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We describe the interplay of quantum and thermal fluctuations in the infinite-range Heisenberg spin glass.
This model is generalized to SNf symmetry, and we describe the phase diagram as a function of th& spin
and temperaturé. The model is solved in the lardedimit, and certain universal critical properties are shown
to hold to all orders in M. For largeS, the ground state is a spin glass, but quantum effects are crucial in
determining the lowF thermodynamics: we find a specific heat linealiand a local spectral density of spin
excitations,y,.(w) ~ o for a spin-glass state which is marginally stable to fluctuations in the replicon modes.
For small S the spin-glass order is fragile, and a spin-liquid state wifh~tanh@/2T) dominates the
properties over a significant range Dnd w. We argue that the latter state may be relevant in understanding
the properties of strongly disordered transition-metal and rare-earth compounds.
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I. INTRODUCTION route to destruction of magnetic order for the case of a

strongly random system with spin-glass magnetic order.

The study of intermetallic compounds of the transition There are a number of motivations for focusing on random
metals and rare earths has been a subject at the forefront 8ystems. First, randomness is inevitably present in all mate-

condensed matter physics for some time féwA rich and  rials, and it is clear that it strongly perturbs the low-

complex variety of behaviors is observed in low-temperaturdemperature properties. Spin-glass order is present in a num-
electrical and magnetic measurements, much of which lackBer of systems, while others appear to be in the vicinity of
a comprehensive theoretical description. The complexitypuch a state. Finally, a technical motivation is in the structure

arises from the dominant role played by the local magneti®f the mean-field theory we shall present: it builds an im-
moments on tha andf orbitals and their interactions with Portant feedback effect between the intersite magnetic corre-

each other and the itinerant charge carriers. lations and the single-site spin dynamics, and this is crucial
It is convenient to begin our discussion in a phase W|tht0 all the nontrivial Spin correlations we shall describe. Such

well-established magnetic order, in which each magneti@ feedback is absent in previous studies of the magnetic
moment is effectively static. This static moment could beduantum critical point, and it has been argued that this is an
po'arized ina regu'ar mannws in a commensurate antifer- ImpOIftant limitation for theM:llA different route tO Incor-
romagnet or an incommensurate spin-density wawvepoint ~ Porating these feedback effects has been taken in some re-
in random directiongas in a spin-glass statén most real-  cent studies? however, they discuss only the paramagnetic
istic systems, the magnetic moment is either quite small optate of their model, and the extent to which magnetically
has averaged to zero by dynamic quantum fluctuations: sprdered states preempt their results remains to be clarified.
it is useful to consider mechanisms which reduce the mag- This paper is organized as follows: In Sec. Il we present
netic moment and eventually cause it to vanish at a quanturur spin-glass model and give an outline of our results, in-
phase transition to some paramagnetic state. Two distinéuding the phase diagram. Section Il is devoted to the na-
routes to such a quantum phase transition can be envisagddre of the paramagnetic solutions and, more specifically, to
and, we believe, the interplay between them is at the heart dhe quantum critical regime. Section IV is devoted to the
the complexity of the problem. In the first route, originally SPin-glass phase and to the various regimes within this
discussed by Doniachthe moment is quenched by Kondo Phase, as a function of temperature and of the size of the
screening by the itinerant electrons:  theories of such quarfPin. The Appendixes contain technical details and some ad-
tum critical points have been propoéetiin which the pre- ditional results on the quantum rotor and Ising spin glasses
dominant role of the itinerancy is to overdamp the collective0f Ref. 13.
magnetic excitations. In the second route, the exchange in-
teractions between the moments play a more fundamental
role: a pair of spins interacting with an antiferromagnetic
exchange prefers to form a singlet valence bond, and the The numerous recent studies of quantum fluctuations in
proliferation of such singlets can destroy the magnetic orderspin glasse¥ have focused either on infinite-range models of
Analytic theories for such transitions has been made mainlysing and rotor modelt$*®> or models in low dimensions
for systems without quenched disordeBimple models of  which flow to strong disorder fixed point8-'8Here we shall
crossovers between these two routes have also be@ontinue the study of infinite-range models, but will consider
presented ! a model of Heisenberg spins: in this case, the path integral
This paper will present a detailed study of the secondor each spin has a important Berry phase term which im-

Il. MODEL AND OUTLINE OF THE RESULTS
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poses the spin commutation relations. As we will see, thishe mean-field problerff, in which the problem is exactly

leads to a great deal of new physitand nontrivial dynamic

solvable and, as explained below, the solution provides a

spin correlations even in the spin-glass state. More specifigood description of the physics of thd=2 mean-field
cally, we present a complete solution of the quantum Heisernmodel, to the extent the latter is understood. More specifi-

berg spin glass on a fully connected lattice./dfsites with

cally, in the following we will consider two different types of

strong Gaussian disorder, both in the paramagnetic ansbin representations for the SN spins.
glassy phases, when the spin-symmetry group is extended (a) Bosonicrepresentations. The spin opera®is repre-

from SU(2) to SU(N) and the largeN limit is taken. In the
limit of large connectivity, (dynamical mean-field tech-

sented using Schwinger bosobsby Saﬁzblbﬁ—s&w,
with the constrainEabflba:SN(O$ S). In the language of

niques apply and the model can be reduced to the study of Roung tableaux, these representations are described by one
self-consistent single-site problem, which is, however, stilline of length SN They are a natural generalization of an

highly nontrivial because of quantum effects. The lakge-

limit is instrumental in allowing for an explicit solution.

SU(2) spin of sizeS.
(b) Fermionicrepresentations. The spin operafis rep-

Nevertheless, some of our results regarding the quantumesented using Abrikosov fermiong by Saﬁ:fzfﬁ

critical regime have been extended beyond the I&tdienit.

In a recent publicatio”’ we summarized the main results of

—oJ,s, With the constraink ,,f1f,=goN (0=<go=<1). In

'gle language of Young tableaux, these representations are

the present study. Here we provide detailed derivations an escribed by one column of lengtigN. Note that for SW2)

new results, such as a full discussion of the paramagneti

phases and a discussion beyond laxge

8nly S=0 andS=1/2 can be represented in this manner.
In the following, we refer to the model with bosoriier-

The model considered in this paper is defined by th&,ionic) representations as the bosotfiermionic) model. In

Hamiltonian

> JiS-S, )

1
H= —
VAN <)

where the magnetic exchange couplidgsare independent,

guenched random variables distributed according to a Gaus

ian distribution

127972
o 35129

1
P(Jij)= 3 2

aa

As already pointed out by Bray and Modteafter using the
replica trick to average over the disord@rthe mean-field
(infinite-dimensional limit maps the model onto aelf-
consistent single site modelith the action(in imaginary
time 7, with B the inverse temperature

— ‘]2 k 'rab /§a ST
Seﬁ_SB_mjodeTQ (r=7)S%(7)-S(7") ()

and the self-consistency condition

ab . _ry— 1 = &by
Q7= 1) = 2SS ())s,y @

where a,b=1,...n denote the replica indiceghe limit n
—0 has to be taken lateand Sg is the Berry phase of the

spin® Due to their time dependence, the solution of these

mean-field equations remains a very difficult problem Nor

=2, even in the paramagnetic phase. Thus, in Ref. 21, as

well as in most subsequent wotkthe static approximation
was used, neglecting thedependence of2°(7). This ap-

the fermionic model, quantum fluctuations are so strong in
large N that the spin-glass ordering is destroy@dontrary

to the bosonic model, where a spin-glass phase exists, as
explained below. The two models have different theoretical
interest:  if one wants to concentrate on the quantum-critical
regime, above the spin-glass ordering temperature, one can
tise the fermionic modehs, e.g., in Ref. 25 However, since

we are interested in the spin-glass phase itself, we will now
focus on the bosonic model. Nevertheless, our results on the
paramagnet will be valid for both cases with only slight
modifications explicitly quoted below.

