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Small-amplitude mobile solitons in the two-dimensional ferromagnet
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Two-parameter small-amplitude magnetic solitons moving with arbitrary velocity on a two-dimensional
easy-axis ferromagnet are obtained from the approximate solution of the dynamics equations for this system.
Both radially symmetric solitons and structures with a quasivortex core are considered. These solitons are
characterized by precession of the magnetization about the easy axis, and the corresponding integrals of
motion, namely, the energyE, the linear momentumP, and the number of bound magnonsN are calculated.
The radially symmetric solitons are shown to have the lower energy of the two and they are stable, whereas the
lower energy solitons are unstable. For the stable solitons it was found that the dispersion relationE
5E(P,N) was found to have a minimum at the value ofE0511.2JS2 on the ellipse of arbitrary size. It is
remarkable that this energy is approximately independent of the parameters except for the exchange constant
J and the value of the atomic spinS. Also, the value ofE0 is only slightly smaller than the energy of the
well-known Belavin-Polyakov soliton,E050.93EBP, whereEBP54pJS2. Finally the soliton dispersion rela-
tion is used to calculate the soliton density, and a comparison of the soliton density with the magnon density
shows that there is a wide range of temperatures where solitons will give the dominant contributions to
thermodynamic quantities. It is expected that these solitons will give an essential contribution to observed
dynamical quantities such as the spin-correlation functions.
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I. INTRODUCTION

Nonlinear topologically nontrivial excitations, or soliton
are known to exist in lower dimensional magnetic system
There is both theoretical and experimental indication of s
tons, and in some cases, their effects dominate the the
dynamic behavior of one-dimensional~1D! and two-
dimensional~2D! magnetic systems. Soliton effects we
possibly first established through the proof of the absenc
long-range order in lower dimensional magnets, where fr
simple entropy arguments it has been shown that this ord
not possible in 1D and 2D isotropic systems. Later it w
shown that kinks in 1D magnets1–3 and localized Belavin-
Polyakov solitons~BP solitons! in 2D isotropic magnets4 are
responsible for the destruction of the long-range order a
nonzero temperature. Furthermore, the presence of vor
in 2D easy-plane magnets gives rise to the Berezins
Kosterlitz-Thouless phase transition.5,6 Solitons in 1D and
2D magnets have not been directly observed; however,
dynamic soliton effect such as soliton motion and t
soliton-magnon interaction results in soliton contributions
the dynamic response functions, which can be studied
perimentally. For example, translational motion of vortic
leads to the so-called soliton central peak,7–9 which can be
detected through neutron-scattering experiments. The s
should be valid for localized excitations such as solitons
the BP type.10,11

The first experimental detection of localized solitons
2D antiferromagnets was done indirectly through measu
ment of the temperature dependence of the electron para
netic resonance~EPR! linewidth.12–15 The experiments were
0163-1829/2001/63~13!/134413~9!/$20.00 63 1344
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done using layered manganese compounds in the na
temperature range immediately above the Neel tempera
For these experimental conditions the magnetic correlati
are 2D and Mn~II ! is nearly classical with a spin of5

2. In this
temperature range, an Arrhenius (eE/T) behavior of the
temperature-dependent linewidth is observed and the ex
tion energy is identified as the soliton energy. For a revi
of EPR detection of solitons see Ref. 10.

This previous theoretical work can be explained with
the scope of the so-called soliton phenomenology, where
magnetic system can be described as a two-component g
elementary excitations: solitons and magnons. However,
general behavior of 2D soliton dynamics is not clear
present.

In this article we investigate the structure and dynamics
different types of solitons with finite energy in the easy-a
ferromagnet, and an exact analytical dispersion relation
nontopological solitons is constructed. It is shown that th
solitons are characterized by a universal value of the ene
which appear in an Arrhenius law for all thermodynam
quantities of 2D ferromagnets. This value is independen
the anisotropy, it is determined by the ferromagnetic e
change integral, and it is slightly smaller than the energy
topological~BP! solitons in isotropic magnets. We also di
cuss the dynamical properties of solitons in antiferromagn
and compare the soliton features for these two types of m
nets. Finally, the relative magnitudes of the effects aris
from solitons or magnons is calculated and it is shown t
there is a temperature range where solitons have the d
nant influence on thermodynamic quantities.
©2001 The American Physical Society13-1
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II. FERROMAGNETIC MODEL, MOTION INTEGRAL,
AND SOLITON CLASSIFICATION

In the dissipationless limit the ferromagnetic magneti
tion may be described by the unit vectorm, which is ex-
pressed in terms of angular variables:

mz5cosu, mx1 imy5sinu sinw.

