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Green’s function theory of the spin-1 low-dimensional quantumXY ferromagnet

M. E. Gouvêa and A. S. T. Pires
Departamento de Fı´sica, ICEx, Universidade Federal de Minas Gerais, Belo Horizonte, CP 702, CEP 30123-970, MG, Brazil

~Received 12 September 2000; published 5 March 2001!

We calculate the spin-spin correlations and the magnetic susceptibility of the quantum one- and two-
dimensionalXY models withS51, using the two-time Green’s function method and performing a decoupling
proposed by Kondo and Yamaji for cases with no long-range order. A set of self-consistent equations of the
correlation functions are derived and solved numerically. We present results for the correlation functions,
susceptibilities, and specific heat for the whole range of temperature.
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I. INTRODUCTION

Several techniques have been proposed to study mag
models. However, some of these theories work well only i
a specific and limited range of low or high temperatures.
the other hand, the two-time Green’s function method1 is
known as the standard method which gives reasonable
sults for the thermodynamic properties over the whole te
perature range. In the application of this method, the Ty
likov decoupling approximation2 is usually used to obtain th
approximate solution from an infinite set of coupled Gree
functions. This method invokes the existence of long-ran
order. The decoupling procedure gives a spin-wave spect
which depends on̂Sz&. This method has been recently us
by Siurakshinaet al.3 to study the three-dimensional~3D!
S51/2 Heisenberg model with spatially anisotropic coupli
on a simple cubic lattice

However,^Sz& vanishes in one and two dimensions~ex-
cept for Ising-like anisotropies in 2D and some long-ran
order interactions!. In order to apply the two-time Green’
function method to cases without long-range order, Kon
and Yamaji4 and Knapp and ter Haar5 proposed a decoupling
at a stage one step further than Tyablikov. The decoup
Green’s functions depend on averages such as^S0

zS1
z& and

^S0
zS2

z& which are determined by self-consistency requi
ments. Then, the thermodynamic quantities can be calcul
from the knowledge of these solutions.

As pointed out by Shimahara and Takada,6 the advantages
of the Kondo-Yamaji theory~KY ! lie in the following points:
~i! the KY theory is based on a clear physical picture;~ii ! the
KY theory interpolates between the high- and lo
temperature limits with a unified picture over the whole te
perature region;~iii ! the KY theory does not violate the sum
rule and the rotational symmetry.

Knapp and ter Haar5 applied this higher order decouplin
in a treatment of the 3D Heisenberg model paramagn
phase. Later, Scales and Gersch7 applied the procedure to
study the 1D, 2D, and 3D antiferromagnetic Heisenb
models. Kondo and Yamaji4 studied the one-dimensionalS
51/2 isotropic ferro- and antiferromagnetic Heisenbe
models. Their treatment gives reasonable features for
thermodynamic properties at all temperatures for both si
of the exchange. At high temperatures, they reproduced
correct results obtained by the high-temperature expan
0163-1829/2001/63~13!/134408~6!/$20.00 63 1344
tic
o
n

e-
-
-

s
e
m

-

o

d

-
ed

-

ic

g

he
s

he
on

method. On the other hand, the results at low temperature
similar to those of the modified spin-wave theory8 and agree
quite well to other results obtained by different techniqu
such as a numerical calculation for a finite chain.9

Later, Yamaji and Kondo10 applied the technique to stud
the 2D ferromagnetic Heisenberg model. Uchinamiet al.11

