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Thermal conductivity of opals and related composites
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The thermal current flow through periodic composites and the corresponding effective thermal conductivities
are studied within a continuum approach. We formulate a boundary-integral method for calculating the thermal
conductivity of structures with two- and three-dimensional periodic lattices. Explicit results are given for
lattices involving overlapping features and contact is made with the Maxwell approximation for simple porous
media. As a particular example detailed calculations are made for the thermal conductivities of media in the
synthetic opal class of composites. We consider opals that are comprised of overlapping spheres arrayed in
face-centered-cubic lattices and inverse opals that are formed by filling the interconnected pores of opal
lattices.

DOI: 10.1103/PhysRevB.63.134303 PACS number~s!: 66.70.1f, 42.70.Qs, 66.90.1r
in
b
in
tu
o

o
o

ric

s
re
ua
t

th
ia

de
y

al
s

s
d
n
r

s
an
on

t
a
tie
w
tt

y.
al
ted
ri-
ath

free
-
non

than
of

nd
her-
in-
s.
rial

n-
ll-

e
he
nly
if-
In
not
I. INTRODUCTION

Recent advances in fabrication techniques are provid
the opportunity to engineer the properties of materials
varying the underlying structure on several length scales
cluding the mesoscopic scale. Such materials are being s
ied both for their basic properties as well as for a range
technological opportunities. The thermal conductivity
these systems is of current interest in connection with co
ing applications. The quality of a material for thermoelect
cooling is given by its thermoelectric figure of meritZ
5soS2/k whereso is the electrical conductivityS the See-
beck coefficient, andk the total thermal conductivity. Thu
materials with relatively low thermal conductivities a
sought for thermoelectric applications. Conversely in sit
tions where the cooling occurs directly by a heat curren
large thermal conductivity is sought. Composites offer
possibility of modifying thermal transport of a host mater
in both of these directions.

Materials of interest with mesoscopic structuring inclu
synthetic opals as well as a number of more complex s
tems such as porous Bi films. Synthetic opals are typic
formed from a periodic array of SiO2 spheres having size
ranging from tens of nanometers to microns.1,2 In opals, the
spheres are replaced with a variety of materials and are
tered to make their spheres overlap at the ‘‘necks.’’ In ad
tion ‘‘inverse opals’’ are formed by filling the voids betwee
the spheres with another material and removing the mate
in the spheres. Opals and inverse opals have periodicitie
the scale of the original spheres. The thermal optical
electrical properties of opals are of current interest in c
nection with issues ranging from thermoelectric materials
photon band gap systems. In the present context they
provide a class of well defined systems whose proper
reflect a broader range of nonperiodic composites. Here
study the thermal conductivities of opals to understand be
0163-1829/2001/63~13!/134303~8!/$20.00 63 1343
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the role of structuring on their overall thermal conductivit
We use a continuum description in which the therm

conductivity of each region of the composite is represen
by its bulk thermal conductivity. This approach is approp
ate for systems in which the thermal phonon mean free p
l is smaller than the typical structural sizel!a. For SiO2
we estimate a low temperature thermal phonon mean
path of&1 nm.3 Among typical materials of interest in ther
moelectrics we estimate room temperature thermal pho
mean free paths of 7.5 nm for Bi and 17.5 nm for PbTe.4 The
continuum approach is appropriate for opal sizes greater
these values. The intent of this work is to address the role
structuring on thermal conductivity. Interface scattering a
changes in phonon dispersions are also of interest in the t
mal conductivities of composites. These effects could be
cluded in the present approach by interface resistance5,6

They are not yet well understood, however, and are mate
dependent and they will not be addressed here.

The thermal conductivity of a composite within a co
tinuum description can be given by a simple Maxwe
Garnett or Clausius-Mossotti approach.7 For example, for
systems of spherical voids (d53) or infinite cylindrical
voids (d52) in a material of thermal conductivityko this
gives for the effective conductivity

ke f f5
~12p!ko

11 p/~d21!
, ~1!

wherep is the fractional volume of the voids often called th
‘‘porosity.’’ This approach represents the geometry of t
system in only an approximate way and is accurate o
when either the fractional volume of one material or the d
ference in the conductivities of the two systems is small.
general its accuracy is difficult to assess. It also does
©2001 The American Physical Society03-1
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represent well the effects of geometry such as the orde
structure of the opal. In recent work a continuum descript
has been used to study analytical bounds on the thermal
ductivity of composites in terms of its constituent parts.8 In
other recent work the thermal conductivity of opals in t
ballistic limit in which l@a was examined9 which gives a
treatment appropriate for small sizes and is complemen
to that given here.

