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Green’s function theory of the spin-1 low-dimensional quantumXY ferromagnet
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We calculate the spin-spin correlations and the magnetic susceptibility of the quantum one- and two-
dimensionalXY models withS=1, using the two-time Green’s function method and performing a decoupling
proposed by Kondo and Yamaiji for cases with no long-range order. A set of self-consistent equations of the
correlation functions are derived and solved numerically. We present results for the correlation functions,
susceptibilities, and specific heat for the whole range of temperature.
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[. INTRODUCTION method. On the other hand, the results at low temperature are
similar to those of the modified spin-wave theband agree

Several techniques have been proposed to study magneticiite well to other results obtained by different techniques
models. However, some of these theories work well only intosuch as a numerical calculation for a finite ch_%m.
a specific and limited range of low or high temperatures. On  Later, Yamaji and Kondt applied the technique to study
the other hand, the two-time Green's function metha the 2D ferromagnetic Heisenberg model. Uchinahal
known as the standard method which gives reasonable réfudied thes=1/2XY model by using the same method. The
sults for the thermodynamic properties over the whole temValue of the nearest-neighbor correlation functions in 1D cal-
perature range. In the application of this method, the Tyabculated by Uchinametal. is in good agreement with the

12 H
likov decoupling approximatidris usually used to obtain the €X@ct values calculated by Katsueaal™ Shimahara and

approximate solution from an infinite set of coupled Green’sTak"?‘dg applied the KY method with a semlph_enomenolog!-
al improvement to the 2D ferro- and antiferromagnetic

functions. This method invokes the existence of long-rang eisenberg models. Winterfeld and IHextended Shima-
order. The decoupling procedure gives a spin-wave spectrum

which depends 0QS?). This method has been recently used hara and Takada's procedure for tBe-1/2 2D antiferro-

. . 4 . : magnetic model in order to obtain the dynamical spin-
by Siurakshinaet al." to study the three-dimensiong3D) correlation function of this model. Baet al* generalized

S=1/2 Heisenberg model with spatially anisotropic couplingihe Ky technique to the 1D antiferromagnetic Heisenberg
on a simple cubic Iat.tlce _ . . chain. The gagpredicted by Haldaneat null wave vector in
However,(S’) vanishes in one and two dimensio®X-  the excitation spectrum appeared naturally in the analytical
cept for Ising-like anisotropies in 2D and some long-rangeyesult. Kawab® and later Fukumoto and Oguchistudied
order interactions In order to apply the two-time Green’s the spin-1/2 antiferromagnetXXZ model on a square lat-
function method to cases without long-range order, Kondaice. Dong and Ferld studied the spin liquid state of the 2D
and Yamajt and Knapp and ter Haaproposed a decoupling Heisenberg antiferromagnet on a triangular lattice. The
at a stage one step further than Tyablikov. The decoupledround-state energy was found to be in very good agreement
Green’s functions depend on averages suckS§S7) and  with the results obtained within the variational Monte Carlo
(S5S5) which are determined by self-consistency require-method based on the resonating-valence-bond state. Song
ments. Then, the thermodynamic quantities can be calculategf al."® improved the decoupling approximation of the KY
from the knowledge of these solutions. theory and applied it to study the spin-1/2 2D antiferromag-
As pointed out by Shimahara and Tak&dhe advantages netic Heisenberg model with broken bonds at finite tempera-
of the Kondo-Yamaiji theoryKY) lie in the following points: ~ ture. Ihle et al’® combined the spin-rotation invariant
(i) the KY theory is based on a clear physical pictig;the ~ Green’s function approactusing the same KY decoupling
KY theory interpolates between the high- and low-to Lanczos diagonalization to study the order-disorder tran-
temperature limits with a unified picture over the whole tem-sition in the S=1/2 antiferromagnetic Heisenberg model
perature region(iii ) the KY theory does not violate the sum With spatial anisotropy.
rule and the rotational symmetry. In this paper, we apply the KY procedure to tBe 1 XY
Knapp and ter Hadrapplied this higher order decoupling model described by the Hamiltonian
in a treatment of the 3D Heisenberg model paramagnetic
phase. Later, Scales and Gersetpplied the procedure to
study the 1D, 2D, and 3D antiferromagnetic Heisenberg
models. Kondo and Yamé4jstudied the one-dimension&l
=1/2 isotropic ferro- and antiferromagnetic Heisenbergwhere the summation is taken over all nearest-neighbor
models. Their treatment gives reasonable features for thpairs. We will discuss the one- and two-dimensional cases.
thermodynamic properties at all temperatures for both sign¥he S=1/2 case has been rigorously solved for a linear
of the exchange. At high temperatures, they reproduced thehairf® and treated in the framework of the KY theory by
correct results obtained by the high-temperature expansiodchinamiet al?