In the N—o limit, the mean field self-consistent model
(3) reduces to an integral equation for the Green’s function
of the bosonG2°(7)=—(Tb¥(7)b b(0)) where the overbar
denotes the average over disorder and the brackets the ther-
mal averagé?®

(G H2(ivy) =i vpBap+t N20p— 220 vy), (58
S%(n) =GN PGE°(— 7), (5b)
G3(r=0")=-S. (50

Similarly for the fermionic model, we have
(G H*(iwn) =i wndapt N20ap—2{ (1), (63
380%(r) == 3%(G(7)°G(— 1), (6b)
G(7=0"Y)=0qo. (60)

In these equations; (w) are the bosoni¢fermionic) Matsub-

proximation may be reasonable in some regimes, but preara frequencies and the inversion should be taken with re-
vents a study of the quantum equilibrium dynamics and ispect to the replica indiceshb. Note that our conventions for
particularly inappropriate in the quantum-critical regime.the sign of the Green'’s functions in this paper slightly differ
However, this imaginary time dynamics has been explicitlyfrom those of Ref. 19. Note that, although the equations are

studied in a quantum Monte Carlo simulationthe para-
magnetic phasewith spin S=1/2 by Grempel and
Rozenberd* Recently, we introduced a lard¢-solution of

written in term of G, the physical quantity is thiocal spin
susceptibility xio.(7) =(S(7)S(0)), which is given in the
largeN limit by
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e Nijsg e peculiarities in the nature of replica symmetry breaking,
% 33 % where the dynamic freezing into the spin-glass phagg) (
6 74 | Classical happens at a slightly higher temperature than the equilibrium
5| / g e transition (T5g).
= o For smallS we also find a spin-glass phageig. 1) at
4t % m 1 Semiclassical T=0, but the order vanishes at a small Moreover, its
T/J 3! % ‘2 1 regime excitations and finitéF properties are very different from
s é ] those at largeS. These are now dominated by signals of a
21 < //Z/ 1VS “spin-liquid” state discussed in Ref. 19 and described in
1 ﬁ _____ = Sec. Il A. In particular, we describe a quantum-critical re-
R w gion in the paramagnet where max{) is the characteristic
0 0 ] 5 3 2 ! 5 energy scale and the local dynamic spin susceptibility obeys
S Xioc(w) ~tanh@/2T). We believe that aspects of this regime
Quantum critical regime  Quantum spin glass regime may be relevant to disordered transition-metal and rare-earth

compounds in regimes where exchange interactions between
FIG. 1. Phase diagram of the mean-field bosonic model. Theréhe magnetic moments are playing a dominant role. Comple-
is a spin-glass phase below the spin-glass temperafyravhich is  tion of this picture requires an understanding of the stability
determined with the marginality conditidsee Sec. IY. Tjis the  of the “spin-liquid” picture to mobile charge carriers and
spin-glass temperature as determined by the stationarity criterion.this has also been addressed in a previous work.

_ ~aa aa,
Xioc( ) = G (1) G (— 7). ) IIl. PARAMAGNETIC PHASE

In many instances beloywhere we mostly focus on the Contrary to the classical case, the paramagnetic phase of
bosonic case we shall drop the indek in G, . quantum spin-glass models is nontrivial in mean-field theory.
From both analytical and numerical analyses of these inAn early discussion of these solutions has been given in Ref.
tegral equations, we have constructed the phase diagram dit9, but we present here a much more complete description
played in Fig. 1, as a function of the size of the spiand  and compare our results to tie=2 case, when numerical
temperaturdl. Let us give here a brief overview of the main results are available. Since in this section we look for para-
features of this phase diagram, which will be studied in greatmagnetic solutions, we will consider onhgplica-diagonal
detail in the rest of this paper. As is evident from Fig. 1, it issolutions of Eqs(5): G?P=§,,. Two types of paramag-
useful to divide the discussion into models willarge and  netic solutions have been found, which we will now consider
S small. Both regimes are accessible in the lakgémit, successively: thespin-liquid solutions and thdocal mo-
whereSis effectively a continuous parameter taking all posi- mentsolutions.
tive values. For the physical cabe=2, we will present evi-
dence later that at leaS=1/2 is in the smallS regime for
the infinite-range model; moreover, we can expect that at
least some of the consequences of increased quantum fluc- 1. Large-N limit
tuations in a realistic model with finite-range interactions are

mimicked by taking smal& values in the largé\ theory of tions (5) reveals that, under the condition that-3 (i0*)

the infinite-range model. ; . .
: vanish at low temperature, a solution can be found which
For largeS, the ground state must clearly be a spin glass

(Fig. 1. However, even for very larg§, it is necessary to (j|spl.?g/s a power-law decay of th_e Gre_en s functl_on at Ipng
consider quantum effects in understanding the Toexcita- f“me' G(T)Nll‘/;' These solut_|ons display a singularity
tions and thermodynamics, and these have not been pre\)ﬂ.the com.plex plane of freque_rml%,atz:O, with an am-
ously described. In this papéBecs. IVC2 and IV, we plitude which can be parametrized by an anglas

will show that the local spin susceptibility has a low-energy

A. Spin-liquid solutions

A low-frequency, long-time analysis of the integral equa-

density of states which increases linearly with energy. At the A im0
same time, the specific heat also has a linear dependence G(z)~ for z—0, Imz—D0. (8
upon temperature. These results hold for temperatiires Vz

<J/S, although characteristic excitations have an energy of

orderJSfor T<JS; we will provide scaling functions which  (vajues ofz on the imaginary frequency axis at the Matsub-
determine the dynamic response functions at these energieg:a frequencies will be denoted by, while on the real axis

At even highefT, there is a phase transition to a paramagnefuill be denotedw.) Thus these solutions display a slow
at T~JS. For largeS the static properties of this phase |gcal spin dynamics:  Iny,(®@)*sgne for o—0, T=0.
transition are well described by a purely classical theory irMoreover, thelocal susceptibilityX|oc(T)EI€X|OC(T)dT di-
which the S in Eq. (1) are commuting vectors of length  verges ag,,(T) ~In T/J at low temperature. More precisely,
Notice also that we indicate two critical temperatufggand  one can find the thermal scaling function characterizing the
ng: as we discuss in Sec. IV, these are a consequence ef—, T—0 limit, as explained in a previous paper
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7l B . ) 0.0
X|oc(Taﬂ)“(W)+“', J)(,oc(w,T)octanhﬁ.
(9) 0.05 - 1

Note that in the paramagnetic phasegqofintummodels, the 0.04 1
local susceptibilityy,(T) (which is the response tolacal g
magnetic field differs from the uniform susceptibility(T) 003 | |
(response to a constant magnetic fieltbntrary toclassical
spin-glass models wherg= x|, (Ref. 22: This is a con- 0oz - |
sequence of the commutation relations of the spin, as can be ’
seen, for example, in the high-temperature expansion in the
SU(2) model. In this largeN limit, it can be shown that 0.01 1
X(T)<x10c(T) for T—0 and numerical computations indeed
suggest thaj(T)~ const’® ¥ 03 035 04 045 05

Remarkably, the paramete? which characterizes the
spectral asymmetf§ of the spectral density at low frequency 9/ u

can be explicitly related to the siz& of the spin(which
involvesa priori an integral of the spectral density over all . " _ ) : :
frequencies This is very similar to a kind of Friedel sum is given by rglanon(lO? and the points were Obta'n.ed previously
rule applying to this problem, and indeed the derivation fol_from a numerical solution of the saddle-point equation at zero tem-
lows a very similar route, based on the existence of zferature(Ref' 19.

Luttinger-Ward functional. (Interestingly enough, the
“boundary term” which usually vanishes in such derivations
contributes here a finite valye. This derivation is presented
in detail in Appendix A, where the following relation be-
tween#d andSis established:

FIG. 2. Sas a function of for the bosonic model. The solid line

solutions are unstable to the spin-glass solution, but above
the spin-glass temperature at low spin, they are relevant in
the quantum-critical regime associated with the quantum-
critical point atS=0. We shall comment in more detail, at

the end of the following section, on the nature of the para-
magnetic solutions found at low temperature for small values

1 . . . :
) §+S in the bosonic model of S in the bosonic case.
0  sin26 Another consequence of relati¢hO) is that it allows one
T 4 1 to predict that these spin-liquid solutions havenanzero

>~ 0o N the fermionic model. extensive entropyt zero temperature and to calculate the

(10) value of this entropy analytically. The derivation of this re-

) _ ) ~ sult follows very closely a similar analysis of the over-
This relation has important consequences for the physicalcreened multichannel Kondo problem in the lakgéimit,
properties of the spin-liquid solutions. First, we note that theperformed in Refs. 26 and 27, and only the main steps will
spectral density must obey the positivity conditionspe repeated here. This can be done either in the bosonic
Im G(w+i0")<0 and sgng)im Gy(w+i0")<0. Hence, i model or in the fermionic one, with slight modifications.
the fermionic caseg must obey— m/4< =<m/4. Itis easily  gince the spin-liquid solutions are relevant at zero tempera-
checked from Eq(10) that 6 precisely describes this range of yre only in the fermionic model, we shall present the result
parameters ag is varied fromgo=0 toqo=1 and that the in, this case. First, denoting k§the value of the entropy per

