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Small-amplitude mobile solitons in the two-dimensional ferromagnet
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Two-parameter small-amplitude magnetic solitons moving with arbitrary velocity on a two-dimensional
easy-axis ferromagnet are obtained from the approximate solution of the dynamics equations for this system.
Both radially symmetric solitons and structures with a quasivortex core are considered. These solitons are
characterized by precession of the magnetization about the easy axis, and the corresponding integrals of
motion, namely, the enerdy, the linear momentur®, and the number of bound magnoNsare calculated.

The radially symmetric solitons are shown to have the lower energy of the two and they are stable, whereas the
lower energy solitons are unstable. For the stable solitons it was found that the dispersion i€lation
=E(P,N) was found to have a minimum at the valueEf=11.21S on the ellipse of arbitrary size. It is
remarkable that this energy is approximately independent of the parameters except for the exchange constant
J and the value of the atomic spl Also, the value ofE, is only slightly smaller than the energy of the
well-known Belavin-Polyakov solitorEy=0.9Fgp, whereEgp=47JS’. Finally the soliton dispersion rela-

tion is used to calculate the soliton density, and a comparison of the soliton density with the magnon density
shows that there is a wide range of temperatures where solitons will give the dominant contributions to
thermodynamic quantities. It is expected that these solitons will give an essential contribution to observed
dynamical quantities such as the spin-correlation functions.

DOI: 10.1103/PhysRevB.63.134413 PACS nuni®er75.10.Hk, 75.40.Gb, 75.60.Ch, 75.50.Dd

[. INTRODUCTION done using layered manganese compounds in the narrow
. . o o . temperature range immediately above the Neel temperature.
Nonlinear topologically nontrivial excitations, or solitons, ) o : .
s . . . For these experimental conditions the magnetic correlations
are known to exist in lower dimensional magnetic systems, . . : . )
) . . S Care 2D and M(il) is nearly classical with a spin gf In this
There is both theoretical and experimental indication of soli- e .
) . : temperature range, an Arrheniug®(") behavior of the
tons, and in some cases, their effects dominate the thermg- . o .
. : . . emperature-dependent linewidth is observed and the excita-
dynamic behavior of one-dimensiondllD) and two- . L i ) .
, . . . tion energy is identified as the soliton energy. For a review
dimensional (2D) magnetic systems. Soliton effects were . .
. . . f EPR detection of solitons see Ref. 10.
possibly first established through the proof of the absence o : . ) . -
. . . This previous theoretical work can be explained within
long-range order in lower dimensional magnets, where fro .
. . . he scope of the so-called soliton phenomenology, where the
simple entropy arguments it has been shown that this order is

not possible in 1D and 2D isotropic systems. Later it Wasmagnetlc system can be described as a two-component gas of

shown that kinks in 1D magnéts and localized Belavin- elementary excitations: solitons and magnons. However, the
. . . . . general behavior of 2D soliton dynamics is not clear at
Polyakov solitongBP solitons in 2D isotropic magnefsare
responsible for the destruction of the long-range order at gresent_. . . . .
nonzero temperature. Furthermore, the presence of vortice In this article we mvestlga.lte t.“‘? structure gnd dynamics .Of
in 2D easy-plane magnets gives rise to the Berezinskiil ifferent types of solitons with flnltg energy |n.the easy-axis
Kosterlitz-Thouless phase transitiof.Solitons in 1D and ferromagnet, and an exact analytical dispersion relation for
2D magnets have not been directly observed; however, thaontopological solitons is constructed. It is shown that these
dynamic soliton effect such as soliton motion and thesolitons are characterized by a universal value of the energy,
soliton-magnon interaction results in soliton contributions towhich appear in an Arrhenius law for all thermodynamic
the dynamic response functions, which can be studied exduantities of 2D ferromagnets. This value is independent of
perimentally. For example, translational motion of vorticesthe anisotropy, it is determined by the ferromagnetic ex-
leads to the so-called soliton central péakwhich can be change integral, and it is slightly smaller than the energy of
detected through neutron-scattering experiments. The santepological (BP) solitons in isotropic magnets. We also dis-
should be valid for localized excitations such as solitons ofcuss the dynamical properties of solitons in antiferromagnets
the BP type®1! and compare the soliton features for these two types of mag-
The first experimental detection of localized solitons innets. Finally, the relative magnitudes of the effects arising
2D antiferromagnets was done indirectly through measurefrom solitons or magnons is calculated and it is shown that
ment of the temperature dependence of the electron paramatipere is a temperature range where solitons have the domi-
netic resonancéEPR linewidth 2~ The experiments were nant influence on thermodynamic quantities.
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Il. FERROMAGNETIC MODEL, MOTION INTEGRAL,
AND SOLITON CLASSIFICATION

In the dissipationless limit the ferromagnetic magnetiza

tion may be described by the unit vector, which is ex-
pressed in terms of angular variables:

m,=cosf, m,+imy=sindsine.