Then, the dynamics of these variables can be describe
the following Lagrangian:3,16

L5
\S

a2 E ~12cosu!
]w

]t
d2r 2W$u,w%, ~1!

whereS is the atomic spin,a is the lattice constant, andW is
the ferromagnetic energy functional

W$u,w%5
S2

2 E d2r $J@~¹u!21~¹w!2sin2 u#1K sin2 u%

~2!

for the uniaxial magnet. HereJ is the exchange integral,K is
the anisotropy constant, which is assumed to be small,K
!J). Owing to spin symmetry of the Lagrangian~1! and
regarding rotational invariance of the energy~2!, thez com-
ponent of the total spin is conserved in the ferromagnet,
the corresponding integral of motion,

N5
S

a2 E ~12cosu!d2r , ~3!

can be interpreted as corresponding to the number of bo
magnons in the soliton. The Lagrangian~1! also determines
the total linear momentum,P of the magnetization field:

P52
\S

a2 E ~12cosu!¹w d2r . ~4!

For topological solitons the value ofP is not conserved,17 but
for solitons with zero topological charge, which we are
terested in,P defined by Eq.~4! is an integral of motion. For
nonmobile solitons one hasP50, and the soliton depen
dence of the energy onN ~Ref. 18! for this special case wa
established numerically. However, the question of the na
of the dispersion law for 2D solitons in the ferromagnet,E
5E(N,P), is still open. In more recent work this case h
been analyzed numerically for isotropic19 and easy-plane20

ferromagnets.
The basic problem of establishing the dispersion relat

lies in the fact that the mobile soliton solutions of th
Landau-Lifshitz equation in a ferromagnetic system of
mensionality higher than one are unknown. In the case
nonmobile soliton one can at least determine the functio
form of a solution. In fact, variation ofdL/dw50 leads to
the equation

¹~sin2 u¹w!52
\

JSa2

]u

]t
sinu, ~5!

which is satisfied by a solution of the form

w5vt1qx, u5u~r !, ~6!
13441
-

by

d

nd

-

re

n

-
a

al

wherer and x are the polar coordinates in the plane of t
2D ferromagnet andq is an integer. Such an ansatz does n
contradict the equation obtained from the variationdL/du,
which after substitution of Eq.~6! becomes an ordinary dif
ferential equation foru(r ), with the conditionu→0 as r
→`:

d2u

dr2 1
1

r

du

dr
2sinu cosuS q2

r 2 1
1

r 0
2D 1

v

v0r 0
2 sinu50. ~7!

Herev05KS/\ is minimal frequency of the linear magnon
~magnon gap!, r 0 is the characteristic length determined b
the ratio of the exchange energy to the energy of magn
anisotropy,r 0

25a2J/K. This equation has solutions only fo
0,v,v0 , and its form depends essentially on the value
q. If q50, then we get a soliton like the magnon drop18 with
a radial distribution of magnetization. The boundary con
tions u,p, du/dr50 at r 50 correspond to such a soliton
If qÞ0 ~in the following we consider the only the caseq
51), then the various solitonic states are realized. The s
tion with u(0)5p corresponds to a topological soliton wit
Pontryagin indexQ5q. Another possible solution that ha
the topological chargeQ50, and the conditionu(0)50 cor-
responds to this case with the functionu(r ) reaching a maxi-
mum valueumax,p at nonzeror.

The topological solitons have been reviewed3,16 in detail
in a series of works. In the isotropic caseK50 they exist as
static objects, where the exact analytical BP solut
(tan@u/2#5R/r ,R is the soliton radius! is known. The energy
of the BP soliton does not depend onR and is determined by
a general formula,

EBP54pJS2, ~8!

and since in such a solitonN}R2, the energy does not de
pend onN. The transverse motion of this soliton in a ferr
magnet is impossible, and in this system the momentum
not an integral of motion.17 The effective mass of this soliton
diverges21–23 with increasing system size, and no
Newtonian dynamical equations have been found to desc
the motion of the magnetic vortex in an easy-pla
ferromagnet.24 Despite these remarks, the question of top
logical soliton motion in ferromagnets, in particular, the d
persion law of these solitons, is of interest and we proc
with the analysis of nontopological solitons.