H= —2J<2_> (S'S+9/9)), (1)
i
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However, as pointed out by Bast al,'* the KY decou- w 1
pling procedure gives different results for integer and half- <AB):|j dw[{({(A;B))yr1e—((AB)) porel——-
odd integer spins due to the distinct relations holding for the * efo—1
spin component§ in each case: this difference justifies a (4)
study of theS=1 case. The 1IXY model is very interesting. . . , .
In contrast to the Heisenberg isotropic ferromagnet modelmo-ggtla ;rc;uanons of motion of the Green’s function for our
the ground state here is no longer trivial. In fact, because
(N712,SH)=(S%)=0, the ground state corresponds in the
Bethe-ansatz picture to the lowest eigenvalue of the block of o{{S5; Sy =— |2J26 ((SES5: S (5)
order

and

o
(N/Z ' (S5 S = 1202 (S-S st 6

In the S=1/2 case, the model can be transformed to nonin-

teracting spinless fermions and solved exactly. For large vaiwvhere s denotes the vector to the nearest-neighbor site. The
ues of spirS, Villain? has introduced a transformation lead- higher-order Green’s function on the right-hand side of Eq.
ing to a semiclassical spin-waves theory which was used t¢P) satisfies the equation

study the 1D and 2DXY models. However, his procedure |

does not give the correct predicition f8= 1/2. This failure QY. X\ /cZZ

in Villain’s theory could be expected because the elementary ©(($S ’S“>>_27-r( (8685 9n.5% (S555) no)
excitations of his theory are magnons, whereas in $he

=1/2 case the excitations are particle-hole pairs. Besides, +1232 {((S} S5S5— SISiSy

Villain’s treatment applies only to the low-temperature re- s

gime and the procedure we are going to use in this work, the v «

Green'’s function technique, can be used for the whole tem- +SOS(SSX5+ s St )

perature range. The 2D classiea¥ model has been studied We remark that, foS=1/2, some terms cancel each other in

intensively due the existence of the Kosterlitz-Thouless to—Eq_ (7). According to the KY method, we decouple the

pological phase transitiéh**in these models: the power-law higher-order Green'’s functions on the right-hand side of Eq
behavior of the spin-correlation function has been obtaine(iln as '
r

by several approaches but the quantum case can have differ-
ent propertie¥' and still deserves more attention. Y QY QX - X\ — X QYY) (( X - X

In Sec. I, we outline the method and present the basic (SS/SG S = {(SISHUSE S
self-consistent equations for the spin-pair correlations and TeZeX . X\ FeT e X
decoupling parameters as a function of the temperature. The (S SjS(*Sn»_ (S Sj><<sk 'S (tS)

self-consistent equations are solved analytically in the highyy,q decoupling parameter* has been introduced in order to

tempgrature limit in Sec. “l'. In Se_c. M Fhe seIf-consstentnot violate the sum rule of the correlation function and is
equations are solved numerically in a wide temperature rjetermined so as to satisf;CX=<(SX)2>—<(Sy)2>—l
0— i - | -

ion using as starting point the high-temperature solutions .
gbtained ign the previ(?ug section. 9 P > ((SH)?)/2. From Egs(5), (7), and(8) and taking the Fou-

rier transform with respect to the lattice points, we find

Il. GREEN’'S FUNCTION FORMALISM AX

. o Giw)=———, 9
The two-time Green’s function is defined as o’ (wy)?
G(i—j.t—t')=—18(t—t }{[A(1).B,(t)]) where
= ((A();By(1))), 2 AG=22J(CT~vCY), (10
where§(t) is th.e step fupction angd- - -) denotes a .thermal (wé)zz(ZJ)zaxz[sq(l— Ye) TA] (11
average. The time-Fourier transform of Ef) satisfies the .
equation wherez is the coordination numberyq=(1/z)25e'k'5, and

the parameters,, A, and the correlation€; (o=x,z, n

q:

1 =0,1,2) are defined by
o((A;B))=5_([AB)+([AH]B)) 3)
gq=2[CI—(1+y,)Ci], (12
and the correlation function can be obtained by the spectral . o
representation as A=z(Ci—C+Co+Cy, (13
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1
= 2 (S789), (14)

2 Z(Z 1) E <SO 5+5’ (15)

From Eq.(6), we obtain
((S5S} Sn>>———[<sos )( S0~ &0, 5>]+|2J2

X{ = ((S5S5S5. 51 S0 +{(SS5S5 1S}
(16)

and a similar expression for the other Green'’s function. The

decoupling is now written as
((S'SSc:S)) = aX(SISH(S] S
((S7S/Sc:S0) = 2 (SISN(S] S 17)

where the determination of the? is discussed in Sec. IV
From Egs.(6), (16), and(17) and using the following rela-
tion for S=1:

S\St+SiSh=2-SiSh, (18)
we obtain
Gi(w)= A (19
W)= —,
—(wg)?
where
=423C{(1- ), (20)
(05)?=(23)?22B(1~y,), (21)

with B=1+ a*(C5—C§/z+C7).

The relationg14) and(15) lead to the five self-consistent

equations
i r(ﬁ ) 22
c? % ;q:g cotf('B U) (23
cg—% % zzg__ll 2Ajg cotr( B;}Z). (24)

PHYSICAL REVIEW B 63 134408

x* (CI-CY

N 230%A (20
z X
X C1
N co 27
231+ o? Ci— —+C?
z

IIl. ANALYTIC RESULTS IN THE HIGH-TEMPERATURE
LIMIT

In this limit, we can develop cotj$wg/2) in Egs.(22)—
(24) as a Taylor expansion in powers gfobtaining

2 > Al T + L ) (28)
T 4G9 (wg)Z 121’
zC}

z.__ _ "+ 2

1 3@ % qu (29)
§ Yq(C1—¥4CD) 30
2o T 23-zy,
. 6C) Z'yé—l @31
P 2aCy T 2Cly,

Co

where® =T/J is the reduced temperature, and we have used

C§=C§=2/3 in the high-temperature limit. In 1D, the above
expressions lead to
af=a*=1, (32
8 C 32
X . z __ L. X
Ci 90" C1 30" C5 2702 (33

Inserting these asymptotic solutions in E6) and(27), we
obtain, in the high-temperature limj,~ x,~2/(3T), in ac-
cordance to the Curie-Weiss law.

IV. NUMERICAL RESULTS

The basic Eqs(22)—(24) of the present theory are quite
complicated and therefore we were able to obtain analytical
evaluatlons of the spin-pair correlatio), CZ, Ci, Ci,

%, and the decoupling paramete#$ and «* only in the
high-temperature region. For lower temperatures, we had to
use numerical methods to solve those transcendental equa-
tions for the 1D and 2D cases, as discussed in the following
two subsections.

The static susceptibilities can be evaluated by the expression

X imGY(w=0)= a0 (25
N 40 q (wa' )2

or, explicitly,

A. Linear XY chain

In order to solve the set of five self-consistent equations
given by Eqs(22)—(24) in 1D, we usez=2 andy,= c0sq.
However, we have seven parametéige spin correlations
and two decoupling parametgrt® determine and only five
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0.8 . . - ' TABLE I. Values for theCf, C, C}, C;, andC} correlations
at T=0 extracted from Villain’s(Ref. 21 spin-wave theorySW)
o and self-consistent harmonic approximati®CHA) compared to
08 1 the results obtained in the present work.
_oaf 1 C§ Ci C} c? C3
] N N SWtheory  0.6817 0.6366 0.4958 —0.2122  0.446
ooal N T ] SCHA 0.7765 0.4470 0.4935 —0.1491
' Ne L T Present 0.7752  0.4496 0.4974-0.1497  0.3657
\\sz _________________________
00 | e — _‘_i R ettt L LY ) ) ) ) )
=", ascertain some accuracy to the approximations done in this
- work, let us compare the results obtained by usTes0 to
025 30 50 50 20 5.0 the ones obtained by Villafh at T=0. Tabl_e I show§ the
T results of the present work and those obtained by Villain by