Then, the dynamics of these variables can be described by WJF Tar sin6 cosd

the following Lagrangiari:*®

hS e .,
L=— [ (1—cosf) —dr—W{b,¢}, (1)
a at
whereSis the atomic spina is the lattice constant, and is
the ferromagnetic energy functional

2

W0, 0} = %f d2r{J[(V 0)%+ (V ¢)2sir? 6] +K sir? 6}

)

for the uniaxial magnet. Her&is the exchange integré is
the anisotropy constant, which is assumed to be smidll, (
<J). Owing to spin symmetry of the Lagrangidf) and
regarding rotational invariance of the ener@y, thez com-

ponent of the total spin is conserved in the ferromagnet, an

the corresponding integral of motion,

Nza—if (1—cos#)d?r, ®)
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wherer and y are the polar coordinates in the plane of the
2D ferromagnet and is an integer. Such an ansatz does not
contradict the equation obtained from the variatiity 56,

which after substitution of E((6) becomes an ordinary dif-
ferential equation ford(r), with the conditiond—0 asr

— 00!

q> 1
— + —
2 2
r )

w
+
worg

d?0 1dé

sin6=0. (7)

Here wo=KS/h is minimal frequency of the linear magnons
(magnon gap rg is the characteristic length determined by
the ratio of the exchange energy to the energy of magnetic
anisotropy,rézazJ/K. This equation has solutions only for
0<w<wp, and its form depends essentially on the value of
q. If g=0, then we get a soliton like the magnon dfowith
a radial distribution of magnetization. The boundary condi-
tions #<7r, d6/dr=0 atr=0 correspond to such a soliton.
If g#0 (in the following we consider the only the cage
=1), then the various solitonic states are realized. The solu-
tion with 6(0)= 7 corresponds to a topological soliton with
Pontryagin indexQ=q. Another possible solution that has
the topological charg® =0, and the conditio®(0)=0 cor-
responds to this case with the functiéfr) reaching a maxi-

um valuef,,< at nonzera.

The topological solitons have been review&tin detail
in a series of works. In the isotropic calde=0 they exist as
static objects, where the exact analytical BP solution
(tar #/2]=R/r,R is the soliton radiusis known. The energy

can be interpreted as corresponding to the number of bounef the BP soliton does not depend Brand is determined by

magnons in the soliton. The Lagrangiél) also determines
the total linear momentun® of the magnetization field:

hS
PZ_?I (1—cosO)V ¢ d?r. (4)

For topological solitons the value B¥is not conserved’ but

for solitons with zero topological charge, which we are in-

a general formula,

Egp=4mJS, (8)

and since in such a solitoN=R?, the energy does not de-
pend onN. The transverse motion of this soliton in a ferro-
magnet is impossible, and in this system the momentum is
not an integral of motion! The effective mass of this soliton

terested inP defined by Eq(4) is an integral of motion. For diverges'™** with increasing system size, and non-
nonmobile solitons one haB=0, and the soliton depen- Newtonian dynamical equations have been found to describe
dence of the energy oN (Ref. 18 for this special case was the motion of the magnetic vortex in an easy-plane
established numerically. However, the question of the naturéerromagnet? Despite these remarks, the question of topo-
of the dispersion law for 2D solitons in the ferromagriet, logical soliton motion in ferromagnets, in particular, the dis-
=E(N,P), is still open. In more recent work this case haspersion law of these solitons, is of interest and we proceed
been analyzed numerically for isotropicand easy-plarf@  With the analysis of nontopological solitons.
ferromagnets.