studied theS51/2 XY model by using the same method. Th
value of the nearest-neighbor correlation functions in 1D c
culated by Uchinamiet al. is in good agreement with the
exact values calculated by Katsuraet al.12 Shimahara and
Takada6 applied the KY method with a semiphenomenolog
cal improvement to the 2D ferro- and antiferromagne
Heisenberg models. Winterfeld and Ihle13 extended Shima-
hara and Takada’s procedure for theS51/2 2D antiferro-
magnetic model in order to obtain the dynamical sp
correlation function of this model. Baoet al.14 generalized
the KY technique to the 1D antiferromagnetic Heisenbe
chain. The gap~predicted by Haldane! at null wave vector in
the excitation spectrum appeared naturally in the analyt
result. Kawabe15 and later Fukumoto and Oguchi16 studied
the spin-1/2 antiferromagneticXXZ model on a square lat
tice. Dong and Feng17 studied the spin liquid state of the 2D
Heisenberg antiferromagnet on a triangular lattice. T
ground-state energy was found to be in very good agreem
with the results obtained within the variational Monte Ca
method based on the resonating-valence-bond state. S
et al.18 improved the decoupling approximation of the K
theory and applied it to study the spin-1/2 2D antiferroma
netic Heisenberg model with broken bonds at finite tempe
ture. Ihle et al.19 combined the spin-rotation invarian
Green’s function approach~using the same KY decoupling!
to Lanczos diagonalization to study the order-disorder tr
sition in the S51/2 antiferromagnetic Heisenberg mod
with spatial anisotropy.

In this paper, we apply the KY procedure to theS51 XY
model described by the Hamiltonian

H522J(̂
i j &

~Si
xSj

x1Si
ySj

y!, ~1!

where the summation is taken over all nearest-neigh
pairs. We will discuss the one- and two-dimensional cas
The S51/2 case has been rigorously solved for a line
chain20 and treated in the framework of the KY theory b
Uchinamiet al.11
©2001 The American Physical Society08-1
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However, as pointed out by Baoet al.,14 the KY decou-
pling procedure gives different results for integer and ha
odd integer spins due to the distinct relations holding for
spin componentsSi

a in each case: this difference justifies
study of theS51 case. The 1DXY model is very interesting
In contrast to the Heisenberg isotropic ferromagnet mo
the ground state here is no longer trivial. In fact, beca
^N21(nSn

z&5^ST
z&50, the ground state corresponds in t

Bethe-ansatz picture to the lowest eigenvalue of the bloc
order

S N

N/2D .

In the S51/2 case, the model can be transformed to non
teracting spinless fermions and solved exactly. For large
ues of spinS, Villain21 has introduced a transformation lea
ing to a semiclassical spin-waves theory which was use
study the 1D and 2DXY models. However, his procedur
does not give the correct predicition forS51/2. This failure
in Villain’s theory could be expected because the elemen
excitations of his theory are magnons, whereas in theS
51/2 case the excitations are particle-hole pairs. Besi
Villain’s treatment applies only to the low-temperature r
gime and the procedure we are going to use in this work,
Green’s function technique, can be used for the whole te
perature range. The 2D classicalXY model has been studie
intensively due the existence of the Kosterlitz-Thouless
pological phase transition22,23in these models: the power-law
behavior of the spin-correlation function has been obtai
by several approaches but the quantum case can have d
ent properties24 and still deserves more attention.

In Sec. II, we outline the method and present the ba
self-consistent equations for the spin-pair correlations
decoupling parameters as a function of the temperature.
self-consistent equations are solved analytically in the hi
temperature limit in Sec. III. In Sec. IV the self-consiste
equations are solved numerically in a wide temperature
gion using as starting point the high-temperature soluti
obtained in the previous section.

II. GREEN’S FUNCTION FORMALISM

The two-time Green’s function is defined as

G~ i 2 j ,t2t8!52ıu~ t2t8!^@Ai~ t !,Bj~ t8!#&

5^^Ai~ t !;Bj~ t8!&&, ~2!

whereu(t) is the step function and̂•••& denotes a therma
average. The time-Fourier transform of Eq.~2! satisfies the
equation

v^^A;B&&5
1

2p
^@A,B#&1^^@A,H#;B&& ~3!

and the correlation function can be obtained by the spec
representation as
13440
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^AB&5ı È`

dv@^^A;B&&v1ı«2^^A;B&&v2ı«#
1

ebv21
.

~4!