III. SMALL AMPLITUDE NONTOPOLOGICAL SOLITONS

For both types of nontopological solitons, withq50 or
qÞ0, the linear momentum~4! is an integral of motion and
mobile solutions of the formm5m(r ,t)5m(r2Vt) or u
5u( r̃ ,x̃), w5vt1c( r̃ ,x̃) should exist. Here by means o
the tilde the moving coordinate system is indicated,

r̃ 25~x2Vt!21y2, x̃5arctan@y/~x2Vt!#,

with the soliton velocity assumed to be parallel to thex axis.
In the following we will deal only with these coordinates an
omit the tilde for simplifications of the equations. Howeve
the basic problem here is that one cannot begin with a sim
3-2
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SMALL-AMPLITUDE MOBILE SOLITONS IN THE TWO- . . . PHYSICAL REVIEW B 63 134413
ansatz like Eq.~6! and reduce the problem to the analysis
an ordinary differential equation. The only exception is t
case of small soliton amplitude whereumax!1. It is easily
seen that to the order ofumax, Eq. ~5! becomes
¹@u2(¹w (0)2V/Vmr 0)#50, whereVm52v0r 0 is the mini-
mal phase velocity of spin waves. Then to the first appro
mation u<umax!1 the solution exhibiting Galilean invari
ance is

u5u~r !, w5w~0!5vt1qx2Vx/r 0Vm , ~9!

and the equation foru(r ) takes the following form:

r 0
2¹2 u2sinu cosuF11S V

Vm
D 2

1
2qVr0 sinx

rVm
1

q2r 0
2

r 2 G
1sinuS v

v0
1

qVr0 sinx

rVm
1

V2

v0r 0Vm
D50. ~10!

It is remarked that forq50 Eq. ~10! does not conflict with
ansatz~9! because ifqÞ0 andu is small, then the terms with
sinx cancel each other, and there is a simple solutionu
5u(r ), with w determined by Eq.~9!. This situation is a
unique, but in the general case the structure of a mov
soliton reduces to establishing stationary solutions of a se
two partial differential equations for functionsu( r̃ ,x̃) and
c( r̃ ,x̃).

There are no general methods to solve such problems,
an analysis can be done numerically with the use of differ
variational methods.19,20,25However, as we will present be
low, namely for solitons with small amplitude, it is of inte
est to analyze low-temperature thermodynamics of ferrom
nets; therefore, in the following only these solitons a
considered. As in the case immobile solitons, the structur
a soliton is determined by solution of Eq.~10! when sinu
and cosu are expanded to third order in powers ofu:

r 0
2¹2u2F12

v

v0
2S V

Vm
D 2Gu1F11S V

Vm
D 2G u3

2
50.

The soliton amplitude is small if the coefficient ofu is
small; this coefficient,«, is the small parameter of the theo
that is

«2512
v

v0
2S V

Vm
D 2

!1. ~11!

The equation with«50 gives the dispersion relation of lin
ear magnons, where the quantityVm is the minimal phase
velocity of magnons,Vm5min$v(k)/k%. Hence, as in the 1D
case, the condition«50 corresponds to the transition of so
tons with small amplitude to linear magnons. As will b
shown below, a specific feature of the 2D case is the app
ance of a typical macroscopic energy of a 2D solitonE0 that
is comparable with energy of the BP solitonEBP.

Using condition~11! and retaining cubic terms inu, then
in this approximation the quantity,u0(r ) for is given by the
expressions
13441
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u0~r !5
&«

A11~V/Vm!2
f ~j!, j5«

r

r 0
. ~12!

Functionsf (j) for different q are solutions of the equation

d2f

dj2 1
1

j

d f

dj
2 f S 11

q2

j2D1 f 350, ~13!

which is similar to the 2D nonlinear Schro¨dinger ~NLS!
equation with a cubic nonlinearity. In particular, forq50 it
was used for the description of autofocusing of an opti
beam.26 The nontopological soliton solutions of this equatio
for q50, 1 are found numerically by use of the shootin
method are plotted in Fig. 1.

For the description of solitons, at least in this first a
proximation one can use the NLS equation. However, t
approximation, which is adequate in 1D, is not adequate
describe actual properties of solitons, as for example
binding energy of magnons in a soliton. Let us demonstr
this fact by consideration of the example of a soliton w
q50. Within the lowest approximation to the energy inclu
ing terms with u2 and u2(V/Vm)2 only, but not u4 or
(du/dr)2,

E~zero!5JS2
r 0

2

2a2 E u0
2~r !S 11

V2

Vm
2 Dd2r

52pJS2
r 0

2

a2 E
0

`

f 2~j!dj.

Taking into account that 2p* f 2j dj'11.7~Refs. 26 and 18!
we get that in this approximation the soliton energy depe

FIG. 1. The solutions of Eq.~13!, universal functionsf q(x), for
q50 andq51.
3-3
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neither on the number of bound magnons nor on the t
momentum. In this caseE~zero! is

E~zero!5\v0N0 ,

where

N052pS~r 0 /a!2E f 2j dj'11.7S~r 0 /a!2.