The basic problem of establishing the dispersion relation|, SMALL AMPLITUDE NONTOPOLOGICAL SOLITONS
lies in the fact that the mobile soliton solutions of the . ) ]
Landau-Lifshitz equation in a ferromagnetic system of di- For both types of nontopological solitons, wig=0 or
mensionality higher than one are unknown. In the case of %0, the linear momenturtd) is an integral of motion and
nonmobile soliton one can at least determine the functiondinobile solutions of the fornm=m(r,t)=m(r—Vt) or ¢

form of a solution. In fact, variation 0fL/8¢=0 leads to = 0(F.X), ¢=wt+y(F,X) should exist. Here by means of
the equation the tilde the moving coordinate system is indicated,

noo00 T2=(x—Vt)?+y?, Ty=arctahy/(x—V1t)],
V(Sln2 HV(,D)I—EESM@, (5)
with the soliton velocity assumed to be parallel to ¥axis.
Wh|Ch is Satisfied by a So|uti0n Of the form In the fO”OWing we will deal Only W|th these COOI’dinateS al’ld
omit the tilde for simplifications of the equations. However,
e=owt+qy, 6=06(r), (6) the basic problem here is that one cannot begin with a simple

134413-2



SMALL-AMPLITUDE MOBILE SOLITONS IN THE TWO-. .. PHYSICAL REVIEW B 63 134413

ansatz like Eq(6) and reduce the problem to the analysis of
an ordinary differential equation. The only exception is the f (ff)
case of small soliton amplitude whe#g,,,<1. It is easily

seen that to the order off,.. EQq. (5) becomes
V[ (Vo@D —V/IV,ro)1=0, whereV,=2wor o is the mini- X =0
mal phase velocity of spin waves. Then to the first approxi- q
mation < 6,,,,<1 the solution exhibiting Galilean invari- -
ance is

0=0(r), ¢=¢V=wt+qy—VX/roVm, ©) -

and the equation foé(r) takes the following form:

rgv2 9—sin6 cose| 1+

Y% 2+ 2qVrgsiny . q’r3
Vi Vo r?

w quosin)(Jr V? )=O 10

+sing| —+
(wo Vi ol oV

It is remarked that fog=0 Eq. (10) does not conflict with 0 ) A )

ansatz9) because ifj# 0 and@ is small, then the terms with 0 2 4 6 f

siny cancel each other, and there is a simple solutién:

- '?(r)’ with g determined by Eq(9). This situation is a FIG. 1. The solutions of E13), universal functiong,(x), for

unique, but in the general case the structure of a moving _ andg=1

soliton reduces to establishing stationary solutions of a set o '

two partial differential equations for function®T,y) and

YT X). v2e r
’ Oo(r) = —————==1(§), é=e_—. (12)

There are no general methods to solve such problems, and [1+(VIV,,)2 ro

an analysis can be done numerically with the use of different

variational method$??%?*However, as we will present be- Functionsf(£) for differentq are solutions of the equation

low, namely for solitons with small amplitude, it is of inter-

est to analyze low-temperature thermodynamics of ferromag- d2f 1 df

nets; therefore, in the following only these solitons are d_gz + E d_g_f 1+ ?

considered. As in the case immobile solitons, the structure of

a soliton is determined by solution of EGLO) when sind  \which is similar to the 2D nonlinear Schtinger (NLS)

q2

+f3=0, (13

and cog are expanded to third order in powers @f equation with a cubic nonlinearity. In particular, fQe=0 it

5 o 3 was Lzlged for the desc_ription 'of autochusing of an opt_ical

12729 1_2_(1) o411+ l) i=0 beam® The nontopological soliton solutions of this equation

0 wo \Vn Vi |2 ' for =0, 1 are found numerically by use of the shooting

method are plotted in Fig. 1.

The soliton amplitude is small if the coefficient éfis For the description of solitons, at least in this first ap-
small; this coefficientg, is the small parameter of the theory proximation one can use the NLS equation. However, this
that is approximation, which is adequate in 1D, is not adequate to

describe actual properties of solitons, as for example the

© 2 binding energy of magnons in a soliton. Let us demonstrate
g2=1— ——(—) <1. (11)  this fact by consideration of the example of a soliton with
g=0. Within the lowest approximation to the energy includ-

i it g2 2 2 4
The equation withe =0 gives the dispersion relation of lin- ”:ig /fjernz’ls with 62 and 6%(V/V,,)? only, but not ¢* or
ear magnons, where the quantMy, is the minimal phase (dofdr)®,
velocity of magnonsY,,= min{w(k)/k}. Hence, as in the 1D 5
case, the condition=0 corresponds to the transition of soli- E(zero):\]szij 02(r)
. . . . 2 0

tons with small amplitude to linear magnons. As will be 2a
shown below, a specific feature of the 2D case is the appear-
ance of a typical macroscopic energy of a 2D soliigthat
is comparable with energy of the BP solit&gp.