The equations of motion of the Green’s function for o
model are

v^^S0
x ;Sn

x&&52ı2J(
d

^^S0
zSd

y ;Sn
x&& ~5!

and

v^^S0
z ;Sn

z&&52ı2J(
d

$^^Sd
xS0

y2Sd
yS0

x ;Sn
z&&% ~6!

whered denotes the vector to the nearest-neighbor site.
higher-order Green’s function on the right-hand side of E
~5! satisfies the equation

v^^S0
zSd

y ;Sn
x&&5

ı

2p
~2^S0

zSd
z&dn,d1^S0

ySd
y&dn,0!

1ı2J(
d8

$^^Sd8
y Sd

yS0
x2S0

ySd
ySd8

x

1S0
zSd

zSd1d8
x ;Sn

x&&%. ~7!

We remark that, forS51/2, some terms cancel each other
Eq. ~7!. According to the KY method, we decouple th
higher-order Green’s functions on the right-hand side of E
~7! as

^^Si
ySj

ySk
x ;Sn

x&&5ax^Si
ySj

y&^^Sk
x ;Sn

x&&,

^^Si
zSj

zSk
x ;Sn

x&&5ax^Si
zSj

z&^^Sk
x ;Sn

x&&. ~8!

The decoupling parameterax has been introduced in order t
not violate the sum rule of the correlation function and
determined so as to satisfyC0

x[^(Si
x)2&5^(Si

y)2&51
2^(Si

z)2&/2. From Eqs.~5!, ~7!, and~8! and taking the Fou-
rier transform with respect to the lattice points, we find

Gq
x~v!5

Aq
x

v22~vq
x!2

, ~9!

where

Aq
x52zJ~C1

x2gqC1
z!, ~10!

~vq
x!25~2J!2axz@«q~12gq!1D#, ~11!

wherez is the coordination number,gq5(1/z)(deıkW•dW , and
the parameters«q , Dq , and the correlationsCn

s (s5x,z, n
50,1,2) are defined by

«q5z@C1
x2~11gq!C1

z#, ~12!

D5z~C1
z2C1

x!1C0
x1C2

x , ~13!
8-2



h

t

si

sed
e

e
ical

d to
qua-
ing

ns
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C1
s5

1

z (
d

^S0
sSd

s&, ~14!

C2
x5

1

z~z21! (
d,d8

^S0
xSd1d8

x &. ~15!

From Eq.~6!, we obtain

v^^S0
xSd

y ;Sn
z&&52

ı

2p
@^S0

xSd
x&~dn,02dn,d!#1ı2J(

d8

3$2^^S0
xSd

zSd1d8
x ;Sn

z&&1^^S0
zSd

ySd8
y ;Sn

z&&%

~16!

and a similar expression for the other Green’s function. T
decoupling is now written as

^^Si
xSj

zSk
x ;Sn

z&&5az^Si
xSk

x&^^Sj
z ;Sn

z&&,

^^Si
zSj

zSk
x ;Sn

x&&5ax^Si
zSk

z&^^Sj
x ;Sn

x&&, ~17!

where the determination of theaz is discussed in Sec. IV
From Eqs.~6!, ~16!, and ~17! and using the following rela-
tion for S51:

Sn
xSn

x1Sn
ySn

y522Sn
zSn

z , ~18!

we obtain

Gq
z~v!5

Aq
z

v22~vq
z!2

, ~19!

where

Aq
z54zJC1

x~12gq!, ~20!

~vq
z!25~2J!22zB~12gq!, ~21!

with B511az(C2
x2C0

z/z1C1
z).

The relations~14! and~15! lead to the five self-consisten
equations

C0
s5

1

N (
q

Aq
s

2vq
s

cothS bvq
s

2 D , ~22!

C1
s5

1

N (
q

gqAq
s

2vq
s

cothS bvq
s

2 D , ~23!

C2
x5

1

N (
q

zgq
221

z21

Aq
s

2vq
s

cothS bvq
s

2 D . ~24!

The static susceptibilities can be evaluated by the expres

xs

N
52 lim

q→0
Gq

s~v50!5
Aq50

s

~vq50
s !2

~25!

or, explicitly,
13440
e

on

xx

N
5

~C1
x2C1

z!

