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Quantum fluctuations of a nearly critical Heisenberg spin glass
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We describe the interplay of quantum and thermal fluctuations in the infinite-range Heisenberg spin glass.
This model is generalized to SU(N) symmetry, and we describe the phase diagram as a function of the spinS
and temperatureT. The model is solved in the large-N limit, and certain universal critical properties are shown
to hold to all orders in 1/N. For largeS, the ground state is a spin glass, but quantum effects are crucial in
determining the low-T thermodynamics: we find a specific heat linear inT and a local spectral density of spin
excitations,x loc9 (v);v for a spin-glass state which is marginally stable to fluctuations in the replicon modes.
For small S, the spin-glass order is fragile, and a spin-liquid state withx loc9 ;tanh(v/2T) dominates the
properties over a significant range ofT andv. We argue that the latter state may be relevant in understanding
the properties of strongly disordered transition-metal and rare-earth compounds.
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I. INTRODUCTION

The study of intermetallic compounds of the transiti
metals and rare earths has been a subject at the forefro
condensed matter physics for some time now.1,2 A rich and
complex variety of behaviors is observed in low-temperat
electrical and magnetic measurements, much of which la
a comprehensive theoretical description. The comple
arises from the dominant role played by the local magn
moments on thed and f orbitals and their interactions with
each other and the itinerant charge carriers.

It is convenient to begin our discussion in a phase w
well-established magnetic order, in which each magn
moment is effectively static. This static moment could
polarized in a regular manner~as in a commensurate antife
romagnet or an incommensurate spin-density wave! or point
in random directions~as in a spin-glass state!. In most real-
istic systems, the magnetic moment is either quite smal
has averaged to zero by dynamic quantum fluctuations:
it is useful to consider mechanisms which reduce the m
netic moment and eventually cause it to vanish at a quan
phase transition to some paramagnetic state. Two dis
routes to such a quantum phase transition can be envisa
and, we believe, the interplay between them is at the hea
the complexity of the problem. In the first route, original
discussed by Doniach,3 the moment is quenched by Kond
screening by the itinerant electrons: theories of such qu
tum critical points have been proposed4–7 in which the pre-
dominant role of the itinerancy is to overdamp the collect
magnetic excitations. In the second route, the exchange
teractions between the moments play a more fundame
role: a pair of spins interacting with an antiferromagne
exchange prefers to form a singlet valence bond, and
proliferation of such singlets can destroy the magnetic ord
Analytic theories for such transitions has been made ma
for systems without quenched disorder.8 Simple models of
crossovers between these two routes have also b
presented.9–11

This paper will present a detailed study of the seco
0163-1829/2001/63~13!/134406~17!/$20.00 63 1344
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route to destruction of magnetic order for the case o
strongly random system with spin-glass magnetic ord
There are a number of motivations for focusing on rand
systems. First, randomness is inevitably present in all m
rials, and it is clear that it strongly perturbs the low
temperature properties. Spin-glass order is present in a n
ber of systems, while others appear to be in the vicinity
such a state. Finally, a technical motivation is in the struct
of the mean-field theory we shall present: it builds an i
portant feedback effect between the intersite magnetic co
lations and the single-site spin dynamics, and this is cru
to all the nontrivial spin correlations we shall describe. Su
a feedback is absent in previous studies of the magn
quantum critical point, and it has been argued that this is
important limitation for them.7,11 A different route to incor-
porating these feedback effects has been taken in som
cent studies;12 however, they discuss only the paramagne
state of their model, and the extent to which magnetica
ordered states preempt their results remains to be clarifi

This paper is organized as follows: In Sec. II we pres
our spin-glass model and give an outline of our results,
cluding the phase diagram. Section III is devoted to the
ture of the paramagnetic solutions and, more specifically
the quantum critical regime. Section IV is devoted to t
spin-glass phase and to the various regimes within
phase, as a function of temperature and of the size of
spin. The Appendixes contain technical details and some
ditional results on the quantum rotor and Ising spin glas
of Ref. 13.

II. MODEL AND OUTLINE OF THE RESULTS

The numerous recent studies of quantum fluctuations
spin glasses14 have focused either on infinite-range models
Ising and rotor models13,15 or models in low dimensions
which flow to strong disorder fixed points.16–18Here we shall
continue the study of infinite-range models, but will consid
a model of Heisenberg spins: in this case, the path inte
for each spin has a important Berry phase term which
©2001 The American Physical Society06-1



th

ci
e

a
d

o
ti
-
.
um

of
an
e

th

,
us

s

,

pr
i

e
itl

s a

ifi-
f

one
n

are

in

, as
cal
ical
can

ow
the

ht

l
ion

ther-

re-
r
er
are

A. GEORGES, O. PARCOLLET, AND S. SACHDEV PHYSICAL REVIEW B63 134406
poses the spin commutation relations. As we will see,
leads to a great deal of new physics19 and nontrivial dynamic
spin correlations even in the spin-glass state. More spe
cally, we present a complete solution of the quantum Heis
berg spin glass on a fully connected lattice ofN sites with
strong Gaussian disorder, both in the paramagnetic
glassy phases, when the spin-symmetry group is exten
from SU~2! to SU(N) and the large-N limit is taken. In the
limit of large connectivity, ~dynamical! mean-field tech-
niques apply and the model can be reduced to the study
self-consistent single-site problem, which is, however, s
highly nontrivial because of quantum effects. The largeN
limit is instrumental in allowing for an explicit solution
Nevertheless, some of our results regarding the quant
critical regime have been extended beyond the large-N limit.
In a recent publication,20 we summarized the main results
the present study. Here we provide detailed derivations
new results, such as a full discussion of the paramagn
phases and a discussion beyond largeN.

The model considered in this paper is defined by
Hamiltonian

H5
1

ANN
(
i , j

Ji j SW i•SW j , ~1!

where the magnetic exchange couplingsJi j are independent
quenched random variables distributed according to a Ga
ian distribution

P~Ji j !5
1

JA2p
e2Ji j

2 /~2J2!. ~2!

As already pointed out by Bray and Moore,21 after using the
replica trick to average over the disorder,22 the mean-field
~infinite-dimensional! limit maps the model onto aself-
consistent single site modelwith the action~in imaginary
time t, with b the inverse temperature!

Seff5SB2
J2

2N E
0

b

dt dt8Qab~t2t8!SW a~t!•SW b~t8! ~3!

and the self-consistency condition

Qab~t2t8!5
1

N2 ^SW a~t!•SW b~t8!&Seff
, ~4!

where a,b51,...,n denote the replica indices~the limit n
→0 has to be taken later! andSB is the Berry phase of the
spin:19 Due to their time dependence, the solution of the
mean-field equations remains a very difficult problem forN
52, even in the paramagnetic phase. Thus, in Ref. 21
well as in most subsequent work,23 the static approximation
was used, neglecting thet dependence ofQab(t). This ap-
proximation may be reasonable in some regimes, but
vents a study of the quantum equilibrium dynamics and
particularly inappropriate in the quantum-critical regim
However, this imaginary time dynamics has been explic
studied in a quantum Monte Carlo simulationin the para-
magnetic phasewith spin S51/2 by Grempel and
Rozenberg.24 Recently, we introduced a large-N solution of
13440
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the mean-field problem,20 in which the problem is exactly
solvable and, as explained below, the solution provide
good description of the physics of theN52 mean-field
model, to the extent the latter is understood. More spec
cally, in the following we will consider two different types o
spin representations for the SU(N) spins.

~a! Bosonicrepresentations. The spin operatorS is repre-
sented using Schwinger bosonsb by Sab5ba

†bb2Sdab ,
with the constraint(aba

†ba5SN(0<S). In the language of
Young tableaux, these representations are described by
line of length SN. They are a natural generalization of a
SU~2! spin of sizeS.

~b! Fermionicrepresentations. The spin operatorS is rep-
resented using Abrikosov fermionsf by Sab5 f a

† f b

2q0dab , with the constraint(a f a
† f a5q0N (0<q0<1). In

the language of Young tableaux, these representations
described by one column of lengthq0N. Note that for SU~2!,
only S50 andS51/2 can be represented in this manner.

In the following, we refer to the model with bosonic~fer-
mionic! representations as the bosonic~fermionic! model. In
the fermionic model, quantum fluctuations are so strong
large N that the spin-glass ordering is destroyed,19 contrary
to the bosonic model, where a spin-glass phase exists
explained below. The two models have different theoreti
interest: if one wants to concentrate on the quantum-crit
regime, above the spin-glass ordering temperature, one
use the fermionic model~as, e.g., in Ref. 25!. However, since
we are interested in the spin-glass phase itself, we will n
focus on the bosonic model. Nevertheless, our results on
paramagnet will be valid for both cases with only slig
modifications explicitly quoted below.

