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Thermal conductivity of opals and related composites
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The thermal current flow through periodic composites and the corresponding effective thermal conductivities
are studied within a continuum approach. We formulate a boundary-integral method for calculating the thermal
conductivity of structures with two- and three-dimensional periodic lattices. Explicit results are given for
lattices involving overlapping features and contact is made with the Maxwell approximation for simple porous
media. As a particular example detailed calculations are made for the thermal conductivities of media in the
synthetic opal class of composites. We consider opals that are comprised of overlapping spheres arrayed in
face-centered-cubic lattices and inverse opals that are formed by filling the interconnected pores of opal
lattices.
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[. INTRODUCTION the role of structuring on their overall thermal conductivity.
We use a continuum description in which the thermal
Recent advances in fabrication techniques are providingonductivity of each region of the composite is represented
the opportunity to engineer the properties of materials byby its bulk thermal conductivity. This approach is appropri-
varying the underlying structure on several length scales inate for systems in which the thermal phonon mean free path
cluding the mesoscopic scale. Such materials are being stud-is smaller than the typical structural sixe<a. For SiG,
ied both for their basic properties as well as for a range ofve estimate a low temperature thermal phonon mean free
technological opportunities. The thermal conductivity of path of<1 nm2 Among typical materials of interest in ther-
these systems is of current interest in connection with coolmoelectrics we estimate room temperature thermal phonon
ing applications. The quality of a material for thermoelectricmean free paths of 7.5 nm for Bi and 17.5 nm for PB e
cooling is given by its thermoelectric figure of mei@  continuum approach is appropriate for opal sizes greater than
=0,5°/ k wherea, is the electrical conductivity the See- these values. The intent of this work is to address the role of
beck coefficient, anc the total thermal conductivity. Thus Structuring on thermal conductivity. Interface scattering and
materials with relatively low thermal conductivities are changes in phonon dispersions are also of interest in the ther-
sought for thermoelectric applications. Conversely in situaimal conductivities of composites. These effects could be in-
tions where the cooling occurs directly by a heat current luded in the present approach by interface resistatites.
large thermal conductivity is sought. Composites offer theThey are not yet well understood, however, and are material
possibility of modifying thermal transport of a host material dependent and they will not be addressed here.
in both of these directions. The thermal conductivity of a composite within a con-
Materials of interest with mesoscopic structuring includetinuum description can be given by a simple Maxwell-
synthetic opals as well as a number of more complex sysGarnett or Clausius-Mossotti approacifror example, for
tems such as porous Bi films. Synthetic opals are typicallysystems of spherical voidsd¢3) or infinite cylindrical
formed from a periodic array of SiOspheres having sizes Voids (d=2) in a material of thermal conductivity, this
ranging from tens of nanometers to micrdrfan opals, the  gives for the effective conductivity
spheres are replaced with a variety of materials and are sin-
tered to make their spheres overlap at the “necks.” In addi-
tion “inverse opals” are formed by filling the voids between (1-p) ko
the spheres with another material and removing the material Keff:mv @
in the spheres. Opals and inverse opals have periodicities on
the scale of the original spheres. The thermal optical and
electrical properties of opals are of current interest in conwherep is the fractional volume of the voids often called the
nection with issues ranging from thermoelectric materials td‘porosity.” This approach represents the geometry of the
photon band gap systems. In the present context they algystem in only an approximate way and is accurate only
provide a class of well defined systems whose propertieahen either the fractional volume of one material or the dif-
reflect a broader range of nonperiodic composites. Here wierence in the conductivities of the two systems is small. In
study the thermal conductivities of opals to understand bettegeneral its accuracy is difficult to assess. It also does not
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represent well the effects of geometry such as the ordered 1.0 T T T T
structure of the opal. In recent work a continuum description
has been used to study analytical bounds on the thermal con-
ductivity of composites in terms of its constituent p&rts. 08
other recent work the thermal conductivity of opals in the
ballistic limit in which A>a was examinetiwhich gives a
treatment appropriate for small sizes and is complementary
to that given here. ea > Q O <

Here we solve for the steady-state heat current resulting {
from an external thermal gradient in two- and three- vy
dimensional systems representing opals. We use Green’s- 0.4 | .
function techniques to transform the problem to a form in
which efficient boundary element discretization can be used. Q Q

