More precisely, the low-energy effective theory
Disorder effects arising from quenched randomness are atbtained from the RG has the remarkable property that the
the heart of many interesting and novel phenomena observesidths of the distributions of the various couplings in the
in condensed matter systems: examples include Griffiths sirtheory grow rapidly as the energy cutoff is lowered; this
gularities near phase transitions in disordered magiaetd  means that the RG procedure gives reliable results for the
the related phenomenon of local-moment formation in disoreffective Hamiltonian that governs the low-energy properties
dered electronic systefhs metal-insulator transitions in dis- of the system. Moreover, the extremely strong disorder
ordered electronic systerﬁsand two-dimensional phenom- present at low energies in the effective theory actually allows
ena such as weak localization and the quantum Hall plateagne to straightforwardly calculate some thermodynamic
transitions> properties and ground-state correlators within the effective
In particular, the interplay between disorder and quantuntheory—this is, in essence, because strong disorder implies
interference leads to unusual dynamics and transport in theeat some particular terms in the effective Hamiltonian domi-
systems. Such effects are well understood for disorderetate over all others; calculations can then be performed by
quantum systems in which many-body correlations are notreating these terms first and including the effects of the
significant (such as disordered Fermi liquiddn contrast, other terms perturbatively. This approach has been used suc-
relatively little is reliably known about the effects of strong cessfully in the past to obtain a wealth of information about
disorder in the presence of strong correlati¢say, due to the low-temperature thermodynamics and ground-state corr-
electron-electron interactions in an itinerant electronic syselators in such systenig:#9”’
tem, or due to exchange interactions in a system with local- Here, we exploit this simplicity that emerges at strong
ized spin degrees of freedom disorder to obtain the analytical results on the low-frequency
However, there does exist one class of systems wherdynamics and transport in these systems at low temperature
theoretical tools are available to analyze this interplay beT. Most of our results are obtained far=0; these are ex-
tween strong disorder, correlations, and quantum fluctuapected to be exact at zero temperature in the low-frequency
tions; important examples include one-dimensional randontimit, and to remain valid at nonzero temperatures for low
antiferromagnetic spin chaifidand random quantum Ising frequencieso=T. Moreover, in certain special cases, we can
models in one and two dimensiof4In these quantum sys- also access the regime<T.
tems, it is possible to systematically treat disorder and cor- In the remainder of this section, we introduce the various
relation using a strong-disorder renormalization groRf®) systems that are studied in this paper, and describe the orga-
technique that is designed to be accurate when the strengttization of the rest of the paper. A brief summary of some of
of the disorder, as measured by the widths of the distribueur results has already appeared elsewlfere.
tions of the various couplings, is large. Such a strong- Our focus is on three model systems. The first model we
disorder approach works in these problems because thesensider is the one-dimensional random antiferromagnetic
systems, when studied at ever larger length so@ed cor- XXZ spin-1/2 chain with the Hamiltonian
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quency w is taken as positive for notational convenience.
Hyxz= 2 [ (Sfs 18]St 1) +37s(sT, 1], (1) Note that botts*A(k,w) ando’ (w) as defined here are self-
! averaging in the thermodynamic limit.

wheres; are spin-1/2 operators at lattice sifeseparated by =~ The second model we consider is the random antiferro-
spacinga, and bothJ]-L andez are random positive exchange Mmagnetic Heisenberg spin-1 chain with the Hamiltonian
energies drawn from some probability distributions. Such a
Hamiltonian descrit_)es the Iow—gnergmagnetia dynamics H31:E Jjéj ) §j+1, (6)
of insulating antiferromagnetic spin-1/2 chain com- j
pounds$'*? with chemical disorder that affects the bond )
strengths. We will also consider chains with slightly differentwhereS; are spin-1 operators on lattice sijggand theJ; are
probability distributions of the even and the odd bonds andandom positive nearest-neighbor exchanges; randomness in
study the effects of suchnforced dimerizationThe strength  the system is characterized by a widthof the correspond-
of the dimerization in the bonds is conveniently charactering distribution of log-exchanges ). As in the spin-1/2

ized by a dimensionless parametedefined as case, we can characterize spin dynamics and transport in
terms of the dynamic structure factor and the dynamical con-
InJ.—1InJ, ductivity; the definitions remain the same except for the ob-
5= , 2) . o . . -
var(InJg) +var(In J,) vious replacement of all spin-1/2 operators with their spin-1

counterparts. Experimental realizations of pure Heisenberg
whereJ, (Jo) represents evefodd bonds, and the overbar spin-1 chains are knowt¥,and experimental studies of sys-
and “var” denote correspondingly the average and variancgems with randomness have also been reported in the recent
over the distribution of bonds. Thus, we haye 0 (6<0) if  |iterature'* We caution, however, that the degree of disorder
even(odd bonds are stronger on average. For future referneeded to destroy the gapped Haldane phase of a pure spin-1
ence, we also introduce the basic length scale in this systerghain appears to be quite stroftgand that all our calcula-
tions are done only in this strong-disorder regime.
| = 2a _ 3) The third problem that we consider is the one-dimensional
? var(inJe) +var(In J,) random transverse-field Ising model

Detailed information about the spin dynamics in such sys-
tems can be obtained by inelastic neutron scattefiNg) HRTF,M=—2 J,—crjzcerH—Z hjo?, (7
experiments that directly probe the frequency- and J J
momentum-dependent dynamic structure facs8f(k,w).

X with random ferromagnetic interactiods and positive ran-
At T=0, S*#(k,w) has the spectral representation

dom transverse-fieldb;; here o; are Pauli spin matrices.
1 The strong-disorder RG approach, and its consequences for
Sk, w)=— E <O|§‘_“k|m><m|§f|0)5(w—Em), (4 the low-temperature thermodynamics and static correlators,
L “m have been analyzed in greatest detail for this particular
model® Also, there are extensive numerical results available
for some dynamical properti¢$This model thus serves as a
benchmark to test reliability of our approach to the calcula-
A . ) tion of dynamical properties in these strong-disorder sys-
about thez axis implies that We can restrict our attention 10 tgms; e will analyze various average autocorrelation func-
two independent componen®” andS™". The same sym- ;s 'in considerable detail and compare our results with the
metry also implies that the totaf,=Xs/ is conserved—it  gaylier numerical work.
then makes sense to talk of the spin transport in such a sys- The paper is organized as follows: We begin in Sec. I
tem. We characterize the transportsdfin terms of the dy-  ith a general discussion of the various types of states that
namical spin conductivityo(w). The real parto’(w) of e encounter in these models, along with an overview of our
o(w) is defined by the relatioP(w)=0"(w)|VH[*(®),  mostimportant results for the dynamics and transport in vari-
whereP(w) is the power absorbed per unit volume by thegys regimes; the last part of this section is devoted to a
system when a magnetic field with a uniform gradientgeneral outline of the basic approach that is used to obtain
VH(w) (with the fieldH always in thez direction oscillat-  these results. Sections Ill, IV, and V present careful deriva-
ing at frequencyw is applied along the length of the chain. tions of our results for the zero-temperature dynamical prop-

wheres; =3;e*s", and{|m)} denote the exact eigenstates
of the system with excitation energids, relative to the
ground statg|0). The symmetry ofHyy, under rotations

2
S(w—Ey). (5

From standard linear-response theory, we have the followingrties of the three model systems that we consider, with each
Kubo formula foro’ (w) at T=0: section starting with a review of the basic RG approach used
. to study the corresponding system. In Sec. Il we evaluate

, 1 the dynamic structure factor and the dynamical conductivity

o'(w)= ol % <m 121 7] 0> in the various phases of the rando¥XZ spin-1/2 chain.

This is followed, in Sec. IV, by an analysis of the spin con-

In the abover;=iJ; (s;"s;}1—5;;1S; )/2 is the current op-  ductivity in the strongly-random Heisenberg antiferromag-
erator on linkj that transfers one unit of th& from one site  netic spin-1 chains, and, in Sec. V, by an analysis of the
to the next. Here and everywhere in the following, the fre-average local dynamical properties of the random quantum
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Ising model in the vicinity of its critical point. Section VI'is rare region occurring and being of linear slzés e—c1t’ for
devoted to a qualitative analysis of the dynamical and transgrge L, for some constant;. Such a rare region typically
port properties of the&XXZ spin-1/2 chains at nonzero tem- (agyits in a low-lying mode with a sharply definéd the

peratures in the regime<T, along with some quantitative ¢onge that,, introduced below, is sharply definedharac-
calculations in theX X spin-1/2 chain that are possible in this . . . Ll oy .
feristic frequency proportional te™ 2~ . This gives rise to a

case because of the mapping to free fermions. We conclud . . .
power-law low-energy density of states, with the dynamical

in Sec. VII, with a discussion of the possible experimental X X )
tests of some of our predictions for the one-dimensionafXPOnentz being determined by the ratio of the constants

random-exchange antiferromagnetic spin chains. Some tecfa/C2- For a disordered Griffiths phase, the rare regions are
nical details are relegated to the Appendix. finite “islands™ of either an ordered phase, or a different

disordered phase. The resulting low-lying excitations local-
ized on these rare regions produce a low-frequency conduc-
tivity o’(w) or scaled dynamic structure facterS(k,w)
Broadly speaking, our results are for two types of statesvanishing aso™” at low frequenciesapart from possible
First, there are ground states goverr(@dd therefore best logarithmic factors attributable to singular low-energy be-
described by some suitable strong-disorder RG appidach havior of the relevant matrix elements that may, in some
infinite-randomness fixed points; examples include the raneases, be sensitive to the logarithmically divergent size of the
dom singlet states of the spin-1/2 antiferromagnetic chainselevant excitations
and the critical point of the random transverse-field Ising For one-dimensional systems, there are also power-law
model. Then, there are the so-called “Griffiths” phases inGriffiths effects in Ising-ordered phases. These occur be-
the immediate vicinity of these critical states; in thesecause of rare regions locally in the disordered phase. The
phases, the low-energy renormalized randomness is strongyy-energy excitation associated with such a region is a do-
but not infinite. o _ main wall (or “kink” ). To produce a single such low-energy
In both cases the low-energy excitations are localized, bufjomain wall requires flipping the spontaneous magnetization

V\r']ith a c_ha_ractfriﬁtic (;_Iocalization length,” i.;.},n‘the “size of o one side of the the wall, which is tantamount to flipping a
the excitation,” that diverges as a power ofdrfor energy  gemi infinite piece of the chain. Such a flip of an infinite

w—0. [We emphasize that this is the statement about th omain cannot occur at a finit@onzerg frequency. The

(rare low-energy ex0|tat|0n§ an_d is indeed valid n the Grif- leading contribution to the low-frequency dynamics is then
fiths phases, even though in this case all equal-time Correl%{ssociated withwo nearbv such rare low-enerav domain
tors atT=0 indicate a finite localization length; for details y gy

see the main body of the paglApart from this logarithmi- walls that allow the ordered domain between them to flip at
cally divergent “localization length,” we can also define, a low but nonzero frequency. The result of this is that the

’ H 21z
from the integrated density of states for excitations up to 1oW-frequencyo’(w) and wS(k,w) vanish asw™ at low

energyw, a lengthL,=n_ @ that is the typical spacing be- frequency in these one-dimensional Ising-ordered Griffiths

tween these excitations thdimensiongthe results we report Phases(we are again ignoring possible logarithmic factors
that can arise for precisely the same reasons as in the disor-

here are fod=1, but similar phases do ocduor d>1). - ; h
For a ground state governed by an infinite-randomnes_gere_d phase Note, howeyer, that the anﬂthg singularities

fixed point,L,, diverges at low energies with the same powerin ISing-ordered phases o1 are of a very different char-

of Inw as the typical size of the excitation. This means a@cter; in these cases, the low-energy density of states van-

strongly divergent density of states at low energy, whichishes faster than any power @f as is discussed in Ref. 7.

allows the system to behave as a conductor if there is a In Secs. lll-V we will provide a detailed justification of

conserved quantitie.g., spin or particle numbketo be trans-  these general observations by explicitly calculating the low-

ported. In a Griffiths phase, on the other hahg~ 7, frequency dynamical properties in a variety of cases. In the

with z a nonuniversal dynamical exponent that varies confest of this section, we review the phase diagrams of our

tinuously within the phase. Here, the low-energy excitationamodel systems, and highlight our most important results in

are rare; they are typically spaced by distahgg, which  each case.

diverges as a power-law at low energy and thus is much

larger than the excitation’s typical size, which is diverging

only logarithmically. In the RG language, the Griffiths A. Random antiferromagnetic XXZ spin-J/2 chains

phases are governed by lines of fixed points ending in the

infinite-randomness critical fixed point; along such a line, the

dynamical exponere varies continuously and diverges near  The phase diagram of the random antiferromagneX&

the critical point. spin-1/2 chains is best understood as a product of the com-
In terms of the original microscopic model, the low-lying petition between the transverse part of the coupliHg

excitations in the Griffiths phases come from regions whergvhich favors singlet formation, and the “classical” interac-

the local-quenched random variables deviate strongly frontion J%, which favors a ground state with Ising antiferromag-

their global averages. These deviations are such that the locaétic order.

averages would put that region in a different phase. If the When theJ* dominate, the ground state can be loosely

system is not at a phase transition, the probability of such ¢hought of as being made up of singlet pairs. In this random

Il. OVERVIEW

1. Phase diagram
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Ising AF: o' (0)=Krd,l', (8)
wmﬂqﬂ% where we have taken the opportunity to introduce the log-
B energy scale
| AIRS: XXZC
S| o@-no I',=In(Qp/w). 9
Here and henceforth we ugg, to denote the nonuniversal
microscopic energy cutoff, which corresponds roughly to the
energy scale in the bare Hamiltonian for our various models;
0_.XX XXX also, we usé, to denote the nonuniversal microscopic length
0 1 (Y Py scale in the problem. For théXZ spin-1/2 system near the

RS phase and with sufficiently strong disorder, which is what

FIG. 1. Schematic phase diagram of random antiferromagnetigve assume in the following, the microscopic lengthis
XXZ spin-1/2 chains obtained in Ref. 4, showing the three differentgiven by Eq.(3). (If, on the other hand, the bare disorder is
RS fixed points and RG flows. Our prediction for the low-frequency\yeak and the system flows to strong disorder, theis the
behavior of the dynamical conductivity is indicated for each phaselength scale at which the strength of the disorder becomes of
For det_ails, see Sec. _III; hepe= z(é]AF)_ is a(continuously varyiny order one. Kgs in Eq. (8) is an order-one numerical con-
dynamical exponent in the IAF Griffiths phase. stant. The RS phase and the RS critical points separating it
from the IAF phase are thus unusisgin conductors

On the other hand, the IAF Griffiths phase isf@n insu-
ator with the low-frequencylT =0 dynamical conductivity

singlet (RS state, the interplay of disorder and quantum
fluctuations locks each spin into a singlet pair with anotherI
spin; the two spins in a given singlet pair can have arbitrarily
large spatial separation, with the disorder determining the o' (0)=Kpel ,(0/Qg) 2285 IN(Qq/ o), (10
particular pattern of the singlet bonds in a given sample. On
the other hand, when th# dominate, the system has Ising Wherezag(diar) is a(continuously varying dynamical ex-
antiferromagnetidIAF) order in the ground statéwith the  ponent diverging at the critical point age~ 5, ", and
spins all oriented parallel to the axis), although Griffiths K is @ nonuniversal amplitude vanishing at the transition
effects can fill in the gap leading to an IAF-ordered Griffiths as Kiae~ 8iar " . Here we parametrized the distance from
phase. the transition to the RS phase Wyr=A—A. (where A

These two states are separated by a quantum phase traaJd?/J"). The exponenk is the relevant RG eigenvalue con-
sition that occurs when the couplings andJ* have roughly  trolling the flow away from the critical fixed point describing
similar distributions(have roughly equal strengthsA spe-  the generic transition between the RS phase and the IAF
cial feature of this system is that the ground state at any pointhase, and the exponemt characterizes the low-energy
on the critical manifold is also a random singlet state, thoughspectrum above the RS ground state at this critical sk
the details of the excitation spectrum are somewhat differenRef. 4 and Sec. Il A for detai)s The above result is ex-

If we now turn on enforced bond dimerization starting pected to hold in the frequency regime@g&mp with the
with thg RS state tha_t obtains for smaf| or the_ RS state _of crossover scaleQ; given in terms of S as
the Heisenberg chain, the system moves into a Gr|ff|th? /0 —2- ik
phase dubbed the random dim@&D) phase; in this phase n(€Qo/ ‘sIAF)~5IAF '
the singlet bonds in the ground state now preferentially start Similarly, the RD phases are alspin insulatorswith the
on one sublattice and end on the other. T=0 low-frequency dynamical conductivity

Schematic phase diagrams summarizing the above are

shown in Figs. 1 and 2. o' (@) =Kol (0/Q0) ¥ In*(Qo/w); (12)
, the dynamical exponerzizp(5) in the RD phase diverges at
2. Spin transport the transition aggp~| 58] 1, and the nonuniversal amplitude

We characterize the spin transport properties of the variKrp vanishes at the transition dSgp~|4|. As in the IAF
ous phases in terms of the low-frequency behavior of th@hase, this result is valid at frequencies well below the cor-
dynamical conductivity: We find that th=0 dynamical responding crossover scélg; (which can be also viewed as
conductivity divergesat low frequencies in the RS phase asthe conductivity pseudogap scalein the RD phases

well as at the RS critical points as In(Qo/Q5)~116].
Thus, in both the IAF phase and the RD phase, the con-
Random Dimer RS  Random Dimer ductivity has the functional form
5o 1o ° 5 o' ()~ 0*In’o, (12

FIG. 2. The random dimer phases B§iX or Heisenberg spin- With the nonuniversal exponent vanishing at the corre-
1/2 antiferromagnetic chains, represented as lines of fixed pointgPonding transition. Note that a similar form but with fixed
ending in the critical fixed point labeled RS that describes the rana=2—the Mott formula—is obtained via the usual Mott
dom singlet state at zero dimerizatioRef. 9; herez=z(8) isa  argument for theT=0 dynamical conductivity of the one-
dynamical exponent in the RD Griffiths phase. dimensional Anderson insulat¢the fixed value ofx in this
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FIG. 5. Schematic phase diagram of the strongly disordered
Heisenberg spin-1 chaifRef. 5, along with our results for the
dynamical conductivity in various regimes. Moving to the right
along the horizontal axis corresponds to increasing disorder.

