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Criterion for crack formation in disordered materials
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Crack formation is conventionally described as a nucleation phenomenon despite the fact that the tempera-
tures necessary to overcome the nucleation barrier are far too high. In this paper we consider the possibility that
cracks are created due to the presence of frozen dis¢edgr, heterogeneities or frozen dislocatijors
particular we calculate the probability for the occurrence of a critical crack in a quasi-two-dimensional disor-
dered elastic system. It turns out that this probability takes the form of an Arrheniugatfor thermal
nucleation but with the temperatur replaced by an effectivéisorder temperature & which depends on the
strength of the disorder. The extension of these results=t8 dimensions is briefly discussed.
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[. INTRODUCTION phous materials, supplemented by randomly distributed dis-
order. The latter can also include mesoscopic heterogeneities
Cracks are one of the most important sources for the failand microcracks which occur during fabrication. Although

ure of solids' Despite continuous efforts for more than a the various sources of disorder conceivable may differ con-
century a full understanding of fracture has not yet beersiderably in their local properties, the most important aspect
reached™ A simple but very appealing picture for the oc- from the statistical point of viewwhich is adopted in this
currence of cracks goes back to GriffftiGriffith describes — papey is the spatial decay of the stress fields they create. It is
the emergence of cracks as a nucleation phenomenon: T this sense that the three types of disorder considered be-
open a crack in a thin plate, atomic bonds have to be brokelpw are generic.
and two new surfaces have to be created. For a crack of The main body of the paper is related to crack creation in
linear sizea, this costs an energy of ordar Simultaneously, & thin plate of infinite extension. Some results can, however,
the potential energy of the plate under external load is rebe easily extended to bulk materials. A detailed investigation
duced due to the stress relaxation around the crack. Thief cracks in slabs of finite width as well as those in three-
decreases the energy by an amount of omferThus, the dimensional systems will be presented in forthcoming
total crack energy as a function afincreases for smath  publications’
linearly and reaches a maximumaat a. before it decreases
guadratically. Cracks of lengtla<a. are stable whereas [l. CRACKS IN AN INFINITE TWO-DIMENSIONAL
those witha>a_ are unstable. However, contrary to conven- SAMPLE
tional nucleation phenomena the typical energy barriers for In thi id inale ol K extended
crack propagation in a perfect solid under realistic stresses n IS paper we consider a singie pianar crack extende
are much too high to be overcome by thermal fluctuationspara”e! to thex dwepu_on In a twq—dlmensmnal glastlcglly
Instead, the preexistence of microcradks preweakened isotropic system of infinite extension. The two-dimensional

bonds on scalesa<a, is usually tacitly assumed. These will S'?Ztc'ggaﬁzg b?a;eeals'freei’seégaﬁbﬁgégg_hpelaﬁr?;(\?ggm
then grow under external load. It seems to be reasonable fg b 9 '

consider microcracks as well as other heterogeneities in th@€ntsh and u of the two-dimensional system are then re-
material as a kind of frozen disorder only amenable to dated to the Lamecoefficientsh and u of the bulk by

statistical treatment. =2\uh/(N+2u), w=ph. The coordinates of the crack
The propagationof supercritical cracks in an inhomoge- are given by

neous material has been the subject of a number of afticles

which have attempted to explain the roughness of crack —asxsa, y=0. (2.1

fronts found experimentall?Unfortuqatelyacor_wincing €X"" such a planar crack appears, for instance, in experiments

planation of the experlmentql_data is stl_II Iackmg. The other .. preweakened bonds.