In the N→` limit, the mean field self-consistent mode
~3! reduces to an integral equation for the Green’s funct
of the bosonGb

ab(t)52^Tba(t)b†b(0)& where the overbar
denotes the average over disorder and the brackets the
mal average:19

~Gb
21!ab~ inn!5 inndab1ladab2Sb

ab~ inn!, ~5a!

Sb
ab~t!5J2@Gb

ab~t!#2Gb
ab~2t!, ~5b!

Gb
aa~t502!52S. ~5c!

Similarly for the fermionic model, we have

~Gf
21!ab~ ivn!5 ivndab1ladab2S f

ab~ ivn!, ~6a!

S f
ab~t!52J2~Gf

ab~t!!2Gf
ab~2t!, ~6b!

Gf
aa~t5021!5q0 . ~6c!

In these equations,n ~v! are the bosonic~fermionic! Matsub-
ara frequencies and the inversion should be taken with
spect to the replica indicesa,b. Note that our conventions fo
the sign of the Green’s functions in this paper slightly diff
from those of Ref. 19. Note that, although the equations
written in term ofG, the physical quantity is thelocal spin
susceptibility x loc(t)5^S(t)S(0)&, which is given in the
large-N limit by
6-2
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QUANTUM FLUCTUATIONS OF A NEARLY CRITICAL . . . PHYSICAL REVIEW B 63 134406
x loc~t!5Gb
aa~t!Gb

aa~2t!. ~7!

In many instances below~where we mostly focus on th
bosonic case!, we shall drop the indexb in Gb .

From both analytical and numerical analyses of these
tegral equations, we have constructed the phase diagram
played in Fig. 1, as a function of the size of the spinS and
temperatureT. Let us give here a brief overview of the ma
features of this phase diagram, which will be studied in gr
detail in the rest of this paper. As is evident from Fig. 1, it
useful to divide the discussion into models withS large and
S small. Both regimes are accessible in the large-N limit,
whereS is effectively a continuous parameter taking all po
tive values. For the physical caseN52, we will present evi-
dence later that at leastS51/2 is in the small-S regime for
the infinite-range model; moreover, we can expect tha
least some of the consequences of increased quantum
tuations in a realistic model with finite-range interactions
mimicked by taking small-S values in the large-N theory of
the infinite-range model.

For largeS, the ground state must clearly be a spin gla
~Fig. 1!. However, even for very largeS, it is necessary to
consider quantum effects in understanding the low-T excita-
tions and thermodynamics, and these have not been p
ously described. In this paper~Secs. IV C 2 and IV D!, we
will show that the local spin susceptibility has a low-ener
density of states which increases linearly with energy. At
same time, the specific heat also has a linear depend
upon temperature. These results hold for temperatureT
,JAS, although characteristic excitations have an energy
orderJSfor T,JS; we will provide scaling functions which
determine the dynamic response functions at these ener
At even higherT, there is a phase transition to a paramag
at T;JS2. For largeS the static properties of this phas
transition are well described by a purely classical theory
which theSW in Eq. ~1! are commuting vectors of lengthS.
Notice also that we indicate two critical temperaturesTsg

c and
Tsg

eq: as we discuss in Sec. IV, these are a consequenc

FIG. 1. Phase diagram of the mean-field bosonic model. Th
is a spin-glass phase below the spin-glass temperatureTsg

c , which is
determined with the marginality condition~see Sec. IV!. Tsg

eq is the
spin-glass temperature as determined by the stationarity criteri
13440
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peculiarities in the nature of replica symmetry breakin
where the dynamic freezing into the spin-glass phase (Tsg

c )
happens at a slightly higher temperature than the equilibr
transition (Tsg

eq).
For smallS, we also find a spin-glass phase~Fig. 1! at

T50, but the order vanishes at a smallT. Moreover, its
excitations and finite-T properties are very different from
those at largeS. These are now dominated by signals of
‘‘spin-liquid’’ state discussed in Ref. 19 and described
Sec. III A. In particular, we describe a quantum-critical r
gion in the paramagnet where max(v,T) is the characteristic
energy scale and the local dynamic spin susceptibility ob
x loc9 (v);tanh(v/2T). We believe that aspects of this regim
may be relevant to disordered transition-metal and rare-e
compounds in regimes where exchange interactions betw
the magnetic moments are playing a dominant role. Com
tion of this picture requires an understanding of the stabi
of the ‘‘spin-liquid’’ picture to mobile charge carriers an
this has also been addressed in a previous work.25

III. PARAMAGNETIC PHASE

Contrary to the classical case, the paramagnetic phas
quantum spin-glass models is nontrivial in mean-field theo
An early discussion of these solutions has been given in R
19, but we present here a much more complete descrip
and compare our results to theN52 case, when numerica
results are available. Since in this section we look for pa
magnetic solutions, we will consider onlyreplica-diagonal
solutions of Eqs.~5!: Gab}dab . Two types of paramag-
netic solutions have been found, which we will now consid
successively: thespin-liquid solutions and thelocal mo-
mentsolutions.

A. Spin-liquid solutions

1. Large-N limit

A low-frequency, long-time analysis of the integral equ
tions ~5! reveals that, under the condition thatl2S( i01)
vanish at low temperature, a solution can be found wh
displays a power-law decay of the Green’s function at lo
time:19 G(t);1/At. These solutions display a singularit
in the complex plane of frequencies,z, at z50, with an am-
plitude which can be parametrized by an angleu as

G~z!;
Ae2 ip/42 iu

Az
for z→0, Imz→0. ~8!

~Values ofz on the imaginary frequency axis at the Matsu
ara frequencies will be denoted bynn , while on the real axis
will be denotedv.! Thus these solutions display a slo
local spin dynamics: Imxloc(v)}sgnv for v→0, T50.
Moreover, thelocal susceptibilityx loc(T)[*0

bx loc(t)dt di-
verges asx loc(T); ln T/J at low temperature. More precisely
one can find the thermal scaling function characterizing
t→`, T→0 limit, as explained in a previous paper25:

re

.

6-3
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A. GEORGES, O. PARCOLLET, AND S. SACHDEV PHYSICAL REVIEW B63 134406
x loc~t,b!}S p/b

sinpt/b D1¯ , Jx loc9 ~v,T!}tanh
v

2T
.

~9!

Note that in the paramagnetic phase ofquantummodels, the
local susceptibilityx loc(T) ~which is the response to alocal
magnetic field! differs from the uniform susceptibilityx(T)
~response to a constant magnetic field!, contrary toclassical
spin-glass models wherex5x loc ~Ref. 22!: This is a con-
sequence of the commutation relations of the spin, as ca
seen, for example, in the high-temperature expansion in
SU~2! model. In this large-N limit, it can be shown that
x(T)!x loc(T) for T→0 and numerical computations indee
suggest thatx(T);const.25

Remarkably, the parameteru which characterizes the
spectral asymmetry26 of the spectral density at low frequenc
can be explicitly related to the sizeS of the spin ~which
involvesa priori an integral of the spectral density over a
frequencies!. This is very similar to a kind of Friedel sum
rule applying to this problem, and indeed the derivation f
lows a very similar route, based on the existence o
Luttinger-Ward functional. ~Interestingly enough, the
‘‘boundary term’’ which usually vanishes in such derivatio
contributes here a finite value.! This derivation is presente
in detail in Appendix A, where the following relation be
tweenu andS is established:

u

p
1

sin 2u

4
5H 1

2
1S in the bosonic model

1

2
2q0 in the fermionic model.

~10!

This relation has important consequences for the phys
properties of the spin-liquid solutions. First, we note that
spectral density must obey the positivity conditio
Im Gf(v1i01),0 and sgn(v)Im Gb(v1i01),0. Hence, in
the fermionic case,u must obey2p/4<u<p/4. It is easily
checked from Eq.~10! thatu precisely describes this range
parameters asq0 is varied fromq050 to q051 and that the
u(q0) relation is unique. This suggests that the spin-liqu
solution is an acceptable low-temperature solutions for
whole range ofq0 in the fermionic case. In contrast, in th
bosonic case, the plot in Fig. 2 shows that~10! actually de-
fines two values ofu ~in the allowed rangep/4<u<3p/4)
for a given spinSas long asS,Smax.0.052, while no value
of u is found forS.Smax. This implies that no paramagnet
solution of the spin-liquid type is foundat zero temperature
in the bosonic case as soon asS.Smax ~note that furthermore
Smax is very small!. For S,Smax, such solutions exist at zer
temperature~even though they are not the true ground sta
see below! with the locally stable solution corresponding
the smallest of the two values ofu. However, even forS
.Smax, at low (T,J) but finite temperature, the spin-liquid
solutions do exist in the bosonic model. By this, we me
that a numerical computation in imaginary time gives a
lution which exhibits the scaling form~9!, for which a un-
ambiguous value of the spectral asymmetryu can be defined
and computed numerically. At very low temperature, the
13440
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solutions are unstable to the spin-glass solution, but ab
the spin-glass temperature at low spin, they are relevan
the quantum-critical regime associated with the quantu
critical point atS50. We shall comment in more detail, a
the end of the following section, on the nature of the pa
magnetic solutions found at low temperature for small valu
of S, in the bosonic case.