Here we solve for the steady-state heat current resul
from an external thermal gradient in two- and thre
dimensional systems representing opals. We use Gree
function techniques to transform the problem to a form
which efficient boundary element discretization can be us
Typically this transforms a differential equation ind dimen-
sions to one in (d21) dimensions.10,11 In the present case
we develop a cell periodic form of the boundary eleme
method to treat the opals.

The techniques that we develop here can also be use
describe other physical properties of ordered composites.
example the so-called photon band-gap systems have re
tive indexes that are modulated periodically and can exh
gaps in their photon spectrum analogous to the electro
states of solids. The equations governing the electromagn
behavior of these systems are formally equivalent to the h
transport problem studied here and the techniques devel
here can be used to treat that problem.12

In Sec. II we give a boundary-integral method for calc
lating the thermal current in a periodic composite. Resu
for two-dimensional lattices are given in Sec. III and thre
dimensional lattice calculations are given in Sec. IV.

II. FORMALISM

In this section a formalism based on a continuum
proach is given for calculating the flow of heat curre
through periodic composites. We consider structures c
posed of three-dimensional lattices~e.g., opals! and of two-
dimensional lattices with features that extend infinitely in t
third direction. The insets of Fig. 1 give examples of su
two-dimensional lattices. The systems are composed of
mogeneous regions that describe the unit cell in a perio
array as indicated by the dotted lines in Fig. 1. The pres
method is general for composites containing any numbe
component materials as long as the composite has a per
lattice. A constant value for the local thermal conductiv
characterizes each region consistent with the continuum
proach. For simplicity we take these local thermal cond
tivities to be isotropic and independent of temperature.
calculate the thermal current flow through a composite w
out internal heat sources in response to an externally app
temperature gradient and determine the effective conduc
ity of the composite from the calculated current.

The periodic composites are described by unit cells co
posed of regions with thermal conductivities labeledk i . For
systems with no internal heat sources and with steady-s
current densityJ the quantity¹•J (5¹•@k iF#5k i¹•F)
vanishes inside all regions. Here a thermal fieldF is given
from the temperature byF52¹T. It follows that the tem-
perature satisfies Laplace’s equation¹2T50, in all regions
13430
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and is continuous across boundaries. In addition to the pa
differential equation we must specify boundary conditio
for the thermal current crossing the interfaces between
regions. The continuity of the thermal current normal to t
interfaces and the continuity of the temperature provide
physically appropriate boundary conditions. For many of
structures described here one of the two material region
void resulting in vanishing thermal currents inside. T
boundary conditions are appropriate in this case because
current does not penetrate the void regions.

The integral equation method we use is based upon
culating the current density arising from an external tempe
ture gradientFo . An external field leads to an inhomoge
neous integral equation for the total thermal field and he
the current, throughout the composite. By applying an ex
nal field a composite conductivity calculation can be ma
that is independent of terminal surfaces or heat source pl
ment. Here we treat isotropic lattices but the formalism
general and also can be used in low-symmetry direction
anisotropic systems. In the next section we demonstrate
flexibility of this technique by treating a low-symmetry d
rection.

In general the temperature can be written in terms o
Green’s function as an integral equation over all of t
boundaries in the compositeS. The expression for the tem
perature is

T~r !52Fo•r1E
S
s~s!g~r2s!ds, ~2!

whereg(r … is the Green’s function and equals22 lnur u or
ur u21 for two- or three-dimensional lattices, respectively. B
low we solve fors, a function defined only on the bound
aries between regions by applying boundary conditions.

FIG. 1. Thermal conductivities as functions of porosity f
square and hexagonal two-dimensional lattices. The dashed cur
the Maxwell model. Schematic lattice geometries are shown in
insets.
3-2
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see the role played by the functions it is useful to note the
analogy between this problem and an inhomogeneous sy
of dielectrics in an electric field.11 In the case of the dielec
tricss represents the surface charge densities which give
to the fields. In our case the functions gives rise to the
temperature gradients.