6(qo) relation is unique. This suggests that the spin-liquidspin at zero temperature, one establishes the following ther-
solution is an acceptable low-temperature solutions for thenodynamic equality:

whole range ofg, in the fermionic case. In contrast, in the

bosonic case, the plot in Fig. 2 shows tliaf) actually de- a8 )N

finestwo values ofé (in the allowed ranger/4< 6<3/4) Qe T (11)

for a given spinSas long asS<S,,,,=0.052, while no value T=0

of §is found forS> S;,,,. This implies that no paramagnetic Then a low-temperature expansion is used which allows one
solution of the spin-liquid type is founat zero temperature to relate the slope of (T) to the spectral asymmetry param-
in the bosonic case as soongis Sy, (note that furthermore  eter § above, so that one finally gets the fermionic case
Smax 1S very smal). For S<S,.x, such solutions exist at zero

temperaturdeven though they are not the true ground state: oS sin(m/4— 6)

see below with the locally stable solution corresponding to E: nm- (12)

the smallest of the two values &t However, even foiS

>Sax at low (T<J) but finite temperaturethe spin-liquid ~ The entropy is then obtained by integration over the size of
solutions do exist in the bosonic model. By this, we mearthe spin, with the physically obvious boundary conditions
that a numerical computation in imaginary time gives a so-5(qy=0)=S5(qo=1)=0. The resulting value of the entropy
lution which exhibits the scaling forn(®), for which a un-  as a function ofy, is plotted in Fig. 3.

ambiguous value of the spectral asymmetryan be defined Finally, we comment on the physical nature of the spin-
and computed numerically. At very low temperature, thesdiquid paramagnetic solutions found in this section. These
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05 T semble defined by Eq(13) decay with the power law

(S(7)-$(0))~1/7|, and we are interested in determining
the value of the exponent. A simple extensiol? of the

04 - E
solution discussed above implies that in the lakgkmit o
=e. Here we will argue that this equality is in fagxact for
03 L i all N. Now using the self-consistency conditiof), we ob-
g tain o= e=1, which then implies Inyjy.>*sgnw.
173
02 | 1 (13) was discussed in Ref. 29, and we will highlight the main

results. The key observation is that renormalization of the
theory (13) requires only a single wave-function renormal-
ization factorZ and that there is no independent renormal-
ization of the coupling constant,. This result was estab-
lished diagrammatically in Ref. 29, and we will not
0 0.2 0.4 0.6 0.8 1 reproduce the argument here. So if we renormalize the spin
© by S=ZS:, then the coupling constant renormalization is
FIG. 3. Entropy as a function of the size of the spip)(in the ~ simply Yo=uyl \/Z where u is a renormalization scale.
fermionic model. The renormalization constant is in general a complicated
function of y and was determined to two-loop order in Ref.
solutions correspond to a partial screening of the local moz29:
ment at each site, due to the interaction with the other spins.
CL e . . . 2 2 4
As a result, the local susceptibility diverges logarithmically _, Y Y
, . ; Z=1——+—+--- (14)
(much slower than a Curie lgwbut an extensive entropy is € €
sl present afT =0, |nd|cat|ng a_degenerate state. From 4n a minimal subtraction scheme. However, even thoZigh
local point of view, the physics is somewhat similar to an

overscreened Kondo system, but here the gapless bath whi ot known exactly, the exponent can be determined ex-
ndo sy ' gaples 9 tly. Standard field-theoretical technology shows that the
guenches the spin is not external, but self-consistently gen-

erated by the other spins. We suspect that the physics of th%bove renormalizations imply the function

phase has to do with the degeneracy of tlaegeN gener- €y 19Inz)\ 1
alization of the “triplet” state in which two spins are bound B(y)=— 7( 1- > W)
whenever a strong ferromagnetic bafdis encountered. In Y
Sec. IlIA2, we show that this spin-liquid regime is not a Furthermore, the exponentis given by the value of
peculiarity of the largeN limit, but indeed survives in the

mean-field description of the quantum-critical regime of a dlnz

SU(2) quantum Heisenberg spin glass. It would be very valu- a(7)=B7) dy

able to gain a more direct understanding of this gapless spin- i ) . )
liquid regime from a study of the problem for a fixed con- & the fixed pointy=y* where 5(y) vanishes. Comparing
figuration of bonds before averaging over disorder. ThisEds-(15 and(16), we see that

could be achieved numerically and is left for future studies.

0.1

|
|
|
|
|
|
|
|
|
| The field-theoretic renormalization group analysis of Eq.
|
|
|
|
|
|
I
|
|

(15

(16)

B(y)=—[e=a(y)]y/2. 17
2. Beyond the large-N limit Clearly, a zero of thes function must haver=e¢, and this
This subsection will show how recent renormalization€Stablishes the required result. N _
group analyses of related modéi&2%imply that the above We note that similar examples of a critical exponent being

spin-liquid solution applies to all orders inN/ In particular, ~Valid to all orders(in spite of a nontrivia|s function) can be
the largeN solution with Imy;,.sgna for small w acquires found for other models in the statistical mechanics of disor-
no corrections to its functional form: the only changes aredered systemssee, e.g., Refs. 30 and 31
to the nonuniversal proportionality constant. All the discus-
sion below will be in a paramagnetic phase where it is suf- B. “Local moment” solutions
ficient to consider only a single replica, and so we will drop
replica indices in this subsection.

We begin by rewriting Eq(3) in the following form'!

In a mean-field model, one usually expects to find locally
stable(while possibly unstable to orderingaramagnetic so-
lutions of the mean-field equations down to zero tempera-
8 ture. Hence the absence of solutions of the spin-liquid type

Sefr=SB—?’of drS(7)- ¢(7), (13)  for S>Snax suggests that a different kind of paramagnetic
0 solution should exist for those values of the spin. Indeed, we
R have found that the integral equatiof® have another class
wherey, is a coupling constant andl is an annealed Gauss- of paramagnetic solutions in the bosonic case. These solu-
ian random field with{ (7)- $(0))=1//7|>" <. It is reason- tions actually exist for all values of the spand down to
able to expect that the spin correlations in the quantum erzero temperature. Hence they coexist at Bwith the spin-
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2 ————————== Fem—ee—= e physicalN=2 case. Moreover, a numerical solution of the
largeN integral equation$b) for real frequencies can also be
obtained both at high and low temperatures. The results are
presented in Fig. 5 for both,(w)=—1/7Im Gy(w) and
Xiod(@)=1/7Im xo(w). At high temperaturep, is cen-
tered around ~ T In[(S+1)/S] and y|,.(w) is a simple peak.
At low temperature, we find iryj,.(w) a &function peak at
zero frequency with weigh®?, which is associated with lon-
gitudinal relaxation(see Ref. 24 for a discussion fbr=2)
and two peaks, centered aroumc «1/T [cf. Eq. (18)] with
a constant width, which are associated with transverse relax-
ation. Again, these results are very similar to the conclusions
reached in Ref. 24 from a fit of the imaginary-time data for

05 ‘ ‘ s ‘ N=2, using a modek”(w). The only difference is that the

0 02 04 /8 06 08 ! central peak is not broadened by thermal fluctuations in the
largeN limit.

FIG. 4. y,e(7) extracted from a numerical solution of saddle  Finally, since these solutions describe the formation of a
point equationg5) in imaginary time, forS=1, J=1. The solid local moment at low temperature and since the onset of the
curve is low temperatureJ@=10), and the dashed curve is high gquenching temperatur@t which the reduction of the Curie
temperature J8=0.1); for intermediate temperatures, the curvesconstant sets jnturns out to be lower than the temperature
interpolate between the two. where spin-glass ordering occui@s shown in the next sec-

tion), we consider these solutions as a mean-field artifact of
liguid solutions in some range of temperature. Their physicathe spin-glass ordering. Static limits of such solutions are
nature is very different from the previous spin-liquid solu- actually known to occur in the classical SK model. We also
tions, and as discussed below, they are not very physicalote that the internal energy of these solutions has an un-
solutions when considered at low temperature. They arghysical divergence ag—0.
characterized by a Green’s function which does not decay at We close this section by noting that, for small values of
long times and obeys the asymptotic behavy(7)=—S  the spinS a rather intricate pattern emerges for the stability
—e 985’ |n contrast to the spin-liquid casediverges for ~ and coexistence of the two kinds of paramagnetic solutions

Xioc(T)

T—0 in this regime: described above. We have studied this numerically in some
detail, but do not report this here, since most of these phe-

J2s2 nomena occur below the spin-glass ordering temperature

A~ T (18  anyway. The important features have been displayed on Fig.

