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Electron-electron interactions in graphene sheets
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The effects of the electron-electron interactions in a graphene layer are investigated. It is shown that
short-range couplings are irrelevant and scale towards zero at low energies, due to the vanishing of density of
states at the Fermi level. Topological disorder enhances the density of states and can lead to instabilities. In the
presence of sufficiently strong repulsive interactions,p-wave superconductivity can emerge.
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I. INTRODUCTION.

Recent experiments1,2 report the existence of ferromag
netic and superconducting fluctuations in graphite at un
pectedly high temperatures (T;100–300 K). The coexist-
ence of both types of fluctuations suggests a comm
electronic origin for them.

Motivated by these observations, we present here a s
of the possible electronic instabilities of a single graphe
sheet. Isolated graphene has the convenient property tha
electronic states near the Fermi level can be describe
simple terms. By symmetry, the lower and upper bands to
at the corners of the hexagonal Brillouin zone. Near th
points, the dispersion relation is isotropic and linear,ek¢

5vFuk¢ u, where vF is the Fermi velocity. The density o
states at the Fermi level is strictly zero, and it rises linearly
energy. An effective long-wavelength description of the
electronic states can be written in terms of the Dirac equa
in two dimensions. This description allows us to deal w
the effects induced by long- and short-range electr
electron interactions and lattice disorder using stand
methods of quantum field theory~see below!. While some
care must be have when comparing results obtained for
model to real experiments, a single graphene layer prov
us with a convenient model which can be used as a star
point for the analysis of many-body effects in graphite.
discussion of the advantages and shortcomings of our s
is also included.

The fact that a single graphene sheet is a zero-gap s
conductor modifies significantly the screening of the Co
lomb interaction.3 An effective low-energy Hamiltonian ca
be written, which can be treated by renormalization gro
~RG! methods.4,5 It can be shown rigorously that the Cou
lomb interaction is a marginal interaction, which scales
zero at low energies or long wavelengths. At intermedi
scales, however, the quasiparticle lifetime does not foll
the usuale2 dependence of Landau’s theory of a Fermi li
uid, but scales asueu,6 in agreement with experiments.7 The
RG approach is, in principle, valid in the weak couplin
regime (e2/(e0vF)!1, wheree is the electric charge ande0
is the contribution to the dielectric constant from thes or-
bitals and core electrons. By using a random phase appr
mation ~RPA! summation of diagrams, it can be shown th
0163-1829/2001/63~13!/134421~8!/$20.00 63 1344
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the low energy properties are not changed throughout
entire range of couplings.8

The previous work mentioned earlier analyzed the sm
momentum scattering due to the long-range Coulomb in
action, as it is the only one which leads to logarithmica
divergent perturbative corrections. Some electronic instab
ties, like anisotropic superconductivity, require the existen
of short-range interactions with significant strength at fin
wave vectors. We analyze in this work the role of the
interactions in inducing instabilities of the electronic syste
The next section describes the model. Then, the renorma
tion group equations for the different interactions are writte
In Sec. IV, the role of topological disorder is analyzed, as
can lead to changes in the density of states which modify
scaling equations obtained earlier. Section V discusses
fects not included in the model and how they can influen
the results presented so far. In particular, we analyze
changes induced by the hopping between neighbo
graphene layers. Section VI presents the expected main
tures of the low-temperature instabilities of a graphene la
and discusses its experimental implications.

II. MODEL

A. Intralayer couplings

We analyze the low-energy properties of a graphe
sheet. We will only consider the modifications due to inte
actions and disorder in the low-energy properties of the s

FIG. 1. Sketch of the Brillouin zone of a graphene sheet and
band dispersion near the Fermi energy. Points A and B refer to
two set of points which are related between themselves by a re
rocal vector translation.
©2001 The American Physical Society21-1
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tem. Thus, we need to describe the low-energy electro
states. A graphene sheet has an hexagonal symmetry
two atoms per unit cell. The carbon atoms have four vale
orbitals. Three of them build thesp2 bonds which give ri-
gidity to the structure. The third orbital gives rise to th
valence and conduction bands. These bands touch at the
inequivalent corners of the Brillouin zone~see Fig. 1!. From
symmetry considerations, these bands are isotropic and
pend linearly on the wave vector.