Here the value ofN0 is proportional to the large paramet
(r 0 /a)25J/K, and depends strongly on the magnetic anis
ropy constantK, but the value of the magnon gap frequen
is proportional toK, and the soliton energy in this approx
mation has the universal valueE0 :

E052pJS2E f 2j dj>11.7JS2. ~14!

It is remarkable that this is only slightly less that the B
energyEBP54pJS2, or E0>0.93EBP. Within this approxi-
mation values ofN andP can be obtained as integrals ov
the solution of Eq.~13!:

N5
2pSr0

2

a2

1

11V2/Vm
2 E

0

`

f 2~j!j dj5
N0

11V2/Vm
2 ,

P5
2pSr0\

a2

V/Vm

11V2/Vm
2 E

0

`

f 2~j!j dj5
\N0

r 0

V/Vm

11V2/Vm
2 .

These results are now combined to get the soliton dis
sion lawE~zero!(P,N), which is the same as forN noninter-
acting magnons with momentump5P/N5k\ on each:

E~zero!~P,N!5E05N@\v01JSa2~P/\N!2#.

This equation can be expressed in the form

S N

N0
2

1

2D 2

1S P

P0
D 2

5
1

4
, ~15!

whereP05\N0 /r 0 . This shows that the dispersion relatio
in the limit of small-amplitude solitons corresponds to
ellipse on the$N,P% plane, as can be seen in Fig. 2. T
values ofN0 andP0 are macroscopically large, for exampl
P0 is much larger that the characteristic value of moment
for 1D solitons,P1D;\/r 0 (P0 is even larger that the size o
the Brillouin zonePB;\/a). On the other hand, the mo
mentum per magnon is small,p5P/N;\/r 0 , and the appli-
cability of the macroscopic approximation is upheld.

The same features are present for nontopological soli
with q51, only in this case the numbersE0 or N0 are dif-
ferent; for example, whenq51 the value of N0
>48.3S(r 0 /a)2 andE0 is larger thatEBP. Thus, in the low-
est approximation to the soliton amplitude nontopologi
solitons in 2D ferromagnets have the fixed value of ene
E0 . In this approximation soliton states are strongly deg
erate and their energies do not depend on the numbe
magnons or momentum, but only on the combination giv
by Eq. ~15!, which is characteristic of noninteracting ma
13441
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nons. Thus, the minimal energy is reached not at the p
P50, but on the curve in the$N,P% plane.

To describe the binding energy, calculate the dispers
law, and investigate the soliton stability, it is necessary to
beyond the lowest approximation based on the NLS eq
tion. In doing so one has to use not only more exact exp
sions for P, N, and E ~for instance, terms likeu0

4 or
@du0 /dr)2], but it is also necessary to take into account t
higher-order corrections tou0 andw (0):

u~r ,x!5u0~r !1q~r ,x!, w~r ,x!5w~0!1c~r ,x!,

where the small quantitiesq, c are proportional to higher
powers of the small parameter« compared withu0 or w (0),
for instance,q;«3. The functionsq(r ,x) andc(r ,x) can
be determined from the Landau-Lifshitz equations lineariz
aboutu0 andw (0). These corrections make contributions
all quantities of interest: energy, momentum, and magn
number. When one tries to do analytical calculations of th
quantities in the actual approximation on«, there arises the
problem that the correctionsq, c are determined by nonho
mogeneous differential equations with coefficients depe
ing on the functionsf (j) known from numerical data only
But this problem can be simplified by means of a meth
based on the following.

The Landau-Lifshitz equations can be taken from the c
dition of minimization of the Lagrangian~1! and~2!. Due to
general properties of variational methods, if the solutions
such equations are known with an accuracy tod!1, the
value of LagrangianL5L(V,v), calculated on this approxi
mate solution, gives the exact value ofL(V,v) with the ac-
curacyd2. Thus, we can find the functionL(V,v), and then
restore the quantities of interest by use of the gene
relations16

FIG. 2. The curves in the plane~N, P! for given values of the
soliton energyE. Curves 1, 2, and 3 correspond toE5E0(«50),
E51.2E0 , andE51.4E0 , respectively.
3-4
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N5]L/\]v, P5]L/]V, E~P,N!5\vN1PV2L~V,v!.
~16!