05 q
y=qlvlTn2=(k- n/a)lvr(‘uz

o . . . . . . ‘ o satisfiesw=T. In Sec. VI, we will see that we can par-
-40 30 20 100 o 20 30 40 tially overcome even this restriction in the vicinity of thexX
point.

FIG. 3. Sketch of the dynamic structure factor at fixed () in
the RS states.

. . B. Spin-1 Heisenberg antiferromagnetic chains
case simply reflects the fact that low-energy density of states

in the Anderson insulator isonstant in contrast to the situ- 1. Phases
ation in the Griffiths phases of interest to us here The effect of randomness on antiferromagnetic Heisen-
_ ) berg spin-1 chains is even more interesting. For spin-1, there
3. Spin dynamics are, in general three distinct phases possible in the presence

Turning to the spin dynamics, we find that tfie=0 dy-  Of disorder. If the disorder is weak, and the support of the
namic structure factor in the RS states in the vicinitykof ~Probability distributionP(J) of the exchanges is confined to

= mr/a can be written in the following unusuataling form & narrow-enough region near the mean, then the system re-
mains in the usual gapped, topologically ordered Haldane

state. For stronger disorder, or whBi(J) has tails to large
_ ®[|ql,|*2In(Qg/w)] or smqll enpugh], one has 'Fhe “gapless Hachane(’GH)
l,0IN3(Qq/w) phase in which the system still has the topological order that
(13 characterizes the Haldane state, but becomes gapless due to
Griffiths effects. Finally, if the disorder is extremely strong,
for [g|<a ' and w<Qo; hereap=+— or zz, Ais an  with the(bare distribution of exchanges broad on a logarith-
order-one numerical constarl, is the microscopic length mic scale, a random singlet state completely analogous to the
defined earlier, and(x) is the fully universal function ex- one encountered in the spin-1/2 case is obtained. While the
plicitly calculated in Sec. lll. A plot of the momentum de- GH state and the RS state are separated by a quantum critical
pendence of the dynamic structure factor nkarm/a (at  point with universal critical propertie@hese properties are
fixed low frequencyis shown in Fig. 3; an interesting aspect in fact controlled by a strong-disorder fixed pdifit the
is the nonmonotonic nature of the line shape. We will see ircorresponding transition between the gapped and gapless
Sec. Il that this oscillatory behavior becomes more pro-Haldane states is a nonuniversal feature of the phase dia-
nounced and leads to a really striking structure in the mogram, depending sensitively on the nature of the initial dis-
mentum dependence of the dynamic structure factor afibution of couplings(see Fig. 5 for a summary of the uni-
(fixed) low frequencyw <€) in the random dimer phases; a versal aspects of the phase diagyam
plot of the expectet dependence is shown in Fig. 4. A very
similar dependence is also predicted in the IAF Griffiths
phase close to the transition to the RS state.
As mentioned earlier, these results are expected to remain In the spin-1 RS state, we obtain the same results for the

valid at small nonzero temperatures so long as the frequenddynamic structure factor and spin conductivity as in the spin-
1/2 RS state, as the low-energy behavior of the RS state does

- . —— . not depend on the spin magnitude except through the values
of some microscopic scale factors. Unfortunately, once we
move away from the random singlet state, it is difficult to
discuss reliably the momentum dependence of the dynamic
structure factor of the original spin-1 chain, because our ac-
tual calculations are done in agffective modelsee Sec.
IV A and Refs. 5 and 8 for detailsn which much of the
_ spatial information about the original system is missing.
However, it is still possible to calculateansportproper-
ties, such as the dynamical conductivity, that are insensitive
to the details of the spatial structufthis is, in essence, a
consequence of spin conservajioft the critical point sepa-
FIG. 4. Sketch of the dynamic structure factor at fixeg Q) 5 in rating the gapless Haldane state from the random singlet
the RD phases. state, we find forw< (),

T
S“ﬁ(k=g+q,w

1

2. Overview of results

Sk, 00—
I Random Dimer

Ted>1
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o' (w)=Kuyl, IN2(Qqlw), (14) only highlight some of the subtleties, missed in these nu-
L ) . ) merical studies, that our analytical work has uncovered re-
which is astrongerdivergence than in the strong-disorder y54ing the autocorrelations—a complete tabulation of our

RS phase; her¢, is the nonuniversal microscopic length preqictions(and their interpretation in terms of Griffiths ef-
scale beyond which the effective model appli€k, is the fects is given in Sec. V.

corresponding microscopic energy scale, afigy is an Our results for theT=0 imaginary-time off-critical spin
order-one numerical constant. Thus, the critical point sepastocorrelation in the bulk have the form

rating the RS phase from the GH phase is also an unconven-

tional “spin metal.” The GH phase, on the other hand, is a lin 7]

“*spin insulator,” not unlike the RD phase of spin-1/2 chains. [Croclad ) ~ , (17
We find for the conductivity in the GH phase )

o' (0)~Kgul,(0/Qo) Y7o IN2(Qg/w). (15) wherez( ) is the continuously varying dynamical exponent
) ) ) ) characterizing the Griffiths phasésom the results of Ref. 6,

The dynamical exponemy, varies continuously in the gap- ;-1 7| 5|, for small enoughs). In the above, the parameter
less Haldagslsphage, diverging at the critical pointzag | gistinguishes between the disordered and ordered phases
~(We—W) ™", while the nonuniversal amplitud€s(W)  wjth n=1 in the disordered phase and-2 in the ordered
remains nonzero as one approaches the cr_ltlcal point. In th;?nase. Thus, the exponent controlling the power-law decay
above,W, is the critical value of the bare disordéhe pa- i the ordered Griffiths phase twice z 2, while the corre-
rameterW has already been defined in Sef.dnd the cor-  gponding exponent in the paramagnetic Griffiths phase is
relation length exponent=6/(113—1) is known from the ;=1 Thjs reflects the physical distinction between the disor-

analyses in Refs. 5 and 18. dered and the Ising ordered Griffiths phases noted in our
general discussion at the beginning of this overview. More-
C. Random quantum Ising spin chains over, the autocorrelations in the Griffiths phasesravgure

power law, but have a logarithmic correction, which reflects
_ ~ the fact that the appropriate “spin” degrees of freedom rel-
The self-dual nature of the random transverse field |S|nggvant at a time-scale have an effective moment of order

model in one dimension implies that the system will be in aj|n 4. Both these subtleties have been ignored when extract-

critical state if the distributions of bonds and fields are iden4ng the dynamical exponent from the numerical results for
tical. The deviation from criticality may be parametrized by the average spin autocorrelations via the ang@izg.].(7)

S ~1/7Y%9) “and this could account for some of the discrepan-

_ Inh—=InJ cies observed in the numerical studies. Similar remarks apply

var(Inh)+var(Iln J) to other average autocorrelations considered, and we refer to

with 6>0 corresponding to the quantum disordered para-sec' V for details.

magnet, and<0 corresponding to the ordered ferromagnet. )

(Note that we use 8" both as a dimensionless measure of D. The basic strategy

dimerization in spin-1/2 chains, and in the present context; We conclude with an overview of the basic strategy intro-

there is however no cause for confusion and the meaninguced by us in Ref. 10 for the calculation of dynamical and

will always be clear from the context in what follows. transport properties—we will be using this approach over
This quantum critical point is flanked, for smal| on  and over again in what follows, and while the details will

either side, by paramagnetic and ferromagnetic Griffithsdiffer from calculation to calculation, the basic approach will

1. Phases

phases with gapless excitations. remain unchanged.
_ Consider, for concreteness, the calculation of the dynamic
2. Overview of results structure factorS*#(k,w) for the HamiltonianHyyz. The

As mentioned earlier, these Griffiths phases and the quarasic idea is to eliminate high-energy degrees of freedom
tum critical point separating them are among the bestusing an appropriate strong-disorder renormalization group
understood examples of such strong-randomness phenomtocedure(in this case, the singlet RG reviewed in Sec.
ena. However, all previous analyses of the dynamicalll A), and trade in the spectral sum Ee) for a sum over
properties relied on numerical results supplemented by scathe eigenstates of the renormalized Hamiltoniafyyz,
ing ideas. which has fewer degrees of freedom and renormalized bond

In contrast, our approach allows us to analytically calcu-strengths. This renormalized spectral sum must use the ma-
late the average local autocorrelations of both the spin anttix elements of theenormalized versionsf the spin opera-
the energy operators at, and in the vicinity of, the quantumors; these renormalized operators are of course defined by
critical point, as well as obtain the scaling behavior of thethe requirement that their matrix elements between the
dynamic structure factor of the spins. The main features oéigenstates of the renormalized problem reproduce the ma-
the average autocorrelatiofas well as distributions of au- trix elements of the original operators between the corre-
tocorrelations, which we do not address henave already sponding eigenstates of the original problem. In the systems
been noted in the earlier numerical waiRef. 17, while our  of interest to us, the low-energy renormalized randomness is
results on the dynamical structure factor are new. Here, weery large. In the renormalized problem at the energy cutoff
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S_)<QO, the eff_eqtive bonds. thus ha_lve a very broad distribu- Fog= Tt (SiSk+s)sY) + 32623

tion characteristic of the fixed point to which the system

flows in the low energy limit. This allows us to reason aswith J; =J1J5/(J5 +J3) and J3=J2J%/2J5 ; note that the
follows: Focus on pairs of spins coupled by “strong” bonds
in the renormalized problem, with strengths equal to the cut
off ). The broad distribution of bonds implies that these . 4om singlet state described in the overview.

pairs are effectively isolated from their neighbors. Itis there- — complete understanding of the possible phases then re-

fore possible to unambiguously identify the excited states Oauires an analysis of the effects of iterating the basic RG

these_palrs with excitations of _the full system at the SaM&rocedure. Such an analysis was performed in Ref. 4 leading
energies and work out the matrix elements connecting the

to the ground state using the renormalized operators. Thus %the following conclusiongsee Fig. 1 So long as thel”
: o ' couplings do not dominate over tdé couplings and there-
calculate the spectral sum E@), the RG is run till the ping Ping

. fore do not produce a state with Ising antiferromagnetic or-
cutoff  equalstlying, and the problem is reduced to calcu- der, the ground state is a random singlet state. In this case, a
Iatlng_the renormalized spectral sum in this new theory’detailed characterization of the low-energy effective Hamil-
{dfina 15 chosen so that the energy of such excited stateg,nian js pest couched in terms of logarithmic variables as
(associated with these strong bondseasured from the follows: Let Q=maxJ"} at any given stage of the RG, and
ground state equals. The calculation ofS*(k,w) then define . the Iog-cuto%fl“zln(ﬂ 1Q). Also define Iég'
becomes a counting problem. One uses the known statistical i (/3 d i _0 S i o,
properties of the renormalized bonds in the theory with cut-(iOUp ings £ =In( - JZ aln 0g-anisotropy: parametets,
off Ogng to calculate the number of such strong bonds, and:In(A_J'),’ Wh?reAiz‘]J/i]i - AS l;f |ncr?a1§e§, th.e fraction of
simply adds up their contributions weighted by the corre-reTﬂ"’}'zn'nthS'teigLat ogi_—cutod scale ll‘sl given asnF_dI
sponding matrix elements to obtain the required result. ThisT i ent f(;,Up :jngs. omlr&atr?,t esyzt'le'm (;‘fip', y
result is expected to be asymptotically accurate in the limiflOWs t0 the “XX-RS" fixed point and the probability distri-
of small w, since these contributions clearly dominate in thePution P(¢,A,1]T') that determines the strengths and lengths
low-frequency limit. A certain simplicity thus emerges when ©f the bonds connecting the remaining sites in the effective
the low-energy effective theory has strong disorder, and wétamiltonian quickly converges to the following scaling form
will exploit this to the fullest in what follows. characteristic of theXX-RS fixed point: P(£,A,1|T)
=(1M2)P(LIT 1IT9) X 8(A). The functionP; has been
characterized in detail in Ref. 4; here we only note that
IIl. DYNAMICS AND TRANSPORT JdyPi(x,y)=e"*. Between the IAF phase and thX-RS
IN THE s=1/2 XXZ CHAINS phase lie two kinds of critical points. If the initial problem
has full Heisenberg symmetryd{=J* for each bonyl the
low-energy effective Hamiltonian preserves this symmetry
1. Singlet RG description of the random singlet states: A review and has bond strengths and lengths drawn from the same
robability distribution:P(Z,1|T")=(1/T'3)P,(Z/T,1/T?). In
the RG language, the Heisenberg system is critical and is
controlled by the XXX-RS” critical fixed point. Finally, in
gwis language, the generic critical point between the IAF
phase and theXX-RS phase is controlled by the
‘' XXZC-RS” fixed point—the low-energy effective theory
aﬁas bond strengths and lengths drawn from a distribution
P(£,D,1|T)=(1/T3"¥)P,y(ZIT,DIT Y 1/IT?) with <1 and
yfdy7?2(x,y,z) ="P1(x,2). Notice that these scaling forms im-
ly that the distributions of the couplings become infinitely
oad as)—0; thus, the RG becomes asymptotically exact
at low energies and, in particular, predicts the ground-state
I§>roperties and low-temperature thermodynamics correctly.

length of this new bond iT;1=I1+I2+I3. This procedure, if
it remains valid upon iteration, thus ultimately leads to the

A. Detailed characterization of the phases

We begin by noting that the weak-randomness analysis
Doty and Fishéf implies that randomness is relevant for
pure antiferromagnetiXXZ spin-1/2 chains for &J%J*
<1; any amount of randomness is thus expected to drive th
system to strong disorder in this entire regime.

In the strong-disorder regime, the singlet RG proceeds
follows:2%* We look for the bond with the largest- cou-
pling, sayJ;; between spins 2 and 3; this sets the energ
cutoff QEmax{JjL}. We first solve the corresponding two-
spin problem and introduce the neighboring bonds later as
perturbation. So long as thE couplings are not large com-
pared to theJ* couplings, the ground state of the two-spin
problem will always be a singlet separated by a large ga
from the triplet excited states. We can then trade our original
Hamiltonian in for another Hamiltoniafdetermined pertur- ) . ) ]
batively in the ratio of the neighboring bonds to the strongest On the Ising antiferromagnet side, the singlet RG be-
bond that acts on a truncated Hilbert space with the twocOmes invalid at low energies, and the system has a ground
sites connected by the “strong” bond removed. To leadingstate with IAF order. The proper characterization of the sys-

order, this procedure renormalizes the Hamiltonian tem at these low energies is in terms of IAF-ordered spin
clusters, as well as the domain-wall excitations that act to

3 disrupt this order. This section is devoted to providing such a
Hpon= JH(sS* 4+ Vs )+ JPsisE description. In what follows, we ywll be considering mamly
asites 12'1 (5 (S]8)+ 1 875} 2) +JjSjS] 4] the IAF phaseclose to the transition to the RS stata this
regime, the system will “look” IAF ordered only well below
to a crossover energf) S while resembling aritical system

2. Scaling description of the Ising antiferromagnet
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controlled by theXXZC critical point above the crossover conservation. More explicitly, if we combine three spins, say
scalef), _is the scale at which the singlet RG breaks downs,, s;, ands,, with relatively strong couplings; and J3,

and i; .th'us determined by _the properties of the RG floyvs innto a new superspiEZE§(234), and treat thel* couplings
the vicinity of the XXZC critical point. The corresponding perturbatively, thexXZ form of the effective Hamiltonian is
Iog-e?ergy scalel’;, =In(Qo/Q;,.) is given a8 Ty, preserved, with the new coupling¥,=J%+ (J3)?%/(23%),
~O\pF, With 6=(2—¢)/\, whereX is the leading relevant ~: — 24 (N2 (232 S [y TR R and
RG eigenvalue at th&XZC fixed point andys has already :5—2\]4LJE/32 (232), 12 etz 25
been defined in the previous section. Below, we construct a . ~2%4'"3" ) . ) . .
Either way, we will have effective spin-half objects with

scalingdescription of the IAF phase near criticality by com- . ; . . .
bining information obtained from the singlet RG about thedominant Ising AF interactions. Almost always, we will be

nature of the system at this crossover scale, with a “clustefl€cimating strong)* couplings making larger and larger
RG” approach that is designed to work in the limit of low clusters, with the othed?* f:qupllngs remaining essentially
energies(well below Q; ) above the IAF-ordered ground unchanged, and the remam@@ couplings growing weaker
state. and weaker. Only rarely will there be a bond withJa