It can be shown that, in the long-wavelength limit, t
electronic wave functions near the corners of the Brillou
zone are well described in terms of the two-dimensio
Dirac equation. The six corners of the Brillouin zone can
divided into two inequivalent sets A and B~see Fig. 1!. The
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three corners with the same label are related by recipro
lattice vectors and can be considered a single point. Thu
long-wavelength description requires two Dirac spinors, e

of them with its spin index. We refer to thek¢ point index
A~B! as the flavor index following standard procedures.
the long-wavelength limit, the Fermi velocityvF can be ex-
pressed in terms of the matrix elements between nea
neighborp orbitals, t, asvF5(3ta)/2, wherea is the C-C
distance.

Because of the collapse of the Fermi surface to isola
points, the kinematics are much simpler than the correspo
ing analysis for two ‘‘hot spots’’ in a square lattice.9 The
Hamiltonian is
H5(
i ,s

\vFE d2r C̄ i ,s~rW !~ isx]x1 isy]y!C i ,s~rW !1 (
i ,i 8;s,s8

e2

2e0
E d2r 1E d2r 2

C̄ i ,s~rW1!C i ,s~rW1!C̄ i 8,s8~rW2!C i 8,s8~rW2!

urW12rW2u

1 (
s,s8; i ,i 8

gi ,s; i 8,s8E d2r C̄ i ,s~rW !C i ,s~rW !C̄ i 8,s8~rW !C i 8,s8~rW !

1 (
s,s8; i ,i 8

ḡi ,s; i 8,s8E d2r C̄ i ,s~rW !sW C i ,s~rW !C̄ i 8,s8~rW !sW C i 8,s8~rW !, ~1!
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wheresx andsy are 232 Pauli matrices. We have separat
the long-wavelength part of the Coulomb interaction fro
other possible short-range interactions.

The couplingsgi ,i 8;s,s8 can be classified in an analogou
way as in one dimension. The possible scattering proce
are shown in Fig. 2.

Because of the linear dispersion of the electronic sta
we can usevF to transform time scales into length scale
Then, we can express the dimensions of all physical qua
ties in terms of lengths. Within this convention, we find th
the dimension of the electronic fields is@C#5 l 21, wherel
defines a length. A naive power counting analysis shows
the Coulomb potential defines a dimensionless, marg
coupling, while theg’s scale asl and are irrelevant at low
energies. This effect can be traced back to the vanish

FIG. 2. Possible short-range couplings between electrons
the two Fermi points in a graphene layer. The solid and dashed
correspond to electrons in the vicinity of each of the two Fer
points. ~a! Intrasingularity scattering (gintra). ~b! Intersingularity
scattering (ginter). ~c! Exchange scattering (gexchange).
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density of states at the Fermi level. When a single Hubb
intrasite repulsionU is considered, all interactions betwee
electrons of opposite spin in Eq.~1! are equal toUV, where
V is the area of the unit cell, and the interactions betwe
electrons of parallel spin are zero.

B. Interlayer couplings

So far, we have restricted our analysis to processes wi
an isolated graphene sheet. Neighboring layers are alw
coupled by the Coulomb interaction. In the following, w
will neglect interlayer hopping, so as to be able to descr
the electronic levels in terms of the Dirac equation, but
include the effects of the long-range Coulomb interactio
between layers. The interlayer couplings give rise to
screening of the bare intralayer electron-electron interact
We will treat these effects within the RPA, as depicted
Fig. 3, following the analysis in Ref. 6. The intralayer inte

ar
es
i

FIG. 3. Diagrammatic representation of the random phase
proximation applied to the interlayer Coulomb interaction. The d
grams show the screening of the interaction between two elect
in layer l due to the polarization of layersl 8,l 9, . . . .
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action becomes

vscr~v,q¢ !5
2pe2

e0uq¢ u

sinh~ uq¢ ud!

A@cosh~ uq¢ ud!1~2pe2/e0uq¢ u!sinh~ uq¢ ud!x0~v,q¢ !#221
, ~2!
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whered is the distance between layers, andx0 is the electron
susceptibility of a single layer, given by

x0~v,q¢ !5
q¢2

32pAvF
2q¢22v2

. ~3!

The interlayer interactions are only effective whenuq¢ ud
!1. Hence, if the lattice constanta is such thata!d, they
do not affect significantly the couplings between electro
states in different Fermi points.