1. We emphasize again that the spin-liquid solutions are the

Finding numerically these solutions of Eq&) requires relevant solutions describing the whole quantum-critical re-
some care. We have used an algorithm in which we solvgime. Even though they are unstableTat 0 for S>S,4,
Egs.(5) in imaginary time forG(7), for a fixed value ofr they remain consisteffinite-temperatureolutions in a much
= [BG(7)dr, and then adjust the number of particlesStoy ~ wider range of values of for T<J. At higher S and above
a dichotomy orr. The local susceptibility,.(7) obtained in  the spin-glass ordering temperature, the paramagnetic phase
this manner is displayed in Fig. 4. At high temperature, webehaves as a local moment, with the Curie constant getting
find x0(T) =S(S+ 1)/T as expected since the spin is essengradually reduced a8 is lowered.
tially free. At low temperature, we find another Curie law,
with' a reduction of the Curie constant due to quantum fluc- IV. SPIN-GLASS PHASE
tuations:

In this section, we investigate spin-glass ordering in this
model. The first observation that we mal@ec. IV A) is that
the spin-glass susceptibilify.e., the response to a spin-glass
ordering field is actually of order I in the largeN limit.
Hence, for these solutions, the effect of the interactions withrhjs does not preclude a spin-glass phase, but means that the
the other spins is not strong enough to result in a qualitatransition is not associated associated with a linear instabil-
tively different screening regime, resulting merely in a re-jty. Indeed, we shall find explicit solutions in the ordered
duction of the Curie constant. This is analogous taiader-  phase in the bosonic case, while the fermionic case does not

screenedkondo regime. have a spin-glass phaseMt = (but does order as soon as
These solutions are of a similar type as those found in in/N corrections are considered
24

a quantum Monte Carlo simulation of the &Y mode?
There, also, a reduction of the Curie constant fr&(s
+1)/3to 52/3 was clearly observed. Thus, contrary to one of
the conclusions of Ref. 24, the lardelimit correctly repro- Here we derive an exact expression for the spin-glass sus-
duces the paramagnetic local moment solution found for theeptibility, valid for arbitraryN in this mean-field model.

2

S
Xiodd T)= T for T—0. (19

A. Spin-glass susceptibility
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The derivation is most conveniently performed using repli- One can then perform an expansion of the off-diagonal
cas. We note that in the presence of spin-glass order, theorrelation function up to linear order in bokh,, and 5Q3".
correlation function (S%(7)-S°(7')) acquires a nonzero This yields

value fora# b, which is, however, static, i.e., independent of

7— 7' (see, e.g., Ref.)8This crucial point is due to the fact 1

that different replicas are independent of one another before _=.2 2 smab

averaging, so that, foa#b, Oan =y Xioc Hap + 70Q"), @3

(S(7)-S2(7)=(SX(n) (S(7"))=(5%(0))(S°(0)). in which x. is the local susceptibility of the paramagnetic
phase. SincéQ3°= 54,y this finally yields the susceptibil-
In the following, we shall denote by, the (normalized ity to spin-glass ordering:
off-diagonal correlation function which is an order parameter
for the spin-glass phase: )
_ 5qab_ E Xloc
X Hap N 1-(Oxi0 7N

1 —-———— (29
dav= 1z 2 ($(7)- (7). (21
a#b

We consider the stability of the paramagnetic phase to thid his formula has two important consequences. The suscepti-
type of ordering and introduce an ordering field,, conju-  bility to spin-glass ordering is of order N/ and any spin-
gate toq,,. This has two effects. glass instability alN =9 must be associated with a nonlinear

(i) It adds to the effective actiof8) an explicit term effect of higher ordefi.e., come from terms of higher than

quadratic order irg,, in the free energy Furthermore, Eq.

1 R R (24) shows that for finiteN, a (linean instability into a spin-

0S= Nf de dT’E;b HapSa(7) - So(7'). (22) glass phase will occur whedy,(T)=N. Hence the fer-

mionic model, for whichy,,. diverges at lowT, will have a

The normalization of ,, has been chosen in such a way thatspin-glass instability for arbitrary large but finité. More
the change in the total free energy is of ordler precisely, since the low-temperature behavigi,.~In(J/T)

(i) It modifies the value of the self-consistent figDd®. has been shown above to hold for Hlfor the paramagnetic
The change of the off-diagonal component, to linear order, isolution of the fermionic case, we conclude from KE24)
imposed by the self-consistency conditiof) to be §Q2°  that the spin-glass transition temperature depend®adn
= 8Qap, With 8q,, the induced order parameter. that case a3’ ~Je N,
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B. Spin-glass solutions and the “replicon” problem We then eliminatex in Eg. (28) and é(O) in Eq. (29) and

We now turn to the explicit construction of solutions of obtain finally a closed set of equations f8randg:
the integral equation$5) with spin-glass ordering, in the
bosonic case. The same reasoning as above shows that the
Green’s functionG2°(7) does not depend om for a#b.

Thus the most general ansatz for the Green’s funcBah

~ J = ~
[Blive)] =ivy— 5 [S(iv)-S(0)],  (31a

can be written as i(r)sz[éz(r)é(— T)—Zgé(r)é(— r)—géz(r)
Gab(T): é(7—)_91 (a:b)v (25) +2926(T)+926(_7_)]' (Blb)

_gab (aib)v - B
G(7=07)=—(S—9), (310

whereG(7) is a function of the imaginary timey,;, a con-
stant matrix, andy, a constant. By definitiong, is fixed so
that G is regular atT=0, i.e., G(7)—0 asr—. In the
following discussion, we will restrict ourselves to solutions
given by a Parisi ansatz fa,, (a replica symmetry breaking
scheme In then—0 limit (wheren is the number of rep-
lica), this matrix becomes a functiog(u) of a continuous
variableu with O<u<1.2

Our equationg5) involve the Green functios, whereas
the physical quantity is the susceptibilityy2°(7)
=G?(7)G*(— 7). The order parametay,;, widely intro-
duced in the spin-glass literatGfeis given here byq,p
=g2, or, in the limitn—0,

1 /1

The crucial observation at this point is that these saddle-point
equations possess a one-parameter family of solutions, pa-
rametrized by® or equivalently by the breakpoint This
phenomenon already occurs in other models which have a
one-stepreplica symmetry breaking solutiofi. The determi-
nation of the breakpoint turns out to be the most difficult
question of this analysis. Two possible criteria are the fol-
lowing.
(1) To minimize the free energ§(x) as a function ok,
as would be required by the thermodynamics. In the follow-
q(u)=g(u)2 (26) ing, we will refer to this as thequilibrium criterion This
criterion has been used in a previous attempt to understand
The Edwards-Anderson parametemis,=q(1)=g(1).2?  this spin-glass phasg.
Since at zero temperature, in the long-time limit, we find (2) To impose a vanishing lowest eigenvalue of the fluc-
lim, .. G?¥(7)G*(—7)=0ga, We findg;=9g(1), by defi-  tuation matrix in the replica space. We will refer to this as
nition of g;. More precisely, we look for solutions in which the marginality or repliconcriterion. Although it is not really
these two definitions oflg, coincide, but it is not really an justified up to now, we will argue that it is the correct choice.
assumption in our computation: if this relation were vio-  This problem is not due to the quantum aspect of our
lated, we would simply find fofs a nonvanishing limit for model: it already appears similarly in some classical spin-
T— 00, glass models, in thp-spin model, for example. In this clas-
Among the various possible replica symmetry breakingsical model, the study of the dynamics shows the existence
scheme€? we will now focus onone-stepsolutions, since ©of a dynamical transitiolf®" above the static spin-glass
we have not found any other, either two steps or with coniemperaturd € given by the static solution of the mean-field
tinuous replica symmetry breaking. In this case, the functiornodel. It turns out that, in this classical model, the replicon
g(u) is piecewise constant:g(u)=g for O0<u<x and criterion has been proven to give the same transition tem-
. . c_ Tdyn H 5
g(u)=g for x<u<1. In the following, we will refer tocas  PeratureT®=T%". Moreover, it has been sho#i°that the
the breakpoint According to Eqs(5), the self-energ has ~ same phenomenon occurs in someantumversion of the
the form p-spin model. Thus, using this condition, it is possible in
some sense to mimic the dynamics by simply solving a static
S(7)—J%g® (a=h), problem, although this is not fully understood at present.
32 (ab) 27 In the present model, the two criteria give a coherent so-
ab ’ lution, but with totally different spectra cgquilibrium fluc-
with 3 is given by Eq(31b). Using the standard formulas to tuations: the equilibrium criterion leads to a gapyf(w),
invert the Parisi matrices in the limit— 032 we find whereas the replicon criterion is the only one which gives a
gaplessy”(w) (a similar observation was made in Ref. 33 in
G Yivy) =ivg+A—S(ivy), (28) @ one-dimensional quantum model with disojdet/e be-
lieve that in this quantum Heisenberg spin glass the replicon
2028301, — 02— 2oy 3R (i, — criterion provides us with the correct physical solutidn)
PG =0)"=1+IBxg"C(in,=0). (29 contrary to the equilibrium solution, which gives the static
At this stage, it is useful to introduce here a new param@ter transition temperatureT,). However, this claim cannot be
defined by proved in the present context: in particular, the static solu-
tion does give a full solution of Eq$5). A study of the true
Hamiltonian dynamics in real time and finite temperature of
this quantum problem is necessary for a deeper understand-