We begin with a sketch of our cluster RG approach. Con£0UPling large compared to the neighboring couplings, and
sider the Hamiltoniarf{yy, with J* couplings completely this will t_hen produc_e_a singlet. Thus, the p|cture_that
dominating theJ* couplings. Now, spins tend to order anti- €Merges Is very reminiscent of the ordered phase in the
ferromagnetically, and we can try formulating a cluster RGRTFIM.
similar to that for the ordered phase of the random We may now combine this schematic cluster RG descrip-
transverse-field Ising model. Consider combining two sucHion valid at low energies, with information about the cross-

spins, says, andss, coupled by a strong bonif into a new ~ OVver region obtainable from the singlet RG. At the crossover
a SO 7 o
“superspin” Sps). If we identify the two state$ ,z) and scale, the d'fti'bUt'on off*=In(Qs,. /%) is given as
|ll23) of this superspin with the statd$,|s) and|[|,15)  P({Ts,)~T5, exp(-¢T;, ). Roughly speaking, be-
(which is not a unique choigeand treat the* couplings to  yond the crossover scale, the cluster RG merely eliminates

second order in perturbation theory, the effective Hamil-the strongest bonds from this distribution, but keeps the low-

tonian that we obtain is energy tail of the distribution unchanged. We thus expect a
line of (classical IAF fixed points, with properties varying
Ho28= JiS{E»%zs)— Jészzug?zsﬁ R2sSt2s— smoothly with the distance from the criticality. The density
of spin degrees of freedomy in the renormalized theory is
—J7(23)4(S1 S23)Sa +S1 52354 ). expected to decrease ag~T ;2 e °"'"s. below the cross-

over scaIeQ(slAF, wherec is some order-one constant. This
™ 1 JL 19l 3 1L . . . .
whereh =3, , J1(03),=J133/35, 31=31+(31)%J3, and  immediately gives us the density of states(w)

J5=33+(J3)?/J3. Thus, we see that new terms, not present~ o™~ 'ny I';1 ~ 5jtw™ "1, with the continuously

in the original Hamiltonian, are generated: an effective tra”SVarying dynamical exponemiye~ 5,2 . The typical size of

verse field, which acts to flip the new spin, and also a threeg,o” excitations dominating the density of states scales as
spin exchange interaction. Before we proceed_, a couple gf (w)~1,T's T, and is much smaller than their typical
comments regarding the new terms: The effective transvers IAF

field appears because the ground statg/gfis not exactly a sepe.trat'lonjw v, :!'h|s can be .reia”dny seen from the
degenerate doubléte two lowest eigenstates, which are thequ""“tat've picture of preforzried.tans. the Ieng_th,w(w)
symmetric and antisymmetric combinations |df,|3) and o a(;enormal;zeq borr:d with*=0 in the Lhetlnry W;:h ?utoﬁ
|1,134), are actually split by a small energl}). Note also w_< s SCAIES N t.e same way as the length of a bond
that the three-spin term doest violate spin conservation; With £*~In(Qs, /o) in the theory at the crossover scale
for example, if we consider coupling the conserved tefgl  Q5,.. On the other hand, the distribution of the log-
to a magnetic field, we immediately realize that the superspiouplings{*-=In(Q/J") is expected to broaden exponentially
5(23) doesnot couple to this field. as a function ofl": for example, when we combine spins

In principle, we may proceed with such a clustering pro-that are active at the crossover scale into a cluster, the effec-
cess, keeping track of all additional one- or two- or multi- tive transverse coupling acting on this cluster will be of order
spin-flip terms that are generated. While this RG is not ana§l~nT5IAF- This then is our scaling picture for the IAF
lytically tractable, we do not expect the generated terms tgphase; the important conclusion that emerges from this
have any drastic consequences, since they generally becomgalysis is the fact that the transition to the RS state is pre-
weaker and weaker, while th# couplings remain almost ceded by a Griffiths phase—the IAF Griffiths phase—with a
unchanged. Alternatively, we can remedy this proliferationcontinuously varying power-law singularity in the low-
of new couplings by combining an odd number of spins at anergy density of states.
time—because of the symmetries of the Hamiltonian, any Finally, it is also possible to obtain a rather direct identi-
odd length chain will have a degenerate pair of ground statefication of the low-energy modes in terms of the rare regions
with the totalsf,= =+ 3. In addition, three-spin terms of the that dominate the low-energy dynamics; we conclude by
form encountered previously will now be forbidden by spin sketching this briefly here. The RG picture suggests that in
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the IAF phase the typical excitations at low energiesire  been reviewed in general terms in Sec. 1l D, and our calcu-
classical domain-wall excitations that live on the effectivelations here represent one of the simplest examples of this

bonds with weak effective coupling¥~w. Such a weak approach atwork. , ,
L~ . . We begin by considering only the leading term in the
effective J* can appear only across a long region that is

locally in the RS ph M tativel . fperturbative expansion for the renormalized spin operators;
ocally in the RS phase. More quantitatively, a region Ofy,q yagyits obtained in this manner give the correct leading
lengthL locally in the RS phase effectively corresponds {0 ayepayior at low frequenciessome justification of this is

weak bond withJ?~Qqe~%". The number density of such given in Sec. Il E, where we discuss the role of higher-order
regions is roughly~ p* for somep<1. The density of such terms.

regions withJ?< w is thus some power ab that we choose

to write asn(w)~ w*? with some exponent; the most nu- 1. Random singlet states

merous such regions will have some “optima(ffor a given The leading-order “operator renormalizations” needed
diaF) Microscopic structure, but whatever this structure is,gre particularly simple: the spin operatér remains un-
the corresponding optimal exponentan be directly identi-  changed for each of the “surviving” spins and is effectively
fied with the dynamical exponer(d,ar) of this phase. This  zero for each of the “decimated” spir.e., spins that are
picture thus predicts that the typical separation of such realready locked into singlets with other spins

gions is of order %, while their lengths are only of order Consider firstS?4(k,w); in our formulation of the singlet

2
S(w—En),

[In |, in complete agreement with the schematic RG apRG, Sec. Il A, the following analysis applies to a general
proach. XXZ singlet state(i.e., remains valid so long as the ground
state does not have IAF ordeConsider two sping andR
3. Singlet RG description of the random dimer phases: A review connected by a strong bond*(,J%) in the renormalized
. L _ theory with cutoffQ,,. The spin operators’,; connect the
V\{h!Ie the effects 'of dlmer!zatlon are not. understood '”singlet ground state of this pair only to the triplet st
detail in all regimes, it is p_oss!bcieo use 'Fhe singlet RG and (with m,=0), which is separated from the singlet state by a
follow the flows for a chain with full Heisenberg symmetry ~ .

7 - . gapJ-. Therefore, the energy-scalg;;,, at which we stop
and for a Cha'n in the vicinity .o.f th&X-RS point. In these the RG isQyna= w in this case(remember that the cutoff
cases, a mapping to the off-cr.mcal flows of the RTFIM pro- was defined a€ = maxJ"}). We thus consider the renormal-
vides a detailed characterization of the so-called RD phasq§ed spectral sum
that result. In either case, the picture that emerges can be
summarized as follow$:For concreteness, assurie-0. If - -
disorder i_s strong and<1, then the even and _the odd bonds_ K, o) :E E <m 2 elkx &2 0>
renormalize essentially as in the corresponding RS state till L ‘m ] !
the log-energy scal€ ~1I" ;=1/5. Beyond this scale, the re- (18
maining odd bonds rapidly become much weaker relative to . . .
the remaining even bonds; the distribution of the even Iog-Where the tildes remind us of the f‘f’lCt tha}t this spectral sum
couplingsP%(¢|T) = fdIP%(¢,I|T) approaches some limiting "W refers to the new Hamlltc_)mar_l with energy cutoff
distribution with a finite but large width, while distribution finai= @; this renormalized Hamiltonian hag. spins per
of the odd log-coupling$°(Z|T") = [dIP%(Z,I|T) grows in-  unit length with the distribution of couplings and bond
finitely broad. In the RG language, the system renormalizetengths characteristic of the fixed point to which the system
to some point on a line of RD fixed pointsom this point of ~ flows in the low-energy limit. The sum in E418) is domi-
view, the RS states at=0 represent critical points separat- nated by the excitations to the triplet stdtg) of pairs of
ing RD fixed points with opposite dimerization, see Fi@. 2 spins connected by th&enormalizedl bonds withJ* = w;

The corresponding joint distributions of the log-couplingsthese pairs are precisely the ones that are being eliminated at
and the lengths have been worked out in Ref. 6; here we onlthis energy scale. The corresponding matrix element for each
note thatP*({|T)=ro(I')e™ ™) with o(I')~24, while  such pair is simply (+€'T)/2, wherel is the length of the
Po(LIT)=up(I)e ¢ with ug(l')~28e~2*". The  pond connecting the pair; this allows us to write
ground state again consists of singlet pairs made up of one
spin on an even siteand a second spin on some odd §ite ,
Note, however, that while> andi<| are equally probable SZZ(k,w)~n(Fw)f didZ|1-e¥[2P(Z1|T,) 8(w—we ™)
in the RS state, in the RD phase wifh>0 one almost al- (19)
ways hag >i (with the exception of a few high-energy pairs
of small spatial extent for v<Qg in any RS state.
The calculation ofS* ~ (k,w) is more involved since the
gap to the relevant triplet excited statg) (with m,=1) of a
B. Dynamic structure factor pair of spins connected by a strong bonit (%) is now
In this section, we summarize our calculations of the dy-(J3* +J?)/2. We consider each of the three cask¥X( XXX,
namic structure factor in the different regions of the phaseandXXZC) separately(1) In the XXX case, the Heisenberg
diagram of spin-1/2XXZ chains. Our approach has already symmetry of the problem guarantees t&t=S"Y= S (2)
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When the system approaches % point at low energies,
we haveJ?’<J" implying that the relevant gap is approxi-
matelyJ'/2. Thus, to calculat&® ~(k,) we now have to
stop the RG at the scaley,,=2w. From Eq.(19), it is clear
that this leaves our answer unchanged except for the valu
of various non-universal scale facto(3) The XXZCcritical

point needs special attention. In this caé&J' can have a

range of values. As a result, the excited states that dominate

the spectral sum Ed4) are not simply obtained by stopping
the RG at any particulaf),, and looking at the singlets
forming only at this scale. Instead, for ay;,. < (0,2w)

PHYSICAL REVIEW B 63 134424

Let us first focus on the regimig|=|k— =/a]<a 1. Note
that allunscaledengthsl areodd multiples of the unit length
a, and therefore'®'= —e'9'. The integral in Eq(23) can be
evaluated using the characterization of the functiO,y)

éaélailable in Ref. 6; the result is the following rather unusual

scaling form at all three RS fixed points:

o

a

S| k

@[lal,|**In(Qo/w)].
(24)

q’w) 1o n¥(Qq/0)

there will be some singlets formed at this scale that willNote that we have suppressed the component labels on
contribute to the spectral sum, namely, the pairs coupled bg(k,w) as the two independent components obey the same

strong bonds withi* = Qg andJI?=2w— Oy, . Note that

scaling form, but with different values in general of the nu-

there is no double-counting here since we are consideringnerical constanl and the microscopic length-scale. The
only the pairs that are being eliminated at each energy scal@niversalfunction ®(x) can be written as

Thus, we have

S*’(k,w)~J’ drdidbn(r)|1—e*'|2P(0,D,I|T")
X 8(w— Qe '[1+eP]/2). (20)

Rewriting this in terms of the scaling probability distribution
‘P, and using the delta function to do tleintegral gives us

__n[T,Y,(D)]

r— _ _ aikl[2
S'" (kw)~ | didD o) |1—ek]
X P,| 0 D ! (21)
2 7YHD) Y2(D))’

where we have defineB=D/T'’, I=1/T'2, k=kI'2, and

In(1+ePTe)—In2
r

Y, (D)=1+ (22)

Now, sincey<1, it is permissible to take thE ,— o limit
of Y,(D) before doing theD integral, in other words, we
can replaceY’ by 1 in the low-energy limit. Thé® integral

can then be done trivially, and the final expression is identi1k|<a—

cal in form to Eg.(19). More physically, a given bond
(J*,J% is described fairly wellon a logarithmic scaleby

one of these two couplings; we chose the characteristic scale
to beJ*. Now, the random anisotropy leads to an uncertainty

[IN(J%3")|~T? in the corresponding log-energy scale. This

uncertainty is much smaller than the already existing typical
spread in the log-energies or the typical log-energies them-

selves, which are both of ordér. The leading behavior at
low frequencies is therefore not affected.

Thus, in the limit of low frequencies bot&*k,») and
S*~(k,w) can be expressed in terms of the scaling probabil
ity distribution P; as

n(l’,)

S(k,w)~ o

f diji—ek 2P, 00). (23

w

cog x)sinh(x) + sin(x)coshx)

d(x)=1 .
()=1+x cog(x)sint(x) + sirf(x) cosH(x)

25)

The resultingS(k, ) is shown on Fig. 3. There is a fairly
straightforward interpretation of the main features of this line
shape: The peak @=0 (i.e., atk=m/a) reflects the pre-
dominantly antiferromagnetic character of the low-energy
fluctuations; in our language, this is a direct consequence of
the fact that thérenormalizeglbonds all have odd lengths in
units ofa. The strongly damped oscillations with the period
and the decay scale both of ord?eg2 express the properties
of the distribution of lengths of the strong bonds: both the
average and the RMS fluctuation of this distribution of
lengths are of ordeF? .

While this result is interesting, one needs to analyze the
effects of higher-order terms in the operator renormalizations
before accepting its consequences for possible neutron scat-
tering experiments. We will argue in Sec. Ill E that higher-
order corrections do not modify the functional fol2b) of
the features iIr5(k,w) at fixedw but only add an “incoher-
ent” background(of strength comparable to that of the fea-
tures and suppress the amplitude of the features by a non-
universal multiplicative factor of order one.

A similar scaling function can be derived for the regime
!, Repeating the above analysis gives

!

S(k,w)= )&>[|k|v|1/2|n(90/w)], (26)

l,oIn3(Qq/w

with ®(x)=2—®(x), and. A’ an order-one numerical con-
stant. This scaling functiomanishegor k— 0; for smallk we
have S(k,w)~1,k? In(Q/w)/w. We must therefore consider
the possibility that higher-order corrections may overwhelm
this scaling result and render it irrelevant. This is indeed

expected to happen f@&" ~ (k,w) away from theX X X point.
However, we expect the scaling result to be valid quite gen-
erally for S*(k,w) because spin conservation guarantees that
the higher-order corrections &%k, w) must also vanish as
k—0 (see Sec. Il E for a detailed discussion of this ppint
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2. Dynamic structure factor in random dimer phases: where it was conjectured also that other properties of such
“Sharpness” of the Griffiths regions low-energy regions are likewise sharply defined: for ex-

Next, we consider the spin dynamic structure factor in the2mPple, in the disordered phase of the RTFIM, the magnetic
XX and XXX random dimer phases introduced in Sec.moment of the Griffiths regions with given characteristic
il A 3. The same approach as for the RS states goes ovenergy is sharply definétiand proportional to thésharply

unchanged, and we write defined length of such regionglIn fact, similar “sharpness”
is expected to hold for any bond “property” that “rides” on
S(K, @) ~n(T dldzl1— elk!|2 top of the singlet RQ vi-a-recursion relation=x; + X3
(k) ~n( ‘")f f1=et] +YXx, when bondJ, is eliminated. We expect to see a
<[ PO 4 P8 signature of this sharpness of the Griffiths regions also in the
[PAEIT W)+ PHLIT)] dynamic structure facto®*“ in the IAF Griffiths phasesee
X 8(w—we™¥) (27) below and also in the Griffiths phases of the one-

. . dimensional RTFIM(Sec. V Q. Finally, an interesting ques-
for both S*4(k,w) andS™ " (k,w) in both theXX and XXX

RD bh W in bei | b he distincti tion, which we leave unanswered for now, is whether similar
phases(We are again being sloppy about the 'St'ncuo.nsharpness in the properties of the Griffiths regions at a given

petweenl“w andFL_U/Z, as this can be ahsorbed in the defm"energy occurs and has observable consequences in higher
tion of the nonuniversal scale factors that enter our eXPreSyinensions as well, e.g., in the disordered phase of the
sions) d>1 RTFIM

Using the results of Ref. 6, it is a simple matter to obtain '
the full crossover from the RS-like behavior of the structure
factor in the regime ¥I' ,<TI 5 to the behavior characteris- 3. IAF Griffiths phase

tic of the RD phase in the regimi,>T ;. Here, we focus Let us first consideB*4k,w) in the IAF Griffiths phase.

on the behavior in the regimeé,>I";, as this exh|b|ts SOME  ag discussed in Sec. Il A 2, the dominant low-energy exci-
rather unusual features. At these low energies, the even

bonds dominate over the odd bonds, and the contribution Otiauons In this phase are classical domain walls. However, it

the odd bonds to the sum E7) is negligible (we are gz cll(ear th_at sur?h excnatlot?s do_ ngl)t]c contrr:bute atdall to
assumings>0 for concreteness For wave vectors in the > (K@), since they cannot be excited from the ground state

vicinity of k= m/a with |q|=|k— =/a|< &%, (i.e., probing by the action of operators Iikéﬁ, which conserve the total

lengths larger than the correlation lengiy~1,/5%) we ob-  sg;. The leading excitations that do contribute $* can

tain clearly be identified in the RG picture with thra,=0 ex-
cited states of pairs of superspins, with each pair connected

by a bond withJ* ~ w and forming a singlefnote that this is
trueregardlessof the value of the correspondidd). Now, it
(28) is easy to generate a weak coupling of orderw in the IAF

whereC and c are some order-one constants, and we havghase,fince any typical region of lendthwil Dave an ef-
chosen to write the power-law prefactor in terms of the dy-fective J* of order Qge™ %" (and an effectivel” typically
namical exponentgp. (As far as our RG calculations are much stronger What is more difficult is tasolate such a
concernedzg2=2| 8| for small|5|. However, the effective region from becoming a part-of a Iarggr cluster, otherwise
value of § that enters this expression is expected to acquire s region cannot support spin fluctuations at frequency
nonuniversal multiplicative renormalization from the high- For this, we need two rare RS-like segmefitsmain wallg
energy physics, and the only reliable statement we can mak&ith J°’<w, one on each side of outypical) region. Thus,

is thatzz2~| 8] for small enough8|.) This result has a strik-  we need two domain walls, which are usually separated by a
ing oscillatory structuresee Fig. 4 that is not suppressed large distance of ordes ™%, to occur close to each other;
significantly by the exponential factor, sincgl,,/[d] the “density” of such occurrences is w**4F. The separa-
<I',/|8| in the regime under consideration. This is best un-tion of the two domain walls—the length of the IAF-ordered
derstood as a novel signature of the sharply defined geometgjuster that they isolate—must be of ordér «|. More pre-

of the rare Griffiths regions that contribute to the scatterincCisely, if the IAF-ordered cluster has length it can be

at a given low energyi.e., that ardfiltered outby their en-  thought of as consisting of the~ L/FstAF strongly Ising-
ergy). More precisely, the average length of such regions igoupled spins that are active at the crossover scale; the ef-
of order 1,I'4(T, /T s)=I,T", /|8, while the root-mean- fective bonds connecting these spins at the crossover scale
square_fluctuations _in the length are only of orderypically satisfy In0'/3)~~T'5, . The requirement that the

|, TSV, /T 5=1,T, /|6 Our results thus suggest that spin-flip coupling for this cluster is fixes the length of this

low-energy INS experiments would be able to pick up thecluster to beL=1,I',['; , while the uncertainty in this
sharply defined geometry of such Griffiths regions in the RD v en e

phases in one dimension. length can only be of orddrvN/FngglAF@voF&IAF.
This feature of the Griffiths regions in one dimension was We are now ready to calcula®’k=m/a+q,w) in the
noted in Ref. 6, Sec. IVB, in the context of the RTFIM, regime|q|‘1>lvF§IAF, in addition tow<Q 5 _. The leading-