aspect—theccurrenceof a critical crack in the first pla_lce— In two dimensions only mode | and mode Il cracks occur

has been, to the best of our knowledge, not yet considered. Ith . =

is the aim of the present paper to address this point by cafharacterized by the only nonzero componerff= o, or

culating the probability of the occurrence of a critical cracka((?Iai):U(e), respectively, of the applied Stre%e)- In

in systems which includes various types of disorder. In parthe further treatment we will apply the dislocation theory of

ticular, we will consider randomness in the atomic bondcracks*? The crack will be described by virtual lattice planes

strength as well as randomly distributed impurities other  filling its interior such that there is no free crack surface. The

kinds of heterogeneiti¢sand frozen dislocations. It should, lattice planes terminate in crack dislocations with Burgers

however, be mentioned that our considerations are not reectorb(®. The whole crack is then given by a collection of

stricted to crystalline material. The main ingredient of ourdislocations (and antidislocations b{® at positions r,

theory is isotropic elasticity, which also applies to amor-=(x,,0), see Fig. 1. Crack dislocations interact with the ex-
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Here g(r)=r2(In|r|+ C)/(8%), and C is an arbitrary con-
— = stant. The elastic energy of the dislocations is then given by

(@) (b)

1 _
E(C)sz dzr(TijUij

Y 2 2,1 ' ’
—— :_E der d<r Eij6k|bj(r)b|(r )&iﬁkg(r—r ),

‘l’ - (2.9

where we used the relation
FIG. 1. Lattice planes terminating in crack dislocations in mode

I (@ and mode lI(b) cracks. The dislocation vectors are perpen- 1_ N o
dicular to the lattice planes. The arrows denote the direction of the U=—=0jy— ——— 00}, - (2.6)
external force$(®. Changingf(® crack dislocations in mode | and 2u 4u(N+p)

Il climb and glide, respectively.
The elastic energy of the crack dislocations is then given by

ternal stresﬂf) and the disorder made up of impurities and _

frozen dislocations. For the further discussion, it turns out to Y [a a

be convenient to introduce a two-dimensional dislocation E(C)z—%ﬁadxﬁadx’ b0 b(x")In
density b(r)=%=_b,é(r-r,) .The actual distribution of the

crack dislocation will be determined later from a minimum

condition for the free energy for given external stresses and 2.7)
crystal imperfections. It should be mentioned, however, thab(c)(x) denotes the crack dislocation density alongstteis
the crack description by dislocationsrist essential for the

final results. We could also have used more traditional ela qnc_i do den_otes a r_nicroscopic_cutofbf the order of the
o ' . X : Sattice spacing and in general different for mode | and mode
ticity theory combined with the appropriate boundary condl-”). Equation (2.7) is valid both for mode | and mode Il

tions on the crack surface. In this sense also amorphous ma:

(C) . ey
terials are includedbut there are no frozen dislocations in cracks. Note thaE IS alw_ays positive. o
this case So far we did not consider the core contributions of the

] ) . dislocations. In the present context this is replaced by the
The interaction between the external str%@ and a dis- . . = = =

. . . i two-dimensional energy density(x)=yo+ v1(Xx) of the
location with Burgers vectdb is given by the Peach-Kuer crack surface:
force™ f,= — €, bnolS), wheree; denotes the total antisym- '
metric unit tensor. With the help of this relation one obtains a o
for the total contribution ofo!?’ on the crack dislocation E(S)ZZJ dxy(x)=4ya+EPa). (2.8)

—a

energy

!

X—X
p

a Here?l(x) reflects the randomness in the strength of the
E@=—¢0{2 > x,b!) =—0l2 Jfadxxh(ﬂc)(x)- bonds broken. For simplicity we assume Gaussian disorder

(2.2  with (y1(x))=0 and

Thus, in mode I(Il) only the y(x) component ofb(®)(x) — ==, )

contributes toE‘®. SinceE(® is the only macroscopic term (1(X) y2(X')) = 6y @0 0a (X = X'), (2.9
which favors the existence of crack dislocations, it is clear )

that in mode KI1) only those withb(®)(r) parallel to they(x) where (---) denotes the average over the disorder and
axis will occur. This will be used in the followintf: Ja,(x) a delta function of widtka,. In general the correlation