Using condition(11) and retaining cubic terms if, then
in this approximation the quantityly(r) for is given by the  Taking into account that2f2¢ dé~11.7 (Refs. 26 and 18
expressions we get that in this approximation the soliton energy depends

V2
1+ oz

m

d?r

=2 Jszlrgfwf2 d
=2mIS5 | (é)dé.
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neither on the number of bound magnons nor on the total

momentum. In this casgé® is P/PO
E(Zero):ﬁa)oNo,
where 0,51 3 3
1
No=2w8(ro/a)2f f26dé~11.7(rqy/a)?.
Here the value ol is proportional to the large parameter } +
(ro/a)?=J/K, and depends strongly on the magnetic anisot- 0.5 1.5
ropy constani, but the value of the magnon gap frequency . )
is proportional toK, and the soliton energy in this approxi- N/N
mation has the universal vall®,: 0
-0,5 1
Eozszszf f26dé=11.705. (14)

It is remarkable that this is only slightly less that the BP
energyEgp=4mJS?, or Eg=0.9Fzp. Within this approxi-

mation values olN andP can be obtained as integrals over FG. 2. Th in the olar@l. P for i |  th
the solution of Eq(13): . 2. The curves in the plan@, P) for given values of the

soliton energyE. Curves 1, 2, and 3 correspond = Ey(e=0),
E=1.2F,, andE=1.4E,, respectively.

“P(e)Ede=

_27Srp 1 f 0
a 0 1+V2IVE'

a* 1+V2/V§1 nons. Thus, the minimal energy is reached not at the point
P=0, but on the curve in th&N,P} plane.
_ 2mSigh VIV, f“fz dé= @ VIV, To describe the binding energy, calculate the dispersion
- a® 1+VAva o (§)¢dé= ro 1+V2Ive' law, and investigate the soliton stability, it is necessary to go
beyond the lowest approximation based on the NLS equa-
These results are now combined to get the soliton dispeition. In doing so one has to use not only more exact expres-
sion lawE®"9(P,N), which is the same as fo¥ noninter- ~ sions for P, N, and E (for instance, terms likegg or
acting magnons with momentupy» P/N=k#% on each: [d6,/dr)?], but it is also necessary to take into account the
higher-order corrections té, and ¢(®):

E(ze0(p N)= Eo=N[fiwg+IS&(P/AN)?].

This equation can be expressed in the form 0(r,x)=0o(r)+9(r,x), e(r.x)=e%+uy(r.x),
N 1\?2 [P\? 1 where the small quantitied, ¢ are proportional to higher
N_o_ 2 + p_o “a (15 powers of the small parametercompared withd, or ¢(®,

for instance, 9~ ¢3. The functionsd(r,x) and ¢(r,x) can
wherePy=%ANg/rqy. This shows that the dispersion relation be determined from the Landau-Lifshitz equations linearized
in the limit of small-amplitude solitons corresponds to anaboutd, and ¢(®). These corrections make contributions to
ellipse on the{N,P} plane, as can be seen in Fig. 2. Theall quantities of interest: energy, momentum, and magnon
values ofNy and P are macroscopically large, for example, number. When one tries to do analytical calculations of these
Py is much larger that the characteristic value of momentunguantities in the actual approximation enthere arises the
for 1D solitons,P1p~7#/rq (Pg is even larger that the size of problem that the corrections, ¢ are determined by nonho-
the Brillouin zonePg~#/a). On the other hand, the mo- mogeneous differential equations with coefficients depend-

mentum per magnon is smali= P/N~7#/r,, and the appli- ing on the functions (¢) known from numerical data only.

cability of the macroscopic approximation is upheld. But this problem can be simplified by means of a method
The same features are present for nontopological solitonsased on the following.

with g=1, only in this case the numbeE, or Ny are dif- The Landau-Lifshitz equations can be taken from the con-