2JaxD
, ~26!

xz

N
5

C1
x

2JF11azS C2
x2

Cz
0

z
1C1

zD G . ~27!

III. ANALYTIC RESULTS IN THE HIGH-TEMPERATURE
LIMIT

In this limit, we can develop coth(bvq
a/2) in Eqs.~22!–

~24! as a Taylor expansion in powers ofb obtaining

2

T
'(

q
Aq

aS T

~vq
a!2

1
1

12TD ; ~28!

C1
z'2

zC1
x

3Q (
q

gq
2 ; ~29!

C1
x'

Q

2ax (
q

gq~C1
x2gqC1

z!

2/32zgqC1
x

; ~30!

C2
x'

QC1
x

2axC0
x (

q

zgq
221

12
2C1

xgq

C0
x

, ~31!

whereQ5T/J is the reduced temperature, and we have u
C0

x5C0
z52/3 in the high-temperature limit. In 1D, the abov

expressions lead to

az5ax51, ~32!

C1
x'

8

9Q
; C1

z'2
C1

x

3Q
; C2

x'
32

27Q2
. ~33!

Inserting these asymptotic solutions in Eqs.~26! and~27!, we
obtain, in the high-temperature limit,xx;xz;2/(3T), in ac-
cordance to the Curie-Weiss law.

IV. NUMERICAL RESULTS

The basic Eqs.~22!–~24! of the present theory are quit
complicated and therefore we were able to obtain analyt
evaluations of the spin-pair correlationsC0

x , C0
z , C1

x , C1
z ,

C2
x , and the decoupling parametersax and az only in the

high-temperature region. For lower temperatures, we ha
use numerical methods to solve those transcendental e
tions for the 1D and 2D cases, as discussed in the follow
two subsections.

A. Linear XY chain

In order to solve the set of five self-consistent equatio
given by Eqs.~22!–~24! in 1D, we usez52 andgq5 cosq.
However, we have seven parameters~five spin correlations
and two decoupling parameters! to determine and only five
8-3
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M. E. GOUVÊA AND A. S. T. PIRES PHYSICAL REVIEW B63 134408
equations to use. One additional equation is provided by
sum ruleC0

x512C0
z/2, but another equation is still require

in order to determine all parameters.
We note that decoupling approximations like we ha

used here, are proposed for convenience and there is no
dard approach to determine,a priori, which values the pa-
rametersax andaz should assume. This issue was discus
by Kawabe15 in his analysis of theS51/2 2D ferromagnetic
XY model. TheXXZ antiferromagnetic 2D model~spin 1/2!
was studied by Fukumoto and Oguchi16 who, in fact, intro-
duced two decoupling parameters in the way described h
However, those authors restricted their study to the neigh
hood of the isotropic Heisenberg point-avoiding theXY
regime—and settingC0

x5C0
z5S(S11)/3 in the whole tem-

perature range using these conditions to determine the
decoupling parameters. In ourXY case, due to the easy-plan
anisotropy, it does not seem a ‘‘natural’’ choice to requ
that, for all temperatures, the spin correlationC0

x has the
same value as theC0

z correlation: it is more reasonable t
expect that, as the temperature decreases, the in-planC0

x

correlation becomes greater than the out-of-plane correla
In fact, we tried to solve our five self-consistent equatio
imposing C0

x52/3 andC0
z52/3 as conditions to determin

ax and az and obtained an unphysical result since all t
spin-pair correlations were decreasing with decreasing t
perature. We then adopted two slightly different arbitra
ways to determine the decoupling parameters and solve
problem:~i! we chose to useax5az, and,~ii ! to fix one of
the parameters,az, at its high-temperature value (az51),
and determine the other one by imposing the sum rule,C0

x

512C0
z/2, as discussed in Sec.~II !.