The integral over all interfacial boundariesS between the
components of the periodic composite can be reduced t
integral over all boundaries inside a unit cellS̃, by defining a
cell-periodic Green’s functiong̃. The integral of Eq.~2! then
is replaced using

E
S
s~s!g~r2s!ds5E

S̃
s~s!g̃~r2s!ds, ~3!

where

g̃~r !5(
t

g~r2t!5
4p

V (
GÞ0

eiG•r

G2
. ~4!

The summation in the first form in Eq.~4! is over all lattice
translationst or equivalently over all reciprocal-lattice vec
tors G as shown in the second form. The volume or area
the primitive cell isV. The sum in Eq.~4! converges slowly
in real space because the Green’s functions have long-r
character. Owing to the strong singularity at the origin t
reciprocal space sum also converges slowly.

Rapidly converging series expressions forg̃ are obtained
by straightforward extension of Ewald summatio
techniques.13 The slowly converging summation is reformu
lated by introducing a free parameterh. Without loss of
generality we rewrite the lattice sum forg̃ by adding to the
series equal and opposite Gaussian ‘‘sources’’ at all equ
lent lattice sites. Controlling the Gaussian widths byh we
rewrite the series in Eq.~4! as

g̃~r !5(
t

H S g~r2t!2S h

p D mE e2hx2
g~r2t2x!dxD

1F S h

p D mE e2hx2
g~r2t2x!dxG J ~5!

with m51 and 3
2 giving proper normalizations for two

dimensional~2D! and three-dimensional~3D! lattice sums,
respectively. The first two terms are evaluated in real sp
and the term in brackets is evaluated in reciprocal space.
result is two quickly converging sums controlled byh. After
simplification14 the Ewald summation procedure yields t
following expressions for the lattice Green’s functions:

g̃~r !5
4p

V (
GÞ0

eiG•r

G2
e2 G2/4h

15 (
t

E1~hur2tu2! ~2D!

(
t

erfc~Ahur2tu!
ur2tu

~3D!

. ~6!
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The free parameterh is tuned in each case so that the re
space and reciprocal space summations converge with
similar number of terms. A typical value forh is the square
of the reciprocal-lattice constant. The number of terms
quired for convergence is lattice dependent and is greate
three-dimensional lattices.

To set up the integral equation we evaluate the ther
field, F52¹T at boundary pointsr s between the regions
The thermal fields approaching the boundary from inside
outside a homogeneous region are given by

Fin/out~r s!5Fo72ps~r s!n̂rs
2E

S̃
s~s!@¹ rg̃~r s2s!#ds,

~7!

wheren̂rs
is the unit normal vector atr s and the upper sign

corresponds to the interior. The final integral equation res
from the current continuity boundary conditionJin•n̂rs

5Jout•n̂rs
. Substituting the thermal field expression of E

~7! into (k inFin2koutFout)•n̂rs
50 results in an integral

equation fors that can be simplified by collecting terms t
give

E
S̃
s~s!@ n̂rs

•¹ rg̃~r s2s!#ds12ps~r s!
~k in1kout!

~k in2kout!
5Fo•n̂rs

.

~8!

Equation ~8! is the central result of the boundary-integr
formalism for these periodic systems. Upon discretization
the boundary Eq.~8! forms a matrix inversion problem to b
solved fors(r s). Interestingly, for two-dimensional lattice
the integrand of Eq.~8! does not require the evaluation of th
exponential integral in Eq.~6! because of its simple radia
dependence. However, for three-dimensional lattices ev
ating the complementary error function cannot be avoid
because of the additionalur u21 dependence in the real-spac
sum.

The functions on the boundary completely determine
the current and conductivity. Givens(r s) the current density
at an arbitrary nonboundary pointr is reduced to evaluating
the local thermal field using the following expression:

J~r !5k~r !Fo2k~r !E
S̃
s~s!@¹ rg̃~r2s!#ds. ~9!

An effective thermal conductivity is calculated by integratin
the thermal current crossing an infinite plane. Taking
plane to be perpendicular to the driving field the integ
over the plane maps to integrating the current compon
directed along the external field over the unit-cell volume
periodic composites. We defineke f f by

ke f f[
1

VuFou EV
f̂•J~r !dr , ~10!

wheref̂ is the direction of the applied field andV is the cell
volume~or area for two-dimensional lattices!. In general the
conductivity is a tensor quantity. For anisotropic systems
tensor components are resolved be applying the external
3-3
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along the principal axes. It is convenient to displayke f f com-
pared to the bulk conductivity of the material composing
majority of the composite. We denote this conductivity byko
in the following.