ferent; for example, whenq=1 the value of Ng dition of minimization of the Lagrangiafl) and(2). Due to
=48.35(r,/a)? andE, is larger thatEgp. Thus, in the low-  general properties of variational methods, if the solutions of
est approximation to the soliton amplitude nontopologicalsuch equations are known with an accuracyétal, the
solitons in 2D ferromagnets have the fixed value of energyalue of Lagrangiah =L (V,w), calculated on this approxi-
Ey. In this approximation soliton states are strongly degenmate solution, gives the exact valuelofV,w) with the ac-
erate and their energies do not depend on the number @lracys?. Thus, we can find the functidn(V, ), and then
magnons or momentum, but only on the combination giverrestore the quantities of interest by use of the general
by Eq. (15), which is characteristic of noninteracting mag- relations®
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N=dL/hdw, P=dLIoV, E(P,N)=fhwN+PV—-L(V,w). Earlier it was mentioned that we needed no new numeri-
(16) cal data to obtain the Lagrangian. This becomes obvious
. from the following: the terms withy, > are comparable, and
The concrete analysis W|I_I be done _for the cagesO and _the total value of W+ L® is equal to (1/20Y). In order to
q=1 in the next two sections, showing that the use of thisshoy this, we need to know the solution of this equation for
trick can simplify the calculation of the dispersion la& to the lowest approximation ia. It is convenient to intro-
=E(P,N). For example, whe=0, use of a definite form duce the new variable.= ¢ sin 6,, because the differential
for 9 becomes unimportant, and only the correctipbmust  operator in Eq(18) becomes one of the Schinger type.
be calculated. The determination g¢fcan be done without Next it is remarked that the solution can be written ;as

extra numerical work, and the functid®(P,N) can be ex- =g(V/V,)B(§)cosy, where the dimensionless variabée
pressed through two integrals of the universal funcfitg). =erlry is used. By use of the asymptotic solutiti?) we
can write the equation for functiof(¢) in the form
A. Dispersion law for solitons with q=0 in ferromagnets d2,8 1dg8 B
2 __f2
First, it is necessary to calculate corrections to the La- Eﬂ' £de gi+ﬂ(f —1)=-f dé (19

grangian. To quadratic order of the small functions the La- . . . . o
grangian of a ferromagnet takes the form=L @+ @ Next we notice that the localized solution of this equation is

+L®, whereL©® depends ond, and ¢© only, LD is equal to (1/2y1f/d&. To check this, it is sufficient to differ-

. . ! L entiate Eq.(13) for f(£) with respect toé. Doing this and
linear in 9 and ¢, andL(® is quadratic in these small func- : ,
tions. The first term is obtained by substitutionfgfand © comparing the result with EqL9), one oo see.thgt) they
: M coincide if B=(1/2)df/d¢é. Thus, the integrand '~ is

into the Lagrangian. After expansion in powersgahis term proportional to ¥/ )2(d f/d&)? and they contribution to La-
takes the form grangian can be written in terms of the same intedal
=2x[f2(df/dé)%£ dé as was used above faf®). Combin-

(0) 2 4
LY(V,0) A82 2 Bsz ~—, (17 ing all these valuesl. O(V,w) and LO+ L@ =(1/2)LD),
Js* 1+VAIVy 2(1+VEIVy) we obtain the following form for the Lagrange function of
whereA, B are the integrals over universal functib(g): the soliton:
5 Ly . &2 c be?(1-V2/V3) 20
A:27Tf0 <% +f2—f42|£d¢ and (Viw)= O1+Vv2Vv2 O 2(1+VAIVE)3

HereE, is the universal value of soliton energy as given by
20 [ Eqg. (14) andb=B/A~1.36.
B=—f (fS—fHede. Using Egs.(16), after long but simple algebra we can
3 Jo establish the relation between the small paramet@nd the

Using the following trick, these integrals can be evaluated’@lues of the integrals of motion,

with minimal numerical work. Multiplying Eq(13) for f(&) N Ny P\? )
by ¢f anddf(£)/dé, integrating ovei from O to infinity and ot W(P_) —1=e"V(x), (21)
combining the results, it is easy to show thatan be ex- 0 0

pressed in terms of the known integral in Ed4), A  Where

=27[f?£dé=11.7. Using the same procedure of multiply- 14 k2

ing Eq. (13) by &f, one can show that the value Bfis V(Kk)=—> 5

positive, B= 2/ f2(df/d&)2& dé=15.88. This is the only Nolb+(2—b) 7]

new numerical data we need to calculltfor the case of the  and x=NyP/NP,. From this, one can see that Eg1) is a
soliton withq=0. generalization of Eq(15) taking into account higher-order

Let us next calculate the contributionlté”+ L), taking  corrections, and, as expected, they become the same as
into accounty and zpz only. This contribution to the La- 0. The soliton energy can be written as
grangian is

. P)z
d’r| 1 TN T NPy
L(l)+L(2)=J52f_2[—1/1COS)(VSin0(1—COSG) Moo NP0
o [@o 1 N3 P? 2
0
do 1} “2%w N+__2_N°) } 2
><a—§°sin2 a(w)z}, ‘ e