A
Ko

Typically this transforms a differential equation dndimen-
sions to one in d—1) dimensiong®!! In the present case
we develop a cell periodic form of the boundary element
method to treat the opals. A
The techniques that we develop here can also be used to b 55 Sl o5 v 15
describe other physical properties of ordered composites. For ' ' — ' ' '
example the so-called photon band-gap systems have refrac-
tive indexes that are modulated periodically and can exhibit F|G. 1. Thermal conductivities as functions of porosity for
gaps in their photon spectrum analogous to the electronigquare and hexagonal two-dimensional lattices. The dashed curve is
states of solids. The equations governing the electromagnetifie Maxwell model. Schematic lattice geometries are shown in the
behavior of these systems are formally equivalent to the heatsets.
transport problem studied here and the techniques developed
here can be used to treat that probf&m. and is continuous across boundaries. In addition to the partial
In Sec. Il we give a boundary-integral method for calcu-differential equation we must specify boundary conditions
lating the thermal current in a periodic composite. Resultfor the thermal current crossing the interfaces between the
for two-dimensional lattices are given in Sec. Il and three-regions. The continuity of the thermal current normal to the
dimensional lattice calculations are given in Sec. IV. interfaces and the continuity of the temperature provide the
physically appropriate boundary conditions. For many of the
structures described here one of the two material regions is
void resulting in vanishing thermal currents inside. The
In this section a formalism based on a continuum apfoundary conditions are appropriate in this case because the
proach is given for calculating the flow of heat currentcurrent does not penetrate the void regions.
through periodic composites. We consider structures com- The integral equation method we use is based upon cal-
posed of three-dimensional latticésg., opalsand of two-  culating the current density arising from an external tempera-
dimensional lattices with features that extend infinitely in theture gradient,. An external field leads to an inhomoge-
third direction. The insets of Fig. 1 give examples of suchneous integral equation for the total thermal field and hence
two-dimensional lattices. The systems are composed of hdhe current, throughout the composite. By applying an exter-
mogeneous regions that describe the unit cell in a periodigal field a composite conductivity calculation can be made
array as indicated by the dotted lines in Fig. 1. The preserihat is independent of terminal surfaces or heat source place-
method is general for composites containing any number ofent. Here we treat isotropic lattices but the formalism is
component materials as long as the composite has a periodg¢neral and also can be used in low-symmetry directions in
lattice. A constant value for the local thermal conductivity anisotropic systems. In the next section we demonstrate the
characterizes each region consistent with the continuum aglexibility of this technique by treating a low-symmetry di-
proach. For simplicity we take these local thermal conductection.
tivities to be isotropic and independent of temperature. We In general the temperature can be written in terms of a
calculate the thermal current flow through a composite with-Green’s function as an integral equation over all of the
out internal heat sources in response to an externally appliggoundaries in the composi@ The expression for the tem-
temperature gradient and determine the effective conductivPerature Is
ity of the composite from the calculated current.
The periodic composites are described by unit cells com-
posed of regions with thermal conductivities labeled For
systems with no internal heat sources and with steady-state
current densityJ the quantityV-J (=V . [kF]=«;V-F) whereg(r) is the Green’s function and equals2 In|r| or
vanishes inside all regions. Here a thermal fiElds given ||~ for two- or three-dimensional lattices, respectively. Be-
from the temperature bif=—VT. It follows that the tem- low we solve foro, a function defined only on the bound-
perature satisfies Laplace’s equat®AT=0, in all regions aries between regions by applying boundary conditions. To

02

.

II. FORMALISM

T(r)=—F0~r+fsa(s)g(r—s)ds, (2)

134303-2



THERMAL CONDUCTIVITY OF OPALS AND RELATED... PHYSICAL REVIEW B63 134303

see the role played by the functienit is useful to note the The free parameten is tuned in each case so that the real-
analogy between this problem and an inhomogeneous systespace and reciprocal space summations converge within a
of dielectrics in an electric fiel: In the case of the dielec- similar number of terms. A typical value foy is the square
trics o represents the surface charge densities which give risef the reciprocal-lattice constant. The number of terms re-
to the fields. In our case the functian gives rise to the quired for convergence is lattice dependent and is greater for
temperature gradients. three-dimensional lattices.