Another consequence of relation~10! is that it allows one
to predict that these spin-liquid solutions have anonzero
extensive entropyat zero temperature and to calculate t
value of this entropy analytically. The derivation of this r
sult follows very closely a similar analysis of the ove
screened multichannel Kondo problem in the large-N limit,
performed in Refs. 26 and 27, and only the main steps
be repeated here. This can be done either in the bos
model or in the fermionic one, with slight modification
Since the spin-liquid solutions are relevant at zero tempe
ture only in the fermionic model, we shall present the res
in this case. First, denoting byS the value of the entropy pe
spin at zero temperature, one establishes the following t
modynamic equality:

]S
]q0

52
]l

]TU
T50

. ~11!

Then a low-temperature expansion is used which allows
to relate the slope ofl(T) to the spectral asymmetry param
eteru above, so that one finally gets~in the fermionic case!

]S
]q0

5 ln
sin~p/42u!

sin~u1p/4!
. ~12!

The entropy is then obtained by integration over the size
the spin, with the physically obvious boundary conditio
S(q050)5S(q051)50. The resulting value of the entrop
as a function ofq0 is plotted in Fig. 3.

Finally, we comment on the physical nature of the sp
liquid paramagnetic solutions found in this section. The

FIG. 2. Sas a function ofu for the bosonic model. The solid line
is given by relation~10! and the points were obtained previous
from a numerical solution of the saddle-point equation at zero te
perature~Ref. 19!.
6-4
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QUANTUM FLUCTUATIONS OF A NEARLY CRITICAL . . . PHYSICAL REVIEW B 63 134406
solutions correspond to a partial screening of the local m
ment at each site, due to the interaction with the other sp
As a result, the local susceptibility diverges logarithmica
~much slower than a Curie law!, but an extensive entropy i
still present atT50, indicating a degenerate state. From
local point of view, the physics is somewhat similar to
overscreened Kondo system, but here the gapless bath w
quenches the spin is not external, but self-consistently g
erated by the other spins. We suspect that the physics of
phase has to do with the degeneracy of the~large-N gener-
alization! of the ‘‘triplet’’ state in which two spins are boun
whenever a strong ferromagnetic bondJi j is encountered. In
Sec. III A 2, we show that this spin-liquid regime is not
peculiarity of the large-N limit, but indeed survives in the
mean-field description of the quantum-critical regime o
SU~2! quantum Heisenberg spin glass. It would be very va
able to gain a more direct understanding of this gapless s
liquid regime from a study of the problem for a fixed co
figuration of bonds before averaging over disorder. T
could be achieved numerically and is left for future studi

2. Beyond the large-N limit

This subsection will show how recent renormalizati
group analyses of related models11,28,29imply that the above
spin-liquid solution applies to all orders in 1/N. In particular,
the large-N solution with Imxloc}sgnv for smallv acquires
no corrections to its functional form: the only changes
to the nonuniversal proportionality constant. All the discu
sion below will be in a paramagnetic phase where it is s
ficient to consider only a single replica, and so we will dr
replica indices in this subsection.

We begin by rewriting Eq.~3! in the following form11

Seff5SB2g0E
0

b

dt SW ~t!•fW ~t!, ~13!

whereg0 is a coupling constant andfW is an annealed Gauss
ian random field witĥ fW (t)•fW (0)&51/utu22e. It is reason-
able to expect that the spin correlations in the quantum

FIG. 3. Entropy as a function of the size of the spin (q0) in the
fermionic model.
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semble defined by Eq.~13! decay with the power law

^SW (t)•SW (0)&;1/utus, and we are interested in determinin
the value of the exponents. A simple extension19 of the
solution discussed above implies that in the large-N limit s
5e. Here we will argue that this equality is in factexact for
all N. Now using the self-consistency condition~4!, we ob-
tain s5e51, which then implies Imxloc}sgnv.

The field-theoretic renormalization group analysis of E
~13! was discussed in Ref. 29, and we will highlight the ma
results. The key observation is that renormalization of
theory ~13! requires only a single wave-function renorma
ization factorZ and that there is no independent renorm
ization of the coupling constantg0 . This result was estab
lished diagrammatically in Ref. 29, and we will no
reproduce the argument here. So if we renormalize the s
by SW 5AZSW R , then the coupling constant renormalization
simply g05me/2g/AZ, wherem is a renormalization scale
The renormalization constant is in general a complica
function of g and was determined to two-loop order in Re
29:

Z512
2g2

e
1

g4

e
1¯ ~14!

in a minimal subtraction scheme. However, even thoughZ is
not known exactly, the exponents can be determined ex
actly. Standard field-theoretical technology shows that
above renormalizations imply theb function

b~g!52
eg

2 S 12
1

2

] ln Z

] ln g D 21

. ~15!

Furthermore, the exponents is given by the value of

s~g!5b~g!
] ln Z

]g
~16!

at the fixed pointg5g* whereb(g) vanishes. Comparing
Eqs.~15! and ~16!, we see that

b~g!52@e2s~g!#g/2. ~17!

Clearly, a zero of theb function must haves5e, and this
establishes the required result.

We note that similar examples of a critical exponent be
valid to all orders~in spite of a nontrivialb function! can be
found for other models in the statistical mechanics of dis
dered systems~see, e.g., Refs. 30 and 31!.

B. ‘‘Local moment’’ solutions

In a mean-field model, one usually expects to find loca
stable~while possibly unstable to ordering! paramagnetic so-
lutions of the mean-field equations down to zero tempe
ture. Hence the absence of solutions of the spin-liquid ty
for S.Smax suggests that a different kind of paramagne
solution should exist for those values of the spin. Indeed,
have found that the integral equations~5! have another class
of paramagnetic solutions in the bosonic case. These s
tions actually exist for all values of the spinS and down to
zero temperature. Hence they coexist at lowSwith the spin-
6-5
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A. GEORGES, O. PARCOLLET, AND S. SACHDEV PHYSICAL REVIEW B63 134406
liquid solutions in some range of temperature. Their phys
nature is very different from the previous spin-liquid sol
tions, and as discussed below, they are not very phys
solutions when considered at low temperature. They
characterized by a Green’s function which does not deca
long times and obeys the asymptotic behaviorGb(t).2S

2e2J2bS3t. In contrast to the spin-liquid case,l diverges for
T→0 in this regime:

l;
J2S2

T
. ~18!

Finding numerically these solutions of Eqs.~5! requires
some care. We have used an algorithm in which we so
Eqs. ~5! in imaginary time forG(t), for a fixed value ofr
5*0

bG(t)dt, and then adjust the number of particles toSby
a dichotomy onr. The local susceptibilityx loc(t) obtained in
this manner is displayed in Fig. 4. At high temperature,
find x loc(T)5S(S11)/T as expected since the spin is esse
tially free. At low temperature, we find another Curie la
with a reduction of the Curie constant due to quantum fl
tuations:

x loc~T!5
S2

T
for T→0. ~19!

Hence, for these solutions, the effect of the interactions w
the other spins is not strong enough to result in a qua
tively different screening regime, resulting merely in a r
duction of the Curie constant. This is analogous to anunder-
screenedKondo regime.

These solutions are of a similar type as those found in
a quantum Monte Carlo simulation of the SU~2! mode.24

There, also, a reduction of the Curie constant fromS(S
11)/3 toS2/3 was clearly observed. Thus, contrary to one
the conclusions of Ref. 24, the large-N limit correctly repro-
duces the paramagnetic local moment solution found for

FIG. 4. x loc(t) extracted from a numerical solution of sadd
point equations~5! in imaginary time, forS51, J51. The solid
curve is low temperature (Jb510), and the dashed curve is hig
temperature (Jb50.1); for intermediate temperatures, the curv
interpolate between the two.
13440
l

al
re
at

e

e
-

-

h
-

-

n

f

e

physicalN52 case. Moreover, a numerical solution of th
large-N integral equations~5! for real frequencies can also b
obtained both at high and low temperatures. The results
presented in Fig. 5 for bothrb(v)[21/p Im Gb(v) and
x loc9 (v)[1/p Im xloc(v). At high temperature,rb is cen-
tered aroundl;T ln@(S11)/S# andx loc9 (v) is a simple peak.
At low temperature, we find inx loc9 (v) a d-function peak at
zero frequency with weightS2, which is associated with lon
gitudinal relaxation~see Ref. 24 for a discussion forN52)
and two peaks, centered around6l}1/T @cf. Eq. ~18!# with
a constant width, which are associated with transverse re
ation. Again, these results are very similar to the conclusi
reached in Ref. 24 from a fit of the imaginary-time data f
N52, using a modelx9(v). The only difference is that the
central peak is not broadened by thermal fluctuations in
large-N limit.