The concrete analysis will be done for the casesq50 and
q51 in the next two sections, showing that the use of t
trick can simplify the calculation of the dispersion lawE
5E(P,N). For example, whenq50, use of a definite form
for q becomes unimportant, and only the correctionc must
be calculated. The determination ofc can be done withou
extra numerical work, and the functionE(P,N) can be ex-
pressed through two integrals of the universal functionf (j).

A. Dispersion law for solitons with qÄ0 in ferromagnets

First, it is necessary to calculate corrections to the
grangian. To quadratic order of the small functions the L
grangian of a ferromagnet takes the formL5L (0)1L (1)

1L (2), where L (0) depends onu0 and w (0) only, L (1) is
linear in q andc, andL (2) is quadratic in these small func
tions. The first term is obtained by substitution ofu0 andw (0)

into the Lagrangian. After expansion in powers ofu this term
takes the form

L ~0!~V,v!

JS2 52
A«2

11V2/Vm
2 2

B«4

2~11V2/Vm
2 !2 , ~17!

whereA, B are the integrals over universal functionf (j):

A52pE
0

`F S d f

dj D 2

1 f 22 f 4/2Gj dj and

B5
2p

3 E
0

`

~ f 62 f 4!j dj.

Using the following trick, these integrals can be evalua
with minimal numerical work. Multiplying Eq.~13! for f (j)
by j f andd f(j)/dj, integrating overj from 0 to infinity and
combining the results, it is easy to show thatA can be ex-
pressed in terms of the known integral in Eq.~14!, A
52p* f 2j dj>11.7. Using the same procedure of multipl
ing Eq. ~13! by j3f , one can show that the value ofB is
positive, B52p* f 2(d f /dj)2j dj>15.88. This is the only
new numerical data we need to calculateL for the case of the
soliton with q50.

Let us next calculate the contribution toL (1)1L (2), taking
into accountc and c2 only. This contribution to the La-
grangian is

L ~1!1L ~2!5JS2E d2r

r 0
2 F 1

v0
c cosxV sinu~12cosu!

3
du

dr
2

r 0
2

2
sin2 u~¹c!2G ,

and the variation of this part of the Lagrangian with resp
to c gives the differential equation

2r 0
2¹@sin2 u~¹c!#5

1

v0
cosxV sinu~12cosu!

du

dr
.

~18!
13441
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Earlier it was mentioned that we needed no new num
cal data to obtain the Lagrangian. This becomes obvi
from the following: the terms withc, c2 are comparable, and
the total value ofL (1)1L (2) is equal to (1/2)L (1). In order to
show this, we need to know the solution of this equation
c to the lowest approximation in«. It is convenient to intro-
duce the new variablem5c sinu0, because the differentia
operator in Eq.~18! becomes one of the Schro¨dinger type.
Next it is remarked that the solution can be written asm
5«(V/Vm)b(j)cosx, where the dimensionless variablej
5«r /r 0 is used. By use of the asymptotic solution~12! we
can write the equation for functionb~j! in the form

d2b

dj2 1
1

j

db

dj
2

b

j2 1b~ f 221!52 f 2
d f

dj
. ~19!

Next we notice that the localized solution of this equation
equal to (1/2)d f /dj. To check this, it is sufficient to differ-
entiate Eq.~13! for f (j) with respect toj. Doing this and
comparing the result with Eq.~19!, one can see that the
coincide if b5(1/2)d f /dj. Thus, the integrand inL (1) is
proportional to (V f )2(d f /dj)2 and thec contribution to La-
grangian can be written in terms of the same integralB
52p* f 2(d f /dj)2j dj as was used above forL (0). Combin-
ing all these values,L (0)(V,v) and L (1)1L (2)5(1/2)L (1),
we obtain the following form for the Lagrange function o
the soliton:

L~V,v!52E0

«2

11V2/Vm
2 2E0

b«4~12V2/Vm
2 !

2~11V2/Vm
2 !3 . ~20!

HereE0 is the universal value of soliton energy as given
Eq. ~14! andb5B/A'1.36.

Using Eqs.~16!, after long but simple algebra we ca
establish the relation between the small parameter« and the
values of the integrals of motion,

N

N0
1

N0

N S P

P0
D 2

215«2C~k!, ~21!

where

C~k!5
11k2

N0
2@b1~22b!k2#

andk5N0P/NP0 . From this, one can see that Eq.~21! is a
generalization of Eq.~15! taking into account higher-orde
corrections, and, as expected, they become the same«
→0. The soliton energy can be written as

E~P,N!5E0F N

N0
1

N0

N S P

P0
D 2

2
1

2
C~k!S N1

N0
2

N

P2

P0
22N0D 2G . ~22!