III. SCALING ANALYSIS

In Ref. 8 it was shown that the electrostatic couplin
defined ase2/(e0vF), scales towards zero at low energie
for all values of the interaction. On the other hand, the ex
tence of scattering processes between the two inequiva
Fermi points can lead to instabilities at intermediate c
plings. Different combinations of couplings lead to each
stability. The system becomes ferromagnetic for sufficien
large values ofgintra' 1ginter' 2gintra i 2ginter i , where the
subscriptsi and' denote the relative orientation betwee
spins. An antiferromagnetic instability is driven byḡintra'

1ḡinter' 2ḡintra i 2ḡinter i . The superconducting phases c
be s andp wave, depending on the relative phase of the g
at the two inequivalent points. However, for eachk¢ near the
Fermi points, there are two electronic states, so that an a
tional index can be defined in the superconducting order
rameter. Writing these two states as a two component sp
we can write, in general,

Dk¢5^CA,↑,k¢~aI1b¢sW !CB,↓,2k¢&, ~4!

wherea andb¢ are constants. When the interaction is rep
sive, thep-wave symmetry is favored (Dk¢52D2k¢), as in a
two-dimensional~2D! electron system with two inequivalen
Van Hove singularities at the Fermi level.9 The correspond-
ing coupling is ginter'1ḡinter'2gexchange'2ḡexchange' . The
diagrams which define the flow of these couplings are
picted in Fig. 4.

The corresponding equations for the dimensionless ve
cesG̃ ’s can be written as

]G̃ inter

] ln~L!
52dG̃G̃ inter2G̃ inter

2 2G̃exchange
2 ,

]G̃exchange

] ln~L!
52dG̃G̃exchange22G̃exchangeG̃ inter, ~5!
13442
c

,
,
-
nt
-
-
y

p

di-
a-
r,

-

-

ti-

where we are omitting spin and flavor indices for simplicit
and dG̃ is the ~anomalous! dimension of the vortex, which
includes, among others, the effects of the wave funct
renormalization of the fields. To lowest order,dG̃51. The
first term on the right-hand sides of Eqs.~5! is linear, and it
is absent in the flow of the couplings in the Cooper chan
in a conventional metal. It reflects the irrelevance of the
couplings in a semimetal.

The flow in this channel becomes relevant ifG̃exchange

>G̃ inter and the values of theG̃ ’s are of order unity. Note tha
the cutoff is assumed to beL'vF /a, wherea is a length of
the order of the lattice constant. The dimensionful int
Fermi points and exchange couplings induced by the C
lomb interactions aregi;e2/(e0a). Hence, the bare vortice
G̃0;e2/(e0vF). For reasonable values ofe0;4 – 8, this
combination is, indeed, of order unity.

IV. INFLUENCE OF DISORDER

A. Topological disorder

The formation of pentagons and heptagons in the latt
without affecting the threefold coordination of the carb
atoms, leads to the warping of the graphene sheets an
responsible for the formation of curved fullerenes, like C60.
They have also been observed in carbon nanotubes
graphene, the number of pentagon defects should equa
number of heptagons, in order to preserve the flatnes
large scales of the sheets. Pentagons and heptagons c
viewed as disclinations in the lattice, and, when circling o
such defect, the two sublattices in the honeycomb struc
are exchanged~see Fig. 5!.

The two fermion flavors defined in Eq.~1! are also ex-
changed when moving around such a defect. The schem
incorporate this change in a continuum description was
cussed in Ref. 10. The process can be described by mea
a non-Abelian gauge field, which rotates the spinors in fla
space. The vector potential is that of a vortex at the posit
of the defect, and the flux is6p/2.

FIG. 4. Renormalization group equations in the Cooper chan
with p-wave symmetry.~a! Sketch of the order parameter in th
Brillouin zone.~b! Diagrams involved in the calculation.
1-3
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Dislocations can be analyzed in terms of bound discli
tions, that is, a pentagon and an heptagon located at s
distances, which define the Burgers vector of the dislocat
Thus, the effect of a dislocation on the electronic levels o
graphene sheet is analogous to that of the vector pote
arising from a vortex-antivortex pair. We can extend th
description11 and assume that a lattice distortion which r
tates the lattice axis can be parametrized by the angle
rotation,u(r¢), of the local axes with respect to a fixed refe
ence frame. Then, this distortion induces a gauge field s
that

A¢ ~r¢!53¹u~r¢!S 0 2 i

i 0 D . ~6!

