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Electron-electron interactions in graphene sheets
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The effects of the electron-electron interactions in a graphene layer are investigated. It is shown that
short-range couplings are irrelevant and scale towards zero at low energies, due to the vanishing of density of
states at the Fermi level. Topological disorder enhances the density of states and can lead to instabilities. In the
presence of sufficiently strong repulsive interactigmsyave superconductivity can emerge.
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[. INTRODUCTION. the low energy properties are not changed throughout the
entire range of couplings.

Recent experiment$ report the existence of ferromag- ~ The previous work mentioned earlier analyzed the small
netic and superconducting fluctuations in graphite at unexmomentum scattering due to the long-range Coulomb inter-
pectedly high temperature§ 100-300 K). The coexist- action, as it is the only one which leads to logarithmically
ence of both types of fluctuations suggests a commoflivergent perturbative corrections. Some electronic instabili-
electronic origin for them. ties, like anisotropic superconductivity, require the existence

Motivated by these observations, we present here a stuo‘?f short-range interactions with significant strength at finite
of the possible electronic instabilities of a single graphendV@ve vectors. We analyze in this work the role of these
sheet. Isolated graphene has the convenient property that t eractions in mducmg instabilities of the electronic system.
electronic states near the Fermi level can be described in ¢ next sectlon_descrlbes thg mode_l. Then,. the renormahza-
simple terms. By symmetry, the lower and upper bands touc ion group equations for the different interactions are written.

at the corners of the hexagonal Brillouin zone. Near these. Sec. IV, the role of topological disorder is analyzed, as it
. . . gonai b . - %an lead to changes in the density of states which modify the
points, the dispersion relation is isotropic and lineag,

" scaling equations obtained earlier. Section V discusses ef-
=velk|, wherevg is the Fermi velocity. The density of fects not included in the model and how they can influence
states at the Fermi level is strictly zero, and it rises linearly inthe results presented so far. In particular, we analyze the
energy. An effective long-wavelength description of thesechanges induced by the hopping between neighboring
electronic states can be written in terms of the Dirac equatiographene layers. Section VI presents the expected main fea-
in two dimensions. This description allows us to deal withtures of the low-temperature instabilities of a graphene layer
the effects induced by long- and short-range electronand discusses its experimental implications.

electron interactions and lattice disorder using standard
methods of quantum field theoigee below While some
care must be have when comparing results obtained for this
model to real experiments, a single graphene layer provides A. Intralayer couplings
us with a convenient model which can be used as a starting W | the low- . f h
point for the analysis of many-body effects in graphite. A € analyze the low-energy properues of a graphene

discussion of the advantages and shortcomings of our studzpeet' We W'I.l only cpn3|der the modn‘lcatlons_due to inter-
is also included. ctions and disorder in the low-energy properties of the sys-

The fact that a single graphene sheet is a zero-gap semi-

conductor modifies significantly the screening of the Cou- ky
lomb interactior? An effective low-energy Hamiltonian can A
be written, which can be treated by renormalization group
(RG) methods*® It can be shown rigorously that the Cou-

lomb interaction is a marginal interaction, which scales to
zero at low energies or long wavelengths. At intermediate B AT
scales, however, the quasiparticle lifetime does not follow
the usuale? dependence of Landau’s theory of a Fermi lig-
uid, but scales ake|,® in agreement with experimentsThe B
RG approach is, in principle, valid in the weak coupling A

regime €°/(eovg)<1, whereeis the electric charge ane) FIG. 1. Sketch of the Brillouin zone of a graphene sheet and the
is the contribution to the dielectric constant from eor-  band dispersion near the Fermi energy. Points A and B refer to the
bitals and core electrons. By using a random phase approxiwo set of points which are related between themselves by a recip-
mation (RPA) summation of diagrams, it can be shown thatrocal vector translation.