C| 5| 395 l/ZRD

S(kw)=— [1+cosl,ql',, /|8 e~ ceaullo’],

1-1/z,
Uw RD

134424-11



OLEXEI MOTRUNICH, KEDAR DAMLE, AND DAVID A. HUSE

order renormalization of thE‘Z in the cluster RG is S|mplesZ

is renormalized to £ 1)!s? for each spinj that is active in
some clustec, and renormalizes to zero for every spin that
forms a singlet. Assuming that such clusters “look” fairly
uniform on the length scales larger thb,r]l“%lAF, and adding
up the contributions from all such isolated clusters with ef-
fective spin fluctuation frequency, we obtain

=

Cr|5IAF|7HQ(;2/ZIAF
q
X[1-cogql,I"

k=—+q,0|=
_g q,w =

2|3w1—2/z,AF

w/| 5IAF| 0)

_~n22 30.
X @~ To /19arl™" (29

whereC’ andc are some order-one constants and the powe

of the 55 that appears in the prefactor has been fixed by
demanding consistency with the off-critical scaling form

r

Y

5IAF

522<k=§+q,w)= ,Iqlvll’zrw), (30)

3
ol

with ¥ (0,y)=®(y). Note also that the overall 47 depen-
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renormalizations. We thus already have all the ingredients
needed to calculate these average dynamical susceptibilities:
our basic approach is familiar enough by now, and the rel-
evant results of Ref. 4 for the renormalized bond distribu-
tions have already been reviewed in Sec. Il A. Below, we
will be correspondingly brief. We first give our results for
the average local dynamical susceptibilities and then trans-
late these to results for the long-time behavior of the corre-
sponding average autocorrelation functiéhsThe leading
behavior is the same for both=z anda= X, so we drop all
superscripts.

For abulk-spin we obtain

n(Tw)

dence is a consequence of the fact that the spins contributing N _ _
to the scattering have been taken to be distributed uniformlyvhile off-critical—in the RD phases—we find

over a sharply defined regidthe clustey, we expect this to
cross over to a much faster decay at large momésiiah
that|q| " 1~I UF§|AF) well outside the range of validity of our
scaling picture.

The situation is quite different f®&* ~ (k,w). As we shall
see in Sec. lll C, the renormalization of th]é spin operators

[ Xiocla o(T') +Po(T,)]. (33
For thecritical RS states I(’e— P° we find
[ Xioc)ad @)~ w“n w|3 )
[Cioclad 7) ~ T (34
[In 7]
|5/°
[ Xioclad @)~ wl—*llzRD’
|6]°
[Cioclad 7)~ 7-1/ZRD. (35

is quite nontrivial, and we are unable to make an equally

detailed prediction forS™~. However, we expect that the
matrix element for producing domain-wall excitations with
energies of ordew by the action o6 on the ground state is
strongly suppressed as some poweragfgiving rise to a
correspondingly small value f&" ~(k,w) at smallw.

C. Average local autocorrelations

Similarly, for anend-spin g of a semi-infinite chairfwith
j=1) we obtain

The same approach can be used to calculate average au-

tocorrelation functions, and this section is devoted to a brie
account of our results.
We consider the local dynamical susceptibilities

x;}w:; [(m[s0)[28(w—Ep), (31)

where a=z or a=X. A knowledge of the low-frequency

behavior of these susceptibilities can immediately be trans-

lated into information about the long-time limit of the corre-
sponding imaginary-time autocorrelation functions
Ci(1)=(s{(1)s(0)). (32)

1. RS states and RD phases

As long as one is interested only in averages of such local

quantities(over different realizations of disorderit again
suffices to consider only the leading-order spin-operato

[X1]ad @)~ w (36)
For the RS states we find
f [Xl]av(w)Nan w|2’
[Calad D~ i 37
and in the RD phases
52
[X1]ad @)~ PSS
2
[Calad D~ e (39)

2. |AF Griffiths phase

In the IAF phase, unlike in the singlet states, we need to
make a distinction between?* and x**. Consider first

134424-12
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[ Xii]al @). From our previous discussion of the IAF phase, (XX ol @) ~ T+ 22mF,
it is clear that, in the regime)<Q,;IAF, the dominant contri-

butions come from IAF-ordered clusters of lengths

; ; i Al ; [C]a(T) ~ ——. (40
~T, T Sar (i.e., with effective spin-flip couplings of order) locla 220
that are isolated from the rest of the system by domain walls

with J%<w on either side. From the scaling picture of the

phase, we get D. Spin transport

This section is devoted to a discussion of the dynamical
2z pr spin conductivityo' (w) in the spin-1/2XXZ chains. Our
Q, In(Qo/w) task here is to evaluate the Kubo formula Ef) in the
wl™ 22 ' low-frequency limit. For the RS and RD states, we will use
information available from the scaling solutions to the sin-
glet RG recursion relations to achieve this, while in the IAF
. s IN(Qo7) phase, we will use the scaling picture of the Griffiths phase
[Cioclad 7)~ IAFm- 39 we have developed earlier. Our results for the dynamical
0 conductivity are summarized in Figs. 1 and 2.

[XEE]a @)~ Sie

The analysis is more complicated foyjoc] . @), and we 1. Random singlet states

can only make a plausible estimate for this quantity. This is

b h d f th . We first need to work out the rules that govern the renor-
ecause th& andy components of the Spin Operators renor- iz ations of the current operators. Assume once again that

malize in a nontrivial way under the cluster RG. The origin ;. . : .
of this difficulty may be seen as follows: Consider, for ex-‘]23 is the strongest bond. We wish to work out perturbatively

ample, combining three spirss, ss, andss,, connected by the renormalized operatorsi /3 th_at we tra_lde inryp3 for,
2 7 ~ when we freeze spins 2 and 3 in their singlet ground state
strongJ; andJs, into a superspiis,34). To zeroth order, all

th tors” st dst lize t To first (the other current operators to the left and right of this seg-
ree operalors, , S; , ands, renormaiize o_zero. O NSt ment are left unchanged to leading order by the renormaliza-

order, s; and s, renormalize to €)"==5131/35  tion). Now, note that these other operators have overall scale
~S(224203135, (54)°"=—553;135-5(,34235/3;, while  factors in them that are nothing but the corresponding

s3 renormalizes to zero to this ordeRoughly speaking, the couplings. In order to be consistent, we clearly need to work
original spin-flip operators of theactive) spins have projec- out 7.,/ correct toO(J3,) (whereJ,, is the effective bond
tions onto the remaining effective cluster spin-flip operatorsconnecting spins 1 and 4 after we freeze out spins 2 and 3
with components given by the ratio of the correspondinghy adding the effects of virtual fluctuations to the projections
effective spin-flip couplings to the original spin-flip cou- of 7, into the singlet subspace. An explicit calculation
plings. gives the simple result that all three operators renormalize to

. I XX resuitthat e
Now, the dominant contributions tPx|;.]a(®) come the same operatar,s= r,=iJ+,(s; s; — s, s)/2, which we
I)(vill denote henceforth by, for consistency of notation.

from the low-energy(of order w) domain-wall excitations,
which are represented in the RG picture by the bonds wit o

P P y As we carry out the RG, the above result implies that the
total current operato}i};lrj entering Eq(5) renormalizes to

J?~w connecting the effective spirslusters in the effec-
tive theory with the renormalized cutoé. The matrix ele- o ~~ ) . ,

ment for producing such an excitation by a bare spin-flip=i!i7i» Wherej now labels the remaining sites of the renor-
operator of a spin active in one of these clusters will be ofmalized system, and tHe are the lengths of the correspond-
order of the corresponding’, while the number of such N9 rgnormahzgd bondgNote that thls result makgs sense
spins contributing will be of order of some effective “mo- Physically and is a consequence of spin conservation: when a
ment” u, of this cluster. Because of the matrix element Magnetic field with a uniform gradient is applied along the

proportional toJ', there will be a significant contribution !fangth ,?f the chain, the effe.cti\‘{e lengths measure the
only if this J* is also of orderw. As we have already seen phase along the chain of this "driving potential)”Con-

this can happen only if such an IAF-ordered cluster hasider two spins connected by a strong bodd,(?) in the

length of orderl’, and is isolated from the rest by RS-like €normalized theory with cutofllgq, . Since the current op-
regions (domain a\)/valls) with J’<w on either side. We al- €rator living on this bond connects the singlet ground state of

ready know how to estimate the number density of suctn® Pair only to the triplet statit;) separated from the sin-
Griffiths regions. As far as the effective momant of such ~ glet by a gapJ*, we chooseQgq,=w and consider the
an IAF cluster is concerned, we can only make a crude estfenormalized spectral sum

are active in this clustep,(w)=<T",; however, we are un- , 2 ~

able to obtain the precise power of the logarithm that enters o'(w)= IE 0)| 8lo—Em). (41
fore leave out the logarithmic correction, and only write theThis spectral sum is dominated by precisely thg triplet
dominant power-law part of our estimate: excitations of pairs of spins that are connected by(é&ffec-

mate that bounds it from above by the number of spins that B B
< m > 177,
the energy dependence of the effective moment. We there- " :
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tive) bonds withJ" = w and are being eliminated at this en- Where we have assumed that although large, satisfiets
ergy scale; the corresponding matrix element is just2, </In wf® (this assumption W_'” turn out to b_e self-conss_l)ent

~ . _ The total power absorbed in the sample is then obtained by
wherel is the length of the bond connecting the pair. In the

A summing over all such regions:
thermodynamic limit, we thus have

n(

r, "(w)~ | dLp-L3Zexp—cl|In w|?/L). 46

o' (o)~ — )J dldZw??P(L1|T,) 80— we ™). o'(@) f pLexp —clin w|/L) (46)

(42) Evaluating this integral by a saddle-point method, we find
that the lengths that dominate are of ordkrw| (our as-

sumption about the lengths is thus validnd arrive at the
o' (0)=Kgrd, IN(Qq/w), (43) following estimate

valid for «<Qq. Here,Krgis an order-one numerical con- o' (w)~w%Inw

21 (47)
stant,|, is the microscopic length-scale defined earlier, andWhere — a(8,)>0 is a continuously varying exponent
Q, is the microscopic energy cutoff. Notice that this analysisvanishic:‘_ gt t'r’]*g transition. While thisyar u%egt ispsu e
holds equally well at all three RS fixed points, which differ g ; 9 99

: : : ive, we find it more convincing to take an alternative route
only in the corresponding values of the nonuniversal scal¢ "~ ; . g .
factors ased on the scaling picture we have developed earlier for

A brief digression is in order, before we go on to Oliscussthe IAF phase, which has the added advantage of allowing us

this result: The real part of the dynamical conductivity can'© relate the exponent to the dynamical expone{ disr).

be related(on general groundsto the behavior of the Thklsvéshvz\;r\}itemzégrns?egetﬁ;t the most nuMerous low-ener
dynamic-structure facto®?“(k,w) neark=0 y gy

excitations in the IAF Griffiths phase are domain walls, with

This immediately yields our central result

1 d2 the integrated density of states,~ w'?4F. Suchclassical
o (w)=w= —28”(k,w); (44) Ising excitations, however, do not contribute to the dynami-
2 dk cal conductivity. The dominant contributions come from

this can be checked by comparing directly the correspondindf:F-ordered clusters of lengthis~T',I';, _ (i.e., with effec-
spectral sums and noticing that the action of the two operative spin-flip couplings of orde®) that are isolated from the
tors7=3;7; andV==;jo7 on the eigenstates of the Hamil- rest of the system by domain walls wiffi< . Remember-
tonian are related througi=i[,V]. It is easy to check, ing that the number density of such Griffiths regions is
using the scaling form Eq(26), that our result for the con- ~ @”“#%, and noting that the corresponding “phase lengths”
ductivity is consistent, as it must be, with our previously are of orderL~|In w|, we immediately obtain Eq47) with
derived result for the dynamic structure factor. a=2/z,pr . More formally, we sum over the possible separa-
Going back to Eq(42), we see that’ (w) diverges loga-  tions of two such domain walls, with the constraint that the
rithmically for small » in the unusual “spin-metal” phase typical IAF-ordered region isolated by the two has signifi-
controlled by theXX fixed pointas well as at the critical ~cant spin fluctuations at the characteristic frequeacy
points(XXXandXXZC) separating this phase from the “in- 2
sulating” phase with Ising antiferr(_)magnetic orde_r_ in the U,(w)wn_wj dLw2L28(w— Qe o). (48)
ground state. Note that this “metal-insulator” transition has )
the curious feature that the quantum critical points separatin
the conducting phase from the insulating phase have th
sameT=0 transport properties as the conducting phase.

g\/e thus obtain for the dynamical conductivity in the IAF
hase

o' (0)=Kpel,(0/Qg) 2285 IN?(Qg /o), (49

. . . where K4 iS @ numerical prefactor that depends continu-
On the insulating side, we expeet (w) to be suppressed ously Ondyae . The scaling ofc e With 8¢ for small 8y,

below the crossover scafe¢; _; the dominant contributions : . . .
IAF ) . can be obtained by demanding consistency with the off-
for «<Q;,_ come from some rare regions that contain longcyitical scaling form for the conductivity
finite segments locally in the “metallic” phase.
We begin by providing a rough estimate of these contri- o' (0)=Krd, IN(Qo/0)Zae (L', IT5,),  (50)
butions too’ (w): In our sample, consider @arge region of o ) o @-d)n -1
lengthL locally in the RS phase; the number density of suchVhich immediately implies thalljae~ Sjar ™"~ ZjaF -
regions is roughlyp", with somep<1 (which depends on
the distance from the transitipnlf these regions are effec-
tively isolated from the rest of the system, the average power We now calculate the dynamical spin conductivity in the
absorption per spin in each such region is proportional to th&X and XXX random dimer phases. Here, the same singlet
finite-size conductivity calculated in the Appendix: RG can be employed all the way across the crossover scale
I's=1//8|, and into the energy regime of a well-developed
W=Logd o,L)~L¥2exp —c|In w|?/L), (45  RD phase. The dynamical conductivity is given by the same

2. |AF Griffiths phase

3. Dynamical conductivity in RD phases
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expression42) as for the RS states: we simply add contri-  This free-fermion problem has been extensively studied in
butions from the evenK®) and the odd P°) bonds in com- the past, and is known to have rather unusual localization
plete analogy with the calculation of the dynamic structureproperties due to the additional particle-hole symmetry
factor. Using the scaling solutions of Ref. 6, it is quite simplepresent*? For instance, an elementary calculation immedi-
to calculate the full scaling function for the dynamical con- ately reveals that the zero-temperature average Landauer
ductivity conductancgg, ],, of a finite segment of length connected
) to perfect leads scales fg, ],~ 1/JL, in sharp contrast to
o' (,8)=Kgrd, IN(Qo/0)Zrp|8]In(Qo/®)]. (51)  the ysual exponentially-localized behavior in one dimension:
Here, we restrict ourselves to noting thp(x) ~const for ~ the corresponding conductivity, of course, scales s
x<1, while for x>1, Sgp(x) scales asrp(x)~xe 2. Now, the strong-disorder RG predicts that lengths scale as
Thus, at frequencies well below the crossover scale;,  the square of the logarithm of the energy scale in the low-
we have energy effective theory describing teX-RS state; our re-
sult for the dynamical conductivity is thus consistent with the
o' (0)=Krpl ,(0/Q0) R0 IN%(Q/ w), (52 elementary Landauer calculati¢see also our explicit finite-
with the numerical prefactokrp~|48] and the dynamical- '€ scaling calculations in the_A_ppen)j?)? Notice, how-
ever, that our approach is not limited to the noninteracting

exponentzgp~| 8 1 for small| §|. We can now interpret this \ . )
form directly in terms of the rare regions that dominate theCase. It allows us to reliably treat the effects of interactions,

conductiviy: Assume, for concreteness, taae0, i, that i OB TGN R I TR B R
the even bonds are dominating; the main contribution to th . y 9