The integral over all interfacial boundari€between the To set up the integral equation we evaluate the thermal
components of the periodic composite can be reduced to dield, F=—VT at boundary pointsg between the regions.

integral over all boundaries inside a unit c8Jlby defininga  The thermal fields approaching the boundary from inside and

cell-periodic Green’s functiog. The integral of Eq(2) then outside a homogeneous region are given by
is replaced using

Finjoulrs) = FoF 2ma(ron, — La(s)[vra(rs—s)]ds
Jsa(s)g(r—s)ds= Jéo(s)a(r—s)ds, () (7)

WhereﬁrS is the unit normal vector aty and the upper sign

where corresponds to the interior. The final integral equation results
5 A elC from the current continuity boundary conditioﬂwﬁrs
g(r)=2t 9r-H=1 &o a2 4) =J0ut~ﬁrs. Substituting the thermal field expression of Eq.

(7) into (kinFin— xoutFout) - ﬁrszo results in an integral
equation foro that can be simplified by collecting terms to
pive

The summation in the first form in E§4) is over all lattice
translationst or equivalently over all reciprocal-lattice vec-
tors G as shown in the second form. The volume or area o
the primitive cell is(). The sum in Eq(4) converges slowly

~ ~ Kin Tt K ~
in real space because the Green'’s functions have long-rang 2 o(s)[n,_-V,g(rs—s)]ds+ Zmr(rs)(m_—om)= Fo- Ny
character. Owing to the strong singularity at the origin the”S (Kin— Kout) g
reciprocal space sum also converges slowly. ®

Rapidly converging series expressions goare obtained Equation(8) is the central result of the boundary-integral
by straightforward extension of Ewald summation formalism for these periodic systems. Upon discretization of
techniques? The slowly converging summation is reformu- the boundary Eq(8) forms a matrix inversion problem to be
lated by introducing a free parameter Without loss of — Solved foro(rg). Interestingly, for two-dimensional lattices
generality we rewrite the lattice sum fﬁrby adding to the the mtegr_ano_l of ECK'S)_ does not require the_eval_uatlon of _the
series equal and opposite Gaussian “sources” at all equiva@xponentk";ll integral in Eq(6) because of its simple radial

lent lattice sites. Controlling the Gaussian widths hywe de_pen(:]ence. Hlowever, for thre?—dlm_ensmnal Iatl';lces e\./(?“é'
rewrite the series in Eq4) as ating the complementary error function cannot be avoide

because of the additionfd|~* dependence in the real-space

u sum.
ﬁ(r)zE {(g(r—t)—(z) f e ”ng(r—t—x)dx> The functiono on the boundary completely determines
! i the current and conductivity. Given(r) the current density
"G ) at an arbitrary nonboundary pointis reduced to evaluating
+ ;) f e 7 g(r—t—x)dx } (5) the local thermal field using the following expression:
with '“.:1 and $ giving proper nprmalizatioqs for two- J(r)=K(r)Fo—K(r)f~(r(s)[Vr§(r—s)]ds. (9)
dimensional(2D) and three-dimensiondBD) lattice sums, S

respectively. The first two terms are evaluated in real SPac, effective thermal conductivity is calculated by integrating

and the term in.brackets Is e_valuated in reciprocal space. Tlﬂt’ﬁe thermal current crossing an infinite plane. Taking the
result is two quickly converging sums controlled pyAfter 106 (o pe perpendicular to the driving field the integral

S|mpl|f|cat|oriL the_ Ewald summation procedure Y'elds the over the plane maps to integrating the current component
following expressions for the lattice Green’s functions: directed along the external field over the unit-cell volume in

periodic composites. We defing,s by

eiG-r

e G214y
G? =if £.3(r)d (10)
Keff—Q|Fo| 0 -J(r)dr,

Z Ei(nlr—t?  (2D)

~ 4
(=7 2,

wheref is the direction of the applied field artd is the cell
; \/— . (6) volume (or area for two-dimensional latticedn general the
2 erfo(\n|r —t|) (3D) conductivity is a tensor quantity. For anisotropic systems the
T Ir—t tensor components are resolved be applying the external field
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along the principal axes. It is convenient to display; com- 1.0 T r T T
pared to the bulk conductivity of the material composing the

majority of the composite. We denote this conductivitydyy

in the following. 08

IIl. TWO-DIMENSIONAL SYSTEMS

e
~.
~.
.