For each choice, we can then solve the five self-consis
equations numerically with the iteration technique using E
~32! as the initial conditions. The correlations obtained w
the two ways of determining the decoupling parameters
not differ appreciably in the whole temperature range. Fig
1 shows theC0

z , C1
x , C1

z , and C2
x spin correlations as ob

tained numerically: notice that, as expected, theC0
z

5^Sn
zSn

z& decreases with decreasing temperature. In orde

FIG. 1. Temperature dependence of the correlation functions
the 1DXY model withS51, as explained in the text.
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ascertain some accuracy to the approximations done in
work, let us compare the results obtained by us forT→0 to
the ones obtained by Villain21 at T50. Table I shows the
results of the present work and those obtained by Villain
using a spin-wave~SW! theory and, also, by a self-consiste
harmonic approximation~SCHA!. Up to our knowledge, ex-
act results or Monte Carlo simulations for the quantumS
51 XY model, in 1D or 2D, are not available in the litera
ture and thus we cannot make a more precise checking of
methodology. Recently, Schulz25 studied theXY model for
S51 at T50 using a continuum representation, but he d
rived only the asymptotic behavior for the correlation fun
tions. The expressions obtained by Villain, from SW a
SCHA techniques, do also include approximations and
quite complicated~this being the reason by which we did n
try to plot his predictions forT.0 together with our results
in Fig. 1! but the agreement between his results and our
very good—mainly for the comparison using the SCHA v
ues. The calculation ofC2

x using Villain’s SCHA result is
cumbersome even atT50 and, then, this value is not spec
fied in Table I.

The internal energy of theXY model is proportional to the
spin-pair correlationC1

x and the specific heatcv can be easily
obtained from

cv

JN
52z

dC1
x

dT
. ~34!

Figure 2 showscv3T/J and we can observe a broad max

or

TABLE I. Values for theC0
x , C0

z , C1
x , C1

z , andC2
x correlations

at T50 extracted from Villain’s~Ref. 21! spin-wave theory~SW!
and self-consistent harmonic approximation~SCHA! compared to
the results obtained in the present work.

C0
x C0

z C1
x C1

z C2
x

SW theory 0.6817 0.6366 0.4958 20.2122 0.446
SCHA 0.7765 0.4470 0.4935 20.1491
Present 0.7752 0.4496 0.497420.1497 0.3657

FIG. 2. Temperature dependence of the internal energyU and of
the specific heatcv for the 1DXY model withS51.
8-4
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GREEN’S FUNCTION THEORY OF THE SPIN-1 LOW- . . . PHYSICAL REVIEW B 63 134408
mum aroundT/J;1.4.
The static susceptibilities can be calculated from Eqs.~26!

and ~27! and are shown in Figs. 3 and 4. The longitudin
susceptibility,xz is well behaved for allT/J values shown.
For low temperatures,xz is much smaller thanxx which
seems to diverge asT→0. Such a divergence would be
sign for a phase transition and deserves to be studied in m
detail. Then, let us analyze the behavior of the functionD
appearing in the denominator ofxx . We then use Eq.~13! to
write

D5
z

N (
qW

gqWAqW
z

2vqW
z cothS bvqW

z

2
D 2

1

N (
qW

AqW
x

2vqW
x cothS bvqW

x

2
D

3FzgqW212
zgqW

2
21

z21
G . ~35!

The first term on the right-hand side of Eq.~35! corresponds
to zC1

zand is negative for allT ~see Fig. 1!: from the defini-
tions of each function used to build this term, we can co

FIG. 3. Temperature dependence of the transverse uniform
ceptibility xx for the 1DXY model withS51.

FIG. 4. Temperature dependence of the longitudinal unifo
susceptibilityxz for the 1DXY model withS51.
13440
l

re

-

clude that it is well behaved in allq region and that its
negative value comes from the contribution at largeq wave
vectors. The last term in Eq.~35! depends onvq

x , given by
Eq. ~11!, and can have singularities forq→0 if D becomes
null or negative: an analysis of Fig. 1 leads to the conclus
that D decreases asT decreases. Considering this, it is co
venient to write separately the smallq contributions to the
last term of Eq.~35!:

D5zC1
z2

T

4JNaxz
(

smallq

2J~C0
x1C2

x2D!1zJC1
zq2

D1
«qq2

2

3F ~z22!2
z~z23!q2

2~z21! G2
1

N (
largeq

AqW
x

2vqW
x cothS bvqW

x

2
D

3FzgqW212
zgqW

2
21

z21
G . ~36!