. L he presence of strong disorder.
dynamical conductivity at frequencw<<Q s then comes

from the even bonds with effectivé,= w. Such wgak even 5. Numerical study of the dynamical conductivity
bonds are generate_d on]y across rare long regions that are at the XX fixed point
locally in the opposite dimerized phase, and these are pre- ) o )
cisely the regions that dominate the low-energy density of At the XX point, the Hamiltonian Eq54) describes non-
states and thus determine the dynamical expoagptd); interacting fermions with random hopping amplitudes, and
this explains the factan?Ro in Eq. (52). Moreover, all such We are essentially faced with the problem of finding the low-
bonds have a well-defined length proportional taglw), ~ €Neray eigenvalues and eigenstates of the corresponding
which explains the B(Qy/w) in Eq. (52). single-particle Hamiltonianfan L XL matrix operator H
=320l + 1) +15)(5 +1]), which defines the Schro
4. Perspective: Spinless interacting fermions with particle-hole dinger equation for this problem. Any fermionic state can
symmetric disorder then be represented as a Slater determinant of the corre-
To put these transport properties in perspective, we recaﬁpondmg(nprmallzed smgle—partlclg eigenstatds,,) with
' eigenenergieg,, . In the single-particle language, the Kubo

that the spin-1/2XXZ chain is equivalent, via the usual formula for the conductivitys’ (w) at zero chemical poten-
Jordan-Wigner transformation, to a system of spinless inter: W lw P

acting fermions with particle-hole symmetric disorder. MoretIal and at a finite temperatufgreads
specifically, we write the spin operatos =sf*is) in

. . St - t 1 2
terms of fermion creatiofannihilation operatorsc; (c;) as o' (0)= = ,LEZ <¢ﬂ2 2 T(J)’¢“1>
s =11 (1-2n;)c], X[f(e, )—f(e,)]0(w—e, +€,), (55
i'<j M1 M2 M2 Hq7?
where T(j)=it;(|j){(j+1|—|j+1)(j|)is the current opera-
ST 11 (1-2nj/)cj, (53 tor on the linkj andf(e)=1/(e“T+1). (This version of the
i'<i Kubo formula will also prove useful when we analyze the
while sf=n; —1/2 (herenjECJTCj is the fermion number op- full temperature dependence of the dynamical conductivity
erator at sitg). In this languageHxxz can be written as 1N Sec. V1) - _
Here, we test th& =0 predictions by evaluating”’ (o)
L1 using exact numerical diagonalization of finite systems. The
H=2> [tj(CjTHCj+C,-TCj+1)+Vj(nj—1/2)(nj+1—1/2)]. results of such calculations for system sizes 128, 256,
=1 (54) and 512 with the hopping amplitudgsdrawn independently

from a uniform distribution ovef0,1] are shown in Fig. 6,
with t; =J1-L/2 andV; :sz_ The couplingd? thus controls the where we have averaged over 100 000 samples for leach
strength of the nearest-neighbor particle-hole—symmetric rean infinite sample we expect the conductivity to diverge
pulsive interaction between the fermions. The IAF phase thalbgarithmically, but with the system sizes studied here, we
obtains for largeJ* corresponds to a charge-density-wavecannot quite probe this infinite-sample regimeh(Qy/w)
state stabilized by interactions. In the absence of interactions:\/L, rather, we are in the regime<lin(Qq/w)=<+L. Nev-
(XX chain we obtain a free-fermion random-hopping prob- ertheless, the numerical results of Fig. 6 clearly show that the
lem at zero chemical potential. dynamical conductivity increases as the frequency is lowered
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0.050 : , , diagonalize numerically: the “length part” of the distribu-
0.045 | tion P(Z,1|T") is still evolving toward the corresponding scal-
0.040 | ing form from the initial conditionP(¢,1|T"))=e ¢5(1—1).
« 0.035 | Nevertheless, we can compare the results of the exact nu-
= 0.0%0 | merical diagonalization with théormal) predictions of the
0025 | RG for thesamesystems. This can be done by either running
< - the RG on the same samples or by evaluating the analytical
5 0. - : . )
T n5iE (within the RQ expression, given by _the inverse Laplace
— transform Eq(A9) for these initial conditions. In Fig. 6, we
T compare the RG result obtained in this manner with the nu-
0008 merically evaluated conductivity. Given that the initial dis-
0.000 ~ o5 ] s > order is not very strong, the agreement of the RG predictions
' ' with the o' (w,L) from the exact diagonalization is fairly

In(Qy/o) (1, /L)12 good.
FIG. 6. Scaling plot of the dynamical conductivity (w,L) at o
the XX point for finite systems of sizds= 128, 256, and 512, with E. On validity of results

free boundary conditions, calculated by exact numerical diagonal- gq far our calculations have relied on the leading-order

ization and, forexactly the sameystems, by the finite-size RG yonormalizations of the spin operators: in this subsection we
analysis of the Appendix. Free-fermion hopping amplitugeare a1 1 justify validity of this approximation. We will not

drawn independently from a uniform distribution oVd),1}, and  ,yqress the corresponding question for the RG itself because
the (barg phase lengths are set tp=1. We used,=2 corre- this has been analyzed with great care in Refs. 6 and 4, and

ndin he initial ener ff in th ivalent spin m; . .
sponding to t eﬁ tial energy cutoff In the equivalent spin syste ‘we have nothing to add here. Instead, we focus on issues
also, we used,=1 corresponding to the microscopic length scale

in the problem. The agreement of the RG predictions with the re_speCIfIC to our calculation of Qynamlgal quantities, and there-
sults of the exact diagonalization is fairly goégiven the not-so- f‘?fe not ad(_jresfsec.i as _SUCh In previous work. Here, we pro-
strong initial disorder, and the dynamical conductivity is indeed vide a_(partlaD justification Of,our 'ead'”g'order results l_)y
increasing all the way to théfinite-size crossover scale Ifil,/w)  @nalyzing the effects of the first corrections to the leading-
~\JLTT,. Note that with the sizes studied, we can only partially Order expressions for the renormalized operators; this can be
access the bulk scaling regime @hy/w)<+L/T,, in which we ex-  done consistently within the framework of the RG approach.
pecta’ (w,L)~In(Qy/w) and which on the plot is toward the left of ANy consistent analysis of further corrections would require
the horizontal axis. Also note that in the opposite regimethat we also consider higher-order corrections to_the RG
In(Q/w)>+L/T,, unlike in the bulk regimeg’(w,L) is not self-  rules themselves, and we stop well short of doing that.
averaging; in this regime, the plotted average over different samples As an (illustrative example, we consider the dynamic
represents roughly the distribution of the lowest gap in the systenstructure factor in the RS states. Our leading-order calcula-
Inset shows how thé — scaling form(thick line) is approached tions used only the zeroth-order result for the renormalized
by the finite-sizes’ (w,L) calculated from the RG for the given spin operators. The renormalized operators can also be easily
initial conditions(the lines plotted here are the same as in the mainvorked out to first order; these were considered in the dis-
pane). Note that the vertical scale is set by tmmerica) prefac-  cussion of typical correlations in Ref. 4. When a pair of spins
tor of the scaling function in the bulk scaling reginiehere 2 and 3 connected by a strong bond is frozen into a singlet

’ 1 o N
o' (@)~ 155 In(o/w)]. state, the neighboring spin operatsjsands, do not change

even to first order, while the spin operat ssands, renor-
all the way to the crossover scale fhf/w)~+/L, thus sup- pin Operategs 3

. . , . ) malize to
porting our claim thatr’ (w) diverges logarithmically at low
frequencies. z Jz
For a more detailed test of our theoretical results, we need (s5)°f=—(s%)eff=— —s] —isﬁ,
to quantitatively analyze the effects of a finite system size on 23, 23,
our predictions for the dynamical conductivity. The calcula-
tion is summarized in the Appendix. Here, we only note that . Ji J3
i i i i i $3) %=~ (53)*"=— { i (57)
this analysis allows us to write the following scaling form for (s 3

sh+ sy .
1, 9qz71 N z>4
the conductivity: L+l Bt

Thus, the decimated spirss and s, obtain small “compo-
nents” of orderJ,/J,, J3/J5, onto the neighboring spir&_

the scaling functior® is characterized in the Appendix, and ands,. As we run the RG and renormalize down to sc@le
the above result is expected to hold for large enougind  the system consists of- active spins per unit length, sepa-
In(Qo/w) [with no restrictions on the ratio #Qq/w)/L]. rated from each other by “dead” regior(gvith lengths of
However, the numerical results cannot be compared directlgrderI'?) of decimated spins. Each decimated spiin the
with this scaling result since it assumes that the distributiordead region between two remaining active spinand k

of bond lengths has reached the form characteristic okike (wherej andk are nearest neighbors in the effective Hamil-
fixed point, which is not the case for the sizes that we cartonian at scald’) will have some component,; andCy

o' (0,L)=1,In(Qo/0)O[1, INA(Qp/w)/L];  (56)
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on spmsgj ands, . From the point of view of calculating the Produce an order one renormalization to the overall scale of
Spectra] sum Eq(4), each active Sp”'] acquires some our Scaling result Eq.26), of course, there will be additional

(k-dependenteffective momenis; (k) coming from all deci- corrections, but these will vanish faster than the scaling re-
ted spi ith ) tsd sult in the low-frequency limit. In the case 8f ~(k,w), an
mated spins with nonzero componentsspn inspection of the renormalization rules E§7) shows that to

this orderc, will be zero forS* ~(k,w) as well, even in the
~ ) — ' aik(r=j) absence of full Heisenberg symmetry; however, this is not
(k) 1+i1<2<i2 Cre ' 59 expected to be true in gener@b all orders, and we expect
a small but nonzero background to be present in the general
where the sum is over all previously decimated spif®-  case. ThusS™ ~(k,w) neark=0 will in general consist of
tween the effective neighboig andi, of the spinj, i,<j  two parts: the scaling part given by E@7) with an order
<ip. The componentsC,; are simply the ground-state one nonuniversal overall scalthis part vanishes as k? for
correlation8® (s;s;); such typical correlators decay as a small k), and a nonscaling, weakly-dependent additive
stretched exponentiat-[In C;].,~|r —j|2 Note that the background of the same order as the scaling part.
characteristic length scale for this decay is throscopic The above arguments typify the general logic behind our
length scald,, . It is thus clear that the sum ovein Eq.(58)  justification of the leading-order results for all of our calcu-
converges quickly, and the renormalization of the momentations; in some cases such a program can be carried out
; away from its bare value of 1 comes mainly from the analytically?® while in other cases we have to be satisfied
nearby spins that were decimated early in the RG. Thigvith arguments like the ones presented above. Such argu-
renormalization is of order one, but only weaktydepen- ments can also be bolstered by numerically implementing the
dent. higher-order operator renormalizations to calculate correc-
We now analyze the consequences of this renormalizatiotions within the RG to our leading order resulisdeed, we
of the moments for the two scaling forms of the dynamichave confirmed that such a numerical check $¢k, ) in
structure factor derived earlier in the limit of low frequen- the Heisenberg model is in qualitative agreement with the
cies, one in the vicinity ofk=m/a, and the other in the arguments presented abdve
vicinity of k=0. First, considek=m/a+q, with |q|<I*.
For such small values af, we can neglect thg dependence
of the moments and evaluate themkat 7w/a. To evaluate IV. TRANSPORT IN STRONGLY RANDOM SPIN-1
the spectral sum Ed4), we need to add up the contributions CHAINS
coming from the strong bonds at scdlg;,,. Each strong

bond contributeg, + uge'?|?, whereu, and ug are the o . .
Sut pre| KL KR The strong-randomness quantum critical point, which

moments(evaluated ak= 7r/a) of the two spins connected .
by this strong bond. We can now proceed in two steps: Firstcontrols the transition from the Haldane state to the random

we fix | and average over the moments of all strong bond§ing|9t state in th? spin-1 chains, and the immediate vicinity
with a given length. This gives us a quantioy+c,|1 of this critical point, can be analyzed by a somewhat ex-

+eiq||2 that we now need to average over the length distri-tended RG procedure introduced in Refs. 18 and 5, or by a

bution of the strong bonds; her® andc, are now some variant of t_he_ same used in Ref. 8. - . .
. ; . The basic idea is to replace the original spin-1 chain by an
fixed numbers of order one, since we expect that the main : : ;

o effective modethat is argued to describe the low-energy
renormalization of each moment comes from few nearby

spins and is roughly independent of the lengths of the adjoinE)hyS'CS of the original system. As we shall see later, this

) ) . effective model can be made plausible by thinking in terms
ing bonds. Thus, we see that EG4), with & given by Eq. X L ) .

(295) indeed describes the dEglqarLic struct?Jre fac¥or Eor of a bond-diluted chaifiit is also possible to arrive at essen-

clos,e tomr/a and a fixed loww; )t/he higher-order corrections tially the same model by starting with a random antiferro-

. . _ . . . 0 "
renormalize the overall amplitude by a factor of order One,magnetlc spin-1 chain and using tapproximaté® RG pro

and also produce an “incoherent” background of a Cc)mpa_cedure of Ref. 8 This effective model is written entirely in

rable strength that depends only weakly kn(i.e., that terms of spin-1/2 degrees of freedom coupled by nearest-

9T . neighbor Heisenberg exchange couplings.eAéénbonds are
g?i?g:rsl s llg);nlflcantly only whekiis changed by an amount alwaysantiferromagnetiand are drawn from an appropriate

L . , . distribution of positive bonds, whiledd bonds can be of
For k<, (i.e., in the scaling regime ne&=0), the  gjihersign and are drawn from a different distribution.
discussion is very similar; each strong bond contribiitas This effective model can be analyzed using the extension
— uge"'|?, where the moments are now evaluatekat0.  of the singlet RG introduced in Refs. 18 and 5. One begins
This again gives us a quantity +c,|1—e*'|? to be aver- by looking for the largesantiferromagnetidond in the sys-
aged over the length distribution of the strong bonds. In gentem, sayJ, connecting spins 2 and 3; this defines our bare
eral (away from theX XX point), we now have to consider energy-cutoffQ),. Further analysis can be split into three
the S*4k,w) component separately from th®8"  (k,w) cases:(i) If the bonds adjacent to the largest AF bond are
Component, since the totgfot conservation constrains the smaller in magnitude, the two sPins are frozen into a singlet
constantc; to beidentically zerofor the case ofS?(k,w).  state and an effective couplind,, is generated between
Thus, in the case d8*4k,w), higher-order corrections only spins 1 and 4 exactly as in the singlet RG for the spin-1/2

A. Singlet RG description of the phases: A review
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chain.(ii) If both the adjacent bonds are larger in magnitudewhat nontrivial, for we are working in an effective model of
thanJ,, then spins 1 and 2 and spins 3 and 4 are first comspin-1/2 degrees of freedom, and some thought is required to
bined to make effective spin-1 objedince in this casd; decide what is the correct quantity to calculate.

and J; are necessarily ferromagnetiaand these effective For this, we go back for a moment to the original random
spin-1 degrees of freedom are then frozen into a singlet statgpin-1 chain and review an intuitive construction that leads
generating an effective couplindys=4JoJ4/3], between to the effective model in terms of spin-1/2 variables only.
spins 0 and 5(iii) If only one of the adjacent bonds, sy, Consider the case of dilute randomnésthat is, consider a

is larger in magnitude thad,, then spins 3 and 4 are first uniform spin-1 chain with a small fraction of very weak
combined into an effective spin-1 object. The system is theionds that effectively break the chain into pure finite-
frozen into the subspace in which spin 2 and this ef‘fectiv%egments weakly coupled with each other. The low-energy
spin-1 object are coupled together to form an effective spineffective degrees-of-freedom of such a segment are two half-
1/2 object that we label & for consistency of notation. The  spins localized near the two edges of the segment—these are
corresponding renormalized couplings are given Jas  the spin-1/2's of the effective model. The coupling of the
= —J,/3 andJ,s=2J,/3. This procedure is now iterated with €dge spins on neighboring segments is given roughly by the
the energy-cutoff) being gradually reduced. It is important original coupling of the two segments, and is always
to note that there is no inconsistency in leaving ferromagantiferromagnetic—these are the even bonds of the effective
netic bondsJ< — ) untouched that are not adjacent to any model. On the other hand, the coupling of the two edge-spins
antiferromagnetic bonds at the cutoff scale; we could equallpf the same segment can be either antiferromagnetic or fer-
well have combinedall pairs of spins connected by such romagnetic depending on whether the length of the segment
strong ferromagnetic bonds into effective spin-1 objects afs even or odd; these couplings are represented by the odd
the cost of cluttering up our notation. bonds in the effective model.

A detailed analysis of this iterative procedure can be sum- e now need to express dynamical properties of the sys-
marized as follows™>®Let I'=In(Q/2) and letny be the  tem in terms of these effective spin-1/2 degrees of freedom.
fraction of active spins at log-cutoff. For the even bonds, |y particular, we want to analyze the low-frequency power
we introduce the distributio®(¢|T") of the corresponding  absorption when an oscillating magnetic field with a uniform
logarithmic couplings{=In((2/J). For the odd bonds, let gradient is applied to the system; this will give us the dy-
N(I') be the fraction of odd bonds at scalé that are  pamical conductivity o' (w). Since the magnetic field
stronglyferromagnetic witll < —); for largel’, the remain- o, hjes to the conserved “charge” in the system, the corre-
der of the odd bonds are s_ymmetrlcal_ly .d'St.“bUIEd aboutsponding current operators that we need to use when work-
zero and are therefore described by a distributiorj Jbthat ing out the Kubo formula for the effective model are

we characterize by the distributio(¢|T") of the corre- . . . L i
sponding logarithmic couplingé=In(Q/|J). When W, the uniquely determined by spin conservation: The current op

width of the distribution of the log-exchanges in the original €rator on the odd bonds connecting the edge half-spins
spin-1 Hamiltonian Eq(6), exceeds a critical valud/;, the  ands, of the same segmeiivhich represents the total-spin
system is in a spin-1 random singlet phase. In the languaggrrent operator of this segmeiig ;:le| 12§1><§2; hereJ;,

of the spin-1/2 effective modell, thi/% RS phase is descrilzaed b¥ the corresponding effective coupling ahd is some ef-

a fixed point W'th_P(g%F):F e ¢, N(I)=1, np~11%  factive phase lengttithat we expect to be given roughly by
andQ(¢|T") =Qqe " for largel” [Qq is some nonuniversal length of the segment. Naturally, the current operators on
O(1) numbeil. As W is decreased, the system undergoes g eyen honds connecting the edge half-spins of the neigh-

guantum phase transition to the so-called gapless Haldang. . P Lo
phase; both the quantum critical point and the GH phase i%eggggisszgg:]egitfn hlae\:?oan:'?:?r ;%@I’Q?;L%%Tve{]ﬁa'{] tmalstrue
the vicinity of it are still controlled by strong-disorder fixed per: y

points. At the critical fixed point(which is an infinite- edge sp_m-l operator ofaseg_ment projects” onto the cor-
disorder fixed point we have P(ZT)=Q(¢|T) responding effective edge spin-1/2 operator with an ampli-
=27 1e 29T n.~1/3, andN(T')=1/2. The GH phase in tude of qrder opc}.!\lote tha'g the precise value; of the.phase
the vicinity of the quantum critical point is controlled by a '€ngths in the initial effective modefor the dilute spin-1
line of fixed points; each point on this line is characterizedchain are not important, since at still lower energies we
by some constarf, (which depends on the strength of dis- €xpect the distributions of couplings and the corresponding
order W). At a point labeled byP,, we have P(|T") bond_le_ngths to approa<_:h some unl\_/ersal distributions char-
=Poe P, Q(TI)=Qu(Ne M  where Qu(I) acteristic of the appropriate fixed point.