The stress fieldr;; generated by dislocations is related to 1engtha, of the disorder appearing in E.9) is different

the Airy stress functiony(r) by's o = e, e ddy x(r), where from'the cutoff appearing in Eq2.7). Similarly, fqrthgr cor-
> AllY Stre (1) by™ o = €iic€jp X (1) relation lengths could be introduced for the distribution of
x is a solution of . . g . )
impurities and frozen dislocations to be considered below.
V2)2v(r)=Ye. d:bi(r) . 23 To avoid a too clumsy notation we will, however, use every-
o (_ ) )i )_ €5 ibi(r) 3 where the lengtta, as a small scale cutoff but keeping in
Here Y=4u(N+ u)/(2n+\) denotes the Young modulus mind this complication. Depending on the type of material
in two dimensions. under considerationag may vary between the size of an
In an infinite system the solution of E(.3) is given by®  atom in crystalline and the size of a grain in granular mate-
rials, respectively. The precise valueayf will be of course
val R SN N important if comparison with experiments is made. Then
X(r)_Yf dr'g(r=r')e;ab;(r’). 24 (E{®(a))=0 and we find for the variance & (a)

134204-2



CRITERION FOR CRACK FORMATION IN . . .

(EP(@)-EP@)?)=Agla-a’l, (210
where A(S)=8§y2ao. Clearly Eq. (2.9 is only valid for
la—a’|=a,.

In the following we add the contributiong(® =g

+E® from randomly frozen dislocations and impurities to
| jd)ui(jc) Where;i(jd) denotes
the strain field

the energyE( is given by [ d?r o

the stress generated by the disorder afféi

generated from cracks, respectively.
Using Eq.(2.5), EY can be written in the form

Y a
EO=— f © axBP00v(x), (211

V(x) =V (x)+VvO(x). (2.12

From Eqs.(2.3), (2.4), and(2.6) one obtains for the potential

created from dislocations

V(D (x 4wf d?r’ €[ ki g(r—r")1y—ob{ ™ (r"),

(2.13
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The total energf =E®+ E(©+ E®)+ E( s a functional
of the crack dislocation density(®(x). Differentiating the
saddle point equatiodE/sb(®(x) =0 with respect tox, we
find

4o, a 1
il O f dx'bO(x") ——+V'(x)=0. (2.19
Y -a X=X’

Equation(2.19 has the solutioH

a A
b(c)(x)zf dx’f(x,x’;a)(7o(e)+v’(x’)>
—a

=b{?(x) +b{%(x), (2.20
where
1 {a2—x'2\¥? 1
f(x,x’ a)———2< ) (2.21)
a?—x? X' —X

wherek=x,y for mode |, Il cracks, respectively. The frozen The total energy as a function of the crack length follows
dislocations are assumed to have both random positigns with the help of Eq.(2.19:

and directions of their Burgers vectors such thaf?(r))
=0 and

(b (r")) =bfigC1ay Sag(r—1) 8. (2.14

Herecsq) andb ¢y denote the concentration and the strength

of the dislocation.

Impurities(or more macroscopic inclusionalso generate
a long-range elastic displacement fieidl (r). Repeating the
calculation of Eshelby for d=2 dimensions one finds for

the strain tensor of an impurity located at the origin

 x+
u(r)= 5= ==, In|r]. (2.15
T 2w+ A\

Here Q) denotes the two-dimensional volume change due to
the impurity which can be of either sign. The interaction
energy between the crack dislocations and the impurities o\fv

denS|tyc(|)(r) takes the form

E<'>— der A(r)cg(r). (2.16
Here we used Eg2.15 and
E(i)(r)ZE 5a0(r_ra)_€(i)u 217

where the summation is over all impurity sites andg(i)
denotes the impurity concentration. With E¢a.3)—(2.6) we
find

!

v<i>(x):9f dzr’c(r')(akln—

) , (2.18
y=0

where agairk=x,y for mode I, Il cracks, respectively.

E(a)= YJ’ dxf dx'b@(x)b@(x")

XIn

(2.22

—x' a _
+2f dxy(x),
0 —a
whereb(©)(x) is given by Eq.(2.20.

For vanishing disordeb(®(x)—b{®(x,a) for which we
obtain from Eqs(2.20), (2.21), and(Al)

X
2\1/2° (223

bj7(x.2) = Y (a®-x?)

hich yields in mode | an elliptic crack of maximal height
o®aly.