III. TWO-DIMENSIONAL SYSTEMS

This section gives thermal conductivity results for thr
periodic composites with two-dimensional lattices. The l
tices are the square lattice the hexagonal lattice, and wha
will call here the ‘‘2D opal lattice.’’ The square and hexag
nal lattices are shown by the insets in Fig. 1 and are nam
for the geometries of their unit cells. They consist of no
overlapping nonconducting cylindrical voids~in white! in a
material characterized byko ~in gray!. A 2D opal lattice is
formed by an array of overlapping cylinders as shown in
inset of Fig. 2. The nonconducting star-shaped pores~in
white! extend through a material characterized byko ~in
gray!.

We give results as functions of the porosity of the lattic
The porosityp is the fraction of the total volume occupied b
the void regions. The lattice constants are the lengths of
vectors in Figs. 1 and 2. The square and hexagonal latt
exist only when the radii of the voids are less than half of
lattice constant. In the 2D opal the gray cylinders in Fig
overlap. The upper limit of the porosity range is set when
cylninders no longer overlap.

All three two-dimensional lattices are characterized
circular or piecewise circular boundaries between materi
To solve for s the boundaries were discretized using a
segments. For the square and hexagonal lattices the bo
aries of the cylinders were broken into 200 discrete bound
elements each with constants. Similarly, the boundaries o
the 2D opal were discretized uniformly with arc segmen
Near the cusps of the 2D opal boundaries additional m
points were necessary bringing the total to 320. The ne
sity of additional mesh points near cusps has been discu
previously in connection with isolated nanostructu
calculations.10,11 The present technique based on Eq.~8!,
which employs discretization of a boundary integral is co
siderably more efficient than finite-element or finit
difference techniques which require meshes over the en
area of the two-dimensional cell. Further, the lattice-perio
Green’s functions satisfy all periodicity constraints in a na
ral way. Therefore the matrices obtained usingg̃ are smaller
than those obtained usingg because usingg̃ eliminates
meshing the unit cell boundaries and imposing the perio
boundary conditions separately. The effective thermal c
ductivities were calculated using Eq.~10! in which the inte-
gral was evaluated by dividing the unit cell into a unifor
grid. The resulting conductivities are for thermal current flo
in the plane of the lattices.

The calculated thermal conductivities of the square a
the hexagonal lattices are given by the solid lines in Fig
The conductivities of these two-dimensional lattices go
zero when the conducting regions become disconnec
This occurs for different nonzero porosities in the two cas
The thermal conductivity given by the simple Maxwe
Garnett result from Eq.~1! ~with d52) is shown by the
13430
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dotted line in Fig. 1. This model does not distinguish b
tween the two lattices because it treats the inhomogene
in only an average sense. The model results agree well
the present results for low porosities. This is as expected
it has been seen in another context.15 For larger porosities
they no longer agree well. Also the model fails to repres
the disappearance of the thermal conductivity atp,1 when
the systems break up into disconnected parts.

The calculated thermal conductivities of the 2D opal l
tice is given by the solid line in Fig. 2~a!. The conductivity
vanishes atp50.214 when the conducting regions cease
overlap. The Maxwell-Garnett result is shown again by t
dotted line in Fig. 2~a!. Clearly this simple model is an in
adequate description of the conductivity of the 2D opal l
tice for varying porosities. The effects of lattice geometry

FIG. 2. Thermal conductivity vs porosity for the 2D opal lattic
The dashed curves are the Maxwell model results. The geomet
the 2D opal lattice defined by overlapping cylinders is pictured.~a!
Case when the pores are not filled.~b! Case when the pores ar
filled with a material that has a different conductivity.
3-4
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the composite conductivity are made obvious by compar
the resulting conductivities shown in Figs. 1 and 2~a!. An
additional system of interest is formed by filling the 2D op
intersticies with a material having a different thermal co
ductivity as shown in Fig. 2~b!. For small or large porosities
the thermal conductivity approaches that of the two const
ent materials. The largest deviations from the simple mo
occur at intermediate porosities. Overall the 2D opal latt
impedes heat flow more effectively than the square and h
agonal lattices at comparable porosities. The stronger po
ity dependence of the thermal conductivity for the 2D op
lattice is a geometrical effect.