Il. MODEL
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tem. Thus, we need to describe the low-energy electronithree corners with the same label are related by reciprocal
states. A graphene sheet has an hexagonal symmetry withttice vectors and can be considered a single point. Thus, a
two atoms per unit cell. The carbon atoms have four valencé&ng-wavelength description requires two Dirac spinors, each
orbitals. Three of them build thep? bonds which give ri- of them with its spin index. We refer to the point index

gidity to the structure. The third orbital gives rise to the 5(g) ag the flavor index following standard procedures. In
valence and conduction bands. These bands touch at the two, long-wavelength limit, the Fermi velocity can be ex-

Isnergrl:\e/?rler(]:to(n:wosri32:2t?gntzetﬁglslgutl)grfggﬁz Ii:slg;[ra)- Ii:cme:rr: d dB_ressed in terms of the matrix elements between nearest-
y y ' P neighborm orbitals,t, asvy=(3ta)/2, wherea is the C-C

pend linearly on the wave vector. )

It can be shown that, in the long-wavelength limit, the distance. . :
electronic wave functions near the corners of the Brillouin _Because _Of the _collapse of the_ Fermi surface to isolated
sone are well described in terms of the two-dimensionaPiNts, the kinematics are much simpler than the correspond-
Dirac equation. The six corners of the Brillouin zone can bdnd analysis for two “hot spots” in a square lattieThe
divided into two inequivalent sets A and Bee Fig. 1 The  Hamiltonian is

T, (T (T o (T Wi (o)

Ir1= |

. . e?

H= hUFJ d2rW; (N(iogdxtioyd) W o+ 2 z—f d2r1J d’r,
i,s ii’ss ()
+ > gi,s;i’,s’fdzr\?i,s(f))q’i,s(;)\ii’,s’(F)q’i’,s’(F)

s,s’:i,i’

+ > E,sm,srfdzr@,s(r*ﬁ%,s(r*)ﬂ_fir,sf(r?&wir,s,(r*), (1)

s,s';i,i’

whereo, ando, are 2<2 Pauli matrices. We have separateddensity of states at the Fermi level. When a single Hubbard
the long-wavelength part of the Coulomb interaction fromintrasite repulsiorlJ is considered, all interactions between
other possible short-range interactions. electrons of opposite spin in E¢L) are equal tdJ(), where
The couplingsy; j.s s+ Can be classified in an analogous () is the area of the unit cell, and the interactions between
way as in one dimension. The possible scattering processetectrons of parallel spin are zero.
are shown in Fig. 2.
Because of the linear dispersion of the electronic states, B. Interlayer couplings
we can usevg to transform time scales into length scales.

. . . . So far, we have restricted our analysis to processes within
Then, we can express the dimensions of all physical quantlém isolated graphene sheet. Neighboring layers are always
ties in terms of lengths. Within this convention, we find that grap X g g ‘ay y

the dimension of the electronic fields [ ]=1"1, wherel coupled by the Coulomb interaction. In the following, we

defines a length. A naive power counting analysis shows th Will neglect interlayer hopping, so as to be able to describe

the Coulomb potential defines a dimensionless. marginal'e electronic levels in terms of the Dirac equation, but we
. ) P \ . ' 9INGhclude the effects of the long-range Coulomb interactions
coupling, while theg’s scale ad and are irrelevant at low

. : - . hetween layers. The interlayer couplings give rise to the
energies. This effect can be traced back to the V"’m'Shmgcreening of the bare intralayer electron-electron interaction.
We will treat these effects within the RPA, as depicted in

A A Fig. 3, following the analysis in Ref. 6. The intralayer inter-
A A A A
a) b) c)

A A

- ===t

w--------w

S

1 1
FIG. 2. Possible short-range couplings between electrons near

the two Fermi points in a graphene layer. The solid and dashed lines FIG. 3. Diagrammatic representation of the random phase ap-
correspond to electrons in the vicinity of each of the two Fermiproximation applied to the interlayer Coulomb interaction. The dia-
points. (a) Intrasingularity scattering ginys)- (b) Intersingularity  grams show the screening of the interaction between two electrons
scattering @ine) . () Exchange scatteringfychangs- in layer| due to the polarization of layets,|”, ...
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action becomes