As follows from Eq.(2.20 the total energy2.22 can be
divided into contributionsg,, which are proportional to
(0(e)? " with n=0,1,2, respectively. Her&; andE, de-

pend on the disorder. The disorder-independent contributions
to the energy are given by the Griffith expression

— Wazg(ze)
Eq(a) =470~

a
1— —) . (2.24

=4
Yod 2ac

which shows a maximum a=a,=2y,Y/(7og?) corre-
sponding to an energy barriép(a,) =2vpa. -

The contribution€E; andE, depend on the frozen disor-
der and can be characterized by their mean value and vari-

ance.E; can be rewritten using partial integration and Egs.
(A1) and(A2) as
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(e © ()b x YN
E,= dxdx by”(x)bi”(x")In
A7) _al-a

Y ra
=— Eﬁade(x)bgc)(x). (2.25

For impurities we obtain from Eq$2.17) and(2.18

) ) - R
(VO)VO(x"))=0%cqming——ro,
Ix=x'|

(2.26

whereR is a cutoff of the order of the system size which has

to be send to infinity. This gives with Eq&A1) and(A2) for
the impurity contributiorE{" to the variance of;

((EQ(a)-EP(a)1?)=Apla?—a’?. (227

Here A(I) - (7T/2)€(|) (Q_;(e))2=?(i)02;07/ac .
For frozen dislocations we get from Eq2.13 and(2.14)

(7R)?

—5

6
(fd) (fd)(y" )\ = — 2
(VIP(x)VHI9(x")) Wc(fd)b(fd) 3

o).
(2.29

which gives with Eq.(2.25 for the dislocation contribution
E{® to the variance of;

([E{(a)—Ef(a")]?)=Ay(a%—a’'?)? (229

with A(fd) = (3/’77) C(fd)(b(fd);(e)) 2= 6C(fd)b(2fd);07/(772ac) Lt

PHYSICAL REVIEW B63 134204

E(a)

FIG. 2. Schematic plot of the crack energy as a functioa f
the pure and random system.

<0. This occurs with the probabilityWg_o(ag). (On this
smallest scale even thermal fluctuations may help to create a
crack as we will see beloywThe crack can then only propa-
gate further if for a given disorder configuration the force on
the crack tipf(a)=—dE/da is positive forall a=a, (we
neglect effects of inertja

Because of its mathematical simplicity, we consider here
first a necessarycondition to be fulfilled which isE(a)<0
for all a. Clearly, if E(a)>0, an(essentially macroscopic
energy barrier exists and the crack cannot propagate. The
probability We_o(a) is given by

is easy to see from E¢R.11) and the condition that the crack

be closed, i.e.f2,dxb©(x)=0, that there the dependence

on R vanishes in Eq92.27) and(2.29. These equations are
clearly valid only for|a—a’| larger thanay. For |[a—a’|
smaller than the mean distance between the impurities Qhith
dislocations, respectively, the statisticskgf(a) is no longer
Gaussian, but Eq92.27) and (2.29 still give the correct

order of magnitude of the fluctuations Bf(a).

The mean values as well as the fluctuationsEef are
proportional toc; andc g and hence small if the disorder < . o - ) )
is weak as we will assume in the following. Then the averagétere we used the fact th&t®+E{’ + E{” is Gaussian dis-
energy of the crack is given by the Griffith expressiiyga).  tributed with variancel ga+Aa®+ A ga’. Note that this
The energy barrierEO(ac)zz%aC is typically large and E€XPression for the variance makes sense onlyafanuch
cannot be overcome by thermal fluctuations. Indeed, fof2"9€r thang,. Among the cracks of various lengtasthere
crystalline solids witﬁ%s?ao one finds is one I_engthac for which the proba_bilityvVE<0 is minimal.