. . using a spin-wave€SW) theory and, also, by a self-consistent
FIG. 1. Tempera_ture dependence_of thg correlation functions fof, 3 rmonic approximatioiSCHA). Up to our knowledge, ex-
the 1DXY model withS=1, as explained in the text act results or Monte Carlo simulations for the quant8m
=1 XY model, in 1D or 2D, are not available in the litera-
equations to use. One additional equation is provided by th&ure and thus we cannot make a more precise checking of our
sum ruleC§=1—C§/2, but another equation is still required methodology. Recently, Schédfzstudied theXY model for
in order to determine all parameters. S=1 atT=0 using a continuum representation, but he de-
We note that decoupling approximations like we haverived only the asymptotic behavior for the correlation func-
used here, are proposed for convenience and there is no stdipns. The expressions obtained by Villain, from SW and
dard approach to determina, priori, which values the pa- SCHA techniques, do also include approximations and are
rametersa’® and o should assume. This issue was discussedjuite complicatedthis being the reason by which we did not
by Kawabé® in his analysis of th&=1/2 2D ferromagnetic try to plot his predictions fof >0 together with our results
XY model. TheXXZ antiferromagnetic 2D modéspin 1/2  in Fig. 1) but the agreement between his results and ours is
was studied by Fukumoto and Oguj(ﬁmho, in fact, intro-  very good—mainly for the comparison using the SCHA val-
duced two decoupling parameters in the way described herges. The calculation o€’ using Villain’'s SCHA result is
However, those authors restricted their study to the neighboreumbersome even at=0 and, then, this value is not speci-
hood of the isotropic Heisenberg point-avoiding ther  fied in Table I.
regime—and settin@€g=C{=S(S+1)/3 in the whole tem- The internal energy of th&Y model is proportional to the
perature range using these conditions to determine the twspin-pair correlatiorC’ and the specific heat, can be easily
decoupling parameters. In oMIY case, due to the easy-plane obtained from
anisotropy, it does not seem a “natural” choice to require
that, for all temperatures, the spin correlatiof has the Cy dCy

same value as th€% correlation: it is more reasonable to INTFdT 34

expect _that, as the temperature decreases, the m-p‘téng Figure 2 showg, X T/J and we can observe a broad maxi-
correlation becomes greater than the out-of-plane correlation. v
In fact, we tried to solve our five self-consistent equations
imposing Cy=2/3 andC§=2/3 as conditions to determine
o* and o* and obtained an unphysical result since all the
spin-pair correlations were decreasing with decreasing tem
perature. We then adopted two slightly different arbitrary
ways to determine the decoupling parameters and solve ou
problem: (i) we chose to use*= %, and,(ii) to fix one of
the parametersq?, at its high-temperature valuex{=1), 2
and determine the other one by imposing the sum Qfg, =
=1-C{/2, as discussed in Segl). 200 }
For each choice, we can then solve the five self-consisten
equations numerically with the iteration technique using Egs.
(32) as the initial conditions. The correlations obtained with
the two ways of determining the decoupling parameters da 0 , i
not differ appreciably in the whole temperature range. Figure 700 1.0 2.0 3.0 4.0 5.0
1 shows theC§, C}, C3, andC} spin correlations as ob- ™

tained numerically: notice that, as expected, t&g FIG. 2. Temperature dependence of the internal energpd of
=(S;S;) decreases with decreasing temperature. In order tthe specific heat, for the 1DXY model withS=1.

60.0

40.0 |
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0.40 - clude that it is well behaved in alf region and that its
negative value comes from the contribution at lagg@ave
vectors. The last term in Eq435) depends orwf], given by

0.30 | : Eqg. (11), and can have singularities fgr— 0 if A becomes
null or negative: an analysis of Fig. 1 leads to the conclusion
that A decreases ab decreases. Considering this, it is con-
venient to write separately the smajlcontributions to the

= 020} 1
=2 last term of Eq.(35):
T 2J(C§+C3—A)+2JCg?
o010 f 1 A=zCi— 5
4JNa*z smallg €49
A+
2
000 50 10.0 ) z2(z— 3)q2} 1 /-\)S r(ﬁwg)
T/ X (2=2)— ——— —cot
( ) 2(z—1) N largeq Zw- 2
FIG. 3. Temperature dependence of the transverse uniform sus-
ceptibility x* for the 1DXY model withS=1. nyi— 1
X|zyg—1— — (36)

mum aroundl/J~1.4.