Thus, a random distribution of topological defects can
described by a~non-Abelian! random gauge field. The natur
of the electronic states derived from the two-dimensio
Dirac equation in the presence of a gauge field with Gaus
randomness has received a great deal of attention, as it
describes the effects of disorder in integer quantum H
transitions.12 The disorder is defined by a single dimensio
less quantityD, which is proportional to the average fluctu
tions of the field:

^A¢ ~r¢!A¢ ~r¢8!&5Dd2~r¢2r¢8!. ~7!

It is known that D gives rise to a marginal perturbation
which modifies the dimensions of the fermion fields and
hances the density of states at low energies. A variety
analytical15 and numerical techniques16 has been used to
study this problem. We will follow the renormalizatio
group scheme presented in Ref. 12.

We first analyze the statistical properties of the gau
field induced by topological defects. Let us assume that
graphene sheet is warped and that there is a random d
bution of pentagons and heptagons with densityn0 and av-
erage distance equal tol 05n0

21/2. The fluctuations in the
gauge field induced by this distribution at a given point c
be calculated by considering the effect of all defects loca
at distances betweenr and r 1dr ~see Fig. 6!, wherer @ l 0.
The number of defects of each type is 2prdrn0. The angle

FIG. 5. Formation of a pentagonal ring in the honeycomb
tice. Points a,b,c,d, . . . have to be identified with points
a8,b8,c8,d8, . . . . Thedefect can be seen as a disclination, defin
by the straight dashed lines.
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f which defines their position is a random variable. T
contribution to thex component of the gauge field from thes
vortices is

Ax
2~r¢50!5S F0

r D 2F(
i

cos~u i !G2

5S F0

r D 2 1

2
2pn0rdr ,

~8!

where F0 is the flux associated with a single vortex, an
there is a similar equation forAy(r¢50). We now must inte-
grate this value froml 0 to R, whereR is the radius of the
sample. We obtain

uA¢ ~r¢50!u252pn0F0
2lnS R

l 0
D . ~9!

We can assume that the vector potential at positions s
rated by distances greater thanl 0 are not correlated. Then
from Eq. ~7!, we find

D52pF0
2lnS R

l 0
D , ~10!

which diverges slowly with the size of the system. The p
vious estimate assumed that the layers had a signifi
amount of curvature at distances smaller thanl 0. We can
alternatively assume that pentagons and heptagons are b
in dislocations with average distanceb. The vector field of a
vortex-antivortex dipole decays asr 22. A similar analysis to
the one leading to Eq.~10! gives

D}F0
2ndislb

2, ~11!

wherendisl is the density of dislocations.
We will now assume that random fields induced by top

logical defects have the same statistical properties to th
with Gaussian disorder with the same value ofD, which is
the second moment of the distribution in both cases. Th
we can perform the renormalization group analysis discus
in Ref. 12. To lowest order, we find an interaction betwe
fermion fields in different replicas of the type

-

d FIG. 6. Effect of vortices located at distances betweenr and r
1dr from the origin~see text for discussion!.
1-4
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Sint5D(
m,n

E @C̄A~r¢,t1!CB~r¢,t1!#m

3@C̄B~r¢,t2!CA~r¢,t2!#ndt1dt2dr¢, ~12!

wherem andn are replica indices. This interaction leads to
logarithmically divergent self-energy, which can be inte
preted as a renormalization of the density of states.12 We can
include the corrections induced by the self-energy in a ren
malization of the wave function, giving rise to a change
the scaling dimension of the fields:

2dC21512
D

p
. ~13!

This expression has to be inserted in Eq.~5!, modifying the
flow of the couplings.

The same result can be reached by analyzing the s
energy corrections using standard techniques in the stud
disordered electrons in arbitrary dimensions.13 To lowest or-
der, the first correction to the Green’s function is shown
Fig. 7. This diagram leads to a self-energy

S~r¢,r¢8,v!'^G0~r¢2r¢8,v!A¢ ~r¢!A¢ ~r¢8!&1•••

5DG0~r¢2r¢8,v!d2~r¢2r¢8!1•••, ~14!

whereG0 is the unperturbed Green’s function. The real p
of G0 behaves asG0;v ln(L/v). Finally,

2dC21512
]

] lnL S ]S

]v D . ~15!