We conclude that the third term on the right-hand side of E
~36! is positive ~including the sign multiplying it! and this
term must be the main one in determining theD.0 charac-
ter for largeT. The contribution that could cause problems
the evaluation ofD andxx is the one including the smallq
contribution at low temperatures~when D becomes small!.
However, we havez52 in 1D and theD→0 limit of the
second term in Eq.~36! is given by

2
T

2JaN (
smallq

~C0
x1C2

x!q2

«qq2
~37!

which is finite and small. This analysis shows that forz52
there are no singularities in the calculation ofD and that it
possibly only vanishes atT50. We then conclude that, in
one dimension,xx is finite for finite T and, as it should be
there is no phase transition.

B. XY square lattice

We start our discussion of the 2D results by analyzing
behavior ofD as the temperature decreases. As discusse
the last subsection, the relevant term to the analysis of
anomaly inD is the second one on the right-hand side
~36!. For z54, theD→0 andq→0 limit of this term,

2
T

4Ja (
smallq

1

D1«q

q2

2

F ~C0
x1C2

x2D!

2
~C0

x1C2
x2D!16C1

z

3
q2G , ~38!

diverges meaning thatD vanishes at a finite temperature. O
numerical solution of the self-consistent Eqs.~22!–~24!: for
2D agrees with this conclusion because we obtainD50 in
the neighborhood ofT/J50.89. For this and lower tempera
tures, there is no numerical solution to our equations beca
vqW

x becomes an imaginary number forq→0. The divergence

s-
8-5
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M. E. GOUVÊA AND A. S. T. PIRES PHYSICAL REVIEW B63 134408
of D, and thus ofxx , suggests a phase transition and we c
take Tc /J50.89 as a rough estimate for the transition te
perature for the 2D squareXY model since it is known tha
the Green’s function technique does not work well in t
vicinity of Tc . Obviously, this is not an order-disorder tra
sition since^Sx&50 for all T. For the classical model, a
mentioned before, we have the well-known Kosterli
Thouless topological transition.22 The quantum 2D easy
plane Heisenberg ferro- and antiferromagnetic models h
been studied by Cuccoliet al.26 and, more recently, by Cap
riotti et al.27 by using the so-called pure-quantum se
consistent harmonic approximations to obtain the transi
temperature and spin-correlation length for several spin
ues and in a wide range of the anisotropy parameter. FoS
51 and anisotropy corresponding to theXY model, they
obtained27 Tc /J'1.08, which is not too far from our resul

The spin correlations obtained for the 2D model a
shown in Fig. 5. We can see from this figure that, as in
1D case, the correlationC1

z is negative for allT and, also,
that the other correlationsC0

z , C1
x , and C2

z have a similar
behavior as a function of the reduced temperature as foun
1D. We only notice that, here, the reduction ofC0

z as T
decreases is more pronounced than in the 1D case:
means that the spins are more concentrated on theXY plane
in the 2D case.

V. CONCLUSION

We have studied theXY ferromagnet with spinS51 in
one and two dimensions using the two-time Green’s funct
method and performing a decoupling proposed by Kon
.

e-

.
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and Yamaji.4 We have calculated static spin-spin correlati
functions for spins located one and two sites apart for
whole range of temperatures.

At T50, our results for the 1D case agree very well to t
ones obtained using the SCHA~Ref. 21! theory. For the 2D
model, we have also obtained a transition temperature wh
is in fair agreement to Monte Carlo calculations.
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FIG. 5. Temperature dependence of the four correlation fu
tions for the 2DXY model withS51, as explained in the text.
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