This minimum appears at the maximum ¢ta). One finds

a, given by the solution of

W _ 1 _‘/’(a)d —X2/2 23
E<0(a) \/E 3 Xe ’ ( . 1)

4ysal1—al(2a)]
(Aga+Aga®+ A(fd)a“)lfz'

¢(a)= (2.32

(2.30

whereT, is a characteristic temperature comparable to, but
typically bigger than, the solid’s melting temperatdfe.
For relatively large strainY/o is of order 10 such that
the nucleation rate for a supercritical crack is of order
woexp(—100T,,/T). Here wy is a microscopic attempt fre-

Eo(a) =kgTm(Y/0)%,  Tu=1yoao/Ks,

2

3a
Mg~ 80~ 28% -

2a,

(2.33

o= 1-

It is tempting to consideMg_o(a)=Wg-o [compare

quency of order 1% s 1. In the further discussion we will
therefore mostly neglect thermal fluctuations.
Let us denote the probability that a crack of lengthas

Egs.(2.31) and(2.33] as the probability for the occurrence
of the crack. This conclusion will be elucidated further be-
low. It is instructive to consider the three different sources of

a negative energy bWg_o(a). The smallest crack one can disorder separately.

think of has a length of the ordex,. Thus a crack can only

appear if this smallest crack has a negative enekgfyp,)

(i) If only the surface energy is random, thefs(a)
vanishes at=0 anda=2a. and has an maximum &
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=(2/3)a,. For weak disorderp®(a,)=¢ is large and
since, for ¢(a)>1, Weo(a)~—exp(-¢42)/(\2m ),
we get
-
W) ot eXp( _ 107
V27 pB)(ay) 275y%a,
(i) In the case of randomly distributed impurities; (a)

has a maximum for vanishing. For weak disorder and,
>a, we get

). (2.39

WO~ ! exp( _ Byt (2.39
E<0 \/2’7T¢(i) (ac) QZC(i)Y . .
(i)  Finally, for frozen dislocations ¢ q(a)

=4vyo[ La-1/(2a;) |/ VA (1q)- Henceg ) (a) takes its maxi-
mum again ah— 0 where¢(a) diverges. In this case has
to be replaced by the minimal length scalg This gives

1 47?y,a,
@2 O 3 o o
2wt (ae) 3b{54)C a0 Y

(2.3

It may be worthwhile to mention that thermal fluctuations

PHYSICAL REVIEW B53 134204
(FP@fPa) =4 (a—a"),
<f(1|)(a)f(l')(a’)>=2aA(,) 5a0(a—a’),

(@) @))=4aa’A .

In the case of random surface tension and randomly distrib-
uted impurities correlations are local and the joint probability
distribution of thef’s factorizes. In this case the probability
that the forcef (a) on the tip of a crack of lengthis positive

is given by

—fo<a)/<f§(a>>”2dx 1

Wf>0(a):J_w Ee

The total probabilityW; -, for f(a)>0 for 0<a<o is given

by the product of allW;-(a) factors. Here we take into
account that the forces are correlated over a distance of order
a, such that we can decompose the crack in pieces of the
ordera,. It is more convenient to consider the logarithm of

Wi-o:

—x2/2

(2.41

INWs-o=2, INWs-o(a). (2.42

could be at least partially incorporated into the present treatl he sum ovea=nay is here meant over integer numbers

ment by relaxing the conditionE(a)<0 to E(a)
<kgT In(wgt) since barriers of ordeE are overcome on
time scales of ordert~wyexpE/T). This replacement
changes the numerator @f(a) in Eg. (2.32 from 4%a[1
—al(2a;)] to 4?0a[1—a/(2ac)]—kBTIn(wot). Since bar-
riers on scalesi<ag with

(2.37)

ar In((z)ot)

maoﬁm

disappeara, has to be replaced by maag(a;) in the expres-
sions forWg_, (we still assumea.>ay). This replacement

effects essentially only the result for the frozen dislocations,
Eq. (2.36. We emphasize, however, that in general the three

types of disorder will work in parallel.
Next we consider the probability to fulfill theufficient
condition JE/9a<<0 for 0<a<o, i.e., that the force(a)