_ 2me? sinh(|g|d)
Uscr(waQ): . = = = = f (2)
coldl \[cosh|d|d)+ (2% €| sint |G d) xo( .8 12— 1

whered is the distance between layers, gpglis the electron  where we are omitting spin and flavor indices for simplicity,

susceptibility of a single layer, given by and dy is the (anomalous dimension of the vortex, which
includes, among others, the effects of the wave function
. 612 renormalization of the fields. To lowest ordelz=1. The
Xo(®,Q) = ———F———=. (3) first term on the right-hand sides of EdS) is linear, and it
2 L
327 v~ w? is absent in the flow of the couplings in the Cooper channel

_ _ _ _ . in a conventional metal. It reflects the irrelevance of these
The interlayer interactions are only effective whighd couplings in a semimetal.

<1. Hence, if the lattice constaatis such thata<d, they

s . . The flow in this channel becomes relevantﬁgxchange
do not affect significantly the couplings between electron|c>l: dth | FthE’ f ord itv. Note that
states in different Fermi points. =" inter @10 € VAILES O s are ot order unity. ote tha

the cutoff is assumed to be~vg/a, whereais a length of
the order of the lattice constant. The dimensionful inter-
IIl. SCALING ANALYSIS Fermi points and exchange couplings induced by the Cou-

In Ref. 8 it was shown that the electrostatic coupling, Iomb interactions are;~e?/(eoa). Hence, the bare vortices

defined ase?/(equr), scales towards zero at low energies, I'o~€%/(€eqvg). For reasonable values ofy~4-8, this

for all values of the interaction. On the other hand, the exiscombination is, indeed, of order unity.

tence of scattering processes between the two inequivalent

Fermi points can lead to instabilities at intermediate cou-

plings. Different combinations of couplings lead to each in-

stability. The system becomes ferromagnetic for sufficiently A. Topological disorder

large values 0Binya; +Ginier. = Jintra ~Jinter| . Where the The formation of pentagons and heptagons in the lattice,
subscripts| and L denote the relative onentatlon_between without affecting the threefold coordination of the carbon
spins. An antiferromagnetic instability is driven w2,  atoms, leads to the warping of the graphene sheets and is
+ Jinter . — inra] — Jinter| - The superconducting phases canresponsible for the formation of curved fullerenes, likg C

be s andp wave, depending on the relative phase of the gagfhey have also been observed in carbon nanotubes. In
at the two inequivalent points. However, for edchear the ~ 9graphene, the number of pentagon defects should equal the
Fermi points, there are two electronic states, so that an additumber of heptagons, in order to preserve the flatness at
tional index can be defined in the superconducting order pdarge scales of the sheets. Pentagons and heptagons can be
rameter. Writing these two states as a two component spinoyiewed as disclinations in the lattice, and, when circling one

IV. INFLUENCE OF DISORDER

we can write, in general, such defect, the two sublattices in the honeycomb structure
are exchangecsee Fig. 5.
Ap=(Wp, ((al+ bo) Wy L) @) The two fermion flavors defined in Eql) are also ex-

changed when moving around such a defect. The scheme to

wherea andb are constants. When the interaction is repul-incorporate this change in a continuum description was dis-
sive, thep-wave symmetry is favored\G=—A _;), as in a cussed in Ref. 10. The process can be described by means of

two-dimensional2D) electron system with two inequivalent & Non-Abelian gauge field, which rotates the spinors in flavor
Van Hove singularities at the Fermi leveThe correspond-  SPace. The vector potential is that of a vortex at the position