Finally, since these solutions describe the formation o
local moment at low temperature and since the onset of
quenching temperature~at which the reduction of the Curie
constant sets in! turns out to be lower than the temperatu
where spin-glass ordering occurs~as shown in the next sec
tion!, we consider these solutions as a mean-field artifac
the spin-glass ordering. Static limits of such solutions
actually known to occur in the classical SK model. We a
note that the internal energy of these solutions has an
physical divergence asT→0.

We close this section by noting that, for small values
the spinS, a rather intricate pattern emerges for the stabi
and coexistence of the two kinds of paramagnetic soluti
described above. We have studied this numerically in so
detail, but do not report this here, since most of these p
nomena occur below the spin-glass ordering tempera
anyway. The important features have been displayed on
1. We emphasize again that the spin-liquid solutions are
relevant solutions describing the whole quantum-critical
gime. Even though they are unstable atT50 for S.Smax,
they remain consistentfinite-temperaturesolutions in a much
wider range of values ofS for T,J. At higherS and above
the spin-glass ordering temperature, the paramagnetic p
behaves as a local moment, with the Curie constant get
gradually reduced asT is lowered.

IV. SPIN-GLASS PHASE

In this section, we investigate spin-glass ordering in t
model. The first observation that we make~Sec. IV A! is that
the spin-glass susceptibility~i.e., the response to a spin-gla
ordering field! is actually of order 1/N in the large-N limit.
This does not preclude a spin-glass phase, but means tha
transition is not associated associated with a linear insta
ity. Indeed, we shall find explicit solutions in the ordere
phase in the bosonic case, while the fermionic case does
have a spin-glass phase atN5` ~but does order as soon a
1/N corrections are considered!.

A. Spin-glass susceptibility

Here we derive an exact expression for the spin-glass
ceptibility, valid for arbitraryN in this mean-field model.
6-6
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FIG. 5. Spectral densities fo
Gb ~left! and for the local suscep
tibility x loc ~right!, for high tem-
perature~top! and a very low tem-
perature ~bottom!. These results
are extracted from a numerical so
lution of saddle-point equations
~5! in real frequencies.
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The derivation is most conveniently performed using rep
cas. We note that in the presence of spin-glass order,
correlation function ^SW a(t)•SW b(t8)& acquires a nonzero
value foraÞb, which is, however, static, i.e., independent
t2t8 ~see, e.g., Ref. 8!. This crucial point is due to the fac
that different replicas are independent of one another be
averaging, so that, foraÞb,

^SW a~t!•SW b~t8!&5^SW a~t!&•^SW b~t8!&5^SW a~0!&•^SW b~0!&.
~20!

In the following, we shall denote byqab the ~normalized!
off-diagonal correlation function which is an order parame
for the spin-glass phase:

qab[
1

N2 (
aÞb

^SW a~t!•SW b~t8!&. ~21!

We consider the stability of the paramagnetic phase to
type of ordering and introduce an ordering fieldHab conju-
gate toqab . This has two effects.

~i! It adds to the effective action~3! an explicit term

dS5
1

N E dtE dt8(
aÞb

HabSW a~t!•SW b~t8!. ~22!

The normalization ofHab has been chosen in such a way th
the change in the total free energy is of orderN.

~ii ! It modifies the value of the self-consistent fieldQab.
The change of the off-diagonal component, to linear order
imposed by the self-consistency condition~4! to be dQab

5dqab , with dqab the induced order parameter.
13440
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One can then perform an expansion of the off-diagon
correlation function up to linear order in bothHab anddQab.
This yields

dqab5
1

N
x loc

2 ~Hab1J2dQab!, ~23!

in which x loc is the local susceptibility of the paramagnetic
phase. SincedQab5dqab , this finally yields the susceptibil-
ity to spin-glass ordering:

xsg[
dqab

Hab
5

1

N

x loc
2

12~Jx loc!
2/N

. ~24!

This formula has two important consequences. The suscep
bility to spin-glass ordering is of order 1/N, and any spin-
glass instability atN5` must be associated with a nonlinea
effect of higher order~i.e., come from terms of higher than
quadratic order inqab in the free energy!. Furthermore, Eq.
~24! shows that for finiteN, a ~linear! instability into a spin-
glass phase will occur whenJx loc(T)5AN. Hence the fer-
mionic model, for whichx loc diverges at lowT, will have a
spin-glass instability for arbitrary large but finiteN. More
precisely, since the low-temperature behaviorJx loc; ln(J/T)
has been shown above to hold for allN for the paramagnetic
solution of the fermionic case, we conclude from Eq.~24!
that the spin-glass transition temperature depends onN in
that case asTc

f ;Je2AN.
6-7
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B. Spin-glass solutions and the ‘‘replicon’’ problem

We now turn to the explicit construction of solutions
the integral equations~5! with spin-glass ordering, in the
bosonic case. The same reasoning as above shows tha
Green’s functionGab(t) does not depend ont for aÞb.
Thus the most general ansatz for the Green’s functionGab

can be written as

Gab~t!5H G̃~t!2g1 ~a5b!,

2gab ~aÞb!,
~25!

whereG̃(t) is a function of the imaginary time,gab a con-
stant matrix, andg1 a constant. By definition,g1 is fixed so
that G̃ is regular atT50, i.e., G̃(t)→0 as t→`. In the
following discussion, we will restrict ourselves to solutio
given by a Parisi ansatz forgab ~a replica symmetry breaking
scheme!. In the n→0 limit ~wheren is the number of rep-
lica!, this matrix becomes a functiong(u) of a continuous
variableu with 0<u<1.22

Our equations~5! involve the Green functionG, whereas
the physical quantity is the susceptibilityxab(t)
5Gab(t)Gab(2t). The order parameterqab widely intro-
duced in the spin-glass literature22 is given here byqab

5gab
2 or, in the limit n→0,

q~u!5g~u!2. ~26!

The Edwards-Anderson parameter isqEA5q(1)5g(1).28,22

Since at zero temperature, in the long-time limit, we fi
limt→` Gaa(t)Gaa(2t)5qEA , we find g15g(1), by defi-
nition of g1 . More precisely, we look for solutions in whic
these two definitions ofqEA coincide, but it is not really an
assumption in our computation: if this relation were vi
lated, we would simply find forG̃ a nonvanishing limit for
t→`.

Among the various possible replica symmetry break
schemes,22 we will now focus onone-stepsolutions, since
we have not found any other, either two steps or with c
tinuous replica symmetry breaking. In this case, the funct
g(u) is piecewise constant:g(u)5ḡ for 0,u,x and
g(u)5g for x<u<1. In the following, we will refer tox as
the breakpoint. According to Eqs.~5!, the self-energyS has
the form

Sab~t!5H S̃~t!2J2g3 ~a5b!,

2J2gab
3 ~aÞb!,

~27!

with S̃ is given by Eq.~31b!. Using the standard formulas t
invert the Parisi matrices in the limitn→0,32 we find

G̃21~ inn!5 inn1l2S̃~ inn!, ~28!

J2g2G̃~ inn50!2511J2bxg3G̃~ inn50!. ~29!

At this stage, it is useful to introduce here a new parameteQ
defined by

G̃~ inn!52
Q

Jg
. ~30!
13440
the
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n

We then eliminatel in Eq. ~28! and G̃(0) in Eq. ~29! and
obtain finally a closed set of equations forG̃ andg:

@G̃~ inn!#215 inn2
Jg

Q
2@S̃~ inn!2S̃~0!#, ~31a!

S̃~t!5J2@G̃2~t!G̃~2t!22gG̃~t!G̃~2t!2gG̃2~t!

12g2G̃~t!1g2G̃~2t!#, ~31b!

G̃~t502!52~S2g!, ~31c!

bx5
1

Jg2 S 1

Q
2Q D . ~31d!

The crucial observation at this point is that these saddle-p
equations possess a one-parameter family of solutions,
rametrized byQ or equivalently by the breakpointx. This
phenomenon already occurs in other models which hav
one-stepreplica symmetry breaking solution.33 The determi-
nation of the breakpoint turns out to be the most diffic
question of this analysis. Two possible criteria are the f
lowing.