The analysis of the role of the terms of typeq and q2

shows that their contribution is proportional to«6 and is
negligibly small, therefore, Eq.~22! is applicable to theq
50 soliton. The first term in Eq.~22! describes the zeroth
approximation to the soliton energy derived above. Tak
into accountE05\v0N0 , it can be rewritten as the dispe
sion law for free magnons. Thus, the second term descr
3-5
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the interaction or binding energy of magnons, and the m
tiplier C~k! before the second bracket, which is the sm
parameter in the next power, can be interpreted as the e
tive amplitude of the magnon interaction. As one can
from Eq.~21!, this amplitude is negative for all values of th
soliton parameters.

For the investigation of the soliton stability, we can u
general relations for two-parameter solitons obtained for
ferent models in Refs. 27–29, 25. In our case the solito
stable if

D[
]V

]P

]v

]N
2

]v

]P

]V

]N
,0.

It is convenient to rewrite this in terms of the second deri
tives of the energy:

D5
]2E

]P2

]2E

]N22S ]2E

]P]ND 2

,0.

In lowest approximation on« Eq. ~15a! obviously givesD
50 and nothing can be said about soliton stability. In t
next approximation application of Eq.~22! gives

D52
2

N
C~k!~11k2!2. ~23!

Thus, the stability criterion is quite simple and transp
ent: the soliton is stable if the effective amplitude of magn
coupling corresponds to the attraction,C(k).0. This shows
that the small-amplitude soliton withq50 is stable for all
possible values ofP andN.

B. Dispersion law for solitons with qÄ1 in the ferromagnet

The investigation of the dispersion law for the sma
amplitude soliton withq51 in general is the same as forq
50, although more complicated, and based more on num
cal work. To find the Lagrangian, let us use the same met
as for theq50 case. Again the expression forL (0)(v,V) can
be expanded in powers ofu with the same form as Eq.~17!,
but in this case the coefficientsA and B are defined as fol-
lows:

A52pE
0

`F S d f

dj D 2

1~ f /j!21 f 22 f 4/2Gj dj, ~24!

B5
2p

3 E
0

`

@ f 62 f 424~ f /j!2#j dj. ~25!

These integrals are evaluated as before: Multiplying Eq.~13!
by j2 d f /dj and integrating overj from zero to infinity, it is
seen that

E
0

`

f 2j dj5
1

2 E0

`

f 4j dj;

consequently, the expression forA has the form
13441
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A5E
0

`F S d f

dj D 2

1
f 2

j2Gj dj. ~26!

and it is noticed thatA.0. It is convenient to rewrite the
expression forB in following way:

B52pE
0

`

f 2F S d f

dxD
2

2
f 2

x2G . ~27!

From Eq.~26! we can say nothing about the sign ofB, but
numerical calculations give the following quantities for th
integrals:A548.29 andB526.74. Notice here that the co
efficient B turns out to be negative, which is opposite to t
q50 case.

Let us next calculateL (1)1L (2). In contrast to the case
with q50, we must take into account both corrections p
portional toc andc2, and also contributions from terms lik
q and q2. The expression forL (1)1L (2) can be written in
following form:

L ~1!1L ~2!5JS2 E d2r

r 0
2 H F1

2
qHq1

1

v0
V sinu~12cosu!

3S sinx

r
2

]C

]x D2r 0
2 sin 2u

r 2

]c

]x Gq
1F 1

v0
V sinu~12cosu!

]u

]x

1
r 0

2

2
¹~sin2 u¹c!Gc, ~28!

whereHy is defined in the following way:

Hy5r 0
2¹22cos 2uS 11

V2

Vm
2 1

r 0
2

r 2D 1
1

v0
FcosuS v1

V2

r 0Vm
D

1
V sinx

r
~cosu2cos 2u!G . ~29!

The variation of Lagrangian with respect toc and q gives
the bounded system of differential equations forc andq:

Hyy2
1

v0
V sinu~12cosu!

]c

]x
2r 0

2 sin 2u

r 2

]c

]x

52
1

v0

V sinx

r
sinu~12cosu!, ~30!

r 0
2F¹~sin2 u¹c!1

sin 2u

r 2

]y

]xG
52

1

v0
V sinu~12cosu!

du

dr
cosx. ~31!

Taking into account these equations forc and q, and inte-
grating the Lagrangian overx from zero to 2p, we can re-
write the expression for the correction as
3-6
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L ~1!1L ~2!52pJS2 E
0

` r dr

r 0
2 H 2

1

2
qHqq

2
r 0

2

2
c¹~sin2 u¹c!J . ~32!