The static susceptibilities can be calculated from E28).  We conclude that the third term on the right-hand side of Eq.
and (27) and are shown in Figs. 3 and 4. The longitudinal (36) is positive (including the sign multiplying jt and this
susceptibility, y, is well behaved for alll/J values shown. term must be the main one in determining the-0 charac-
For low temperaturesy, is much smaller thary, which  ter for largeT. The contribution that could cause problems to
seems to diverge a—0. Such a divergence would be a the evaluation oA and x, is the one including the smadj
sign for a phase transition and deserves to be studied in mor®ntribution at low temperaturgsvhen A becomes small
detail. Then, let us analyze the behavior of the function However, we have=2 in 1D and theA—O limit of the
appearing in the denominator gf. We then use Eq13)to  second term in Eq(36) is given by
write

T (C8+C3)g?
z ’ydAg Bw ﬁwé Bl 2JaN smallq e q2 (37)
A= > —cot E 5 a
q 204 q wq which is finite and small. This analysis shows that fer2

there are no singularities in the calculationffand that it
possibly only vanishes at=0. We then conclude that, in
one dimensiony, is finite for finite T and, as it should be,
there is no phase transition.

The first term on the right-hand side of E§5) corresponds

to zCfand is negative for all (see Fig. 1 from the defini- B. XY square lattice

tions of each function used to build this term, we can con-

X|zyg—1- (35

Zy(zi—l
z—1

We start our discussion of the 2D results by analyzing the
behavior ofA as the temperature decreases. As discussed in
the last subsection, the relevant term to the analysis of any
anomaly inA is the second one on the right-hand side of
(36). Forz=4, theA—0 andg—0 limit of this term,

0.40 T 1
& - a2 —z[(CéJFC)z(—A)
- 4Ja smallq q
= A+eq—>
= 2
0.20 (Cy+C3—A)+6C]
- 3 9%, (39)
diverges meaning thédt vanishes at a finite temperature. Our
— numerical solution of the self-consistent E¢®2)—(24): for
: 2D agrees with this conclusion because we obtkin0 in
T the neighborhood of/J=0.89. For this and lower tempera-
FIG. 4. Temperature dependence of the longitudinal unlformtures there is no numerical solution to our equations because
susceptibilityy* for the 1DXY model withS=1. w becomes an imaginary number fipr~0. The divergence
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of A, and thus ofy,, suggests a phase transition and we can
take T./J=0.89 as a rough estimate for the transition tem-
perature for the 2D squapeY model since it is known that

the Green’s function technique does not work well in the
vicinity of T.. Obviously, this is not an order-disorder tran-
sition since(S*)=0 for all T. For the classical model, as
mentioned before, we have the well-known Kosterlitz- . =
Thouless topological transitidi. The quantum 2D easy- © .|
plane Heisenberg ferro- and antiferromagnetic models have
been studied by Cuccadit al?® and, more recently, by Cap- 010 |
riotti et al?’ by using the so-called pure-quantum self-
consistent harmonic approximations to obtain the transition oo |

0.30 |

temperature and spin-correlation length for several spin val- C
ues and in a wide range of the anisotropy parameter.S~or -0.10 : :

X . 0.0 5.0 10.0 15.0
=1 and anisotropy corresponding to ti&¥ model, they T/

obtained” T./J~1.08, which is not too far from our resullt.

The spin correlations obtained for the 2D model are FIG. 5. Temperature dependence of the four correlation func-
shown in Fig. 5. We can see from this figure that, as in thdions for the 2DXY model withS=1, as explained in the text.
1D case, the correlatiof] is negative for allT and, also,
that the other correlation€%, CX, andC% have a similar and Yamaji* We have calculated static spin-spin correlation
behavior as a function of the reduced temperature as found #inctions for spins located one and two sites apart for the
1D. We only notice that, here, the reduction ©f as T ~ Whole range of temperatures.
decreases is more pronounced than in the 1D case: this At T=0, ourresults for the 1D case agree very well to the

means that the spins are more concentrated oiXthelane ~ Ones obtained using the SCHRef. 21 theory. For the 2D
in the 2D case. model, we have also obtained a transition temperature which

is in fair agreement to Monte Carlo calculations.

V. CONCLUSION
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