~1! To minimize the free energyF(x) as a function ofx,
as would be required by the thermodynamics. In the follo
ing, we will refer to this as theequilibrium criterion. This
criterion has been used in a previous attempt to unders
this spin-glass phase.23

~2! To impose a vanishing lowest eigenvalue of the flu
tuation matrix in the replica space. We will refer to this
themarginalityor repliconcriterion. Although it is not really
justified up to now, we will argue that it is the correct choic

This problem is not due to the quantum aspect of o
model: it already appears similarly in some classical sp
glass models, in thep-spin model, for example. In this clas
sical model, the study of the dynamics shows the existe
of a dynamical transitionTdyn above the static spin-glas
temperatureTeq given by the static solution of the mean-fie
model. It turns out that, in this classical model, the replic
criterion has been proven to give the same transition te
peratureTc5Tdyn. Moreover, it has been shown34,35 that the
same phenomenon occurs in somequantumversion of the
p-spin model. Thus, using this condition, it is possible
some sense to mimic the dynamics by simply solving a st
problem, although this is not fully understood at present.

In the present model, the two criteria give a coherent
lution, but with totally different spectra ofequilibrium fluc-
tuations: the equilibrium criterion leads to a gap inx9(v),
whereas the replicon criterion is the only one which give
gaplessx9(v) ~a similar observation was made in Ref. 33
a one-dimensional quantum model with disorder!. We be-
lieve that in this quantum Heisenberg spin glass the repli
criterion provides us with the correct physical solution (Tc),
contrary to the equilibrium solution, which gives the sta
transition temperature (Teq). However, this claim cannot be
proved in the present context: in particular, the static so
tion does give a full solution of Eqs.~5!. A study of the true
Hamiltonian dynamics in real time and finite temperature
this quantum problem is necessary for a deeper underst
6-8
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ing of this question, but this is beyond the scope of t
paper. Let us now examine the two criteria separately
more detail.

1. Replicon criterion

To apply the replicon criterion, we need to study the flu
tuations of the free energy in the replica space around
one-step solution. In the large-N limit, the free energy is
given by the expression

F@Gab,l#5
1

b (
n

Tr ln@ inn1l2Sab~ inn!#

1
3J2

4 (
ab

E
0

b

dt@Gab~t!Gab~2t!#22lS.

~32!

Under infinitesimal variationdgab for aÞb, the variation of
the free energy is~up to second order!

dF5 (
a.b
c.d

Mab,cddgabdgcd . ~33!

Strictly speaking, as this is a quantum problem, we have
simultaneously consider the variation of the diagonal co
ponent,dG̃(t) in Eq. ~25!, in a study of the fluctuations. In
a spin-glass phase, there is indeed a coupling betweendgab

anddG̃(t) which modifies the fluctuation eigenvalues. Fo
tunately, however, as we show in Appendix B, this coupli
does not modify the eigenvaluee1 and our main result~35!

below, and so we will neglectdG̃(t) here. The diagonaliza
tion of the n(n21)/23n(n21)/2 matrix M is briefly ex-
plained in Appendix B and gives three eigenvalues

e153bJ2g2~123Q2!,

e25
3bJ2g2

Q2 @Q22313bJg2Q~11Q!#,

e356bJ2g2~3bJg2Q21!. ~34!

A first consequence of this analysis is that replic
symmetric solutions are unstable, since from Eq.~31d! they
correspond tou51 and thene1,0. Hence these solution
will not be considered in the following discussion.

A full solution of Eqs.~34! is required to show the posi
tivity of e2 ,e3 , but we immediately see thate150 for

QR5
1

)
. ~35!

Quite remarkably, we will see below in Sec. IV C 2 an
Appendix B 2 that precisely the same value ofQ is selected
by a criterion which is seemingly entirely independent. W
will study the dynamic spectral functions in the spin-gla
phase as defined byG̃(t), and show that their associate
spectral densities are nonzero asuvu→0 only for the value of
Q in Eq. ~35!. So marginal stability in replica space appea
13440
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to be connected to a gapless quantum excitation spect
We may intuitively understand this as due to the availabi
of many low-energy states when the system first freezes,
a better understand should emerge from a real-time anal

2. Equilibrium criterion

To apply the equilibrium criterion, we start from the e
pression of the free energyF and solve forx:

dF~x!

dx
50. ~36!

The computation of thetotal derivative ~36! reduces to
]xF(x)uG̃,l because the saddle-point equations~5! for finite n
are equivalent to

]F
]Gab 5

]F

]l
50 ~37!

as can be checked by an explicit calculation. Computing
logarithm in Eq.~32! ~using Appendix II of Ref. 32! and
taking the derivative leads to

3

4
J2g42

2

~bx!2
ln@2JgG̃~ inn50!#52

g

bxG̃~ inn50!
~38!

and finally to an equation forQ:

2 lnQ1
1

4Q2 1
1

2
2

3Q2

4
50. ~39!

This equation has two solutions: the replica-symmetric o
Q51 ~unstable, as explained above! and a nontrivial one
Q5Qeq'0.4421 ... . Contrary to the previous solution, w
will see in Sec. IV C 2 that ImG̃ has a gap for this value o
Q.

C. Phase diagram

Once Q has been determined, Eqs.~31! can be solved
either numerically~both in imaginary time and in real fre
quency! or analytically in theS→` limit. In the following,
we will mainly restrict ourselves toQ5QR since we believe
that it is the correct solution. However, all calculations ha
been redone forQ5Qeq with related results.

1. Numerical solution

First, the critical temperature is obtained from the nume
cal solution of Eqs.~31! in imaginary time: the spin-glas
order parameterq(T)5g2(T) and the breakpointx(T) are
displayed in Fig. 6 as a function of the temperature.x in-
creases linearly withT from 0 at T50 ~there is no replica
symmetry breaking at zero temperature!, and Tsg is deter-
mined by the conditionx(Tsg)51, since we must have 0
<x<1 by definition.22 Hence there is a discontinuity inq at
the transition, but we will show below that the transition
second order. A careful numerical study shows that the tr
sition is always driven byx51 for all values ofS and pro-
duces the critical temperature displayed in Fig. 1. The co
6-9
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A. GEORGES, O. PARCOLLET, AND S. SACHDEV PHYSICAL REVIEW B63 134406
putation is similar for the critical temperatureTsg
c given by

the ‘‘replicon’’ criterion and for the critical temperatureTsg
eq

given by the equilibrium criterion. Moreover, we find th
Tsg

c , the dynamictransition temperature, is higher thanTsg
eq,

the static transition temperature: this is required by o
physical interpretation of the two solutions, but it was n
obviousa priori from the integral equations solved.

2. Large-S limit and spectral densities

Further analytical insight into the spin-glass phase its
can be obtained by considering various large-S limits, which
differ by the manner in which temperatures and frequenc
are scaled withS ~see Fig. 1!.

In a first simple large-S limit, we takeT large enough so
thatT/JS2 is of order unity. This is the simple classical lim
in which we can neglect all nonzero Matsubara frequenc
and Eq.~1! reduces to the classical problem in whichSW are

FIG. 6. The Edwards-Anderson parameterqEA and the break-
point x as a function of the temperatureT for a fixed value of the
size of the spinS51(J51). The transition to the paramagnet
given by the conditionx51.
13440
t
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commuting vectors of lengthS. Equations~5! are analytically
solvable, and we can obtain a closed-form expression for
critical temperature at which spin-glass order vanishes:

Tsg
c ;

2

3)
JS2. ~40!

A second, more sophisticated limit, valid at lower tem
peratures~well within the spin-glass phase!, is when we ex-
aminev andT of orderJS. It is therefore useful to define th
variablesv̄5v/(JS) andT̄5T/(JS), which remain of order
unity at largeS. With this scaling, the integral equations~31!
reduce to independent quartic equations for each freque
More precisely, if we make the following ansatz for th
Green’s function,

G̃~v,T!5
1

JS
g1~v̄,T̄!1

1

JS2 g2~v̄,T̄!1¯ , ~41!

then to leading order in 1/S, Eqs.~31! reduce to

g~T!5S2E
2`

`

r1~v̄ !dv̄,

g1~v̄ !215v̄2
1

Q
23Q22g1~v̄ !2g1~2v̄ !, ~42!

where r152Im g1 /p as usual. Eliminating the frequenc
2v̄, we find a quartic equation forg1(v̄). We do not ex-
plicitly display the far more complicated equation for th
subleading termg2 .

The solution of the quartic equation forQ5QR is pre-
sented on Fig. 7 together with a numerical solution of the f
integral equation forS55. From the solution of the quartic
equation, we find thatr1 vanishes linearly frequency at low
frequencies; indeed, we find the analytic expansion
FIG. 7. ~a! r1(v) at T'0 for S55 andQ5QR : the solid line is the numerical solution for the integral equation~31!: the dashed line
is the solution of the quartic equation~41! for g1 . ~b! x9(v)/v at T'0 from the quartic equation.
6-10
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g1~v̄ !52
1

)
2

~11 i !

2
v̄1

~223i !)