. . of the defect, and the flux is 7/2.
Ing coupllng IS Qinter. 1 Jinter. — gexchangm - gexchangm . The
diagrams which define the flow of these couplings are de-

picted in Fig. 4. ps 9
The corresponding equations for the dimensionless verti-
cesI’s can be written as = + = + +
&T‘inter = =2 =2 + -
an(A) = = A linter— linter— l_‘exchange a) b)
~ FIG. 4. Renormalization group equations in the Cooper channel
ﬁrexchangtE_ (5) with p-wave symmetry(a) Sketch of the order parameter in the

——20 g5 T = 2T Tinter:
din(A) Il exchange™ 2T exchangl inter Brillouin zone. (b) Diagrams involved in the calculation.
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FIG. 5. Formation of a pentagonal ring in the honeycomb lat-

tice. Points a,b,c,d,... have to be identified with points ) )
a’' b’ ¢ d. .. . Thedefect can be seen as a disclination. defined FIG. 6. Effect of vortices located at distances betweemdr

by the straight dashed lines. +dr from the origin(see text for discussion

Dislocations can be analyzed in terms of bound disclina<® Which defines their position is a random variable. The
tions, that is, a pentagon and an heptagon located at shdi@ntribution to thexcomponent of the gauge field from these
distances, which define the Burgers vector of the dislocation/ortices Is
Thus, the effect of a dislocation on the electronic levels of a
graphene sheet is analogous to that of the vector potential , - d,\2 2 ol%1
arising from a vortex-antivortex pair. We can extend this Ax(r=0)={—~ zl cogd;)| =| | Z2mnordr,
descriptiori! and assume that a lattice distortion which ro- ®)

tates the lattice axis can be parametrized by the angle of
rotation,a(F), of the local axes with respect to a fixed refer- where @ is the flux associated with a single vortex, and

ence frame. Then, this distortion induces a gauge field sucthere is a similar equation fdky(F:o)_ We now must inte-
that grate this value fronl, to R, whereR is the radius of the

0 ) sample. We obtain

—i
Z\(F):ava(F)< _ ) (6)

i 0 5 o R
|A(r:O)|2=27-rn0(I)§ln(|—). (9)
Thus, a random distribution of topological defects can be 0
described by @&non-Abelian random gauge field. The nature W
of the electronic states derived from the t\No-dimensionaLateol by distances greater thinare not correlated. Then
Dirac equation in the presence of a gauge field with Gaussiaﬂom Eq. (7), we find ' '
randomness has received a great deal of attention, as it also I
describes the effects of disorder in integer quantum Hall
transitions'? The disorder is defined by a single dimension- A=27T<I>2In(5) (10
less quantityA, which is proportional to the average fluctua- g
tions of the field:

e can assume that the vector potential at positions sepa-

which diverges slowly with the size of the system. The pre-
(A(F)A(F’)>=A52(F—F’). @) vious estimate assumed .that the layers had a significant
amount of curvature at distances smaller thgnWe can
It is known thatA gives rise to a marginal perturbation, alternatively assume that pentagons and heptagons are bound
which modifies the dimensions of the fermion fields and endn dislocations with average distanbeThe vector field of a
hances the density of states at low energies. A variety of¥ortex-antivortex dipole decays as®. A similar analysis to
analytical® and numerical techniqu¥shas been used to the one leading to Eq10) gives
study this problem. We will follow the renormalization
group scheme presented in Ref. 12. Aoccpgndisle, (12)
We first analyze the statistical properties of the gauge
field induced by topological defects. Let us assume that thvhereny;q, is the density of dislocations.
graphene sheet is warped and that there is a random distri- We will now assume that random fields induced by topo-
bution of pentagons and heptagons with densffyand av-  |ogical defects have the same statistical properties to those
erage distance equal ig=n, “?>. The fluctuations in the with Gaussian disorder with the same valuefgfwhich is
gauge field induced by this distribution at a given point canthe second moment of the distribution in both cases. Then,
be calculated by considering the effect of all defects locatedve can perform the renormalization group analysis discussed
at distances betweanandr +dr (see Fig. 6 wherer>1,,. in Ref. 12. To lowest order, we find an interaction between
The number of defects of each type ig2irny. The angle fermion fields in different replicas of the type
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x; X; X a marginally relevant perturbatidi Within the perturbative
RG scheme described in the previous subsection, it can be
shown that this perturbation leads to logarithmic corrections

x’ \\A to the site-diagonal self-energy, which can be incorporated
- + L into a renormalization of the wave function. Moreover, de-
L viations from a Gaussian distribution are relevant perturba-

xk A tions, which modify the results.