3a(r)=

é(ivn)z—g. (30)
Jg
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ing of this question, but this is beyond the scope of thisto be connected to a gapless quantum excitation spectrum.
paper. Let us now examine the two criteria separately inNe may intuitively understand this as due to the availability
more detail. of many low-energy states when the system first freezes, but

a better understand should emerge from a real-time analysis.
1. Replicon criterion

To apply the replicon criterion, we need to study the fluc- 2. Bquilibrium criterion

tuations of the free energy in the replica space around the To apply the equilibrium criterion, we start from the ex-
one-step solution. In the largé-limit, the free energy is pression of the free energ¥ and solve forx:

iven by the expression
g y p dF(x) L o

The computation of theotal derivative (36) reduces to

372 8 3xF(x)|& \ because the saddle-point equatié¢bisfor finite n

+ TZ; J dr{G*(n)G* (- 1)]*—\S. are equivalent to
a 0

f[eab,x]:%E Trinfiv,+ A =32 v,)]

JdF JF
o - . .(32) 3G~ gn 0 @
Under infinitesimal variatiordg,,, for a# b, the variation of
the free energy isup to second ordegr as can be checked by an explicit calculation. Computing the
logarithm in Eq.(32) (using Appendix Il of Ref. 32 and

SF= azb M ab cadFandTcd. (33) taking the derivative leads to

c>d 3 2 - g
Strictly speaking, as this is a quantum problem, we have to ZJZQA_ (Bx)? In[=JgG(ivy=0)]=—- —————
simultaneously consider the variation of the diagonal com- BxG(i V"_Oz38)
ponent,8G(7) in Eq. (25), in a study of the fluctuations. In
a spin-glass phase, there is indeed a coupling betwggpn and finally to an equation fo®:
and 6G(7) which modifies the fluctuation eigenvalues. For- 1 1 302
tunately, however, as we show in Appendix B, this coupling 2InO + + 5T 1 =0. (39

does not modify the eigenvalil and our main resul¢35)

below, and so we will negleaG(7) here. The diagonaliza- This equation has two solutions: the replica-symmetric one
tion of the n(n—1)/2xn(n—1)/2 matrix M is briefly ex- ©®=1 (unstable, as explained abgvand a nontrivial one

plained in Appendix B and gives three eigenvalues O=0,~0.4421.... Contrary to the previous solution, we
e,=38J2g%(1—302), v@wll see in Sec. IV C 2 that In® has a gap for this value of
3pIg* 5 .
&= —gz [0°-3+3B8Jg°0(1+0)], C. Phase diagram
Once ® has been determined, Eg®81) can be solved
e;=63J°g%(3B8Jg°0 —1). (34)  either numerically(both in imaginary time and in real fre-

quency or analytically in theS— limit. In the following,

A first consequence of this analysis is that replica-we will mainly restrict ourselves t@ = ® since we believe
symmetric solutions are unstable, since from B1d) they that it is the correct solution. However, all calculations have
correspond to¥=1 and thene;<0. Hence these solutions been redone fof =0, with related results.
will not be considered in the following discussion.

A full solution of Egs.(34) is required to show the posi- 1. Numerical solution

tivity of &,,e3, but we immediately see thag =0 for First, the critical temperature is obtained from the numeri-

cal solution of Eqs(31) in imaginary time: the spin-glass

O.=—. (35) order parameteq(T)=g?(T) and the breakpoink(T) are

V3 displayed in Fig. 6 as a function of the temperatuen-

creases linearly witil from 0 atT=0 (there is no replica

Quite remarkably, we will see below in Sec. IVC2 and symmetry breaking at zero temperaMrand ng is deter-

Appendix B 2 that preCisely the same value@fs selected mined by the Conditiorx(TSg): 1, since we must have 0

by a criterion which is seemingly entirely independent. We<x<1 py definition®? Hence there is a discontinuity mat

will study the dynamic spectral functions in the spin-glassthe transition, but we will show below that the transition is

phase as defined bg(7), and show that their associated second order. A careful numerical study shows that the tran-

spectral densities are nonzero a$— 0 only for the value of  sition is always driven bx=1 for all values ofS and pro-

in Eq. (35. So marginal stability in replica space appearsduces the critical temperature displayed in Fig. 1. The com-
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1.5 ‘ commuting vectors of lengt8 Equationg5) are analytically
solvable, and we can obtain a closed-form expression for the
critical temperature at which spin-glass order vanishes:

/ T~ —JS (40)
/ 9 3v3
05 | e 1 A second, more sophisticated limit, valid at lower tem-
T — el peraturegwell within the spin-glass phages when we ex-
\ -7 aminew andT of orderJS It is therefore useful to define the

g variablesw = w/(JS) andT=T/(JS), which remain of order

0 L” ‘ ‘ ‘ unity at largeS. With this scaling, the integral equatiof®l)

0 02 04 06 08 reduce to independent quartic equations for each frequency.

Tse T More precisely, if we make the following ansatz for the
Green’s function,

FIG. 6. The Edwards-Anderson parametgy, and the break-
point x as a function of the temperatufefor a fixed value of the 1 1
size of the spinS=1(J=1). The transition to the paramagnet is GlwT=—a (0. T)+ o)+ 41
given by the conditiorx=1. (@.T) Jsgl( T ﬁgZ( T ’ 4D

then to leading order in $/ Eqgs.(31) reduce to
putation is similar for the critical temperatuﬂ'ég given by ¢ ¥ Egs.(3Y

the “replicon” criterion and for the critical temperatu@g

g|cven by the egwllbrlgm criterion. Morepve_r, we flndqthat g(T)=S—f p(@)dw,

Tgy thedynamictransition temperature, is higher théfﬁg, —w

the static transition temperature: this is required by our

physical interpretation of the two solutions, but it was not 1

obviousa priori from the integral equations solved. 9y (@) t=w- 6 30-2g,(@)—gi(—-@), (42

2. Large-S limit and spectral densities S
g P where p;=—Img; /7 as usual. Eliminating the frequency

Further analytical insight into the spin-glass phase itself- 4, we find a quartic equation fay,(»). We do not ex-
can be obtained by considering various la&jénits, which  piicitly display the far more complicated equation for the
differ by the manner in which temperatures and frequenciesubleading ternys,.
are scaled witl (see Fig. 1 The solution of the quartic equation f@ =0 is pre-

In a first simple larges limit, we takeT large enough so  sented on Fig. 7 together with a numerical solution of the full
thatT/JSZ is of order Unity. This is the Simple classical limit integra| equation folS=5. From the solution of the quartic
in which we can neglect all nonzero Matsubara frtiquenciegquation, we find thap, vanishes linearly frequency at low
and Eqg.(1) reduces to the classical problem in whighare  frequencies; indeed, we find the analytic expansion

0.15 ‘ ; - 525(5})
\\\ 0.2 ‘ ‘
\
\
o1t \ i
\ 0.15 ¢
p(@) e
L | w
0.05 X ( ) 01
W
0 L 0.05
—0.05 ‘ ‘ 0 : ‘
50 25 0 25 50 -40 -20 0 20 40
(a) o (b) w

FIG. 7. (a) p1(w) atT~0 for S=5 and®=0y: the solid line is the numerical solution for the integral equaf®h: the dashed line
is the solution of the quartic equatidal) for g,. (b) x"(w)/w at T=0 from the quartic equation.
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i 3 3 . . .
gm:—%‘(l;)m(z jmﬁz (43) T

at low frequencies. We expect that the full Green’s function

in Eg. (41) also has a similar low-frequency expansion, al- 2 |

though this has not been proved. It is not difficult to show

that the linear low-frequency spectral density holds at higherC(T)

orders in the 13 expansion; moreover, our numerical results,

shown in Fig. 7, also clearly indicate a linear behavior at

small w. At dominant order in the present lar§dheory, the

spin susceptibility is given by

U(T) -20 il

J2 30

X (0)= =7 [ "axp,00p1 06— @)+ 97T o)~ pa(~ 0)] 0
0 0 20 40 60 80 100
+7g?Bwd(w) (44 T/J

and this is also shown in Fig. 7.