4
v̄2 ~43!

at low frequencies. We expect that the full Green’s funct
in Eq. ~41! also has a similar low-frequency expansion,
though this has not been proved. It is not difficult to sho
that the linear low-frequency spectral density holds at hig
orders in the 1/S expansion; moreover, our numerical resul
shown in Fig. 7, also clearly indicate a linear behavior
smallv. At dominant order in the present large-S theory, the
spin susceptibility is given by

x9~v!52pE
0

v

dxr1~x!r1~x2v!1gp@r1~v!2r1~2v!#

1pg2bvd~v! ~44!

and this is also shown in Fig. 7.
It is important to realize that the deceptively simple stru

ture in Eq. ~43! relies on the special valueQ5QR51/)
determined by the entirely different replicon argument
Sec. IV B 1. For arbitrary values ofQ, we find either no
physically sensible solution of the large-S quartic equation
~this is the case at the replica symmetric valueQ51 where
the spectral density does not satisfy the required positi
criteria! or a solution with a spectral gap. In the latter ca
the solution forg1 is real for small realv̄, and there is an
onset in the imaginary part;(v̄2v̄c)

1/2 above some critica
frequencyv̄c . The solution forQ5Qeq is of the second
type: it has a finite-energy gap, but does not violate a
spectral positivity criteria.

This subsection has so far identified two distinct largeS
regimes. In the regimeT;JS2, we have purely classica
behavior ~the nonzero Matsubara frequencies can be
glected for static properties! and a phase transition at a crit
cal temperature in Eq.~40! where the spin-glass order van
ishes. At lower temperaturesT;JS, we are well within the
spin-glass phase, and the semiclassical dynamics is desc
s
ng
a-

a
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by the solution of a quartic equation defined by Eq.~42!. As
we noted in Fig. 1, there is a third ‘‘quantum’’ regime
even lower temperaturesT;JAS, and this becomes eviden
in a study of the thermodynamic properties presented in
following section.

D. Thermodynamics

We now turn to the internal energyU and the specific hea
C. By computing the average of the Hamiltonian in theN
→` limit, we find thatU is given by

U~T!52
J2

2 E
0

b

dt@Gab~t!Gab~2t!#2. ~45!

Using Eq.~25! and the one-step replica symmetry breaki
ansatz in the spin-glass phase, we find

FIG. 8. The specific heatC(T) and the internal energyU(T) vs
the temperatureT, from a numerical solution of Eqs.~31! for S
55 andQ5QR .
U~T!55 2
J2

2 E
0

b

G~t!2G~2t!2dt in the paramagnetic phase

2
J2

2 E
0

b

@G~t!2g#2@G~2t!2g#2dt2
J2

2
b~x21!g4 in the spin glass phase.

~46!
is
di-
nu-

-
gy.
A numerical computation of the internal energyU(T) and
the specific heatC(T) is displayed in Fig. 8 forQ5QR . The
condition for the phase transition between the two phase
that the breakpoint in the Parisi function reach its limiti
value x51. In this limit the equations determining the p
rameters in the spin-glass phase, Eqs.~31!, transform con-
tinuously to those for the paramagnet. As the equations
is

re

believed to have a unique solution, this implies that there
no discontinuity in the internal energy at the transition, in
cating its second-order nature. This is confirmed by the
merical solution displayed in Fig. 8.

Moreover, in the large-S limit defined above, we can per
form a low-temperature expansion of the internal ener
Inserting Eqs.~41! and ~42! into Eq. ~45!, and keeping the
6-11
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dominant terms at largeS, we find

U~T!52
J

2 S 1

Q
13Q Dg22J2g2

1

b (
nn

3@G̃~ inn!G̃~2 inn!12G̃2~ inn!#1¯

52
JS2

2 S 1

Q
13Q D1JSS 1

Q
13Q D T̄(

n̄n

g1~ i n̄n!

2JST̄(
n̄n

@g1~ i n̄n!g1~2 i n̄n!12g1
2~ i n̄n!#1O~JS0!,

~47!

where n̄n5nn /(JS). Clearly, this result indicates that th
leading term inU(T) is a temperature-independent consta
of orderJS2, followed by a term of orderJSwhose coeffi-
cient is a function only of (T/JS). Evaluation of the latter
function at lowT for Q5QR yields a curious accident: th
gapless structure of the spectral functions suggests tha
low-T expansion should depend only on even powers
T/JS, but it is not difficult to show using Eq.~43! that the
coefficient of the term of orderS(T/JS)2 vanishes. The first
nonvanishing,T-dependent term among those shown exp
itly in Eq. ~47! turns out to be orderJS(T/JS)4. To obtain
the true low-T behavior, we need to expand Eq.~47! to one
higher order in 1/S, and this requires use of the second ter
g2 , in Eq. ~41!. We do not expect any cancellation of th
term of order (T/JS)2 at this point, and so the low-T expan-
sion for U looks like

U~T!5U~0!1aS~T/JS!41b~T/JS!21¯ . ~48!

Rather than numerically evaluating the valuesa and b, we
will be satisfied by the full numerical solution of Eqs.~31!,
followed by the evaluation of Eq.~46!. The results are shown
in Fig. 8 and are consistent with Eq.~48!. The structure of
the expansion in Eq.~48! suggests that these results are va
for T,JAS, where the specific heat depends linearly on
temperature. Although the present discussion has been
ried out for largeS, we expect—and this is supported by o
numerical results—that the linearT dependence of the spe
cific heat holds even for smallS asT→0.

In Appendix C we describe the computation of the sp
cific heat of the quantum rotor and Ising spin glasses con
ered in Ref. 13. As noted in the Introduction, these mod
are simpler because they do not have quantum Berry ph
in their effective action. Further, at low orders in their La
dau theory, the solution for the spin-glass phase is rep
symmetric. However, understanding the trueT→0 behavior
requires inclusion of higher-order, ‘‘dangerously irrelevan
terms which induce replica symmetry breaking; this is c
ried out in Appendix C, and we find that these quantum s
glasses also have a linear specific heat at lowT.

V. CONCLUSION

We believe that the results of this paper provide a reas
ably complete understanding of the infinite-range quant
Heisenberg spin glass. While there have been a large num
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of previous studies of quantum spin glasses of Ising sp
and rotors@including models with (p.2)-spin interactions#,
none of these models contain quantum Berry phases in t
effective actions, as is the case with the Heisenberg mo
They have strong consequences: the spin-liquid solution
Sec. II A and its spectral density~9! are novel properties o
the Heisenberg model. There is an intricate interplay in s
bility between this spin-liquid state and the state with sp
glass order at lowT, which we have also described. At su
ficiently low T, the spin-glass order always appears, and
have also described the thermodynamic properties of
state.

An important issue not resolved in our analysis is t
origin of the marginal stability criterion in the fluctuatio
eigenvalues in replica space. We imposed this criterion i
ratherad hocmanner and found that it was the unique ca
under which the quantum excitation spectrum was gapl
Ultimately, the selection criterion for the spin-glass state h
to be a dynamic one, and this requires an analysis of
approach to equilibrium in real-time dynamics. Such
analysis was not carried out here and is an important di
tion for future research.

Another interesting open problem is to extend the study
Eq. ~1! to cases whereJi j has a nonzero average value. Th
will allow for ground states with other types of magnet
order, ferromagnetic and antiferromagnetic, and their com
tition with the spin-glass state should be of some experim
tal interest. Interesting transitions in the paramagnetic st
from the spin-liquid state discussed also appear possible

We have already mentioned a recent study25 of the
quenching of the spin-liquid state by mobile charge carri
into a disordered Fermi liquid. Combining this with mode
just mentioned, with a nonzero averageJi j , should lead to
results of direct physical interest in the heavy fermion a
cuprate series of compounds.
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APPENDIX A: COMPUTATION OF THE SPECTRAL
ASYMMETRY

This appendix is devoted to the derivation of Eqs.~10!.
We will consider hereafter the fermionic case~the bosonic
one is very similar!. At zero temperature, the number of pa
ticles is given by

q05 i E
2`

` dv

2p
Gf

F~v!eiv01

5 iPE
2`

` dv

2p
]v ln Gf

F~v!eiv01

2 iPE
2`

` dv

2p
Gf

F~v!]vS f
F~v!eiv01

~A1!
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whereGF is the Green’s function with Feynman prescriptio
on the real axis and the symmetric principal part is defin
by

PE
2`

`

5 lim
h→0

E
2`

2h
1E

h

`

. ~A2!

Using the relation betweenGF and the retarded Green’s
function GR, we find, for the first term,

iPE
2`

` dv

2p
]v ln Gf

F~v!eiv01

5
argGf

R~02!2argGf
R~2`!

p

1 iPE
2`

` dv

2p
]v ln Gf

R~v!eiv01
. ~A3!

The arguments can be extracted from the low- and hi
energy behavior of the Green’s function, which leads
argGf

R(02)523p/42u and argGf
R(2`)52p, respectively.