Thus, while to lowest order substitutional disorder shows
similar characteristics as topological disorder, higher-order
X0 Xy X0 corrections lead to significant modifications, which, in addi-
tion, depend on the type of disordérFor instance, a sharp
divergence of the density of states has been f&tiod a
suppression of the density of states at low enertjies.
In graphite, we do not expect a high concentration of
Sy=A> f [WA(F,t)Wg(T it charged impur_ities, which will lead to a strong site disprder.
mn Randomness in bond lengths leads to nondiagonal disorder,
_ R R which can be included in the topological disorder discussed
X[Wg(r,t2)Wa(r,ty)]pdtdtydr, (120 in the previous subsection. Hence, we expect diagonal disor-
der in pure graphite to be small, leading to minor corrections
to the dependence of the density of states on energy, even
when nonperturbative terms are includéd.

FIG. 7. Diagrams contributing to the Green’s function in a dis-
ordered electron system.

wherem andn are replica indices. This interaction leads to a
logarithmically divergent self-energy, which can be inter-
preted as a renormalization of the density of sttas/e can
include the corrections induced by the self-energy in a renor-
malization of the wave function, giving rise to a change in V. OTHER EFFECTS NOT INCLUDED IN THE MODEL
the scaling dimension of the fields: A Phonons
It is well known that phonons can induce significant ef-
fects in conjugated systems, such as poliacetyf®aad in
) . ] ] o graphite intercalation compounés?? There is no evidence,
This expression _has to be inserted in E8), modifying the  however, for a similar chargéor bond density wave in
flow of the couplings. _ raphite, where a 1D Peierls instability is absent. Phonons
The same result can be reached by analyzing the Se'glay an important role in § compound$? where they may
energy corrections usjng st.andard_ techr_liques in the study ¢fg responsible for the superconductivity in sofgs, ma-
disordered electrons in arbitrary dimensidng.o lowest or-  erials. The relevance of the electron-phonon coupling is due
der, the first correction to the Green’s function is shown iny5 the existence of very narrow electronic bands, due to the
Fig. 7. This diagram leads to a self-energy weak hybridization of G molecules, and quasilocalized
. SN . phonon modes. Neither of these features can be extended to
(1", 0)~(Go(r=r",@)A(NA(r'))+- - graphite. Finally, our main purpose is the study of instabili-
> -, - -, ties towards ground states which exhibit magnetism or aniso-
=AGo(r—r",0)8(r=r")+---, (14 tropic superconductivity. We assume that the electron-
whereGy is the unperturbed Green’s function. The real partPhonon interaction will not change qualitatively the possible

2dy—1=1 = 13
b1=1-—, 13

of G, behaves a§,~ wIn(A/w). Finally, existence of these instabilities. Thus, we do not expect that
the inclusion of the electron-phonon coupling will alter sig-
Jd (o nificantly the results presented here.
2d\p_1—1_m ol (15

B. Interlayer hopping
The previous perturbative analysis can be generalized to . .
P P y 9 We have also not consider the interlayer hopping

arbitrary couplings, by mapping the noninteracting fermion " . R
problem in two spatial dimensions onto an interacting prob-WIthln the RG scheme, coherent interlayer hopping is a rel-

. 4 . . . .
lem in 1+1 dimensiond? At energies below a scala evant perturbatiof? leading to three-dimensional behavior

~Aex—(2A)], the backscattering between the two at low e_ne_rgies or tempergtures. On the other hand, due to
Fermi points leads to a scaling dimension which is indepenfEhe vanishing Of. the density of statgs.of a graphene !ayer,
dent of the disorderdy = 1/7. !ncoheren't hopping be’F\Ne_en layers is |r'relev(§m.1te that .It
is a marginal perturbation in systems with a finite density of

state?).