~e Pol', N(I')—0, andnp~P3e Pl The continuously
varyinP Po(W) vanishes at the transition aBy~ (W,
—W) ", wherev is the correlation length exponent obtained  Having identified the appropriate current operators in the
in Refs. 18 and 5; the GH phase is thus similar to the dimereffective problem, we now work out the rules that govern
ized phases of the spin-1/2 chains. their renormalization in the RG scheme used to analyze this
effective model. As in the spin-1/2 case, and as discussed
above, we write the part of the total current operdtorthe

1. Doing calculations in the effective model spectral sum Eq(5)] that is associated with a given bond

Before we calculate anything, we need to describe howl,j +1) in the forml;7; wherer; is the usual bond operator
we think about the spin transport in this case. This is somer;=J;s;Xs;,; andl; is the appropriate phase length. We

2. Dynamical conductivity

B. Spin transport
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can then follow renormalizations of the needed operators bpehaves as~1/"3 at the critical point, in contrast to the
keeping track of the phase lengths, in addition to the varioud/I'? decay of the corresponding quantity in the RS spates
bond-strengths. Unlike the spin-1/2 chains, these phase Finally, in the GH phases parametrized By we find
lengths need not equal the physical distances between the

corresponding spins; in fact, even the physical position of an o' (@)= Kgul , (0! Qo) *eHIN?(Qg/w), (60)
effe:c:tive half-slpin (;]ften Eanﬂoltfbe specified unambiguf?usl_ywhere we have introduced the continuously varying
as, for example, when this half-spin appears as an effectiv ; _p-1 :

doublet formed by combiningvia a strong AF bondan Bynamical-exponente,=P; %, andKey is an order-one nu-

effective spin-1(which is an intermediate construction in the merical prefactor that goes to a constantis> W . [Note

) . . o that the factor IA(Q)/w) appears for exactly the same rea-
Hyman-Yang RG rulgsand a neighboring spin-1/2. In such sans as in the RD phases of the spin-1/2 chains: the lengths

cases, our rules can actually be used to assign some meaniig, “inalets that are decimated at scaleare roudhl
to the physical position of such an effective half-spin. In(Q /w)g] gnly
~ olw).

The rules for the phase lengths can be easily stated: In the
cases(i) and (ii), when in the final step we form a singlet
from either two spin-1/2 objects or two spin-1 objects, the V- DYNAMICS IN THE RANDOM TRANSVERSE-FIELD
phase length of the new effective bond is simply the sum of ISING CHAIN
the phase lengths of all the bonds that are eliminated. In the A srong-disorder RG description of the phases: A review
case(iii) the phase lengths associated with effective bonds

‘]_12 and Jps are 1i,=1;+(4/3)l,+(2/3)l3 and ls=l4 the low-energy long-distance behavior of a system near the
(1]:£l3te)ll’2uTe(sl<‘?))rl iﬁéesﬁgscgﬁglr{ths in the céige are some critical point (| 8|<1) can be obtained, proceeds as follows:
what unusual; for ezample, ngegative phase lengths can boni findshthe Iafrgr(]astl coupling inl_the.systf_err, with energy

produced. Note, however, that there are many factors tha Q_rzna);{].j"]j}'. : .t fe arge_st comrjlg):rlg |sla |ed,dsahé onf
prevent this from happening too often, and the phase Iengtht%mI ¢ IS Spin 1S Trozen |.ntc.) thez=+ 1 ground state of
will in many instances coincide with the corresponding geo- € local _f'EId term_ agd is eliminated from the system leaving
metrical lengths: decimations in the cagBsand(ii) tend to ~ @n effective couplingl;s=J;5J53/h, between the neighbor-
“correct” deviations of the phase lengths from the geometri-ing spins 1 and 3. If the largest coupling is an interaction,
cal lengths, and in both the RS and GH phases there a&ayJi» between spins 1 and 2, the two spins are combined
S|mp|y no decimations of type") at |0w-enough energies_ Ll:'lto one new Spin—a cluster—with an effective Spin variable
Also, the lengths, andl; in the above rule for the cagai) 0 (12) (representing the two classical minimum-energy states
are the lengths of the strong bonds that are eliminated angizagz +1) and an effective transverse fie|a(12)

are there_fore usually s_maller than the lendthandl, of the =h;h,/J;,; the couplings of this new spin to the neighbors
more typical bonds. Finally, one can argue generally that thgemain unchanged to leading order. Each such clushes a
phase positionsf the spins as dictated by the phase Iengthsmomem;C given by the number of initial spins in the clus-

have to agree, at least roughly, with thggometrical posi- ter; when two clusters are combined to form a bigger cluster,

tions as inferred from the order of th@emaining spins in ) ~ . .
the chain(i.e., from the spin labeJ$! All of this implies that eIl moments addji(12)= w1+ 2. This procedure is now

the phase lengths are roughly given by the geometrical digterated with the energy-cutofl=maxh;,J;} of the new,
tances between the spins; in particular their scaling Wita ~ effective Hamiltonian being gradually lowered.
given by the inverse of the density of the remaining spins, A detailed analysis of this procedure was given in Ref. 6,
|~n(I)~ L. of which a summary follows: Define the log-couplings
We can now immediately deduce behavior of the dynami=In(/h), ¢=In(1/J), and also the log-cutoff I
cal conductivity in the different phases exactly as in our pre=1In(,/(2); also, letn; be the number-density per unit
vious calculations for the spin-1/2 model; as the method relength of the(remaining clusters at scalé’. The essential
mains the same, and the relevant details about the statistié@ature of the RG near the critical point is that the distribu-
of the fixed point Hamiltonians have already been summations of the log-couplingsR(B|I") and P({|I") become
rized, we merely state our results. broader and broader as the energy cutoff is lowered; the RG
In the RS phase the same result E4p) applies, as is true flows are characterized by a special family of scaling solu-
for an RS state of an arbitra§-spin chain at a strong- tions with R(B|[)=Ry(I)e FoM# and P({|T)

The strong-randomness cluster RG of Ref. 6, from which

enough randomness. =Py(I")e Po¢ At the critical point, 5=0, we have
At the critical point separating the RS phase from the GHRy(I') =Po(I")=1/T"; thus the widths of the two distribu-
phase, we find tions grow without limit, and the number density decreases

asnp~ 1/I"2. Also, magnetic moments of the clusters scale as
u~T? with ¢=(1+/5)/2. In the disordered phasé;>0,
beyond the crossover scdlg=1/| 5|, the width of the field
distribution saturates, witRq(I")~26 for I'>T"5, while the
which is astronger divergencéhan in the RS phas@ote  width of the bond distribution grows without limit, with
that this difference from the result in the RS states can b®y(I')~28e 2°". In the ordered phas&<0, the situation
traced to the fact that the density of the remaining spinsgs reversed:Ry(I')~2|5|e 29" and Po(I')~2|8| for T

O',(U))IICHylvlnz(Qo/w), (59)
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>T'5. In both phases, we have.~|5|2e~2". Note also  contribute freely to the response at this temperature, while in
that the clusters that are being eliminated at staid’s all ~ our calculations of the dynamical properties at frequeacy
have a fairly well-defined length of ordés| 'I' and mag- only the degrees of freedom that are being decimated at scale

netic moment of ordefs|*™ *T". o contribute to the dynamical response at this frequency.
(The connection is even more apparent when the dynamical
B. Average autocorrelations susceptibilities are translated to the imaginary-time autocor-

hi . btain the | . . frelations, since average autocorrelations at timacquire
In t IS section, we obtain the long-time asympltotics Of ., nyibytions from all frequencies smaller tham.1Our aim
average imaginary-time autocorrelations in the critical region, . is to present a unified approaithin the RG of Ref. 6

of the RTFIM—we will be heavily using results of Ref. 6 , e analytical calculation of such average dynamical prop-
referring to sections in that paper by, e.g., F Sec. IVB. At the y gecy prop

d of th X dicti ith th erties. Also, these calculations, together with a detailed
end of the section, we compare our predictions with the nux .y ical picture developed in Ref. 6 of the phases of the
merical resulty available in the literature.

W ider the local d ical ibiliti system near the critical point, serve as a valuable guide to
e consider the local dynamical susceptibilities our intuition in identifying the relevant Griffiths regions that
dominate a particular response; on some occasions in the
Xﬁazz |<m|gl.w|o>|25(w_Em), (61) preyious section_sparticularly in the IAF phase of spin-1/2
m chaing, such Griffiths arguments were our only source of
where the sum is over all excited states) with excitation ![r;]formatlor; aptouttthe behavior of dhynam|cal tquantmes, an?
energiesE,,, andae=x or «=z. The low-frequency behav- € _optptc;]r unity Ito c;ompatlre” sauc | SL:gtg_]es lve arglimenl S
ior of these susceptibilities determines the long-time asymp‘:J1galns € results of controlled caicuiations 1S most wel-
totics of the corresponding imaginary-time autocorrelation®©Me:
function
unctions 1. Average local-spin autocorrelatiofCqc] . ( 7)
Cii“(n=(o{(7)0{(0)), (62) The leading-order renormalizations of thé spin opera-
tors are particularly simple: As long as a given spiis

. S active, the operatos is renormalized to the “spin” opera-
=X (local-energy autocorrelatignwe are considering here ~ ! . _ _
only the fluctuating(time-dependeptparts of autocorrela- t©OF o¢c Of the clusterc that the spinj belongs to; when this
tions and will ignore any constariime-independeptparts _cluster is decimated, the corresponding operator renormal-
(such a constant part in, for example, spin autocorrelatiof?€S 0 Zero.
represents a nonzero magnetization density in the system and 10 calculaté] xjocJaf@), we run the RG down to energy
is a static property In the following, we simply write scale Qgna= w/2, and rewrite the spectr_al sum in terms (_)f
Ci(7) for the local magnetic moment autocorrelations the degrees of freedom of the renormalized problem; excita-

CJ.Z]_Z(T) and C2(7) for the local-energy autocorrelations tions that contribute to this new sum are clearly W&

with a=z (local-magnetic-moment autocorrelatjoor «

C(7) (and similarly for susceptibilities We first obtain =+ 1 excitations of the spin clusters that are being frozen

(using our basic strategyesults for average susceptibilities, into theiro*= —1 states by the transverse fields at this scale,

which can be conveniently defined as and the spectral sum is now easily evaluated:
[iscla o) =T 22 xjj*() (63 Dol @)= 12 3 Jackml 7 0)P5(w—Er)

whereL is the size of the systefin the thermodynamic limit n(T,)

of L— oo this definition coincides with an ensemble average ~ Ro(T'y) so(T), (64)

over disorder realizationsWe also consider a semi-infinite

chain,j=1, and calculgte average dynamical susceptibilitie@vhere we used the fact that at spins that are active in an
X1 of the boundary spiar, (in this case, the average is over effective clusterc contribute identically, ando(T') is the

disorder realizations These results are then immediately . .
: average magnetic moment of the clusters that are being
translated to the corresponding statements about the long;

time behavior of average autocorrelations. As long as we arvvl'emgi]na:teld 3\}”‘:';%'@}”(22? d”(‘);’:‘; hertc(a) ' chiéncﬁzftgflilgvgﬂg’
interested only in the asymptotic behavior of the average . p_y. @ ) 2 . .
otation; since we are interested only in the leading behav-

dynamical susceptibilities and autocorrelations, it suffices td! . . .

use the leading-order results for the renormalization of thd®" the 'dl|ffe'rence_|s not important for our purpoges.

corresponding operatofS. At criticality (6=0), we obtain
Before we plunge into the details below, it is worth em-

phasizing that the calculations in this section are closely re- [Xtoclar @)~

lated to the discussion in Ref. 6 of static response functions locla

at finite temperaturd: Such static response properties are

calculated by assuming thall effective degrees of freedom for w<(),. For the average spin autocorrelation in imagi-

that are presentin the sense of the RGat energy-scald  nary time1->Qa1 we then find

w

(65

w|lnw|?~ %’
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tribute to xj{{w) since they cannot be “excited” from the
(66) (classical ground state by the action a)fJZ Excitations that
do contribute involvemuch more rarderromagnetic clusters
that are flipping back and forth in isolation, with flipping
rates of ordemw~ 1/7 or slower(of course, we exclude the
IIn ol macrosc_opic—cluster_flipp_ing at a rate of oréer’t as we are
[Xioclaf @)~ 84 ¢——— subtracting out the time-independent part of the autocorrela-

[Cloc]av(T)Nm-

In the disordered phasés>0), we obtain

Wl V) tion). In the RG language, these are precisely the clusters that
are decimated at energy scales of order.e., that happen to
~|In] have(at these scal¢snomalously strong transverse fields of
[Cioclad )~ 57 EVOX (67) order  (remember that we are in the ordered phage

simple construction, however, clearly shows that the density
for w<Qsand r>Q;'. Here, we have used scaling solu- of such regions is indeed¢t w*, as predicted by the scaling
tions for the off-critical flows to write the answer for the solution: For such a cluster to occur we need a ferromagnetic
local susceptibility and have chosen to express the powesegment of length-|In | (which is not rare in the ordered
law in terms of the dynamical exponez(ts). From the scal- phase that is isolatedfrom eventually becoming a part of
ing solution to the RG flow equations, we haze!=2|4|; the macroscopic clusteon each side by a disordered region
this is to be thought of as the leading term in a sndall- of comparable length. Each of the two disordered regions is
expansion forz" 1. Written in terms ofz( ), our result Eq.  actually a “typical” Griffiths region at these energy scales,
(67) is valid more generally, and can be understood directlyand the two are required to occur much closer together than
in the simple picture of the disordered phase given in F Sedheir typical separatiom ~ % this explains the appearance of
IVB: The average spin autocorrelation at large timeés  the power 22 in Eq. (68). The factor|In 7 again comes from
dominated by thérare spins that belong to the rare strongly the typical magnetic moments of such ferromagnetic drop-
coupled clustersGriffiths regions with low effective “flip- lets.
ping rates” (i.e., effective transverse fieldsmaller thanw
~1/7. The density of such clusters, which is also the density 2. Average local-energy autocorrelatiofCpylay(7)

of the most numerous excitations at these low energies, is We begin by Working out the |eading_0rder renormaliza-
n(w)~ o' (this is fixed by the relationship~I* between tions of thec™ operators: When a given spjris combined
length and time scales, which serves as the definitior) of wijth another spirk into a new clustefi.e., when the strong

Most of these clusters have their effective flipping rates bebondjjk is being eliminatejithe operatorr; renormalizes to
tween w and some fraction ofw, and therefore effective

moments of ordellnw| (since all clusters that are being A i i
eliminated at a fixed energy-scalk have roughly the same before the decimatiort) is the effective transverse field
magnetic moment proportional tm )]). Estimating the con-  on the new clusterjk), andofj is the effective “spin-flip”

tribution of such Griffiths regions clearly gives us H§7)  operator of this clustefthis rule ignores a constant term

(hiky /h)) k) » whereh; is the transverse field on the sgin

including the factor offIn 7. proportional to the identity operator, which is unimportant
Finally, in theordered phasd¢ 5<0), we obtain for our purposes as we are not interested in the time-
independent constant piece of the energy autocorrelation
sy IINo| function). On the other hand, when the spifis eliminated,
[Xioclad @)~ 4] d’ma the operatow becomes effectively zero to first order in the

nearby interactionve again ignore any constaptterating
this, the operatow} is renormalized to . /h{?) o} if the

[In 7| -
, (68) spinj is active in some clustez with the effective fieldh,,
202(9) . . : he .
and is renormalized to zero if the spin is not active; Hefe

for w<Q;and7>Q;1. In contrast to the case of the dis- IS the original(bare transverse field on the spjn

ordered phase, the interpretation of Eg) in terms of the We now run the RG down to energy scélg,,= »/2 and
picture of the ordered phase presented in F Sec. IVA is morEeWwrite the spectral sum as

subtle. In the ordered phase, the typical excitations at low
energiesw<<(); are classical—they are “domain walls”
that “break” large clusters apart in the places where the
clusters are held together by wedkffective bonds of
strength of ordew. Such weak effective bonds represent thewhere

rare, large regiongGriffiths region$ that are locally in the - 2
disordered phase. These domain-wall excitations are the ~ h
most numerous excitations that define the relationship be- gc_jec h©
tween the energy and the length scales and determine the !
dynamical exponer#(5). Such excitations, however, even if In the last equatioiX; . . is over all spins that are active in a
they are localized in the neighborhood of gitelo not con- given clusterc. Note that at low energies the effective