The previous perturbative analysis can be generalize
arbitrary couplings, by mapping the noninteracting fermi
problem in two spatial dimensions onto an interacting pr
lem in 111 dimensions.14 At energies below a scalel
;Lexp@2p/(2D)#, the backscattering between the tw
Fermi points leads to a scaling dimension which is indep
dent of the disorder,dC51/7.

B. Substitutional and site disorder

It can be shown that substitutional and site disorder can
incorporated into the Dirac equation through a change in
local chemical potential and the appearance of a mass ter15

Disorder of these types, with a Gaussian distribution, defi

FIG. 7. Diagrams contributing to the Green’s function in a d
ordered electron system.
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a marginally relevant perturbation.15 Within the perturbative
RG scheme described in the previous subsection, it can
shown that this perturbation leads to logarithmic correctio
to the site-diagonal self-energy, which can be incorpora
into a renormalization of the wave function. Moreover, d
viations from a Gaussian distribution are relevant pertur
tions, which modify the results.

Thus, while to lowest order substitutional disorder sho
similar characteristics as topological disorder, higher-or
corrections lead to significant modifications, which, in ad
tion, depend on the type of disorder.17 For instance, a sharp
divergence of the density of states has been found18 or a
suppression of the density of states at low energies.19

In graphite, we do not expect a high concentration
charged impurities, which will lead to a strong site disord
Randomness in bond lengths leads to nondiagonal disor
which can be included in the topological disorder discus
in the previous subsection. Hence, we expect diagonal di
der in pure graphite to be small, leading to minor correctio
to the dependence of the density of states on energy, e
when nonperturbative terms are included.17

V. OTHER EFFECTS NOT INCLUDED IN THE MODEL

A. Phonons

It is well known that phonons can induce significant e
fects in conjugated systems, such as poliacetylene,20 and in
graphite intercalation compounds.21,22 There is no evidence
however, for a similar charge~or bond! density wave in
graphite, where a 1D Peierls instability is absent. Phon
play an important role in C60 compounds,23 where they may
be responsible for the superconductivity in someA3C60 ma-
terials. The relevance of the electron-phonon coupling is
to the existence of very narrow electronic bands, due to
weak hybridization of C60 molecules, and quasilocalize
phonon modes. Neither of these features can be extende
graphite. Finally, our main purpose is the study of instab
ties towards ground states which exhibit magnetism or an
tropic superconductivity. We assume that the electr
phonon interaction will not change qualitatively the possib
existence of these instabilities. Thus, we do not expect
the inclusion of the electron-phonon coupling will alter si
nificantly the results presented here.

B. Interlayer hopping

We have also not consider the interlayer hoppingt' .
Within the RG scheme, coherent interlayer hopping is a
evant perturbation,24 leading to three-dimensional behavio
at low energies or temperatures. On the other hand, du
the vanishing of the density of states of a graphene la
incoherent hopping between layers is irrelevant~note that it
is a marginal perturbation in systems with a finite density
states25!.

In the presence of coherent interlayer hopping, our ana
sis is valid only at scales higher thant' , which has been
estimated, by band structure calculations, to bet'
'0.27 eV.26 This bare value will be reduced by the man
body effects and the wave function renormalization cons

-
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ered here. However, in a perfect system, the validity of
calculations are limited to a range betweent'2.4 eV and
the renormalized value oft' .

The coherent interlayer hopping can modify our results
various ways:~i! The coupling between layers induces
crossover to 3D behavior, enhancing the 2D instabilities d
cussed here.~ii ! The dispersion of the electronic bands in t
third dimension leads to the existence of small electron
hole pockets, increasing the density of states. If the coupl
are not modified, this finite density of states will als
strengthen the instabilities.~iii ! The density of states at th
Fermi level induces metallic screening, and changes the
teractions at low energies. It is unclear to us how our res
are modified in case~iii !.

Our calculations have a wider range of validity in th
presence of disorder, where coherent hopping over dista
longer than the electronic mean free path is suppressed
mentioned earlier, incoherent local hopping can be con
ered an irrelevant perturbation which should not mod
qualitatively the results presented here.