The analysis of the role of the terms of tygeand 92

and the variation of this part of the Lagrangian with respecthows that their contribution is proportional t§ and is

to ¢ gives the differential equation negligibly small, therefore, Eq.22) is applicable to theg
=0 soliton. The first term in Eq(22) describes the zeroth
approximation to the soliton energy derived above. Taking
into accountEg=%wgNg, it can be rewritten as the disper-

(18 sion law for free magnons. Thus, the second term describes

P 1 ) do
—rgV[sir? 8(V¢)]= —cosyV sing(1—cosh) —— .
wqo dl’
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the interaction or binding energy of magnons, and the mul- o (df\2 f2
tiplier W(x) before the second bracket, which is the small =j dz + 7 £dé. (26)
parameter in the next power, can be interpreted as the effec-

tive amplitude of the magnon interaction. As one can Segpnq i is noticed thatn>>0. It is convenient to rewrite the
from Eq.(21), this amplitude is negative for all values of the expression foB in following way:

soliton parameters.
2 2
o (41}
dx X2\

For the investigation of the soliton stability, we can use w
B 27Tf f
From Eq.(26) we can say nothing about the sign Bf but

general relations for two-parameter solitons obtained for dif-
ferent models in Refs. 27-29, 25. In our case the soliton is
stable if
N o gV _numerical calculations give the follovying quantities for the
______ <0. integrals:A=48.29 andB= —6.74. Notice here that the co-
TP N P N efficient B turns out to be negative, which is opposite to the
q=0 case.

Let us next calculateV+L(3), In contrast to the case
with g=0, we must take into account both corrections pro-
portional toy and?, and also contributions from terms like
9 and 92. The expression fot M+ L) can be written in
following form:

(27)

It is convenient to rewrite this in terms of the second deriva-
tives of the energy:

_PPEPE | FE \? 0
~ 9P aN? | 9PN
In lowest approximation or Eq. (159 obviously givesA

2
=0 and nothing can be said about soliton stability. In the L(1)+L(2)—J82f dr H OH g+ iVsm (1 cos6)
next approximation application of ER2) gives ro 2

(sinX a\P) ,sin26 (w}
O

2 - sinx_ o¥ o
A=V ) (14K (23 rooox r2  ax

Thus, the stability criterion is quite simple and transpar-
ent: the soliton is stable if the effective amplitude of magnon
coupling corresponds to the attractioh(«)>0. This shows ré
that the small-amplitude soliton with=0 is stable for all + EV(sin2 oV )
possible values o andN.

+1V'91 0&0
w—o sm(—cos)(}—X

b, (28)

whereH,, is defined in the following way:
B. Dispersion law for solitons withg=1 in the ferromagnet

2 2 2
The investigation of the dispersion law for the small- 2 o], 1 \% )
. . . : . H,=r2v2—cos 24| 1+ + + —| cos +
amplitude soliton withg=1 in general is the same as fqr 0 % V212w b| » oV
=0, although more complicated, and based more on numeri- Vsi
; ; sin

cal work. To find the Lagranglan, let us use th;a same method n X (cosf—cos 26) |. (29)
as for theq=0 case. Again the expression 10f”(®,V) can r

be expanded in powers @fwith the same form as E¢17), o . ) )
but in this case the coefficients and B are defined as fol- The variation of Lagrangian with respect goand 9 gives

lows: the bounded system of differential equations foand -
o [ df)2 1 Iy ,sin20 ¢
Azzﬁf {(d_g +(f/§)2+f2—f4/2 £dég, (24) H,v— —V5|n0(1 COSG)——I'O—Q— Ix
0
1 Vsiny .
2 (= =—— sinf(1—cosh), (30
B= ?f [f0—f4—4(f/¢)?)& d¢. (25) @o T
0
. L sin 26 Jdv
These integrals are evaluated as before: Multiplying (E8). V(sm2 oV )+ v
by &2 df/d¢ and integrating oveé from zero to infinity, it is r* o ox
seen that 1 _ de
=— w—ov sind(1—cosh) acosx. (31
2 _ - 4 .
fo Fede= 2 fo Feds; Taking into account these equations isrand 9, and inte-
grating the Lagrangian ovey from zero to 2r, we can re-
consequently, the expression farhas the form write the expression for the correction as
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=rdr 1
L(l)+L(2)=27TJSZJ —2(——19Hﬁ19
o Ip 2
s
-5 YV (sir? oV w)} . (32