Since fora>a. the integrals(2.41) are essentially equal to
unity, it is sufficient to restrict the summation in E§.42) to
the region G<a<a.. Moreover, the sum is dominated by
the smallest values &V;-o(a) for which we can replace the
Gaussian integral.41) by the approximate expression used
above. This gives

~ ac da
In Wf>0%_ f (

0 2ap

fo@  (fi@)

> +1In 2 .
(f1(a)) 27fy(a)

(2.43

In the case of a random surface tension only we obtain

By .2

~ a, Yo 1 5’)/

INW )~ — = ==+1+-In—=|. (24

B e\ Ta 2 ey B

Thus W2, is essentially of the same form &% _, apart

acting on the crack tip is always positive and the crack carfrom a replacement of the numerical factor in the exponent

propagate forevefsee Fig. 2 We decomposéinto a deter-
ministic and a stochastic contribution:

JE(a)
f(a)=— a =fo(a)+fi(a), (2.39
— a
fo(@)=4vo 1-=) (2.39
fi(a)=fa)+ 1P (a)+ 1" (a). (2.40

32 is replaced bys). A similar calculation for the case of

random impurities gives

. ac| 4y030 [ a. 2
i)~ — 2| 2 & 2
f=o Qo C(l)QZY =) 3
1 cyQ?y
+1+ zIn————|, (2.49
2 327Tao'yo

which is again the same result for the exponent a$7\!9£0,

Since f,(a)=—JE/da is Gaussian distributed, the joint apart from the logarithmic factor which replaces 2.

probability distribution off ;(a) for 0<a<w is also Gauss-

The third case of randomly distributed dislocations is

ian but in generahonlocal Its form can be reconstructed more involved. Here we should indeed take into account the

from the second moments

long-range correlations of the forcd§® . This requires a
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more detailed mathematical investigation which we leave foiThe behavior on even smaller scales is described by three-
further studies. However, our experience with the two othedimensional physics which we will discuss at the end of the
cases makes it tempting to assume %4, gives essen- section.

tially the correct expression of the probability for the occur- ~ With §y?~ 8y*ha,, wheredy denotes the fluctuation of

rence of a crack. the three-dimensional surface tensigy, T&! does not de-
pend onh.
Ill. DISCUSSION AND CONCLUSIONS Next, c;y=ch is a two-dimensional density propor-

dtional toh (the three-dimensional density; is independent

It |s~|nterest|ng .to rgmark that in all cases_con3|dere bf h). Here O as a two-dimensional cross section of the
aboveW can be written in the form of an Arrhenius law for impurity should be replaced b@3’2/h' ie. we assume es-
thermal nucleation with an effective temperature determine@entia"y spherical impurities. Thus
by the strength of the disorder:

— 0 QepY(, h (3.5
2y0ac e "4k 2a '

. (3.9 c
kBTeff

W~W, exp( -
is essentially independent bf <a,).
Here For randomly distributed dislocatiortgy, (as a line den-
sity) andb s are unchanged and hence

GE'yzao
Tit= Keye 32 (fd) h®bfio)Cirey Y
BY0 off = 5 (3.6
) 4ar kB
for random surface tension,
In Egs. (3.5 and(3.6) we replacedy, by h.
_ QZE(DV On scales smaller thamnthe cracks ar¢hree dimensional
TS%ZT (8.3 The results of this paper can, however, easily be extended to
B penny cracks i dimensions. The Griffith energy then takes
for randomly distributed impurities, and the form
_ o ad—1_y—1 2 .d
@ 330D Cia)Y Eo(a)=70a MO S
Tgﬁ)~ —_— (3.9

27Ky where we neglect here and in the following all numerical
factors which in general depend on the precise crack geom-

for frozen dislocations. The present calculation is not accuetry. Eo(a) has a maximum aa,~ 7,0\(/0(26); i.e., a is es-

rate enough to determine the preexponential téfgnwhich  sentially unchanged.

we assume to be of the order 1. Relat{8ril) can be given a If the disorder is taken into account, additional contribu-

very simple meaning: the probability that a crack of minimaltions to the energy appear. A randomness in the surface ten-

length a, occurs is given by eXp-27080/(kaTor)]. Here  sion leads to a fluctuation of the ordeff Ef¥(a)]?)