To calculateL (1)1L (2), it is necessary to first solve the sy
tem given by Eqs.~30! and~31!. Expanding the functions in
this system in the power ofq, and neglecting all terms o
order more than«4, we obtain the following system:

d2a

dj2 1
1

j

da

dj
2S 2

j2 1123 f 2Da1
2

j2 b52
f 3

j
~33!

d2b

dj2 1
1

j

db

dj
2S 2

j2 112 f 2Db1
2

j2 a52 f 2
d f

dj
, ~34!

where the new variables have been introduced:

q5&V«2S 11
V2

Vm
2 D 21

a~j!sinx

and

c5&V«2S 11
V2

Vm
2 D 21 b~j!

sinu
cosx.

Finally, the Lagrange functionL (1)1L (2) is rewritten in
terms ofa andb to obtain

L ~1!1L ~2!5
JS2«2V2

2Vm
2 S 11

V2

Vm
2 DD, ~35!

whereD is defined in the following way:

D58pE
0

`Fb2

j2 1
1

f 2 S f
db

dj
2b

d f

dj D 2

1aS f 3

j
1

2b

j2 D Gj dj.

~36!

The system given by Eqs.~33! and ~34! has been solved
numerically by using the shooting method. The results
these calculations fora andb are shown in Fig. 3 giving the
numerical value ofD5147.36. Combining these results, th
Lagrangian of the soliton withq51 can be written as fol-
lows:

L~v,V!5E0S 11
V2

Vm
2 D 21F2«22

«4b

2 S 11
V2

Vm
2 D 21

1
«4V2d

2Vm
2 S 11

V2

Vm
2 D 22G , ~37!

whereb5A/B520.14, andd5D/A53.05. The energy of
the soliton withq51 is also given by Eq.~22!, but in this
case the effective amplitude of magnon couplingc~k! is

C~k!5
11k2

N0
2~b1~b2d12!k2!

. ~38!
13441
f

In addition Eq.~38! is a general expression for the functio
C~k!. Furthermore, Eq.~40! will coincide with Eq. ~21!
when we take into account the relation betweenb andd for
the case withq50.

Let us next investigate the soliton stability. In the prev
ous section it was shown that stability criterion isC(k)
.0. Hence, it is obvious that the small-amplitude solit
with q51 is unstable for all possible values ofP andN.

IV. SOLITON THERMODYNAMICS

Now the previous results are used to estimate how
presence of these small-amplitude solitons will affect
thermodynamic quantities in a 2D ferromagnet. Since th
modynamic quantities are affected by both solitons and m
nons, we will proceed by finding the relative densities
solitons and magnons. It is then shown that there is a t
perature range where the soliton density dominates the m
non density resulting in solitons giving the dominant cont
butions to thermodynamic quantities. First, the solit
density is estimated. If the dispersion law is isotropic and
values ofN are large~macroscopic!, then the soliton density
is

nsol5
1

2p\2 E
0

`

P dPE
0

`

dN expF2
E~P,N!

T G . ~39!

Other thermodynamic quantities can be written in the sa
way, such as the soliton contribution to the mean energy
unit area of the magnet:

^E&sol5
1

2p\2 E
0

`

P dPE
0

`

dN EexpF2
E~P,N!

T G .
~40!

To calculate these integrals it is more convenient to use
dimensionless variables,k5PN0 /P0N and d5@N1P2/N

FIG. 3. Functionsa~j! andb~j! versusj.
3-7
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2N0#/N0, whereN5N0(11d)/(11k2). After this change
of variables the soliton density is the integral

nsol5
P0

2N0

4p\2 expS 2
E0

T D E
0

`

dk2E
0

`

dd
~11d!2

~11k2!3

3expF2
E0

T S d2
1

2
C~k!d2D G . ~41!

This integral will be evaluated at the low temperaturesT
!E0 ~we will see below that the temperatures of interest
smaller ofE0) when the lowest approximation on the sm
parameterd can be used. In this case integrals like Eq.~41!
can be easily calculated and one obtains

nsol5
P0

2N0

8p\2

T

E0
expS 2

E0

T D , ~42!

where, as before,E05«0N0 and«05\v05KS.
Next, it is determined whether solitons or magnons g

the dominant contribution to the thermodynamic quantiti
This is done by comparing the density of free magnons w
the soliton density, which is interpreted to be the bound m
non density. The density of bound magnons is given by

nbound magn5
1

2p\2 E
0

`

P dPE
0

`

N dNexpF2
E~P,N!