To calculatelL W+ L), it is necessary to first solve the sys-
tem given by Eqgs(30) and(31). Expanding the functions in
this system in the power off, and neglecting all terms of
order more thare*, we obtain the following system:

o 1da (2+1 32t 2p=— = (3
@ ar |2 Pt
d’?g 1dp |2 ) 2 df
-tz |z +t1-f? |+ za=—1>—, (34
d§2 gdg §2 B §2a dg ( )
where the new variables have been introduced:
V2 -1
O=v2Ve?[ 14+ —| a(&)siny
Vm
and
V2 T B(§)
= 2 -3 ——
y=v2Ve 1+Vr2n sing COSX-

Finally, the Lagrange function™+L®) is rewritten in
terms of@ and B to obtain

|_<1>+|_<2>——2—J5282V2 1+ 0 35
- 2Vm V_Zm ’ ( )
whereD is defined in the following way:
B =[Bg% 1 dg  df\? f3 2/5)
D—8’7TJ;) ?-ﬁ-f—z d—g—ﬂd—g + o E‘F? Edé.
(36)

The system given by Eq$33) and (34) has been solved

numerically by using the shooting method. The results o

these calculations fat and 8 are shown in Fig. 3 giving the

numerical value oD =147.36. Combining these results, the

Lagrangian of the soliton witly=1 can be written as fol-
lows:

V2 -1 84b V2 -1
= + — -’ — |1+ —
*Vad V2|2
+ 1+ — , (37
2v;, Vin }

whereb=A/B=—0.14, andd=D/A=3.05. The energy of
the soliton withg=1 is also given by Eq(22), but in this
case the effective amplitude of magnon couplifig) is

1+ k2

V)= 2br (b-d+2)e))

(39)
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FIG. 3. Functionsa(£) and B(£) versusé.

In addition Eq.(38) is a general expression for the function
W(k). Furthermore, Eq(40) will coincide with Eq. (21)
when we take into account the relation betwdeandd for
the case witlg=0.

Let us next investigate the soliton stability. In the previ-
ous section it was shown that stability criterion U5(«)
>0. Hence, it is obvious that the small-amplitude soliton
with g=1 is unstable for all possible values BfandN.

IV. SOLITON THERMODYNAMICS

Now the previous results are used to estimate how the
presence of these small-amplitude solitons will affect the
thermodynamic quantities in a 2D ferromagnet. Since ther-
modynamic quantities are affected by both solitons and mag-
nons, we will proceed by finding the relative densities of
solitons and magnons. It is then shown that there is a tem-
perature range where the soliton density dominates the mag-
fon density resulting in solitons giving the dominant contri-
butions to thermodynamic quantities. First, the soliton
density is estimated. If the dispersion law is isotropic and the
values ofN are largelmacroscopig, then the soliton density
is

E(P,N)
T

1 0 o
nso|:mz fo P dPJO dN exp{ - (39

Other thermodynamic quantities can be written in the same
way, such as the soliton contribution to the mean energy per
unit area of the magnet:

1 o 0
<E>solszo P dpfo dN Eexp{—

E(P,N)
T .

(40)

To calculate these integrals it is more convenient to use the
dimensionless variables¢=PNy/PoN and 6=[N+P?/N
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—Nol/Ng, where N=Ny(1+ 8)/(1+ «2). After this change V. COMPARISON OF THE DYNAMICS OF
of variables the soliton density is the integral FERROMAGNETS AND ANTIFERROMAGNETS
P2N E . . 14 5)2 Most of the measurements showing the contribution of
n |=O—2exp( - _0) j dkzj dg(—z)s solitons to the temperature dependence of the EPR linewidth
0 4mh T/Jo o (1+«9) were done using antiferromagnetic compounds with a lay-

ered structure. It is known that antiferromagnets can be de-
5— E\P(K)éz)} (41) scribed by the nonlineas- model for the antiferromagnetic
2 vector(normalized sublattice magnetizatjdn see Refs. 2, 3

Eo
X [ —
ex;{ T
o ) and 16. The energy of the antiferromagnet in the static limit
This integral will be evaluated at the low temperatur€s, pas the same form as for the ferromagnet, but witHs