This section gives thermal conductivity results for three 06 ™
periodic composites with two-dimensional lattices. The lat-
tices are the square lattice the hexagonal lattice, and what we
will call here the “2D opal lattice.” The square and hexago- 04 | 2 -
nal lattices are shown by the insets in Fig. 1 and are named 4
for the geometries of their unit cells. They consist of non-
overlapping nonconducting cylindrical voidm white) in a
material characterized by, (in gray). A 2D opal lattice is
formed by an array of overlapping cylinders as shown in the
inset of Fig. 2. The nonconducting star-shaped pdies
white) extend through a material characterized ky (in 0
gray).

We give results as functions of the porosity of the lattice.

The porosityp is the fraction of the total volume occupied by 1.0 T TS reanpony
the void regions. The lattice constants are the lengths of the § i :
vectors in Figs. 1 and 2. The square and hexagonal lattices N, i .
exist only Wh%n the radii of the v?)ids are less tha?] half of the 08F N\ i > AN
lattice constant. In the 2D opal the gray cylinders in Fig. 2 : . 4
overlap. The upper limit of the porosity range is set when the x‘*\ "Q‘;‘*‘\ “@3‘ =

cylninders no longer overlap. 0.6 A ; Ky T

All three two-dimensional lattices are characterized by { Tl
circular or piecewise circular boundaries between materials. & &x\ﬁ
To solve for o the boundaries were discretized using arc 0.4 I 105
segments. For the square and hexagonal lattices the bound-
aries of the cylinders were broken into 200 discrete boundary S
elements each with constamt Similarly, the boundaries of 02} :
the 2D opal were discretized uniformly with arc segments.

Near the cusps of the 2D opal boundaries additional mesh

points were necessary bringing the total to 320. The neces- 0
sity of additional mesh points near cusps has been discussed
previously in connection with isolated nanostructure

: 0,11 ;
Cil.cuhlatlonf' T_he presgnt tefchnlque basgd on IE'a)' FIG. 2. Thermal conductivity vs porosity for the 2D opal lattice.
which employs dlscr.etllzatlon ora pqundary integra IS CON~1he dashed curves are the Maxwell model results. The geometry of
siderably more efficient than finite-element or finite- ye >p opal lattice defined by overlapping cylinders is pictured.

difference techniques which require meshes over the entirgase when the pores are not filleth) Case when the pores are
area of the two-dimensional cell. Further, the lattice-periodigilied with a material that has a different conductivity.

Green'’s functions satisfy all periodicity constraints in a natu-

ral way. Therefore the matrices obtained usgngre smaller  dotted line in Fig. 1. This model does not distinguish be-
than those obtained using because usingy eliminates tween the two lattices because it treats the inhomogeneities
meshing the unit cell boundaries and imposing the periodiin only an average sense. The model results agree well with
boundary conditions separately. The effective thermal conthe present results for low porosities. This is as expected and
ductivities were calculated using E(L0) in which the inte- it has been seen in another contExEor larger porosities
gral was evaluated by dividing the unit cell into a uniform they no longer agree well. Also the model fails to represent
grid. The resulting conductivities are for thermal current flowthe disappearance of the thermal conductivitp&tl when

in the plane of the lattices. the systems break up into disconnected parts.

The calculated thermal conductivities of the square and The calculated thermal conductivities of the 2D opal lat-
the hexagonal lattices are given by the solid lines in Fig. 1tice is given by the solid line in Fig.(2). The conductivity
The conductivities of these two-dimensional lattices go tovanishes ap=0.214 when the conducting regions cease to
zero when the conducting regions become disconnectedverlap. The Maxwell-Garnett result is shown again by the
This occurs for different nonzero porosities in the two casesdotted line in Fig. 2a). Clearly this simple model is an in-
The thermal conductivity given by the simple Maxwell- adequate description of the conductivity of the 2D opal lat-
Garnett result from Eq(1) (with d=2) is shown by the tice for varying porosities. The effects of lattice geometry on

£
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FIG. 3. A thermal flow pattern through a 2D opal lattice. The b
dashed circles give the geometry. Here the thermal field was ap- ( )
plied at 60° from horizontal.