[Cioclad 7) ~ | 5|47(/S

1 « ~ ~
[Xioclal @)= 12 2 Gekmlot|0)o(w—Er), (69

(70
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cluster-fieldh, is only weakly correlated with each of the & characteristic energy of order—a predominantly disor-
bare fieldsh(?; if the bare-field distribution is not too broad, dered segmen(in the RG language, an effective bond with

we can approximatdaj(o)~90, and writeg,~ no(R./Qg)2, ~ I~ across this segmerand a predominantly ordered seg-

where 7 is the moment of the cluster Doing this clearly ~Ment(in the RG language, a cluster with- w). Clearly, the
misses some nonuniversal numerical factor of order one th&fédominantly ordered segment with effective transverse
depends on the barkigh-energy physics. This factor is, in field ~ w can exist only if it is also isolated on th_e other s_|de
principle, a random quantity that differs from one cluster toffom the rest of the system by another predominantly disor-
another; however, this number is expected to be roughly thered segment having the same characteristic energy scale.
same for all clusters that contribute to the spectral sum at low NiS situation has already been analyzed in the context of the
frequencies due to averaging, since such clusters are aiPin autocorrelatlons in the ordered phase, a_nd clearly one
large, and in some sense similar. Thus, we expect that tH&€COVers precisely Eq73) from such an analysis.
low-frequency behavior is not affectedote that we would
have been spared this discussion if we were to analyze the
spectral sum with matrix elements bf”'o’, which is any- So far, we have calculated average autocorrelations for
way a more natural operator to consider when thinking of théhe spins in the bulk. Calculations for the first spip in a
local energy fluctuationsThe excitations that contribute to semi-infinite chainj=1 proceed analogouslysing the de-
the spectral sum Eq69) correspond to transitions from the tailed characterization of the boundary spin from F Seg. V

of= 0} states to th&r?=— o7 states of twd(effective) spins ~ and we will simply state the results.

j . . . . .
j andk that are being combined into one cluser,, by a For thespin autocorrelationwe find, at criticality,

strong bond at the energy-scdlk;,,. Since the log-field 1

distribution is broadwe are near the critical point and at low [CilalT)~ W (74)
energy scales for such a pair of spins to contribute signifi-

cantly the transverse field on at least one of the two spinsvhile away from the critical point

involved must be of ordew; thus, we have

3. Autocorrelations of the boundary spin

52
o _ [Calad D~ 5 (75
[Xﬁ)c]av(w)NEn(rw)PO(Fw)RO(Fw)IU/O(Fw)! (71) T
0 As in the bulk case, we can interpret the average off-critical
from which we immediately read-off our results. spin autocorrelation Eq75) in terms of the rare instances
At criticality, for o<Q, and 7>, !, we obtain that dominate this average. In this case, the corresponding
rare regions must start at;—this explains the absence of a
. 1) |In 7| factor in Eq.(75) compared to the bulk results Eq87)
[ Xioclad @) ~ ———, and (68). The only other difference is that in the ordered
|Inw|*¢ : :
phase we do not need to isolate the ferromagnetic droplet
(containingo) from the left.
(72) For theenergy autocorrelatiorwe find, at criticality,

€ ~—_—
[C|OC]3\XT) T2|In T|4_¢'

Away from the critical pointboth in the disordered phase [Cllad )~ JETREL (76)
and in the ordered phase, we obtain TinT

while in thedisordered phase
[Xecdad @)~ 8]5 20 229 In ),

58
[Ce]av(T)N 228 (77)
[Clcla 7)o" 2|I+n2/7z-15)’ (73) ' 72+ 20
;

and in theordered phase
for 0<Qsand7>Q3*; in the last formula we again used 5
z(8) as a more physical parameter characterizing the Grif- [Ce(7)~ |4l (79)
fiths phase at a giveA. The off-critical energy autocorrela- 1la AR ON
tion function thus behaves similarly in the two phases, as - )
expected from duality. It is again possible to interpret thesd he average off-critical energy autocorrelation of the bound-
results in terms of the statistical properties of appropriatéd’y Spin differs from that of the bulk spins in exactly the
rare regions that dominate the average energy autocorrelatid@me wayand for the same reasonas in the case of the
at long times. As the resultéand their interpretationare ~ SPin autocorrelation.
identical in either phase, we sketch only the interpretation on
the ordered side: As we have already noted, for a region to
have significant energy fluctuations at the frequency scale of The first paper of Ref. 17 computed average spin autocor-
orderw, it must contain two adjoining segments both havingrelations(in both phases for the boundary spin, but only in

4. Comparison with numerics
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the disordered phase for bulk spinkor the boundary spin, parts of the effective moments of the clusters that are being
the fits for 1% using the scaling form identical to our E§5) combined into bigger clusters are of the same )signd

in both ordered and disordered phases were in good agretherefore scale ab?. At scalesI'>T,, the effective mo-
ment with other measures ofzZl/For bulk spins, similar fits ments ak “add incoherently” (the real parts of the moments
produced values of 2/consistently smaller than obtained by being combined can be of any relative sigand therefore
other means. This could be explained by the logarithmic facscale as I‘,f’(l“/l“k) ¢sym  where bsym= (1 + J5)/4 is the
tor, predicted by our Eq67), which would cause a power growth exponent for the cluster moments distributed sym-
law fit to underestimate 2/ We are not aware of numerical metrically around zerdsee Appendix of Ref. ¥ Thus, we
data for the bulk-spin autocorrelation in the ordered phasearrive at the following scaling form for the dynamic structure
where we predict a scaling form with a power ok 2Eq.  factor at criticality

(68), different from the naive expectation ofzl/

The second paper of Ref. 17 computed the average bulk- , Fff" )
energy autocorrelation in the disordered phase, fitting to Sk, @)~ PRE D (KI'E), (82
e .~ 172712 We predict instead Eq73), with a different ©

power 142727 and an additional Im factor, due to the prop- where ®(x)~const forx<1 and ®(x)~1/x®~ %sm for x
erties of the Griffiths regions that dominate here. We suggest1. We cannot, however, address the regihl?%~l by

that the numerical evidence in that paper is probably affecteduch a scaling analysis.

by the finite-size effects and the missing logarithmic factor, Now, consider the system that is not critical, either in the
which always tends to underestimate the “apparent” expodisordered or in the ordered phase, in the reglie-T ;.
nents of the fitted power laws. We also predict a differentThe length and the magnetic moment of a cluster that is
power for the end-spin-energy autocorrelation in the disoreliminated at scalel'>I"; are sharply defined:y(I’)
dered phase, Eq(??). For the end—spin case, the fit;i.ng =c,(F/F5)F§+O(\/TF5F§) anduo(kzo,F)sz(F/F,;)Ff
shoul_d bg more stra|ghtforward, since there are no add|t|ona4_o(mr§), wherec, andc,, are numerical constants of
logarithmic factors. It is hoped that future numerical work order one. Such a cluster has some internal structure on the

will reexamine this question in view of our new results. length scales below the correlation lengths 2, but
“looks” fairly uniform on larger length scales. Then, for the
C. Dynamic structure factor of the spins wave vectork< &2 we have

. 24 .
| oK) [4(I)~ aa —[1+cogcikI/| 3y~ KT/o%);

Let us now briefly consider the dynamic structure factor
Sw—E,). (83)
note the oscillatory behavior &t-|5|/T" due to the “sharp-

Sk, w) defined as
O>
(79 ness” of the lengths, of the clusters; the gradual suppres-
S k,w) characterizes the spatial structure of the excitationsion of this oscillatory behavior at larger wave vectors comes

2

<m‘2 eikXiO'jZ
j

1
Szz(k,a)):E %

at energyw. Proceeding as before, we find from the uncertainty ify, which is much smaller thai,
() itself. To obtain the dynamic structure factsf4{(k,») we
nit, [TENT simply need to multiply this “cluster structure factor” by the
Z — 2
Sk o) ® Ro(I'o)| oK) *(T), (80 density p(w) of such clusters at energyw: p(w)

— ~8%wr Y49 in the disordered phase and(w)
where | uo(k)|?(T") is the average modulus squared of the _ s3/,1-22(9) in the ordered phase.

effective magnetic moment at wave vectkofor the clusters
that are being eliminated at scdlefor a given clustec, this
effective moment is defined gs.(k)==;..€*4. The dy-
namic structure factor can also be written in terms of the So far we have calculated various dynamical and transport

VI. A DISCUSSION OF T#0 PROPERTIES

functionD(B,x|T",,) defined in F Sec. Il B 4; we have quantities aff =0. These results are clearly valid evenTat
R #0 so long as the probe frequeneysatisfiesT < w. Unfor-
D(OK|T,) tunately, it is not straightforward to generalize our calcula-
stk )~ 20K (81 4 X >

tions to the complementary low-frequency regime<{T)
A dominated by thermal effects. There is, however, one excep-
whereD(0Kk|I",) is the Fourier transform ob(0x|I",) at  tion. As mentioned earlier, the spin-1XX chain is equiva-
wave vector k. We have not attempted to analyze lent to a model of spinless fermions with random nearest-
D(B,x|T',,), even though a detailed characterization is likelyneighbor hopping and zero chemical potential. It should
to be possiblésee F Sec. IlI B# Instead, we will only ana- come as no surprise that the free-fermion nature of this prob-
lyze the behavior of the dynamic structure factor in someem allows us to straightforwardly calculate some dynamical
limiting cases using the scaling picture. and transport properties at small nonzero temperature. We
First, consider the system at criticality. Fix wave vedtor begin this section by formulating a fermion analog of the RG
Then, for I<I',=1/Jk the effective cluster moments at procedure used for the spin chains. We will then use this RG
wave vectork “add coherently” (more precisely, the real approach to work out the low-frequency, low-temperature
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dynamical conductivity and thez component of the dy- glet RG for the spin problem. The analysis of the asymptotic
namic structure factor for the spin-1XX chain without any  validity of this approach thus carries over unchanged from
restriction on the relative magnitudes @fandT (the calcu-  the singlet RG.

lation of the perpendicular component of the structure factor This procedure can therefore be iterated to reach lower
for o<T is much more complicated, and we will only be and lower energies; at each stage we trade in our current
able to discuss its qualitative behavioNaturally, these re-  problem for a new problem defined on two fewer sites. This
sults are not at all generic, relying as they do on the freenew problem will have the same low-energy eigenvalues as
fermion nature of the problem. On the other hand, a w¥ak oy original problem. However, evaluating matrix elements
coupling, which corresponds to the nearest-neighbor interagsy operators between two low-energy states requires some

tion between the fermions, is strongly irrelevant in the RG(é‘are, as the statei}',f) in terms of which the renormalized

sense at the free-fermion point, and the system flows to th . . ) :
noninteracting point. Since this noninteracting limit is singu-prOblem is written are different from the stat$ of the

lar as far as finite-temperature transport properties are corfriginal prob_lgm. As in the singlet RG, this is best handled
cerned, we have here an example of a “dangerously irrelPy renormalizing theoperatorsas we go along, so that the
evant operator,” and the important physical question is howmatrix elements of the renormalized operators betwee_n the
this weak, irrelevant interaction affects tie=0 transport ~States of the new problem are the same as the matrix ele-
near the noninteracting poift.This is what we turn to at the Ments of the bare operators between the corresponding states
end of this section. of the original problem. This allows us to calculate various
dynamical properties by evaluating the corresponding spec-
tral sums exactly as in the spin language. &0, this
A. Free-fermion RG amounts to nothing more than a restatement in terms of the
fermions of our previous calculations. The new language,
been the subject of extensive investigation in the past using 'AOW.GV?“ has one Important advantage: therm_al effects are
variety of techniques(see, e.g., Ref. 25 and referenceseaSIIy mcorporgted into this framework, es;entlally bec?“.se
the noninteracting nature of the problem is made explicit.

therein. For our purposes, it is most convenient to introduc . . : .
a RG procedure analogous to the singlet RG used in the s:trY\/e emp_haS|ze again that the RG fwai_belgenstates of the
ree-fermion problem. The corresponding statement can also

problem. We formulate this procedure directly in terms of . ) . i
. : o s be made in terms of the singlet RG on tK& spin chain:
the corresponding single-particle Stifoger problem H when eliminating a pair of spins 2 and 3 the effective Hamil-

=3:t:(]j)(j+ 1 +]j+1)(j|); this RG is, for the case of the ; X :
it
Hamiltonian above, essentially just an efficient way(ap- tonians inall sectors(corresponding to the stat¢s), [to),

proximately diagonalizing random symmetric tridiagonal @nd|t=1), of the paij areidentical up to a sign ofl;, in the
matrices with zeroes on the diagonal. We begin with thdt=1) sector]

observation that the particle-hole symmetry of the problem Finally, we note in passing that this RG procedure can be
causes eigenstates to occur in pairs, with energiesThe  generalized to analyze other particle-hole symmetric free-
strong-randomness RG proceeds by eliminating, at each stef§rmion problems in one and two dimensidmghich are not
such a pair of states with energies at the top and bottom dfmmediately equivalent to any quantum-spin probleas

the band: One finds the large@h absolute valughopping well as analyze the general properties of the Bogoliubov-de
amplitude in the system, say connecting sites 2 and 3; this Gennes equation for quasiparticles in a one-dimensional su-
defines the bandwidtR,=2x max]g|} of the original prob- perconducting wire in the absgncg of spin-rotation symmetry
lem. If the distribution of the; is broad, the symmetric and (the results of such an analysis will be published separately
antisymmetric wave functions living on these two sites will
be good approximations to eigenstates with energi€ky/2,
astq3 will typically be much smaller in magnitude thap.
The couplingsty3 can then be treated perturbatively, and  Let us begin by working out the full andw dependence
eliminating the high-energy states living on the sites 2 and %f the dynamical conductivity, Eq55), at the free fermion

results in an effective hopping amplituag= —tyt3/t, be-  point. Our first task is to work out the rules that govern the
tween the neighboring sites 1 and 4. More precisely, in théenormalization of the current operatdfgj). Assume once

effective Hamiltonian that describes the remainibg-2 ~ again that the hopping elemetjthas maximum magnitude.
states, the block 1-2-3-4 is represented 5&74 We wish to work out what operators we should use in place

N TR, ~ ~ of T(1), T(2), andT(3) when we renormalize down to
; tlll(|t%1><4| + !4>§|11|)’ WZTLE trletstatdiiénflm/}tare ESSeN-  |ower energies by eliminating the corresponding two states at
t:gn); 'I('ahic;rlgtljrllg is >ezgenti>aﬁyai32nuti€:al t(o 1ﬁ1e2)ruclg r:‘if_thethe top and bottom of the barithe other current operators to
o . - ; _ he lef ight of thi ill h lead-
singlet RG at theXX point, as the additional minus sign can the left and right of this segment will be unchanged to lead

” or . . ing order by this elimination An explicit perturbative cal-
be “gauged away” in the nearest-neighbor model in one . . . i ~ ~
dimension; we will, in fact, only keep track of the absolute Cu_lft'of - @nledlatelly. yields — T(2)=T(1/3)
values of thet; . The distribution offt;| in the renormalized ~=it1(|1)(4|—[4)(1]); this is completely analogous to the
problem with bandwidthQ will thus be the same as the rule obtained in the spin representation, and as before, we
renormalized distribution of* at cutoff scale) in the sin-  will call this operatorT (1) for consistency of notation.