<E, (we will see below that the temperatures of interest arggp|aced byl. For this reason there is also the BP soliton in
smaller ofEq) when the lowest approximation on the small he jsotropic antiferromagnet case with the energy also given
parameters can be used. In this case integrals like E&L)  py Eq. (8). However, the dynamic properties of solitons in
can be easily calculated and one obtains ferromagnets that are investigated both in the present paper
) and earlier work do not coincide with the dynamic properties
0o PaNo lexp( _ E) 42) of the antiferromagnet. This is because the equations af the
o872 Eg T) model are formally Lorentz invariant, where the characteris-
tic velocity is taken to be the phase velocity of magnons, and
where, as beforeEo=¢oNg andeg=7%wo=KS. the analysis of the soliton motion in antiferromagnets can be
Next, it is determined whether solitons or magnons givecarried out by use of the Lorentz transformation applied to
the dominant contribution to the thermodynamic quantitiesthe static structures.
This is done by comparing the density of free magnons with  |n contrast to antiferromagnets and remarked in the Intro-
the soliton density, which is interpreted to be the bound mageduction, mobile topological solitons in ferromagnets are not
non density. The density of bound magnons is given by  very well understood. However, the role of internal dynam-
ics on the soliton structure is much better understood. Both
E(P,N) for topological and for nontopological solitons in ferromag-
T ' nets, internal dynamics, such as homogeneous precession,
(43) can stabilize the soliton. In particular, this work has shown
the existence of a small-amplitude nontopological soliton
and the density of free magnons at the temperatures of intewith the internal precession frequency in the range,

1 o0 0
Npound magnszo PdPJ'o N dNex

est (T>¢gg) is <wg, and the energy is slightly smaller than the energy of
the topological soliton. For antiferromagnets the situation is

1 (= go(1+r2k?) -1 different. It is possible to use the ansatz ot+qy, but in

Nfree magi- 5 — fo kd — T |- 1 this case the equation faris different(here thed and ¢ are

the angular variables for the sublattice magnetization vector
( T) I). For the particular case of the immobile soliton in an an-

(44)  tiferromagnet the equation fa(r) can be determined from
Eq. (7) if we substitute (p/wag)zsinecose instead of

When the integral in Eq(43) is evaluated, we obtain the (@/wg)sing, where w,g is the minimal frequency of mag-

80.

following expression for the ratios of densities: nons ir;tgr(}%lantiferromagn(a;ee Refs. 3 and 16lt has been
showrf’ %31 through the use of numerical and qualitative
n N3 E analysis that for the simplest model of uniaxial anisotropy in
bound magn 0 0 . f : :
= 3T eXF{ - _) , (450  antiferromagnets there are no soliton solutions for topologi-
Niree magn 3 IN(T/&0) T cal solitons (#0) or for nontopological solitonsg=0).

eAs was mentioned earlier, the special case that has the struc-
ture of the BP soliton with tam(2)=R/r, and the precession
frequency o= w,g, is possible; however, this case is not
physical. There are the soliton solutions with more general
anisotropy, namely,

which is accurate to logarithmic accuracy when omitting th
numbers and multipliers like [in(J/K)]. Then the tempera-
ture range where the inequality,,ng magr Niree magniS Valid

is

0
T>To=5—-~<E,. 1 K
3In(J/K) o= 5K sir? 6?—Zsin4 6, and with precession frequency
This characteristic temperaturég, is high, but it is well
below the value of exchange temperatd. Therefore, in K
the wide temperature randgg,>T>T, the soliton contribu- w (1__><|w|<w (see Refs. 27, 30, and B1
. . . . . . ag K ag . ’ ]
tion is dominant. In this temperature interval the exponential
temperature dependence of all the soliton contributions
exp(—Ey/T) should be very well pronounced. which we will not consider here.
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In conclusion, our analysis has shown essential differdidate for elementary excitations. For the case of weak an-
ences between the dynamic properties of solitons in ferroisotropy, BP solitons can exist when systems are approxi-
magnets and antiferromagnets. In this paper it was showmated by the isotropic antiferromagnet.
that there is a nontopological mobile soliton wigk-0 in 2d
ferromagnets. Its enerdy, is a bit smaller then the energy

of the BP soliton Egp=4mJS, Eq=0.9Fgp. It is expect- We are pleased to thank N. Cooper, A. S. Kovalev, A. M.
edthat this soliton will give essential contributions to ob- Kosevich, and N. Papanicolaou for useful discussions. B.A.l.
served dynamical quantities such as spin-correlation functhanks Montana State University for kind hospitality during
tions. We would like to stress that it is difficult to distinguish the summer semesters of 1999 and 2000. This work was
the contributions from the nontopological and the topologicalsupported by National Science Foundation Grant No. DMR-
solitons, owing to the fact th&, andEgp are approximately 9974273. The work of B.A.l. And [LA.Y. in Kiev was sup-
equal, but in antiferromagnets the BP soliton is the only canported in part by Grant No. INTAS-97-31311.
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