VI. MAIN FEATURES OF THE LOW-TEMPERATURE
PHASE DIAGRAM

A. Estimates of the couplings

Our analysis considers the role of electron-electron in
actions in a graphene layer. Spin-dependent interactions,
a Hubbard on site term, naturally lead to magnetic phase
the absence of disorder, a minimum value for the Hubb
repulsion is required before the onset
antiferromagnetism,27 in agreement with the analysis pre
sented here. This phase, however, lacks experimental co
mation. It is also known that, within the Hartree-Fock a
proximation, a nearest-neighbor repulsionV induces a
charge-density-wave ground state ifU23V,0 andU andV
are sufficiently large.28–30In addition, there is a region in th
phase diagram whereU and V almost cancel, leading to
paramagnetic ground state. Realistic values of these pa
eters suggest that a graphene layer lies in this region.28–30 It
is reasonable that longer-range correlations can make
state unstable. These calculations do not consider lon
range interactions. For decoupled graphene layers, the
ishing of the density of states at the Fermi level leads to
absence of metallic screening, so that spin-independ
long-range interactions are expected.

B. Possible low-temperature phases

We have considered the possibility of ferro- and antife
magnetism andp-wave superconductivity as the most like
low-temperature phases. The competition between them
pends on the spin dependence of the interactions. S
independent couplings favor superconductivity, while
strong spin dependence, like the on-site repulsion of
Hubbard model, will lead to a magnetic ground state.
nally, the relative stability of ferro- and antiferromagnetis
depends, among other things, on the existence of an un
lying bipartite lattice. In the presence of a sufficiently stro
topological disorder, we expect that ferromagnetism will p
13442
r

n

-

d
s

n-
ts

es
As
d-

r-
ke
In
d

fir-
-

m-

is
r-
n-
e
nt,

-

e-
in-

e
-

er-

-

vail over antiferromagnetism, as the existence of pentag
and heptagons leads to the frustration of antiferromagn
order. The same argument can be applied to the charge
sity wave state considered in Refs. 28 and 29.

A detailed study of the competition between ferroma
netism andp-wave superconductivity lies beyond the sco
of this work. It depends on the balance between the on-s
spin-dependent interactions, and the longer-range, s
independent couplings. Ferromagnetism is favored by the
istence of a sufficiently strong forward scattering betwe
electrons of opposite spin, at momentum transferq¢'0. This
coupling depends on the nature of the screening, which
turn, depends on the density of states near the Fermi l
and on the degree of disorder. On the other hand, if the m
interactions are spin independent, ferromagnetism will
suppressed, and the leading instability isp-wave supercon-
ductivity.

C. General features of the possible superconducting instability

In the following, we will discuss some qualitative featur
of the superconducting transition. A quantitative estimate
the critical temperature is beyond the scope of our R
scheme, although we can discuss the dependence ofTc on
various quantities.

It is first interesting to note that superconductivity at lo
temperatures was observed in graphite intercala
compounds.31 The origin of this superconductivity is no
completely understood. The critical field shows an anom
lous dependence on temperature,32 unlike in conventional
s-wave superconductors. This dependence has been
plained in terms of a two-band model.33 This model is simi-
lar to the two-point model discussed here, except that the
bands considered in Ref. 33 correspond to a carbon an
dopand band. The temperature dependence of the cri
field should be, however, similar in the two cases.

The critical temperature at which an instability describ
by Eq. ~5! sets in is

Tc5LS G̃02dG̃

G̃0
D 1/dG̃

, ~16!

whereG̃ is the appropriate vortex required to drive the ins
bility. There is a transition ifG̃0.G̃c5dG̃ . For dG̃50, this
expression reduces to the usual BCS formulaTc5Lexp
(21/G̃0) and G̃c50. The disorder influences the scaling
the fermion fieldsdC , which, in turn, modifydG̃ :

dG̃54dC23512
2D

p
, ~17!

whereD is given in Eq.~10! or ~11!. The critical temperature
depends exponentially on the disorder. The expression in
~16! is only valid if Tc!vF /d, whered is the typical dis-
tance above which Eq.~10! or ~11! holds.

We can make a simple estimate of the role of disorder
assuming that, for certain average separation between
1-6
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fects, l 0 , dG̃50, and the value of the critical temperature
Tc

max. Then, if the disorder is reduced, we expand ondg̃

!1, and we obtain

Tc
0'Le21/G̃0e2dG̃/2G̃0

2;Tc
maxe2k( l 2 l 0)/ l 0, ~18!

wherek}G̃0
22 is a numerical constant andl is the average

distance between defects. The superscript 0 stands for
fact that frustration effects in the superconducting phase
not considered~see below!. Finally, we can get a rough es
timate for l 0 by considering that a sufficiently large conce
tration of defects leads to pair breaking and reducesTc in an
anisotropic superconductor. The reduction ofTc is given,
approximately, by11

Tc'Tc
0S 12c

j0
2

l 0
2 D . ~19!

wherej05vF /Tc
0 is the coherence length of the superco

ductor, andc is a constant of order unity. Hence, the optim
concentration of defects will be in the rangel 0;j0. Assum-
ing thatTc

max;300 K, this estimate gives for the mean di
tance between defectsl 0;30–100 Å .