A plot of the calculated current flow pattern for a 2D op
lattice is given in Fig. 3. The external field has been appl
along a low-symmetry direction to demonstrate the flexibil
of the boundary-element technique. An example of the c
rent constriction in the 2D opal lattice is shown in the e
larged portion of Fig. 3.

The 2D opal lattice can serve as a guideline structure
demonstrate the modifications of thermal conductivity t
can be caused by lattice geometry. The present calculat
provide a starting point for understanding the porosity
pendence of the thermal conductivity for a wider class
mesoscopic composites including those without periodici

IV. THREE-DIMENSIONAL SYSTEMS

This section gives thermal conductivity results for thr
periodic composites with three-dimensional lattices. The
tices are the simple cubic lattice, the fcc opal lattice, and
inverse-opal lattice. The simple cubic lattice consists of n
conducting spherical voids imbedded in a material charac
ized byko . The simple cubic lattice is the three-dimension
analog of the two-dimensional square lattice but there i
key difference: it forms a lattice even when the spheri
voids overlap. Therefore the porosity of the simple cu
structure can be broken into two regimes corresponding
spherical voids completely confined to their unit cells~non-
overlapping! and to spherical voids that overlap with th

FIG. 3. A thermal flow pattern through a 2D opal lattice. T
dashed circles give the geometry. Here the thermal field was
plied at 60° from horizontal.
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nearest neighbors~overlapping!. As the void size is increase
the lattice becomes ill defined when the radius of the v
exceeds the lattice period divided byA2.

The fcc opal lattice is formed by an array of overlappi
spheres arranged as shown in Fig. 4~a!. The spheres have
thermal conductivityko and the remaining pores are nonco
ducting. The porosity limit of the fcc opal is reached wh
the 12 nearest-neighbor spheres no longer intersect. A di
ence between the 2D opal and the fcc opal is that the void
the 2D opal are isolated whereas the voids of the fcc o
form a connected lattice. By reversing the roles of t
spheres and voids in Fig. 4~a! we obtain an inverse-opa
lattice which is a structure where the material inside
spheres has thermal conductivitykpores and the filled region
ko . Examples of fcc opal and inverse-opal lattices can
found in Refs. 1 and 2. The porosity of the inverse opa
found by subtracting the porosity of its template opal from

Calculations on the boundaries of these three-dimensio
lattices involve discretizing spherical surfaces. To solve
s the boundaries were discretized using equilateral geod
triangles. The boundary-elements were taken to h
piecewise-constants similar to the discretization used fo
two-dimensional lattices. Figure 4~b! gives a flavor of the
essential meshing features showing both the surface trian
and the intersection of spheres. In more detail the mesh
1280 boundary elements on a complete sphere for the n
overlapping porosity regime of the simple cubic lattice a
increased meshing near intersections of spheres for the o
lapping simple cubic case as well as the fcc opal and inve

p-

FIG. 4. ~a! Face-centered-cubic opal lattice structure compo
of overlapping spheres.~b! Schematic boundary-element meshin
of overlapping spheres.
3-5
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opals. The number of mesh points is increased near the
tersections of spheres by breaking the triangles into sma
equilateral triangles. Giraldo’s technique of meshing sphe
with uniform geodesic polygons, descriptions of triang
breaking, and pictures of the basic mesh are given in Ref.

Meshing the boundary surfaces of these three-dimesi
systems results in smaller matrices than implementations
ing volume finite elements. Our use of lattice-period
Green’s functions to eliminate boundary elements on the
borders offers substantial numerical advantages for th
dimensional lattices because the unit-cell boundary is
discretized. The effective thermal conductivities were cal
lated using Eq.~10! and the integral was evaluated by divi
ing the unit cell into a uniform cubic grid. As a check th
effective conductivities were obtained independently by c
culating the ratio of the net heat flux through the unit-c
surfaces to the heat flux through an identical unit cell
isotropic material with conductivityko .

The calculated thermal conductivity of the simple cub
lattice is given by the solid curve in Fig. 5. The nonoverla
ping and overlapping geometry regimes are separated w
vertical line to indicate the crossover porosity. The Maxw
thermal conductivity shown by the dashed curve, is a go
approximation to the simple cubic lattice for low porosit
As expected the thermal conductivity deviates from the M
well model as the porosity is increased but the trend is si
lar.