In the presence of coherent interlayer hopping, our analy-

It can be shown that substitutional and site disorder can bsis is valid only at scales higher than, which has been
incorporated into the Dirac equation through a change in thestimated, by band structure calculations, to bge
local chemical potential and the appearance of a mass'ferm.~0.27 eV?® This bare value will be reduced by the many-

Disorder of these types, with a Gaussian distribution, definebody effects and the wave function renormalization consid-

B. Substitutional and site disorder
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ered here. However, in a perfect system, the validity of ouwail over antiferromagnetism, as the existence of pentagons
calculations are limited to a range between2.4 eV and and heptagons leads to the frustration of antiferromagnetic
the renormalized value df; . order. The same argument can be applied to the charge den-
The coherent interlayer hopping can modify our results insity wave state considered in Refs. 28 and 29.

various ways:(i) The coupling between layers induces a A detailed study of the competition between ferromag-
crossover to 3D behavior, enhancing the 2D instabilities disnetism andp-wave superconductivity lies beyond the scope
cussed herdii) The dispersion of the electronic bands in the of this work. It depends on the balance between the on-site,
third dimension leads to the existence of small electron andpin-dependent interactions, and the longer-range, spin-
hole pockets, increasing the density of states. If the couplinggdependent couplings. Ferromagnetism is favored by the ex-
are not modified, this finite density of states will also istence of a sufficiently strong forward scattering between

strengthen the instabilitie$iii) The density of states at the electrons of opposite spin, at momentum tranéﬁe[o_ This
Fermi level induces metallic screening, and changes the incoupling depends on the nature of the screening, which, in
teractions at low energies. It is unclear to us how our resultgurn, depends on the density of states near the Fermi level
are modified in cas€ii). and on the degree of disorder. On the other hand, if the main
Our calculations have a wider range of validity in the interactions are spin independent, ferromagnetism will be

presence of disorder, where coherent hopping over distancegippressed, and the leading instabilitypisvave supercon-
longer than the electronic mean free path is suppressed. Afuctivity.
mentioned earlier, incoherent local hopping can be consid-
ered an irrelevant perturbation which should not modify _ o o
qualitatively the results presented here. C. General features of the possible superconducting instability

In the following, we will discuss some qualitative features
of the superconducting transition. A quantitative estimate of
the critical temperature is beyond the scope of our RG
scheme, although we can discuss the dependendg oh
A. Estimates of the couplings various quantities.

Our analysis considers the role of electron-electron inter- 't S firstinteresting to note that superconductivity at low

actions in a graphene layer. Spin-dependent interactions, liKgmperatures  was observed in graphite intercalation

a Hubbard on site term, naturally lead to magnetic phases. |ﬁomp0und§. The origin of thlg_superconductlvny Is not
the absence of disorder, a minimum value for the Hubbarg®MPIetely understood. The critical field shows an anoma-
repulsion is  required before the onset of ous dependence on temperattfreynlike in conventional

antiferromagnetisri’ in agreement with the analysis pre- S"Wave superconductors. This dependence has been ex-

sented here. This phase, however, lacks experimental conﬁf’-l""'ne?1 in terms of a twol-bgnd mod€IThis model is simi-
mation. It is also known that, within the Hartree-Fock ap- ar to the two-point model discussed here, except that the two

proximation, a nearest-neighbor repulsion induces a bands considered in Ref. 33 correspond to a carbon and a

charge-density-wave ground statdit- 3V<0 andU andV dopand band. The temperature dependence of the critical

are sufficiently largé®-*In addition, there is a region in the fieldhshou_lq ble, however, similarrfinhthe two c;;ges.d _
phase diagram wherd and V almost cancel, leading to a € critical temperature at which an instability described

paramagnetic ground state. Realistic values of these pararRY Ed- (5) sets inis
eters suggest that a graphene layer lies in this regfiofiit ~
is reasonable that longer-range correlations can make this T,—df v
state unstable. These calculations do not consider longer- Te=A ,
range interactions. For decoupled graphene layers, the van-
ishing of the density of states at the Fermi level leads to the -
absence of metallic screening, so that spin-independentherel’ is the appropriate vortex required to drive the insta-