D. Expected sources of disorder in graphene sheets

It is known that electronic properties of graphite, like t
resistivity, are sample dependent,34 and localization effects
due to disorder have been observed.35 As discussed in Sec
IV, the effect of topological disorder depends on whether
graphene sheets present a finite density of disclinations, l
ing to corrugated and warped surfaces, or the main sourc
,

s

s.

ry

v

.

B

v

v
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disorder is due to dislocations. Aggragations of graph
nanoparticles of polyhedron shapes, whose curvature is
completely characterized, are discussed in Ref. 36. War
layers, with curved regions which are reminiscent of t
spherical fullerenes, have been observed.37 These structures
seem similar to proposed models of negatively curv
graphene layers.38 Theoretically, these compounds~schwarz-
ites! are supposed to be very stable and contain a ma
scopic fraction of heptagonal rings. A material with the
characteristics is probably best described by a random di
bution of disclinations, with mean separation equal to a f
lattice spacings. Calculations of the electronic density
states of the model proposed in Ref. 38 show that it loses
semimetallic properties of graphite, in agreement with
discussion here.39 Compounds with these characteristics c
be good candidates for intrinsic p-wave superconductivit

From the difference between Eqs.~10! and~11!, it is clear
that a noncorrugated graphene sheet has a much lower
sity of states than a significantly warped one and a redu
tendency towards electronic instabilities. In highly diso
dered graphite, however, it is possible that regions with d
ferent degrees of corrugation coexist giving rise to the
havior reported in Refs 1 and 2.
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R. Höhne, and P. Esquinazi, Solid State Commun.115, 539
~2000!.

3J. Gonza´lez, F. Guinea, and M. A. H. Vozmediano, Mod. Phy
Lett. B 7, 1593~1994!; Nucl. Phys. B424, 595 ~1994!; J. Low
Temp. Phys.99, 287 ~1995!.

4R. Shankar, Rev. Mod. Phys.66, 129 ~1994!.
5J. Polchinski, inProceedings of the 1992 TASI in Elementa

Particle Physics, edited by J. Harvey and J. Polchinski~World
Scientific, Singapore, 1992!.

6J. Gonza´lez, F. Guinea, and M. A. H. Vozmediano, Phys. Re
Lett. 77, 3589~1996!.

7S. Yu, J. Cao, C. C. Miller, D. A. Mantell, R. J. D. Miller, and Y
Gao, Phys. Rev. Lett.76, 483 ~1996!.

8J. Gonza´lez, F. Guinea, and M. A. H. Vozmediano, Phys. Rev.
59, R2474~1999!.

9J. Gonza´lez, F. Guinea, and M. A. H. Vozmediano, Phys. Re
Lett. 84, 4930~2000!.

10J. Gonza´lez, F. Guinea, and M. A. H. Vozmediano, Phys. Re
Lett. 69, 172 ~1992!; Nucl. Phys. B406, 771 ~1993!.

11F. Guinea, Phys. Rev. B58, 6622~1998!.
J.

,

.

.

.

12A. W. W. Ludwig, M. P. A. Fisher, R. Shankar, and G. Grinste
Phys. Rev. B50, 7526~1994!.

13E. N. Economou, Green’s Functions in Quantum Physic
~Springer, Berlin, 1983!.

14A. A. Nersesyan, A. M. Tsvelik, and F. Wenger, Phys. Rev. Le
72, 2628~1994!; Nucl. Phys. B438, 561 ~1995!.

15C. de C. Chamon, C. Mudry, and X. G. Wen, Phys. Rev. Lett.77,
4194 ~1996!; Nucl. Phys.B466, 383 ~1996!.

16Y. Morita and Y. Hatsugai, Phys. Rev. Lett.79, 3728~1997!.
17W. A. Atkinson, P. J. Hirschfeld, A. H. MacDonald, and K. Zie

gler, Phys. Rev. Lett.85, 3926~2000!.
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