The calculated thermal conductivity for the fcc opal la
tice is given by the solid curve in Fig. 6. The Maxwell resu
is shown for comparison. The conductivity of the opal va
ishes forp50.259 where the spheres shown in Fig. 4~a! no
longer overlap. This feature is not represented well by
simple Maxwell model. Compared with the results for t
simple cubic structure given in Fig. 5 the fcc opal geome
impedes the heat flow more than the simple cubic lattice
the same porosities.

FIG. 5. Thermal conductivity as a function of porosity for th
simple cubic lattice. The dashed curve is the Maxwell model.
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The results shown in Fig. 7 as solid curves correspond
inverse opals withkpores/ko50, 1

4 and 1
2 . Note the different

shape of the conductivity vs porosity curve for the invers
opal lattice shown in Fig. 7 forkpores/ko50 compared with
the opal lattice in Fig. 6. The reason is that the inverse-o
lattice is well defined for porosities smaller than the small
porosity that can be obtained by filling an opal templa
Therefore if such lattices could be fabricated the conduc
ity would continue to increase with decreasing porosity. T
situation is similar to the simple cubic lattice transition fro
overlapping to nonoverlapping spherical voids except

FIG. 6. Thermal conductivity of the fcc opal lattice vs porosit
The dashed curve is the Maxwell model.

FIG. 7. Thermal conductivity of inverse-opal lattices. Resu
are given forkpores/ko50 ~lowest curves!, 1

4 ~middle curves! and
1
2 ~top curves!. The solid curves are our calculated results and
chain curves are after Bogomolovet al.
3-6
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structure is face-centered cubic instead of simple cubic.
gains in conductivity from refilling the fcc opal are substa
tial as shown in the curves of Fig. 7 forkpores/ko equal to1

4

and 1
2 . In addition, the fcc opal and inverse-opal lattices c

be filled with exotic thermoelectric materials giving a ran
of thermoelectric composites with low thermal conducti
ties.

A series of thermal conductivity and thermoelectric me
surements have been published by Bogomolovet al. for the
fcc opal and inverse-opal lattices.17–20Experiments20 showed
that the thermal conductivity of the inverse opals can
described roughly by an emperical model21 given by
ke f f /ko5(12p)3/21p1/4(kpores/ko). Comparing this ex-
pression~plotted with chain curves in Fig. 7! with our results
~shown by solid curves! shows that the experimental fit i
consistently lower than our calculations. That the two res
agree as well as they do is surprising because the fabrica
of inverse opals typically suffers from incomplete filling an
flaws in the opal template.

V. CONCLUSION

Overall we have presented a general formalism for ca
lating the thermal conductivity of periodic composites usi
a continuum approach. The extension of highly efficie
boundary-integral techniques through the use of cell-perio
Green’s functions was given in some detail. The real-sp
methods we have described here can be extended to a va
of phenomena in mesoscopic composites such the harm
electromagnetic wave behavior.

Here we have used a continuum approach to study
effective thermal conductivity of periodic composites with
number of two-dimensional and three-dimensional lattic
We have used these results to evaluate the applicabilit
the Maxwell conductivity model for porous composites.
low porosities the calculated effective thermal conductivit
,
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of the square and hexagonal two-dimensional lattices an
the simple cubic lattice are in good agreement with the M
well model for porous media. Our calculations show th
geometrical effects can give rise to significant modificatio
of the porosity dependence of the thermal conductivity.

The boundary-integral fomalism we gave in Sec. II allow
the investigation of lattices involving overlapping cylindric
and spherical geometries. We have given a theoretical tr
ment of the thermal conductivity of opal-class structur
with both two- and three-dimensional lattices. In particul
results have been given for 2D opal, fcc opal, and inver
opal lattices. We find that the opal geometries impede
flow of heat more strongly than nonoverlapping structures
comparable porosity. Furthermore, we have shown that
using the fcc opal and inverse-opal lattices as templates
filling with other materials increases and decreases in the
conductivity can be obtained.

It might be noted that within a continuum approach t
electrical conductivity of these mesoscopic systems can
calculated in formally the same way as done for the therm
conductivity here. Roughly speaking the thermoelectric fi
ure of merit is controlled by the ratio of the electrical co
ductivity to the thermal conductivity. If the boundary cond
tions on the electrical and thermal conductivities are sim
then their ratio will not be affected by microstructuring in th
form of a composite. Microscopic effects that can give rise
interface thermal resistances for thermal conductivities h
been discussed recently,6 however, and they can affect thi
ratio.
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