It is important to realize that the deceptively simple struc-
ture in Eq.(43) relies on the special valu® =0z=1/3
determined by the entirely different replicon argument in
Sec. IVB1. For arbitrary values od, we find either no

physically sensible solution of the largequartic equation /o noted in Fig. 1, there is a third “quantum” regime at

(this is the case at the replica symmetric vatliee 1 where even lower temperaturég~J\/S, and this becomes evident

the spectral density does not satisfy the required positivity, ; g4,qy of the thermodynamic properties presented in the
criteria) or a solution with a spectral gap. In the latter Case’following section

the solution forg; is real for small reakw, and there is an

onset in the imaginary part (w — w.)*? above some critical

frequencyw.. The solution for® =0, is of the second

type: it has a finite-energy gap, but does not violate any We now turn to the internal enerdgy and the specific heat

spectral positivity criteria. C. By computing the average of the Hamiltonian in tRe
This subsection has so far identified two distinct lage- — limit, we find thatU is given by

regimes. In the regim@~JS*, we have purely classical

behavior (the nonzero Matsubara frequencies can be ne- J2 B

glected for static propertigsind a phase transition at a criti- U(T)=~- ?j d7G?(7)G?(—7)]% (45

cal temperature in Eq40) where the spin-glass order van- 0

ishes. At lower temperaturés~JS, we are well within the  Using Eq.(25) and the one-step replica symmetry breaking

spin-glass phase, and the semiclassical dynamics is describadsatz in the spin-glass phase, we find

FIG. 8. The specific hed@(T) and the internal energy(T) vs
the temperaturdl, from a numerical solution of Eqg31) for S
=5 and®=04.

by the solution of a quartic equation defined by E&R). As

D. Thermodynamics

J% (8
—?f G(7)°G(—7)%d~ in the paramagnetic phase
0
U(m= 2 B 72 (46)
—7J [G(r)—g]z[G(—r)—g]zdr—Eﬁ(x— 1)g* in the spin glass phase.
0

A numerical computation of the internal enerdyT) and  believed to have a unique solution, this implies that there is
the specific heat(T) is displayed in Fig. 8 fo®@ =0g. The  no discontinuity in the internal energy at the transition, indi-
condition for the phase transition between the two phases isating its second-order nature. This is confirmed by the nu-
that the breakpoint in the Parisi function reach its limiting merical solution displayed in Fig. 8.
value x=1. In this limit the equations determining the pa- Moreover, in the larg& limit defined above, we can per-
rameters in the spin-glass phase, E@), transform con- form a low-temperature expansion of the internal energy.
tinuously to those for the paramagnet. As the equations armserting Eqs.(41) and (42) into Eq. (45), and keeping the
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dominant terms at larg8, we find of previous studies of quantum spin glasses of Ising spins
and rotorglincluding models with p>2)-spin interactionk

U(T)=— ﬂ £+3® gz—JZQZEE none of these models contain quantum Berry phases in their

2\0 B effective actions, as is the case with the Heisenberg model.

_ _ _ They have strong consequences: the spin-liquid solution of

X[G(ivy)G(—iv,)+2G%(iv,) ]+ Sec. Il A and its spectral densit®) are novel properties of
@ the Heisenberg model. There is an intricate interplay in sta-
- ‘]_ £+3@ +JS(£+3® @ 9,(i77) bility between this spin_-liquid state and the state with spin-

210 ¢ o glass order at lowl, which we have also described. At suf-

ficiently low T, the spin-glass order always appears, and we

_Jsﬁ;n [91(i7m)Ga(—i70) + 2031 7) ]+ O(ISY), 2;\{: also described the thermodynamic properties of this
An important issue not resolved in our analysis is the
(47) origin of the marginal stability criterion in the fluctuation
where v,=v,/(JS). Clearly, this result indicates that the eigenvalues in replica space. We imposed this criterion in a
leading term inU(T) is a temperature-independent constantratherad hocmanner and found that it was the unique case
of orderJ<, followed by a term of ordedSwhose coeffi- under which the quantum excitation spectrum was gapless.
cient is a function only of T/JS). Evaluation of the latter Ultimately, the selection criterion for the spin-glass state has
function at lowT for ® =@y, yields a curious accident: the to be a dynamic one, and this requires an analysis of the
gapless structure of the spectral functions suggests that tig®proach to equilibrium in real-time dynamics. Such an
low-T expansion should depend only on even powers ofinalysis was not carried out here and is an important direc-
T/JS, but it is not difficult to show using Eq43) that the  tion for future research.
coefficient of the term of orde®(T/JS)? vanishes. The first ~ Another interesting open problem is to extend the study of
nonvanishingT-dependent term among those shown explic-Ed. (1) to cases wherd;; has a nonzero average value. This
itly in Eq. (47) turns out to be orded (T/JS)*. To obtain  Will allow for ground states with other types of magnetic
the true lowT behavior, we need to expand E¢7) to one  order, ferromagnetic and antiferromagnetic, and their compe-
higher order in 1%, and this requires use of the second termtition with the spin-glass state should be of some experimen-
g,, in Eq. (41). We do not expect any cancellation of the tal interest. Interesting transitions in the paramagnetic states
term of order /JS)? at this point, and so the loW-expan- from the spin-liquid state discussed also appear possible.

sion for U looks like We have already mentioned a recent sﬁﬁdpf the
quenching of the spin-liquid state by mobile charge carriers
U(T)=U(0)+aS(T/IS9*+Db(T/IS)?>+---. (48 into a disordered Fermi liquid. Combining this with models

just mentioned, with a nonzero averagg, should lead to
results of direct physical interest in the heavy fermion and
cuprate series of compounds.

Rather than numerically evaluating the valesandb, we
will be satisfied by the full numerical solution of Eq81),
followed by the evaluation of Eq46). The results are shown
in Fig. 8 and are consistent with E18). The structure of
the expansion in Eq48) suggests that these results are valid
for T<J\/S, where the specific heat depends linearly on the We thank G. Biroli, L. Cugliandolo, D. Grempel, P. Le
temperature. Although the present discussion has been cdboussal, and M. Rozenberg for useful discussions. S.S. was
ried out for largeS, we expect—and this is supported by our supported by U.S. NSF Grant No. DMR 96-23181. O.P. was
numerical results—that the linedrdependence of the spe- supported by the Center of Material Theory, Rutgers Univer-
cific heat holds even for smal asT—0. sity.
In Appendix C we describe the computation of the spe-
cific heat of the quantum rotor and Ising spin glasses consid- APPENDIX A: COMPUTATION OF THE SPECTRAL
ered in Ref. 13. As noted in the Introduction, these models ASYMMETRY
are simpler because they do not have quantum Berry phases
in their effective action. Further, at low orders in their Lan-
dau theory, the solution for the spin-glass phase is replic
symmetric. However, understanding the tiie>0 behavior
requires inclusion of higher-order, “dangerously irrelevant
terms which induce replica symmetry breaking; this is car- o
CIo:if
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This appendix is devoted to the derivation of E¢K0).
g\/e will consider hereafter the fermionic cagébe bosonic
one is very similar. At zero temperature, the number of par-
»» ticles is given by

dow .
——Gf(w)el*®

ried out in Appendix C, and we find that these quantum spin oy

glasses also have a linear specific heat at Tow

i * do F w0
V. CONCLUSION =iP —mz d, NGt (w)e

We believe that the results of this paper provide a reason- q
: e < dw ,
ably complete_understandl'ng of the infinite-range quantum _ipf Gf(w)&wEfF(w)e""m (A1)
Heisenberg spin glass. While there have been a large number 2T
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whereGF is the Green’s function with Feynman prescription The principle of the computation is very simple: we com-
on the real axis and the symmetric principal part is definecgute explicitly the integral with a regulatay>>0 and then

by perform the limit»— 0. Going to the real axis, we find
oo 777 oo
= li 3F :—fw1>0 ©1=%w;dw,d
Pf_w 7|7|T0 f_m +L. (A2) (@) o0 gy orcd@1dwzdes

w3<0 w3>0

Using the relation betwee@" and theretarded Green’s p(w1)p(wy)p(w3)
function G%, we find, for the first term,

w1+ w,—w3—w—i0" sgnw; (A7)

inw dwa InGE(w)e 0" Using the notatiom=a+ie,, b=b+iey,, €,,=+0", and
5 _Ow f

2T $,(X)=0(|x|-7) (& are b real and® is the Heaviside
R, A R function), we obtainusing the definition of the principal part
_argGy(07) —argGy(—) (A2)]
B o
spab=p|
*» de ooy a,b)= Sy
*‘Pf 5 0INGR(@)E . (A3) ’ ~=(z-a)%(z=b)
_ _ 1 (n(n+b)(77—a)
The arguments can be extracth from the onv- and high- (a—D)2 (77—b)(7;+a)\
energy behavior of the Green’s function, which leads to
argG(0")=—3m/4— 6 and argG{(—=)=—, respectively. _ iy
The integral on the right of EqA3) can be easily evaluat- timy,(b)sgney—imy,(a)sgne,
ed: we close the contour of integration, avoiding the singu-
larity at w=0, and use the analyticity of the retarded Green’s N 1 1 N 1 A8)
function in the upper half plane, in which it has no zeros or a—b\yp—a gt+ta)’

oles. We find, finally, . .
P y Using the spectral representation 8f and Eq.(A7), we