The free-fermion problemtt=3t;(c/c; ;1 +c],,c;) has

B. T#0 dynamics and transport at the XX point
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Sk, 0) = 2 K¢, |5 Kl )P

(1—e ML uim,

X[f(eﬂl)— f(eMz)]é(w— €u,T 6#1)' (86)

o>T
o(0T)~T,

(o)

Here éz(k)EEjSZ(j)e‘kXJ is the Fourier transform of the
©<<T o position-dependent matrix operatsf(j); in the real-space
oD~ 7Tlo basis S¥(j)=n(j) —1/2, wheren(j)=|j){j|. This spectral
sum can also be evaluated within our RG approach. The
0 o leading-order operator renormalizations in this case are, in
complete analogy with the spin problem, very simple: each
S(j) remains unchanged unless a state living on gite
eliminated, in which cas€&(j) renormalizes to a multiple of
the identity. As before, we run the RG till the bandwidth is
reduced td),,= @ and do the spectral sum with the renor-
) malized operators in the new problem. This renormalized
As we carry out the RG and reduce the bandwidth byg,m may be evaluated by again recognizing that it is domi-
removing states from the top and bottom of the band, the,aieq by transitions between pairs of states with energies
above result implies that;T(j) renormalizes ta;1;T(j),  +w/2 that live on pairs of sites connected by “strong” hop-
wherej now labels the sites of the renormalized problemping amplitudes(of magnitude w/2) in the renormalized
with bandwidth(}, and theTj are the lengths of the renor- problem. The corresponding matrix element is just (1
malized bonds in this problem. With this in hand, we run the_— eikl)/z’ WhereT is the |ength of the hop in question_
RG until the bandwidth is reduced @y,5= and rewrite  Counting the contributions exactly as in our zero-
the spectral sum Ed55) as temperature calculations, we thus get

<?¢‘s#2 2 T,7(j) Esﬂl>

X[f(ful)_f(fuz)]é(“’_fuﬁful)' (84) ]:Il'hus, we see tha®** is. e.s.sential.ly unaffected by thermal
uctuations at theXX point; in particular, the low-frequency
_ divergence imot cut off by temperature effects even when

Because of the extremely broad distribution of the the  w<T.
dominant contribution to the sum E4) comes from tran- A similar analysis can clearly be performed in K&-RD
sitions between the two members, one at the bottom and thehase. Again, botlr’ (w) and S*4(k,w) at T>0 are simply
other at the top of the renormalized band, of each pair otjiven by the corresponding expressionsTat0 multiplied
states that is being eliminated at this energy scale. The mayy simple functions ofv/T, exactly as in Eqs(85) and(87).
trix element for this transition is judtw|/2, wherel is the ~ Thus, though temperature effects are simple to work out at
length of the hop in question. In the thermodynamic limit, the XX point and in theXX-RD phase, the results are rather

FIG. 7. A plot of the frequency dependence ®f(w) at low
T+#0 at theXX point. Note that this result is expected to break
down below a frequency scale7]/<T when a small but nonzero
J? interaction is turned offsee Sec. VI ¢

2

Sk, w)= St (k). (87)

L -
o'(w)=— >

(1+ e a)/2T)2
M2

we thus have special due to the free-fermion character of the problem.
o' (0)=[f(—wl2)—f(w/2)] C. Going beyond the free-fermion results
r What happens when we turn on the nearest-neighbor in-
><n( w)f dldZwd?P(Z,I|T,) 8(w—we™?) teraction? This is the question we need to address next.
Q) Let us first consider the effects of smalf couplings
, added on to th&xX X model. The analysis of Ref. 4 shows that
_ Sin(w/2T) ol o(®) (85) this term is irrelevant in the RG sense; the typical value of
2 cosR(wiaT) O J?J- at log-cutoff I' scales as J4/3+)~ugexp(-cl'?),

where ¢ is an O(1) constant,¢ is the golden mean (1

which is the leading behavior fow, T<Q,. This result +v5)/2, andu is the typical value 08%J" in the micro-
smoothly interpolates between the logarithmic frequency descopic model. A useful way of thinking about the low-
pendence seen earlier fap>T and the limiting form frequency behavior of the conductivity is as follows: Imag-
o' (w)~ o IN(Q/w)/T valid for w<T—a plot of this fre- ine running the RG till the cutofl~T. In this renormalized
quency dependence is shown in Fig. 7. problem the typical §/J")~ugexp(cl'y), where I't

Let us now turn to th@ # 0 spin dynamic structure factor =In({),/T). In the fermion language, this is the typical value
at low frequencies in the vicinity dk=7r/a. In the single-  of the ratio of the nearest-neighbor interactions to the hop-
particle language, the spectral representation Sk, w) ping amplitudes. In this renormalized problem, a naive Fer-
reads mi’'s golden rule estimate of the corresponding inelastic col-
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lision rate due to interactions gives 7l is the nuclear magnetic moment ahldis the external field.

Nug-r exp(—2cf$). This gives us a frequency scale below In @ random system, with a broad variation in the value of
which our T#0 free-fermion results are expected to breakSoc(®@), the following question immediately arises: what
down as a result of the residual interaction effects. measure of the distribution d,(w) does the experimen-
Unfortunately, we are unable to do a controlled calcula-tally measured T7;(H) reflect?
tion that determines the transport properties in the frequency Now, we have seen that the avera§g(w) diverges
regimew<1/7.,;. The best we can do is to work out what a strongly asw—0 atT=0. Naively, one might have thought
naive scaling argument would predict for the dc limit of the that this would imply a corresponding divergence iff 14t
conductivity. The basic idea is as follows: The collision ratesmall H, at least whenT<H. However, the divergence in
may be converted into a corresponding dephasing leingih ~ Swec(w) comes from a few very rare sites that give a very
by appealing to the activated scaling that is a characteristic darge contribution. Clearly, the observedr/will be com-
our problem. This gived coi~In%(7e)) ~T'2%. This is the Ppletely insensitive to this effect, since all that will happen is
length scale beyond which quantum coherence is lost due f#at a tiny fraction of nuclear spiri& the neighborhoods of
inelastic collisions. Now, we can imagine breaking up thethose rare electron spins that have significant spin fluctua-
system into blocks of length . A dc currentl passing tions at the frequency = yyH) will flip almost instanta-
through the system will see a chain of resistors correspondleously, while the rest of the nuclear spins will have an
ing to these blocks; the resistance values of each of thegxtremely small probability to flip, and this is what will be
blocks is simply given by thd =0 Landauer resistance of reflected in the spin relaxation experiments. In this sense, it
the corresponding system of lendth,;,. The voltage devel- s the typical value 0B,(w) that is more relevant for com-
oped across a system of total lendthwill therefore bev ~ Parisons with NMR 1T, data. A typical nuclear spin will in
=|E':1L/L°°”Rj:||-Ra\/(Lcou)/Lcon- Since  Ry(Leon) fact have essentially no spin fluctuations to couple to at fre-
~e%tteol [wherec; is anO(1) scale factol, the dc conduc- duencyw=yyH, it can therefore relax only by paying an
tivity works out to be oy~ Lgge St  activation energy that is set by.H (where Ye> YN IS the
~In2‘/’(Qo/T)e*°' %M Note that in the absence of inter- electron magnetic momenmnc_e the external f_leld acts to
actions, we had earlier found’ (»)—0 asw—0 atT>0: freeze out all modes be_low this energy sca_le in most of the
our scaling argument implies that interactions render thisSyStem (with the gxcepnon of the rare regions alluded t_o
conclusion invalid. Unfortunately, while this scaling argu- above. The .e>'<per|ments actually do see actwatgd pehawor
ment is certainly plausible, the question of the true IOW_for 1/T, at finite temperature. However, the activation gap

_nl6
frequency limit can only be settled by a controlled calcula-S€€MS 0 scale ad~H"" the rough argument above of

tion in the regimew<1/r.;, which is beyond our current course cannqt e_xplain this non-triviel dependence of the
capabilities co observed activation energy.

The above arguments also suggest 8k, ) will de- Our second remark relr%tes to the ESR linewidth measure-
viate from theT#0 free-fermion result forw<1l/7y. In mdednts by Tippie an_d Clark. Here, again, our resuits (.jo ot
particular, one expects that the—0 divergence ofS* address the expenmgntally relevant questions. ThIS' is be-
would be cut off below this frequency scale. Similar behay-c2use all our calcul_a'uons fo_r UKXX case are done W'th'r!
ior is also expected " ~, but again, what is really needed the_ context of the 5|m_p|e Helse_nberg excha_nge Hamlltoman,
is a controlled calculation as opposed to a scaling argumen _r_nledtge otlr)]servf?d tlmewﬁth 'g.th? e_xrzenmt(.ants IS delter;
Note also that we expect something different atxieX and mined by other eflects such as dipolar interactions or anisot-
XXZCquantum critical points: since the theory at these criti-'°PY:

. ; i . Inelastic-neutron-scattering experiments, on the other
cal points already includes interactions, one expects that . : .
. . o and, if they can be done on these systems, provide a direct
/7.~ T, and the relaxational behavior characteristic of an

interacting svstem at finite temperature will set in for- T testing ground for our predictions. We conclude with some
. gsy Ie temperature o remarks on the relevance of our calculations of the dynamic
in contrast to the behavior in the vicinity of theX point.

structure factor to such experiments. First of all, note that we
considered randomness in the exchanges only, with the spins
VIl. PROSPECTS FOR EXPERIMENTAL TESTS themselves assume_d positioned on regula_lr Iatt_ice s_ites; thus,
our results are restricted to compounds wittemicaldisor-
Previous experimental work on one-dimensional randomser in exchanges. It is clear that small randomness in the
exchange Heisenberg antiferromagnetic spin chains has charesitions of spinge.g., due to thermal fluctuationwill re-
acterized the dynamics of these systems in terms of the olsult only in some further suppressiofiy the standard
served NMR 1T, relaxation rat€® and ESR relaxation rates Debye-Waller factor at wave vectd) of the features rela-
and linewidths! tive to an overall background. In the dimer phase, a possible
As far as the NMR measurements are concerned, our catlifference in the lengths of even and odd bonds will result
culations are unfortunately not directly relevant to the ex-only in some phase factor in the cosine of E2B). Also note
perimental measurements ofTl/ This may be seen as fol- that the nonmagnetic neutron scattering from such spin
lows: In the usual case of a pure, translationally invariantchains will actually be suppressed n&ar 7w/a, and this may
system, 1T, is directly related, by Fermi’s golden rule, to facilitate a possible experimental observation of the pre-
the local dynamic structure fact&,. evaluated at frequency dicted features. We caution, however, that while it would be
o equal to the nuclear-resonance frequengy, whereyy extremely interesting to see the sharp oscillatory structure
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predicted in the Griffiths phases, this may be difficult tolength variables. For clarity, we work explicitly with discrete

achieve without going to very low temperatures and energyengths, withlz and Iz even, andl; odd integers; this is

transfers. Regarding transport, we hope that our results wiltlearly preserved under the RG.

motivate experiments to probe the spin conductivity in these We start the RG witf)y=1, I';=0, the initial bond dis-

systems. tribution P(¢|T"}) =€~ ¢ (this corresponds simply to choosing
the initial J* to be uniformly distributed in the interval
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APPENDIX: FINITE-SIZE SCALING FUNCTION with a(I")= (T +1)? (for our specific choice of initial con-
FOR THE CONDUCTIVITY ditions), and

Consider a finite chain with an even number of sitgs L+l

=L+1, whereL is the length of the chain, and with free A(|-|F):NZ2 ’(N—l)l | El - P(OJp)I]
boundary conditionga similar analysis can be carried out for - bhar e INSLIR R

chains with an odd number of sites, and also for chains with % %
periodic boundary conditionsWe want to calculate the real Xf P({2,12)dE, - f P(In-1.In-1)ddn-1
. L o 0 0
part of the dynamical conductivity averaged over the distri-
bution of bond strengths in the limit of low frequencies and X L) L(1R) 5|l+|2+"'+|N71+|F+|R’L’ (A5)

largeL. We work this out for theX X chain; the result in the

presence of)? couplings will differ only in the values of Where the sum is over evex

some non-universal scale factors so long as the system doesNow, multiplying A(L|T") by e™¥* and summing over
not develop Ising antiferromagnetic order in the thermody-odd L=1, i.e., doing a(discret¢ Laplace transform irL,
namic limit. To proceed, we need to keep track of the jointremoves the constraint on the lengths, and we find
distribution at scald” of the number of remaining spirs, »

the N—1 couplings;, and the corresponding bond lengths 1+T(y

[; . In a finite system, the couplings become correlated due to A(yIT)=L(y)Q(y) [1—T2(y)]2’ (AB)
the constraint imposed by the finite length of the system.

However, following Fisher and Yourf,we note that the where Q(y) and T(y) are respectively the Laplace trans-
couplings remain “quasi-independent,” and can be de-forms of P(0/)I2 and f5P(¢,1)d{. Thus, we can straight-
scribed in terms of the infinite-chain distributid®(Z,1|T") forwardly work outA(y), givenP(¢,y) andL(y). Using the
exactly as in Ref. 34. More precisely, if we also keep track ofresults of Refs. 34 and 6, we can write the following explicit
the lengthsl and |y of the “dead” regions(consisting of expressions for these two functions:

singlet pairs formed at higher energy-scalasthe left and

right ends of the chain, then a distribution of the form P(£,yIT)=Y(y|T)e &0, (A7)

dProN; ;11 - ool 1l e RILL T u(0[T)u(y|T))

LYIT) = ——— e
INu(o|I"
= an(LID)P(Z 1 )dgs - P(én - dd u(yIu(oIry)
where u(y|T")=D(y)cotHD(y)(I'+C(y))] and Y(y|T')
XLARLARI G4 biy it L (AL _p(y)/sin{D(y)(T+C(y))]. The functions D(y) and
for evenN=2 has its from preserved under renormalizationC(¥) depend on the initial distributioR(¢,y|T',), and in our
if ay(L|T) is independent oN with case are_given byD(y)=v1l-e < and D(y)C(y)=y
+In(1+1—e ). Also, L(y|T'})=1.

L(y|T), (A8)

1 da With this in hand, it is a relatively simple matter to work
a ﬁ=2P0(F)=ZJ dIP(0Jl). (A2)  outA(L|I), L odd, by performing the inverse Laplace trans-
form:
Here, P(¢,1|T") satisfies the same flow equation as in the
infinite chain, andZ(I|T") satisfies A(L)= % HWZA(y)e“dy. (9)
c—iml2

aL *
8—F=£(~)*|P(0,-)*|f0 P({,-)d{=PoL.  (A3) | sec. IID5, we evaluated this integral numerically to
compare the RG predictions with the results of the exact-
In the above, thel' dependence is left implicit, and diagonalization studiegnote that in the main body of the
f(-)*9(-) is used to denote @liscret¢ convolution in the paper we didn’t make a distinction betwelih andL, since
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it is irrelevant in the thermodynamic limit; in the more de- XX fixed point. Note that while the scaling form holds more

tailed notation of this appendix, our numerical results of Secgenerally, the values of the nonuniversal scale factors that we

1D 5 are for system sizebl; =128, 256, and 512). have used are specific to our choice of initial distribution.
In the scaling limitF’>1, L>1, the integral Eq(A9) for Analyzing the behavior starting with an arbitrary initial dis-

A(L|T) is dominated by smaif and can be approximated by tribution allows one to relate these nonuniversal scale factors
to the properties of the initial distributiomnder the assump-

tion that “bad decimations” early in the RG do not affect

A(LIT)=2LT A(y|Tl), (A10)
. . these values. Such an analysis allows us to writéw,L)
1
where LT * denotes the inverse of the continuous Laplace_ L In(Qo/@)O[1, INA(Qp/w)/L], with the microscopic

transform. Moreover, in this limitA(y) may be worked out energy-scaleQ), and the microscopic length-scalg pre-

using the following scaling forms fo£(y) andP(¢.y): cisely as defined in the main text. Moreover, it is clear that
the same scaling function also describes the low-frequency

L(y|T)= , (A11)  dynamical condlzjgt|V|ty ina large but finite system even in
I'\2y cotH'\2y] the presence a? interactions as long as the system is in a
random singlet state; only the values of the nonuniversal
P(Z.y|l) \/5 {35 coth[l )] (A12) scale factors are expected to change.
s — —e vV v . . o . . _ .
y sint[l“\/ﬁ] While it is possible to calculate the full scaling-function

0 (x) by a detailed analysis of the inverse Laplace transform,
Putting everything together, we can now wrifg(L,I") we will confine ourselves here to working o08t(x) in two
=If(I'?/L), which immediately implies a scaling form for limiting cases: Fox<1, ©(x)="7/180 (which correctly re-
the conductivity:a’(w,L)=Fw®(Fi/L). Thus, we see that produces the infinite-size result, as it musthile in the limit

the dynamical conductivity in a finite system satisfies a scalx>1 we have® (x)=e *?/\2wx. This is the result used in
ing form that reflects the activated dynamical scaling at thehe Griffiths argument in Sec. Il D.
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of a finite segment of length comes from the cases when the
last bond decimated hak = w, i.e., precisely from the cases
when the lowest gap of the segmentisin almost all of these
cases the bond stretches essentially across the whole length
and the conductivity is simply related to the distribution of gaps
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two respective ends of such region and are likely to have strong
J7> w couplings with the rest of the system, so the pair will not
contribute to the dynamical conductivity at all. Clearly, we need
to consider cases when a pair with= w occurs deep inside our

RS region and is thus well-isolated from the rest of the
system—in some sense, we need to consider distribution of the
second energy-gap in such finite segments. One can analyze
these situations along the lines of a similar analysis of Ref. 34
for the distribution of the first gap, with the result that the con-
tributions to the dynamical conductivity from such events
which will give the actuab’ (), are further suppressed as com-
pared to Eq.45) by an additional factor~exp(—c,|in w|%/L);
this will modify the exponentr in Eq. (47) (which is unknown
to us in any case from these argumeéntsut not the factor
[In w[?>. Our scaling arguments in the main text provide a more
consistent constructive approach for addressing these issues.
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one can argue that the average dynamical response of a given
spino; at low-frequencyw is dominated by instances when one

of the ;s close neighborgwithin few lattice spacingsis dy-
namically active at this frequency; these are precisely the situa-
tions captured by the leading-order result. Moreover, for the
case of the autocorrelations of the boundary spin, it is easy to
carry through an explicit calculation of the first correction using
the results of Ref. 6, Sec. VB and Ref. 34. The result shows
explicitly that only the nonuniversal prefactor acquires a correc-
tion, and the long-time behavior of the correlator is unchanged.

' 3Note, however, that Rule 4 of the RG procedure of Ref. 8 ne-

glects next-nearest-neighbor bonds that are generated to the
same orderRef. 18. This error will affect the accuracy of the
RG in the early stages but will cease to matter at low-energies.
This is because the broad distributions that arise at low energies
guarantee that the use of Rule 4 will almost always be immedi-
ately followed by an application of Rule 2, which will eliminate
the next-nearest-neighbor couplings.
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the phase lengthls ,I,, . .., are allpositive, and definé,=0;

we assign each initial spina phase position xand an identical
geometrical position d d;=Xx;, viax;=Ig, X,=x;+14, etc. At
each step of the RG, we keep labels of the remaining spins
unchanged, and in the casi#i) assign to the newly created
half-spin the label of one of its “parentslit does not matter
which ong; as we run the RG, the phase positions of the remain-
ing spins can then be referenced according to their labels relative
to the(fixed) geometrical positions of the initial spins. The pre-
cise statement is: Let;<j,< ..., label the remaining spins
with the corresponding phase lengthg,1;.1,,..., and the
phase positiong(j,) =T,, X(jo)=X(j1)+ 11, etc.; there exists a
sequence of intervening initial spin&,}, a;<j;<a,<j,

..., such that for each remaining spin we haved(ay)
—[d(ak+1) —d(a J=x(ji) <d(ax+1) +[d(ax+1) —d(ag ],

that is, the remaining spins cannot deviate very far outside the
corresponding bounding geometrical intervals. Thus, the phase
positions of the remaining spins agree roughly with the geo-
metrical positions that we would assign to them according to
their labels.

=
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