The integral on the right of Eq.~A3! can be easily evaluat
ed: we close the contour of integration, avoiding the sin
larity at v50, and use the analyticity of the retarded Gree
function in the upper half plane, in which it has no zeros
poles. We find, finally,

q05
1

2
2

u

p
2 iPE

2`

` dv

2p
Gf

F~v!]vS f
F~v!eiv01

. ~A4!

The problem is now reduced to the computation of
integral in Eq.~A4! as function ofu, which turns out to be
the most difficult point. An analogous computation was p
formed in the overscreened regime of a large-N description
of Kondo effects,26,27 but it turns out to be more comple
here. Proceeding along the lines of Refs. 26 and 27, we
the existence of the Luttinger-Ward functionalFLW
5* dt G2(t)G2(2t), which has two properties: first, w
haveSR(v)5dFLW /dGR(v); secondFLW is invariant in
the transformationG(v)→G(v1e). From this, we could
naively think that the integral of Eq.~A4! vanishes. How-
ever, it is not possible to find a regularization for the integ
for which we could use the invariance of the Luttinger-Wa
functional and a more careful analysis shows that

iPE
2`

` dv

2p
Gf

F~v!]vS f
F~v!5

sin 2u

4
. ~A5!

To obtain this result, we introduce the following param
etrization of the singularity atv50:

r~v!;5
C1

Av
for v.0,

C2

Auvu
for v,0.

~A6!
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The principle of the computation is very simple: we com
pute explicitly the integral with a regulatorh.0 and then
perform the limith→0. Going to the real axis, we find

SF~v!52Ev1.0
v2.0
v3,0

ou

v1,0
v2,0
v3.0

dv1dv2dv3

3
r~v1!r~v2!r~v3!

v11v22v32v2 i01 sgnv1
. ~A7!

Using the notationa5ā1 i ea , b5b̄1 i eb , ea/b5601, and
ch(x)5Q(uxu2h) (ā are b̄ real andQ is the Heaviside
function!, we obtain@using the definition of the principal par
~A2!#

fh~a,b!5PE
2`

` dz

~z2a!2~z2b!

5
1

~a2b!2 S lnU~h1b!~h2a!

~h2b!~h1a!
U

1 ipch~b!sgneb2 ipch~a!sgneaD
1

1

a2b S 1

h2a
1

1

h1aD . ~A8!

Using the spectral representation forGF and Eq.~A7!, we
find

I52E
D2øD2

)
k50

3

dvkr~v0!r~v1!r~v2!r~v3!fh

3~v11v22v32 i e1 sgnv1 ,v02 i e0 sgnv0!

~A9!

with an explicit integration overv with Eq. ~A8!. In this
expression, the integration domains are defined as

D15H v0,0
v1.0
v2.0
v3,0

J øH v0.0
v1,0
v2,0
v3.0

J ,

D25H v0.0
v1.0
v2.0
v3,0

J øH v0,0
v1,0
v2,0
v3.0

J . ~A10!

Since fh(2a,2b)52fh(a,b), a simple change of vari-
able leads to

I52E
xi.0

$@r~v1!r~v2!ř~v3!ř~v0!

2 ř~v1!ř~v2!r~v3!r~v0!#fh

3~x11x21x32 i e1 ,2x01 i e0!
6-13
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1@r~v1!r~v2!ř~v3!r~v0!

2 ř~v1!ř~v2!r~v3!ř~v0!#fh

3~x11x21x32 i e1 ,x02 i e0!%, ~A11!

with ř(v)5r(2v). To take the limith→0, we use the new
variablesxi5hui and the behavior ofr(x) for x→0, param-
etrized according to Eq.~A6!. The first integral in Eq.~A11!
vanishes at dominant order inh ~this term is proportional to
C1

2 C2
2 2C2

2 C1
2 50), but the second integral gives

I5E
ui.0

C1
3 C22C2

3 C1

Au0u1u2u3

fh51

3~u11u21u32 i e1 ,u02 i e0!. ~A12!

Usingx5u0 , y5u11u21u3 , and polar coordinates inAui ,
we find I52p(C1

3 C22C2
3 C1)I2 with

I25E
0

`E
0

` dx

Ax
Ay dyF 1

~x2y1 i e!2

3S lnU11x

12x

12y

11yU1 ip@c1~y!2c1~x!# D
1

1

y2x2 i e S 1

12y1 i e1
1

1

11y2 i e1
D G . ~A13!

After an integration by parts ony and using

E
0

1 dx

x
lnU11x

12xU5 p2

4
~A14!

we find

iPE
2`

` dv

2p
Gf

F~v!]vS f
F~v!5

p3

2
~C1

3 C22C2
3 C1!.

~A15!

Finally, a analogous computation can be performed in
bosonic case, leading in both cases to

iPE
2`

` dv

2p
GF~v!]vSF~v!5

sin 2u

4
~A16!

~in this expression,2p<u<p). These expressions hav
been shown to agree perfectly with numerical computati
in imaginary time for the fermionic case and on the real a
at zero temperature in the bosonic case.

Let us note finally that we can guess the result if we ad
a priori that the integral is given by an homogeneous po
nomial of degree 4: due to the particle-hole symmetry~in
the fermionic casef↔ f †, the result can be expressed as
function of C1

4 2C2
4 andC1

3 C22C2
3 C1). The first term is

rejected since it leads to a singularity atu56p/4. The pro-
portionality coefficient is fixed by imposingu5p/4 for q0
50.
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APPENDIX B: THE MARGINALITY CRITERION

1. Diagonalization of the fluctuation matrix

First, we diagonalize the fluctuation matrixM in the rep-
lica space defined by Eq.~33!. A priori M is a n(n21)/2
3n(n21)/2 matrix. However, we have taken forgab the
simple one-step replica symmetry breaking ansatz ongab ;
i.e., then3n matrix splits inton/m3n/m blocks: gab5g
if ba/mc5 bb/mc, 0 otherwise. ThusM splits inton/m iden-
tical m(m21)/23m(m21)/2 blocks (Mab,cd does not van-
ish if and only if all indices are in the same blockba/mc
5 bb/mc5 bc/mc5 bd/mc). Hence the diagonalization is to b
performed only on one block~we set 1<a,b,c,d<m),
which elements are given by~with a, b, c, ddistinct replica
indices!

Mab,ab5A[3bJ2g2H 123b2J2g2Fg21S g1
Q

bJgD 2G J ,

~B1!

Mab,ac5B[29b3J4g5S 2g1
Q

bJgD , ~B2!

Mab,cd5C[218b3J4g6. ~B3!

This matrix has already been diagonalized in Ref. 36 and
eigenvalues are given by

e15A22B1C. ~B4!

e25A12~m22!B1~m22!~m23!C/2. ~B5!

e35A1~m24!B2~m23!C. ~B6!

Moreover, the degeneracies ofe1 , e2 , and e3 are n(m
23)/2,n/m, andn(m21)/m, respectively. Using Eqs.~B1!
and ~B4!, we find finally the result of the text, Eq.~34!.

The above calculation has entirely ignored perturbatio
dG̃(t) in the diagonal elements of Eq.~25!. Including these
greatly complicates the analysis, but a simple observa
will suffice for our purposes. Our main attention is on t
cross-coupling betweendG̃(t) and thedgab . A simple con-
sequence of the block-diagonal structure of thegab in the
mean-field solution is that this cross-coupling has the for

dF; (
a.b,ba/mc5 bb/mc

E
0

b

dt dG̃~t!dgab . ~B7!

Now we can expanddgab in terms of the eigenvectors ass
ciated with Eq.~B4!, which were computed in Ref. 36. Th
key observation is that after the sum overa, b in Eq. ~B7!,
the cross-terms corresponding to all the eigenvectors ass
ated with e1 vanish. Consequently, these eigenvectors
main eigenvectors even upon includingdG̃(t), and the ei-
genvaluee1 remains unchanged. A similar argument sho
that the eigenvaluee3 also remains unchanged, and only t
eigenvectors associated withe2 are modified nontrivially by
the coupling todG̃(t).
6-14
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2. Replicon solution is gapless

Let us assume that there is no gap in the boson spe
density and more precisely that for smallv:

G̃~v!5
Q

Jg
1~a1 ib !vaQ~v!

1~a81 ib8!uvuaQ~2v!1o~ uvua!, ~B8!

whereQ is the Heaviside function,a,b,a8,b8 are real con-
stants, anda.0. Then from Eq.~31b! we obtain, forv
.0,

Im@S̃~v!#5J2g2 Im@2G̃~v!1G̃~2v!#1¯ , ~B9!

S̃~v!5c1@d1 i ~2b2b8!J2g2#va, ~B10!

wherec and d are real constants. The other terms are s
dominant in the limitv→0 as can be seen using a spect
representation. We then expand Eq.~31a! to second order
and obtain at first orderl5c1Jg/Q and, for the imaginary
part at second order,

b2~2b2b8!Q25b82~2b82b!Q250, ~B11!

which leads to (Q51 is excluded sinceb.0 andb8,0)

Q25 1
3 . ~B12!