27,8, denotes the energy of such a crack. The total prob™ dy*(aag)?™*. Following the discussion below E(.31),
ability is then the &./a,)th power of this elementary prob- the minimum ofWg_(a) follows again fora.~a. . Rewrit-
ability. ing the minimumWe_ o4 of Wg_o(a) in the form

Below we want to estimat@ for two different materials. i1
We have to keep in mind, that our calculation was strictly i Yo
two dimensional. To compare the results with real experi- =~ Wa0€X KeTest |
ments onthin plateswe have to consider their dependence
on the widthh of the plate. A necessary condition for the We obtain for the effective disorder the temperatTit§(d)
application of the two-dimensional theory is that the critical = 8y%a3~ */(Kgyo)-
crack lengtha, is much largerthanh. In the following we Randomly distributed impurities create an additional con-
will assume that this condition is always fulfilled. tribution o; to the stress where

Since yo=yoh, Y=Yh and o= o(h are proportional
to h, the nucleation energy)%ac=4;§Y/(Tra(e)2) is also
proportional toh. This expression can be understood as follows: An isolated

Estimating theh dependence oF . we have to make sure impurity creates in a voluma® an average streSsof the
that all relevant length scales in thg plane (like a;) are  orderYQ%%a®. With cya® the number of impurities in this
much larger than th. For T, and T{$ | which were deter- volume [the average stress created by the impurities is as-
mined by the small scale cuto#f,, this leads to the severe sumed to be already incorporated ifig(a) ] the fluctuation
restrictionh<a,. We note, however, that this cutoff will be of the stress created by the impurities is given by B9).
in general larger than the lattice spacing. It is therefore apThus we obtain([E{’(a)]%)~ Q%Y ysa’c /a.. The mini-
propriate to use in these two caseas the small-scale cutoff. mal probability follows for d>2 (contrary to the two-

(3.8

|0'(i)|:Y(QdC(i) /ad)llz. (39)
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dimensional cagefor a;~a.. The disorder temperature is ~ TABLE I. Estimates of the effective temperaturgg; for glass
now of the orderTO(d)=Q%%,.Y/(4ks). Clearl fora and SiC using Eqg3.2), (3.5), and(3.6). The corresponding factors
eit(d) M (4kg) y N Ain Egs.(3.12 and(3.13 are also given. The material constants

~ (i) i i
h, Tg(d) agrees with the result for the plate, as it are taken from Ref. 2.

should be.

Similar_ly, rando_mly_distributed dislocation lines will give Glass sic
a fluctuation contributiorr sy to the stress of order
Y [10° P4 70 400
~2
o0yl = Y brray i - (310 Y0 [Im™] 1.0 4.0

Random surface energy
Indeed, a single dislocatidiine) creates a stress of the order weak disordersy/y,=0.1, a,=5x10 *m

Y bg/a. With c(fd)az for the number of dislocation lines in 1()g=2) [K] 1087 4348
the volumea® which are assumed to have random orienta-a(s) [P&m1] 5.9% 10% 1.36x 10%
tions one obtains Eq3.10. The corresponding fluctuation gyong disordersy/yo=0.3, ag=10¢m
of the energy due to dislocations is therefore givenT(s>(d:2) [K] 3.9x 1010 1.57x 101
([E{(2)12)~a?dyoY b C(1e)/ac. The minimal probabil-  AGs) (PEmY]  165<10°  3.77x 107
ity follows as ford=2 from small scales~a,, which re- ' '
sults in Random impurities
Weak disorderQ=2.5x10"*m?, c¢=8x10*m3
_ () (g=
TEP(d)~agal Y iy cra) ks @1y TH=2) e
Strong disorderQ=10"'m?, c¢=10"m"2