the composite conductivity are made obvious by comparing
the resulting conductivities shown in Figs. 1 an@?2 An
additional system of interest is formed by filling the 2D opal
intersticies with a material having a different thermal con-
ductivity as shown in Fig. ®). For small or large porosities
the thermal conductivity approaches that of the two constitu-
ent materials. The largest deviations from the simple model _ _
occur at intermediate porosities. Overall the 2D opal lattice . F'C: 4- (@ Face-centered-cubic opal lattice structure composed
impedes heat flow more effectively than the square and he>8f OVerIapp.'ng spheregb) Schematic boundary-element meshing
. - of overlapping spheres.
agonal lattices at comparable porosities. The stronger poros-
ity dependence of the thermal conductivity for the 2D opalnearest neighbor®verlapping. As the void size is increased
lattice is a geometrical effect. the lattice becomes ill defined when the radius of the void
A plot of the calculated current flow pattern for a 2D opal exceeds the lattice period divided Q,Q
lattice is given in Fig. 3. The external field has been applied The fcc opal lattice is formed by an array of overlapping
along a low-symmetry direction to demonstrate the flexibility spheres arranged as shown in Figa)4 The spheres have
of the boundary-element technique. An example of the curthermal conductivity, and the remaining pores are noncon-
rent constr?ction in_ the 2D opal lattice is shown in the en-ducting. The porosity limit of the fcc opal is reached when
larged portion of Fig. 3. o the 12 nearest-neighbor spheres no longer intersect. A differ-
The 2D opal lattice can serve as a guideline structure t@nce between the 2D opal and the fcc opal is that the voids of
demonstrate the modifications of thermal conductivity thathe 2p opal are isolated whereas the voids of the fcc opal
can be caused by lattice geometry. The present calculatiofgym a connected lattice. By reversing the roles of the
provide a starting point for understanding the porosity despheres and voids in Fig.(@ we obtain an inverse-opal
pendence of the thermal conductivity for a wider class ofjattice which is a structure where the material inside the
mesoscopic composites including those without periodicity.spheres has thermal conductiviéyo,esand the filled region
ko,. Examples of fcc opal and inverse-opal lattices can be
IV. THREE-DIMENSIONAL SYSTEMS found in Refs. 1 _and 2. The p_orosi;y of the inverse opal is
found by subtracting the porosity of its template opal from 1.
This section gives thermal conductivity results for three  Calculations on the boundaries of these three-dimensional
periodic composites with three-dimensional lattices. The latiattices involve discretizing spherical surfaces. To solve for
tices are the simple cubic lattice, the fcc opal lattice, and ther the boundaries were discretized using equilateral geodesic
inverse-opal lattice. The simple cubic lattice consists of nontriangles. The boundary-elements were taken to have
conducting spherical voids imbedded in a material characteipiecewise-constantr similar to the discretization used for
ized byk,. The simple cubic lattice is the three-dimensionaltwo-dimensional lattices. Figure(ld) gives a flavor of the
analog of the two-dimensional square lattice but there is &ssential meshing features showing both the surface triangles
key difference: it forms a lattice even when the sphericaland the intersection of spheres. In more detail the mesh has
voids overlap. Therefore the porosity of the simple cubic1280 boundary elements on a complete sphere for the non-
structure can be broken into two regimes corresponding teverlapping porosity regime of the simple cubic lattice and
spherical voids completely confined to their unit céh®n-  increased meshing near intersections of spheres for the over-
overlapping and to spherical voids that overlap with the lapping simple cubic case as well as the fcc opal and inverse
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FIG. 5. Thermal conductivity as a function of porosity for the  FIG. 6. Thermal conductivity of the fcc opal lattice vs porosity.
simple cubic lattice. The dashed curve is the Maxwell model. The dashed curve is the Maxwell model.

opals. The number of mesh points is increased near the in- The results shown in Fig. 7 as solid curves correspond to
tersections of spheres by breaking the triangles into smalldpverse opals ithc,ores/ ko= 0, 3 and;. Note the different
equilateral triangles. Giraldo’s technique of meshing sphereshape of the conductivity vs porosity curve for the inverse-
with uniform geodesic polygons, descriptions of triangleopal lattice shown in Fig. 7 fokpqres/ kKo=0 compared with
breaking, and pictures of the basic mesh are given in Ref. 18he opal lattice in Fig. 6. The reason is that the inverse-opal

Meshing the boundary surfaces of these three-dimesion&tttice is well defined for porosities smaller than the smallest
systems results in smaller matrices than implementations ugorosity that can be obtained by filling an opal template.
ing volume finite elements. Our use of |a’[tice_periodicTherefore if such lattices could be fabricated the conductiv-
Green'’s functions to eliminate boundary elements on the ceity would continue to increase with decreasing porosity. This
borders offers substantial numerical advantages for threesituation is similar to the simple cubic lattice transition from
dimensional lattices because the unit-cell boundary is no®verlapping to nonoverlapping spherical voids except the
discretized. The effective thermal conductivities were calcu-
lated using Eq(10) and the integral was evaluated by divid- 0.75 T T T T
ing the unit cell into a uniform cubic grid. As a check the
effective conductivities were obtained independently by cal-
culating the ratio of the net heat flux through the unit-cell
surfaces to the heat flux through an identical unit cell of
isotropic material with conductivity, .