T G ,
~43!

and the density of free magnons at the temperatures of in
est (T@«0) is

nfree magn5
1

2p E
0

`

k dkFexpS «0~11r 0
2k2!

T D 21G21

>
1

4p

T

Ja2S
lnS T

«0
D . ~44!

When the integral in Eq.~43! is evaluated, we obtain th
following expression for the ratios of densities:

nbound magn

nfree magn
5

N0
3

3 ln~T/«0!
expS 2

E0

T D , ~45!

which is accurate to logarithmic accuracy when omitting
numbers and multipliers like ln@ln(J/K)#. Then the tempera
ture range where the inequalitynbound magn.nfree magnis valid
is

T.T05
E0

3 ln~J/K !
!E0 .

This characteristic temperature,T0 , is high, but it is well
below the value of exchange temperatureJS2. Therefore, in
the wide temperature rangeE0.T.T0 the soliton contribu-
tion is dominant. In this temperature interval the exponen
temperature dependence of all the soliton contributi
exp(2E0 /T) should be very well pronounced.
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V. COMPARISON OF THE DYNAMICS OF
FERROMAGNETS AND ANTIFERROMAGNETS

Most of the measurements showing the contribution
solitons to the temperature dependence of the EPR linew
were done using antiferromagnetic compounds with a l
ered structure. It is known that antiferromagnets can be
scribed by the nonlinears model for the antiferromagnetic
vector~normalized sublattice magnetization! l; see Refs. 2, 3
and 16. The energy of the antiferromagnet in the static li
has the same form as for the ferromagnet, but withm is
replaced byl. For this reason there is also the BP soliton
the isotropic antiferromagnet case with the energy also gi
by Eq. ~8!. However, the dynamic properties of solitons
ferromagnets that are investigated both in the present p
and earlier work do not coincide with the dynamic propert
of the antiferromagnet. This is because the equations of ths
model are formally Lorentz invariant, where the characte
tic velocity is taken to be the phase velocity of magnons, a
the analysis of the soliton motion in antiferromagnets can
carried out by use of the Lorentz transformation applied
the static structures.

In contrast to antiferromagnets and remarked in the In
duction, mobile topological solitons in ferromagnets are n
very well understood. However, the role of internal dyna
ics on the soliton structure is much better understood. B
for topological and for nontopological solitons in ferroma
nets, internal dynamics, such as homogeneous preces
can stabilize the soliton. In particular, this work has sho
the existence of a small-amplitude nontopological solit
with the internal precession frequency in the range, 0,v
,v0 , and the energy is slightly smaller than the energy
the topological soliton. For antiferromagnets the situation
different. It is possible to use the ansatzw5vt1qx, but in
this case the equation foru is different~here theu andw are
the angular variables for the sublattice magnetization ve
l). For the particular case of the immobile soliton in an a
tiferromagnet the equation foru(r ) can be determined from
Eq. ~7! if we substitute (v/vag)

2sinu cosu instead of
(v/v0)sinu, wherevag is the minimal frequency of mag
nons in the antiferromagnet~see Refs. 3 and 16!. It has been
shown27,30,31 through the use of numerical and qualitativ
analysis that for the simplest model of uniaxial anisotropy
antiferromagnets there are no soliton solutions for topolo
cal solitons (qÞ0) or for nontopological solitons (q50).
As was mentioned earlier, the special case that has the s
ture of the BP soliton with tan(u/2)5R/r , and the precession
frequencyv5vag, is possible; however, this case is n
physical. There are the soliton solutions with more gene
anisotropy, namely,

wa5
1

2
K sin2 u2

K

4
sin4 u, and with precession frequency

vagS 12
k

K D,uvu,vag ~see Refs. 27, 30, and 31!,

which we will not consider here.
3-8
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In conclusion, our analysis has shown essential diff
ences between the dynamic properties of solitons in fe
magnets and antiferromagnets. In this paper it was sh
that there is a nontopological mobile soliton withq50 in 2d
ferromagnets. Its energyE0 is a bit smaller then the energ
of the BP soliton,EBP54pJS2, E0>0.93EBP. It is expect-
edthat this soliton will give essential contributions to o
served dynamical quantities such as spin-correlation fu
tions. We would like to stress that it is difficult to distinguis
the contributions from the nontopological and the topologi
solitons, owing to the fact thatE0 andEBP are approximately
equal, but in antiferromagnets the BP soliton is the only c
er

. -

z.

ta

ns

ev

e

pp

13441
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didate for elementary excitations. For the case of weak
isotropy, BP solitons can exist when systems are appr
mated by the isotropic antiferromagnet.
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