Clearly, also the case of multiple disorder can be conS|d=rg%(d:2) (K] 126 10° 7 24 10F

ered as it was done in E¢.31). ) -1 8 9
Next we have to compare the different probabilities inA [PLm™]  50016° 41516

order to decide which process dominates the formation of Random frozen dislocations

cracks in thin plates. For systems with a random surfac&veak disorderb=5x10"m, cy=10“m"2, h=10"°m

teniion and under the conditia@>h, the minimal probabil- ~ T{d(p|ate) K] 1.83x 10"

ity W arises both in two and in three dimensions from cracksa,=5x10"° m

of lengtha,~a.. In this case the probability for crack for- A™ [PEm™] 1.71x10%

mation is given by Egs(3.1) and(3.2). Strong disorderb gy =5x10"1"m, c(4=10*m"2, h=10"3%m
o ) Lo~ . T (plate) [K] 1.83x10%

For randomly distributed impuritiea;(d=2)~ag~h in eff (P

ag=5x10"" m

two dimensions and.(d=3)~a, in three dimensions. Thus Al (PEm 1] 171 1%

crack formation is dominated here by two-dimensiona
cracks of minimal lengthag~h. The corresponding prob-
ability is now given by Eqs(3.1) and(3.5). )
Finally, for randomly distributed dislocation, crack forma- v 4 Y h
tion in both two and three dimensions is controlled by the

formation of small cracks of siza.~a,. Comparing the ) _
corresponding probabilities in two and in three dimensiond Or frozen dislocations we have
(for d=2 we have to us@y~h) we find that crack forma-

tion is dominated by penny cracks of siag Its probability o 73 ap ap
is given by Eqs(3.8) and(3.11) for d=3. In(W/Wo)~ — ———— —-=-A—_ (3.13
In a macroscopic sample of linear sikeregions of dis- aob(fd)c(fd) O(e) O(e)

tance greater tham, can be considered to be essentially The corresponding values fax®, A®, and A are also
independent. The total probability for crack formation is given in Table I.
given by Wy(L/a,)® whered=2 for surface and impurity A number of comments are in order.
disorder andd= 3 for frozen dislocations. Sinc&, depends (i) The results so far are based on the assumption of short-
on o), the relationW,(L/a.)%~1 determines implicitly the range correlations of the disord@urface energy, impurities,
critical stressr(e) ; for crack formation in dependence on the frozen dislocations Experimentally this may not be the
disorder characteristics and the system size. most important situation. Long range correlations of the dis-
Next we consider the probability for crack formation in order described by a power law decay on the right-hand side
two different materials, one is amorpho(glasg and one of Egs.(2.9), (2.14), and(2.16 would in general lead to an
crystalline(SiC). The corresponding parameters are summaincrease of the probability for the occurrence of a crack.
rized in Table I. In the case of random surface tension and (ii) In the case of impurities and frozen dislocations the
randomly distributed impurities we express the probabilityprobability W is dominated by the energetics on small length
for crack formation as a function df/a'(ze) since the prob- scales. Since the stress on the crack tip diverges in the linear
ability can be written in the form elasticity theory used throughout the paper, nonlinear effects
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may be of particular importance for small cracks. This couldThis work was supported by the SFB 341 IKduich-

diminish the numerical coefficients in the exponent/f Aachen.

(iii) Defects were assumed everywhere to be frozen. In
real fatigue experiments often alternating stress is applied
which leads to an accumulation of dislocations close to the
crack tip, which makes crack propagation easier. This
mechanism could also help in a situation where, due to dis-

APPENDIX

The relevant integrals are

order fluctuations, the stress i§ considerably higher than on |,= Jl dx’ (1—x'2)12 1 _ax for |x<1,
average(or the surface energy is lower -1 X' —
(iv) An interesting question is the relation of our results to (A1)

crack propagation in quasicrystafswhich take an interme-
diate position between periodic and random media.

1 X'
|2=f dx/(l_XIZ)flIZ,_
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o for |x|<1,
(A2)

m—amlx|(x*=1)"Y2  for |x|>1.
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