16 de F 00" find
Jo=7— ;—IP _wﬁGf(w)awEf(w)e . (A4) 3
I=- f [1 dewp(wo)p(w1)p(wz)p(ws)d,

The problem is now reduced to the computation of the 42042 k=0

integral in Eq.(A4) as function of6, which turns out to be X (@1+ wy— w3— i € SGNW1, wo— i € SYNw,)

the most difficult point. An analogous computation was per-

formed in the ove%rzs;:reened regime of a laNjelescription (A9)
of Kondo effects*’ but it turns out to be more complex wjth an explicit integration ovew with Eq. (A8). In this

here. Proceeding along the lines of Refs. 26 and 27, we notgxpression, the integration domains are defined as
the existence of the Luttinger-Ward functionab

= [ dt G?(t)G?(—t), which has two properties: first, we ((©o<0) wo>0)
have 3 R(w) =6/ GR(w); secondd, is invariant in ;>0 w0,<0
the transformatiorG(w)— G(w+ €). From this, we could A= w,>0 U w,<0 [
naively think that the integral of EqA4) vanishes. How-
S . . . . . \ a)3<0 w3>0,
ever, it is not possible to find a regularization for the integral
for which we could use the invariance of the Luttinger-Ward
functional and a more careful analysis shows that [ o>0) ©o<0)
= do sin 26 _] @10 ®1<0
ipf 5 Gl(@)d,3f ()= —.  (AS) 82=1 4,50 Y w,<0( (A10)
- \ Q)3<OJ a)3>0)
To obtain this result, we introduce the following param- Since ¢,(—a,—b)=—¢,(a,b), a simple change of vari-
etrization of the singularity ab=0: able leads to
f:/—i for >0, I:_L_>O{[P(wl)P(wz)f’(ws)b(wo)
w |
plo)=4 o f (A6) ~ B(01)p(w02)p(w3)p(o) 1,
—— for w<O0.
‘/|O)| @ X(X1+X2+X3_i€1,_X0+i60)
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+[p(w1)p(wy)p(w3)p(wg) APPENDIX B: THE MARGINALITY CRITERION

— p(w1)p(@o)p(ws)p(wo) ] 1. Diagonalization of the fluctuation matrix

7

(X Xt X r ALl First, we diagonalize the fluctuation matfi in the rep-
(X1 +Xo+Xg—i€1, X0~ €o)}, ALD  jica space defined by Eq33). A priori M is an(n—1)/2

with p(w)=p(— w). To take the limity—0, we use the new ~<N(n—1)/2 matrix. However, we have taken feg,, the

variablesx;= nu; and the behavior gb(x) for x—0, param- _S|mple one-step r_epllcz_a symmetry breaking ansatzgs

etrized according to EqA6). The first integral in Eq(A11) "€+ thegx n matrix splits inton/mxn/m blocks: gap=9

vanishes at dominant order i (this term is proportional to I [&/m|=[b/m], 0 otherwise. Thus4 splits inton/m iden-

C2C2—C2C2=0), but the second integral gives tical m(m—1)/2xm(m—1)/2 blocks M,y cq does not van-
TsoTeTe Tl ish if and only if all indices are in the same blog&/m|

=|b/m|=|c/m|=|d/m[). Hence the diagonalization is to be

3 3
_ C+C—_C—C+¢ performed only on one blockwe set ka,b,c,ds=m),
u>0 \UugUyU,Us 7=1 which elements are given kith a, b, ¢, ddistinct replica
indices
X(U1+U2+U3_i€l,U0_i60). (A12)
[6) 2
UsingXx=Ug, y=U;+U,+ U3, and polar coordinates igu;, Mab,ab=AE3,8J2g2[1—3,823292 g%+| g+ T) ”
we find Z7=2m(C3C_—C3 C,)Z, with £Ig
(BY)
= (= dX 1 0
T,= —~Nd _ —R=_0R314n5 —
2 fo fo &W y{(x_yﬂé)z M ap,ac= B=—98%3%g (29+ ﬁJg>, (B2)
1+x1— . A~ 3146
X(In Toxity +I7T[(/11(y)—l//1(x)]) Map,cq=C=—183°J"g". (B3

This matrix has already been diagonalized in Ref. 36 and its
(A13) eigenvalues are given by

+ ! ! +
y—X—ie\l—y+ie; 1+y—ie)|
e;=A—2B+C. (B4)
After an integration by parts oyp and using

e,=A+2(m—2)B+(m—2)(m—3)C/2.  (B5)

fl dx [1+x 72 ALd
o x N1-x|" 4 (A14) e;=A+(m—4)B—(m-3)C. (B6)
we find Moreover, the degeneracies ef, e,, and e; are n(m
—3)/2,n/m, andn(m—1)/m, respectively. Using Eq$B1)
= de 3 and(B4), we find finally the result of the text, Eq34).
in EGf(w)awEfF(w): ?(Cic_—cicg. The above calculation has entirely ignored perturbations
o (A15) 5G(7) in the diagonal elements of E(5). Including these

greatly complicates the analysis, but a simple observation
Finally, a analogous computation can be performed in thawvill suffice for our purposes. Our main attention is on the

bosonic case, leading in both cases to cross-coupling betweeéG(7) and thesg,,. A simple con-
sequence of the block-diagonal structure of thg in the
© dw sin 26 mean-field solution is that this cross-coupling has the form
in — G (0)3,2 (w)= (A16)
— 27T 4 B
. _ _ SF~ > f d76G(7)8gap. (B
(in this expression— w<6<1). These expressions have a>b|a/m|=|b/m| JoO

been shown to agree perfectly with numerical computations ) )
in imaginary time for the fermionic case and on the real axid\OW We Can expandg,, in terms of the eigenvectors asso-
at zero temperature in the bosonic case. ciated with Eq.(B4), which were computed in Ref. 36. The

Let us note finally that we can guess the result if we admif€Y observation is that after the sum oeerb in Eq. (B7),
a priori that the integral is given by an homogeneous po|y_the cr0§s-terms gorrespondlng to all the elge.nvectors associ-
nomial of degree 4: due to the particle-hole symméiny ated with e; vanish. Consequently, thgse eigenvectors re-
the fermionic casd«—f', the result can be expressed as amain eigenvectors even upon includiaég(7), and the ei-
function of C2 —C* andC3C_—-C3C,). The first term is  genvaluee; remains unchanged. A similar argument shows
rejected since it leads to a singularity @t = /4. The pro-  that the eigenvalue; also remains unchanged, and only the
portionality coefficient is fixed by imposing==/4 for q,  €igenvectors asiomated wigh are modified nontrivially by
=0. the coupling tos5G( 7).
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2. Replicon solution is gapless 1
F= ;f dr

Let us assume that there is no gap in the boson spectral
density and more precisely that for smadl

>

a

— —+r
077'1 (?7'2

Jd d
|: Qaa( T1, TZ)

TI=Ty=T

= 0 _gf drd7d s, Q(7y,7,)QP%( 7y, 73)
G(w)=——+(atib)wO(w) abc
Jg

u
+(a' +ib")|w|*®(—w)+o(|w|*), (B8) ><Q°a(rg.rl)+§f dré Q*(7,7)Q*(7,7)
where® is the Heaviside functiorg,b,a’,b’ are real con- y
stants, anda>0. Then from Eq.(31b) we obtain, forw _EJ dTldeg; [Q3%(7y,75)]% (C2
>0,