VI. MAIN FEATURES OF THE LOW-TEMPERATURE
PHASE DIAGRAM

(16)

o

long-range interactions are expected. bility. There is a transition if'y>T.=df. Ford;=0, this
expression reduces to the usual BCS formiila= Aexp
B. Possible low-temperature phases (—1Ty) andT';=0. The disorder influences the scaling of

the fermion fieldsdy, , which, in turn, modifyds :
We have considered the possibility of ferro- and antifero- v fydi

magnetism angb-wave superconductivity as the most likely

low-temperature phases. The competition between them de- di=4d,—3=1— % (17)
pends on the spin dependence of the interactions. Spin-

independent couplings favor superconductivity, while a

strong spin dependence, like the on-site repulsion of thevhereA is given in Eq.(10) or (11). The critical temperature
Hubbard model, will lead to a magnetic ground state. Fi-depends exponentially on the disorder. The expression in Eq.
nally, the relative stability of ferro- and antiferromagnetism (16) is only valid if T.<vg/d, whered is the typical dis-
depends, among other things, on the existence of an undeiance above which Eq10) or (11) holds.

lying bipartite lattice. In the presence of a sufficiently strong We can make a simple estimate of the role of disorder by
topological disorder, we expect that ferromagnetism will pre-assuming that, for certain average separation between de-
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fects,ly, df=0, and the value of the critical temperature is disorder is due to dislocations. Aggragations of graphite
T¢'®. Then, if the disorder is reduced, we expanddyn  nanoparticles of polyhedron shapes, whose curvature is not

<1, and we obtain completely characterized, are discussed in Ref. 36. Warped
B layers, with curved regions which are reminiscent of the
T~ Ae Wog=drarf~ TMaxg=k(~lo)/lo, (18)  spherical fullerenes, have been obserVedhese structures

- seem similar to proposed models of negatively curved
where kocl“g2 is @ numerical constant arldis the average graphene layer€ Theoretically, these compoun@schwarz-
distance between defects. The superscript 0 stands for thgs) are supposed to be very stable and contain a macro-
fact that frustration effects in the superconducting phase arecopic fraction of heptagonal rings. A material with these
not consideredsee below. Finally, we can get a rough es- characteristics is probably best described by a random distri-
timate forl, by considering that a sufficiently large concen- bution of disclinations, with mean separation equal to a few
tration of defects leads to pair breaking and redues an  |attice spacings. Calculations of the electronic density of
anisotropic superconductor. The reduction Tof is given,  states of the model proposed in Ref. 38 show that it loses the
approximately, by* semimetallic properties of graphite, in agreement with the

5 discussion her&’ Compounds with these characteristics can

0 & be good candidates for intrinsic p-wave superconductivity.
TC%TC( 1_C|_2) : (19 From the difference between Eq40) and(11), it is clear

0 that a noncorrugated graphene sheet has a much lower den-
where é,=v /T is the coherence length of the supercon-sity of states than a significantly warped one and a reduced
ductor, anct is a constant of order unity. Hence, the optimaltendency towards electronic instabilities. In highly disor-
concentration of defects will be in the rangg- &,. Assum-  dered graphite, however, it is possible that regions with dif-
ing that T{'®*~300 K, this estimate gives for the mean dis- ferent degrees of corrugation coexist giving rise to the be-
tance between defects~30-100 A . havior reported in Refs 1 and 2.

D. Expected sources of disorder in graphene sheets
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