The calculated thermal conductivity of the simple cubic
lattice is given by the solid curve in Fig. 5. The nonoverlap-
ping and overlapping geometry regimes are separated with a {
vertical line to indicate the crossover porosity. The Maxwell &
thermal conductivity shown by the dashed curve, is a good
approximation to the simple cubic lattice for low porosity. 0.25
As expected the thermal conductivity deviates from the Max-
well model as the porosity is increased but the trend is simi-
lar.

The calculated thermal conductivity for the fcc opal lat-
tice is given by the solid curve in Fig. 6. The Maxwell result
is shown for comparison. The conductivity of-the-opal van- %_75 0.80 0.85 0.90 0.95 10
ishes forp=0.259 where the spheres shown in Figg)ao
longer overlap. This feature is not represented well by the
simple Maxwell model. Compared with the results for the  FIG. 7. Thermal conductivity of inverse-opal lattices. Results
simple cubic structure given in Fig. 5 the fcc opal geometryare given fork pores/ ko =0 (lowest curvel 3 (middle curves and
impedes the heat flow more than the simple cubic lattice at (top curves. The solid curves are our calculated results and the
the same porosities. chain curves are after Bogomolet al.

0.50 |

porosity
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structure is face-centered cubic instead of simple cubic. Thef the square and hexagonal two-dimensional lattices and of
gains in conductivity from refilling the fcc opal are substan-the simple cubic lattice are in good agreement with the Max-
tial as shown in the curves of Fig. 7 fat,q.¢/ «, €qual toz well model for porous media. Our calculations show that
andi. In addition, the fcc opal and inverse-opal lattices cangeometrical effects can give rise to significant modifications
be filled with exotic thermoelectric materials giving a rangeof the porosity dependence of the thermal conductivity.
of thermoelectric composites with low thermal conductivi- The boundary-integral fomalism we gave in Sec. Il allows
ties. the investigation of lattices involving overlapping cylindrical

A series of thermal conductivity and thermoelectric mea-and spherical geometries. We have given a theoretical treat-
surements have been published by Bogomabual for the  ment of the thermal conductivity of opal-class structures
fcc opal and inverse-opal latticé&:?Experiment® showed  with both two- and three-dimensional lattices. In particular,
that the thermal conductivity of the inverse opals can beesults have been given for 2D opal, fcc opal, and inverse-
described roughly by an emperical modelgiven by opal lattices. We find that the opal geometries impede the
Kettl ko= (1= P) ¥+ p™(kpores/ ko). Comparing this ex-  flow of heat more strongly than nonoverlapping structures of
pression(plotted with chain curves in Fig.) ¥ith our results  comparable porosity. Furthermore, we have shown that by
(shown by solid curvesshows that the experimental fit is using the fcc opal and inverse-opal lattices as templates for
consistently lower than our calculations. That the two resultdilling with other materials increases and decreases in the net
agree as well as they do is surprising because the fabricatiaconductivity can be obtained.
of inverse opals typically suffers from incomplete filling and It might be noted that within a continuum approach the

flaws in the opal template. electrical conductivity of these mesoscopic systems can be
calculated in formally the same way as done for the thermal
V. CONCLUSION conductivity here. Roughly speaking the thermoelectric fig-

) ure of merit is controlled by the ratio of the electrical con-

Overall we have presented a general formalism for calcugyctivity to the thermal conductivity. If the boundary condi-
lating the thermal conductivity of periodic composites usingtions on the electrical and thermal conductivities are similar

a continuum approach. The extension of highly efficientthen their ratio will not be affected by microstructuring in the
boundary-integral techniques through the use of cell-periodi¢orm of a composite. Microscopic effects that can give rise to
Green’s functions was given in some detail. The real-spacgterface thermal resistances for thermal conductivities have

methods we have described here can be extended to a varigfgen discussed recenfijjowever, and they can affect this
of phenomena in mesoscopic composites such the harmonijgtig.

electromagnetic wave behavior.
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