Here r is the parameter which tunes across the spin-glass
IM[3(w)]=3%2g%IM[2G(w)+G(—w)]+-+-, (B9)  transition, andk, y measure the strength of various nonlin-
earities. The analysis of thermodynamic properties in the
< . spin-glass phase in Ref. 13 was carried out with a vanishin
2(w)=cH[d+i(2b—b") g, (B10) cgeffi%:ient gf the quartic terny,=0: in this case, the order ’
wherec andd are real constants. The other terms are subP2 ameter has Sreplica symmetry, and it was found thgt the
dominant in the limitw— 0 as can be seen using a spectrrclls'pec'fIC heat-T" asT—0. Here we W!” extgnd the squt|o_n
representation. We then expand 813 to second order to smally# 0 and show that the solution with broken replica

and obtain at first ordex=c+Jg/® and, for the imaginary symmetry has a linear specific heat.. .
part at second order, Time-translational symmetry requires that the mean-field

solution take the form

b—(2b—b’)®2?=b'—(2b’—b)®?=0, (B1l) 1 _
Q(1y,m) =752 Q®iven 2. (C3)
which leads to @ =1 is excluded sincé>0 andb’<0) ¥n

As in Eq. (25), we choose the following ansatz Q2

02=1%. (B12)
. . ... . ab,: D(iVn)+/3qEAv azbv
Thus the value o® given by the replicon condition is the Q*(iv,)= azb (C9
only onethat leads to a gapless bosonic spectral density. Bab. '
where the off-diagonal termg,,, are time independent and
APPENDIX C: FREE ENERGY OF QUANTUM ROTOR characterized by the Parisi functig{u), andq(1l)=qga-
AND ISING SPIN GLASSES We have included an additive factor Bfjg in the diagonal

term for convenience and without loss of generality: as in
Quantum spin glasses of quantum rotors and Ising spinghe discussion below E@25), we will find that this ensures
were studied extensively in Ref. 13. However, while thethat atT=0 the solution forD(T) vanishes ag— . Also,
paramagnetic phase and the vicinity of the quantum-criticathe diagonal componentg,, do not appear in the above, and
point were fairly completely described, tie-0 thermody- e are therefore free to choose thengd&=0. Here and in
namics within the Spin'glaSS phases was Only studied in thﬂ']e remainder of this appendiX, we are assuming thisst
replica-symmetric solution. A proper understanding of thissyfficiently negative so that the system has a spin-glass
low-T limit requires consideration of replica symmetry ground state; for larger, the ground state is a paramadnet
breaking, and we will prOVide that hel’e. We will ﬁnd, as in W|th qEA: qab:O Whose properties are not addressed here_
the more complex Heisenberg spin model considered in the \we now need to insert EGC4) into Eq.(C2) and find the
body of the paper, that the specific heat is lineaF iat low  saddle point with respect to variations in the functioyis)
T andD(iv,). This is, in principle, a straightforward exercise,
As we are restricting our attention to mean-field theory,pyt the computations are somewhat lengthy.
we can neglect the spatial dependence of all degrees of free- e first identify just the terms that depend upqf;
dom. Further, we will also restrict ourselves to the Ising casehese have the form
and the generalization to the multicomponent rotor case is
immediate. As discussed in Ref. 13, the effective action of R, Rs 4
the quantum Ising spin glass is expressed in terms of the f=—R1Trq2—§Trq3—gZ Qapt -, (CH
order parameter functional ab

where
Q*(r,7")=(o*(7)a"(7")). (cy
R1=B,[D(0)+ Bdgal,
whereg? is the Ising spin in replica. The important low-
order terms in the free energy density are R,= k32,
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Rs=By. (C6)

We first address the problem of determining the saddle point

of Eq. (C5) with respect to variations ig(u). Fortunately,

this problem has been completely solved in the classical spin
glass literaturé! and we can directly borrow the result-

s: the functiomy(u) increases linearly as a function wfor
0<u<1-(1-4R,R;3/R3)*2 where it saturates until=1
at the constant value

R,— (R5—4R;R3)"2

2R, €7

Qea=

Combining Eq.(C7) with Eq. (C5), we obtain the simple
result

q2a=—«D(0)/y. (C8)

Next, we consider the variation of in Eq. (C2) with

respect toD(iv,). This is most easily done for,# 0, for
which we obtain the following saddle-point equation:

1
;(Vﬁ-ﬁ-r)—KDz(i vn)

+u —2yqZaD(—ivy)

1 H ’
/—32 D(ivp) +0ea

2Ydea
B

> D(iv))D(—ivy—iv))

2y - -y . H son
“3g 2 d(iv)D(iv!)D(—iv,—iv,—iv!)=0.

Vn ,Vn

(C9

Upon consideration of the saddle-point equation Bq0),

PHYSICAL REVIEW &3 134406

y . - ! H "
“8F E D(ivy)D(ivy)D(i v}

XD(—ivy—iv,—ivy). (C10

We are now left with the task of solving the saddle-point
equations(C8) and (C9) for qg andD(iv,), and inserting
the result into Eq(C10). This is clearly a daunting task, and
we will be satisfied in describing the— 0 limit to first order
iny. This is similar in spirit to the larg&expansion of Secs.
IVC2 and IV D, and we expect that higher-order corrections
in y will not modify the nature of the lowF limit.

First, we consider the case=0. Here a complete analyti-
cal solution is possible and was presented in Ref. 13. We
have, aty=0,

1 r
0o __— o
Uea ,BK;n |vnl PR
DO(i,,):_M
n K 1

r2

2k%U

2
FT)In= W% |val®~

314

4
— F9(0)/n— —=

W. (Cll)

We observe that the free energy density behava¥ awhile
the specific heat- T® asT— 0. Notice also that positivity of
q‘E’A requires an upper bound onwhich we have assumed to
hold.

Before considering explicit corrections in powersypfve
make an observation that is valid to all ordersyinThe
solution forD(iv,) in Eq. (C11), when analytically contin-
ued to real frequencies, has an imaginary part which van-
ishes linearly inw at smallw. We now show that this con-

one initially finds a number of additional term associatedClusion holds to all orders ig; the constraintC8) will play

with the coupling ofD(0) to q,,. However, our parametri-

a key role in establishing this result. Let us wridy o)

zation in Eq.(C4) was chosen judiciously and has the feature™ D(0)+iDjw+--- for small w, whereD(0) andD, are

that all these additional terms vanish upon using (E@®); so
the result(C9) appliesalso for v,=0.

some real constants. Inserting this into EG9) and evalu-
ating it atT=0 for smallw, we note that the last two terms

Let us also note the complete expression for the free erfl! EG:(C9) have imaginary parts which vanish @$andw®.

ergy density, obtained by inserting Ed€4) and (C9) into
Eq. (C2):

royAge, 1
f/n=q%+y5q’fA+aZ (v2+1)D(ivy)

K . ull i 2
~3p2 Diiv)t 5| 52 D(ive) e

Y ea
ey > D(ivy)D(—ivy)

2y Qea 2 . ., . .,
- 352 ,D(Ivn)D(Ivn)D(—lvn—Ivn)

Vnavp

Keeping only the leadingr dependence of the imaginary
part, we obtain the simple expression

—2ikD(0)Dyw—2y 2D 0=0. (C12

From Eq.(C8) we see that this condition is satisfied, and so
D, can be nonzero.

Now we consider explicit first-order correctionsyin we
will see that this leads to terms in the thermodynamics which
vanish more slowly a3 —0. We can easily use Eq&C8)
and(C9) to determine the corrections @(iv,) andqga to
linear order iny; however, these are not needed here as the
shift in the free energy due to such corrections will only
appear at ordey?, because the free energy is at a saddle
point. Indeed, to obtain the free energy correct to first order
in y, we need only insert EqC11) into Eq.(C10). It is then
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quite easy to see that the free energy will have a term obpon inserting Eqs(C13) and(C11) into Eq.(C10), we will
orderyT? and that the coefficient of this term will be non- now obtain numerous terms in which the abd#eterm mul-
universal and dependent upon the nature of the high-energjplies T-independent, cutoff-dependent terms coming from

cutoff. The required term comes from tfedependence of
a2a, which from Eq.(C11) is seen to be

0 0 T2
Jea(T)=dga(0)— EPR (C13

the upper bounds in the summations overlil{er,). As the
relative values of these contributions will depend upon the
nature of the cutoff, there is no general reason for them to
cancel against each other. Hence we obtalif aontribution

to F and a linearT term in the lowT specific heat.
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