Thus the value ofQ given by the replicon condition is th
only onethat leads to a gapless bosonic spectral density

APPENDIX C: FREE ENERGY OF QUANTUM ROTOR
AND ISING SPIN GLASSES

Quantum spin glasses of quantum rotors and Ising s
were studied extensively in Ref. 13. However, while t
paramagnetic phase and the vicinity of the quantum-crit
point were fairly completely described, theT→0 thermody-
namics within the spin-glass phases was only studied in
replica-symmetric solution. A proper understanding of t
low-T limit requires consideration of replica symmet
breaking, and we will provide that here. We will find, as
the more complex Heisenberg spin model considered in
body of the paper, that the specific heat is linear inT at low
T.

As we are restricting our attention to mean-field theo
we can neglect the spatial dependence of all degrees of
dom. Further, we will also restrict ourselves to the Ising ca
and the generalization to the multicomponent rotor cas
immediate. As discussed in Ref. 13, the effective action
the quantum Ising spin glass is expressed in terms of
order parameter functional

Qab~t,t8!5^sa~t!sb~t8!&. ~C1!

wheresa is the Ising spin in replicaa. The important low-
order terms in the free energy density are
13440
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F5
1

k E dt(
a

F ]

]t1

]

]t2
1r GQaa~t1 ,t2!U

t15t25t

2
k

3 E dt1dt2dt3(
abc

Qab~t1 ,t2!Qbc~t2 ,t3!

3Qca~t3 ,t1!1
u

2 E dt(
a

Qaa~t,t!Qaa~t,t!

2
y

6 E dt1dt2(
ab

@Qab~t1 ,t2!#4. ~C2!

Here r is the parameter which tunes across the spin-g
transition, andk, y measure the strength of various nonli
earities. The analysis of thermodynamic properties in
spin-glass phase in Ref. 13 was carried out with a vanish
coefficient of the quartic term,y50: in this case, the orde
parameter has replica symmetry, and it was found that
specific heat;T3 asT→0. Here we will extend the solution
to smallyÞ0 and show that the solution with broken replic
symmetry has a linear specific heat.

Time-translational symmetry requires that the mean-fi
solution take the form

Qab~t1 ,t2!5
1

b (
nn

Qab~ inn!einn~t12t2!. ~C3!

As in Eq. ~25!, we choose the following ansatz forQab:

Qab~ inn!5H D~ inn!1bqEA , a5b,

bqab , aÞb,
~C4!

where the off-diagonal termsqab are time independent an
characterized by the Parisi functionq(u), and q(1)[qEA .
We have included an additive factor ofbqEA in the diagonal
term for convenience and without loss of generality: as
the discussion below Eq.~25!, we will find that this ensures
that atT50 the solution forD(t) vanishes ast→`. Also,
the diagonal componentsqaa do not appear in the above, an
we are therefore free to choose them asqaa50. Here and in
the remainder of this appendix, we are assuming thatr is
sufficiently negative so that the system has a spin-g
ground state; for largerr, the ground state is a paramagne13

with qEA5qab50 whose properties are not addressed he
We now need to insert Eq.~C4! into Eq.~C2! and find the

saddle point with respect to variations in the functionsq(u)
andD( inn). This is, in principle, a straightforward exercis
but the computations are somewhat lengthy.

We first identify just the terms that depend uponqab;
these have the form

F52R1Tr q22
R2

3
Tr q32

R3

6 (
ab

qab
4 1¯ , ~C5!

where

R15bk@D~0!1bqEA#,

R25kb2,
6-15
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R35by. ~C6!

We first address the problem of determining the saddle p
of Eq. ~C5! with respect to variations inq(u). Fortunately,
this problem has been completely solved in the classical
glass literature,37 and we can directly borrow the resul
s: the functionq(u) increases linearly as a function ofu for
0,u,12(124R1R3 /R2

2)1/2, where it saturates untilu51
at the constant value

qEA5
R22~R2

224R1R3!1/2

2R3
. ~C7!

Combining Eq.~C7! with Eq. ~C5!, we obtain the simple
result

qEA
2 52kD~0!/y. ~C8!

Next, we consider the variation ofF in Eq. ~C2! with
respect toD( inn). This is most easily done fornnÞ0, for
which we obtain the following saddle-point equation:

1

k
~nn

21r !2kD2~ inn!

1uF 1

b (
nn8

D~ inn8!1qEAG22yqEA
2 D~2 inn!

2
2yqEA

b (
nn8

D~ inn8!D~2 inn2 inn8!

2
2y

3b2 (
nn8 ,nn9

d~ inn8!D~ inn9!D~2 inn2 inn82 inn9!50.

~C9!

Upon consideration of the saddle-point equation forD(0),
one initially finds a number of additional term associat
with the coupling ofD(0) to qab . However, our parametri
zation in Eq.~C4! was chosen judiciously and has the featu
that all these additional terms vanish upon using Eq.~C8!; so
the result~C9! appliesalso for nn50.

Let us also note the complete expression for the free
ergy density, obtained by inserting Eqs.~C4! and ~C9! into
Eq. ~C2!:

F/n5
qEAr

k
1

y2qEA
5

5k
1

1

bk (
nn

~nn
21r !D~ inn!

2
k

3b (
nun

D3~ inn!1
u

2 F 1

b (
nn

D~ inn!1qEAG2

2
yqEA

2

b (
nn

D~ inn!D~2 inn!

2
2yqEA

3b2 (
nn ,nn8

D~ inn!D~ inn8!D~2 inn2 inn8!
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6b3 (
nnnn8 ,nn9

D~ inn!D~ inn8!D~ inn9!

3D~2 inn2 inn82 inn9!. ~C10!

We are now left with the task of solving the saddle-po
equations~C8! and ~C9! for qEA and D( inn), and inserting
the result into Eq.~C10!. This is clearly a daunting task, an
we will be satisfied in describing theT→0 limit to first order
in y. This is similar in spirit to the large-Sexpansion of Secs
IV C 2 and IV D, and we expect that higher-order correctio
in y will not modify the nature of the low-T limit.

First, we consider the casey50. Here a complete analyti
cal solution is possible and was presented in Ref. 13.
have, aty50,

qEA
0 5

1

bk (
nn

unnu2
r

ku
,

D0~ inn!52
unnu
k

,

F0~T!/n5
2

3bk2 (
nn

unnu32
r 2

2k2u

5F0~0!/n2
4p3T4

45k2 . ~C11!

We observe that the free energy density behaves asT4, while
the specific heat;T3 asT→0. Notice also that positivity of
qEA

0 requires an upper bound onr, which we have assumed t
hold.

Before considering explicit corrections in powers ofy, we
make an observation that is valid to all orders iny. The
solution forD( inn) in Eq. ~C11!, when analytically contin-
ued to real frequenciesv, has an imaginary part which van
ishes linearly inv at smallv. We now show that this con
clusion holds to all orders iny; the constraint~C8! will play
a key role in establishing this result. Let us writeD(v)
5D(0)1 iD 1v1¯ for small v, whereD(0) and D1 are
some real constants. Inserting this into Eq.~C9! and evalu-
ating it atT50 for smallv, we note that the last two term
in Eq. ~C9! have imaginary parts which vanish asv3 andv5.
Keeping only the leadingv dependence of the imaginar
part, we obtain the simple expression

22ikD~0!D1v22yqEA
2 iD 1v50. ~C12!

From Eq.~C8! we see that this condition is satisfied, and
D1 can be nonzero.

Now we consider explicit first-order corrections iny: we
will see that this leads to terms in the thermodynamics wh
vanish more slowly asT→0. We can easily use Eqs.~C8!
and ~C9! to determine the corrections toD( inn) andqEA to
linear order iny; however, these are not needed here as
shift in the free energy due to such corrections will on
appear at ordery2, because the free energy is at a sad
point. Indeed, to obtain the free energy correct to first or
in y, we need only insert Eq.~C11! into Eq. ~C10!. It is then
6-16
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quite easy to see that the free energy will have a term
order yT2 and that the coefficient of this term will be non
universal and dependent upon the nature of the high-en
cutoff. The required term comes from theT dependence o
qEA

0 , which from Eq.~C11! is seen to be

qEA
0 ~T!5qEA

0 ~0!2
pT2

3k
. ~C13!
r i

13440
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Upon inserting Eqs.~C13! and~C11! into Eq.~C10!, we will
now obtain numerous terms in which the aboveT2 term mul-
tiplies T-independent, cutoff-dependent terms coming fro
the upper bounds in the summations over theD( inn). As the
relative values of these contributions will depend upon
nature of the cutoff, there is no general reason for them
cancel against each other. Hence we obtain aT2 contribution
to F and a linearT term in the low-T specific heat.
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