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Criterion for crack formation in disordered materials

Peter F. Arndt and Thomas Nattermann
Institut für Theoretische Physik, Universita¨t zu Köln, Zülpicher Straße 77, D-50937 Ko¨ln, Germany

~Received 1 September 2000; published 7 March 2001!

Crack formation is conventionally described as a nucleation phenomenon despite the fact that the tempera-
tures necessary to overcome the nucleation barrier are far too high. In this paper we consider the possibility that
cracks are created due to the presence of frozen disorder~e.g., heterogeneities or frozen dislocations!. In
particular we calculate the probability for the occurrence of a critical crack in a quasi-two-dimensional disor-
dered elastic system. It turns out that this probability takes the form of an Arrhenius law~as for thermal
nucleation! but with the temperatureT replaced by an effectivedisorder temperature Teff which depends on the
strength of the disorder. The extension of these results tod53 dimensions is briefly discussed.
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I. INTRODUCTION

Cracks are one of the most important sources for the f
ure of solids.1 Despite continuous efforts for more than
century a full understanding of fracture has not yet be
reached.2–4 A simple but very appealing picture for the o
currence of cracks goes back to Griffith.5 Griffith describes
the emergence of cracks as a nucleation phenomenon
open a crack in a thin plate, atomic bonds have to be bro
and two new surfaces have to be created. For a crac
linear sizea, this costs an energy of ordera. Simultaneously,
the potential energy of the plate under external load is
duced due to the stress relaxation around the crack.
decreases the energy by an amount of ordera2. Thus, the
total crack energy as a function ofa increases for smalla
linearly and reaches a maximum ata5ac before it decrease
quadratically. Cracks of lengtha,ac are stable wherea
those witha.ac are unstable. However, contrary to conve
tional nucleation phenomena the typical energy barriers
crack propagation in a perfect solid under realistic stres
are much too high to be overcome by thermal fluctuatio
Instead, the preexistence of microcracks~or preweakened
bonds! on scalesa&ac is usually tacitly assumed. These w
then grow under external load. It seems to be reasonab
consider microcracks as well as other heterogeneities in
material as a kind of frozen disorder only amenable to
statistical treatment.

The propagationof supercritical cracks in an inhomoge
neous material has been the subject of a number of articl6,7

which have attempted to explain the roughness of cr
fronts found experimentally.8 Unfortunately a convincing ex
planation of the experimental data is still lacking. The oth
aspect—theoccurrenceof a critical crack in the first place—
has been, to the best of our knowledge, not yet considere
is the aim of the present paper to address this point by
culating the probability of the occurrence of a critical cra
in systems which includes various types of disorder. In p
ticular, we will consider randomness in the atomic bo
strength as well as randomly distributed impurities~or other
kinds of heterogeneities! and frozen dislocations. It should
however, be mentioned that our considerations are not
stricted to crystalline material. The main ingredient of o
theory is isotropic elasticity, which also applies to amo
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phous materials, supplemented by randomly distributed
order. The latter can also include mesoscopic heterogene
and microcracks which occur during fabrication. Althoug
the various sources of disorder conceivable may differ c
siderably in their local properties, the most important asp
from the statistical point of view~which is adopted in this
paper! is the spatial decay of the stress fields they create.
in this sense that the three types of disorder considered
low are generic.

The main body of the paper is related to crack creation
a thin plate of infinite extension. Some results can, howev
be easily extended to bulk materials. A detailed investigat
of cracks in slabs of finite width as well as those in thre
dimensional systems will be presented in forthcomi
publications.9

II. CRACKS IN AN INFINITE TWO-DIMENSIONAL
SAMPLE

In this paper we consider a single planar crack exten
parallel to thex direction in a two-dimensional elasticall
isotropic system of infinite extension. The two-dimension
situation can be realized, e.g., by a thin plate of widthh in
the so-called plane stress configuration.10 The Lamécoeffi-
cients l̄ and m̄ of the two-dimensional system are then r
lated to the Lame´ coefficientsl and m of the bulk by l̄

52lmh/(l12m), m̄5mh. The coordinates of the crac
are given by

2a<x<a, y[0. ~2.1!

Such a planar crack appears, for instance, in experim
with preweakened bonds.11

In two dimensions only mode I and mode II cracks occ
characterized by the only nonzero componentss̄yy

(e)5s̄ (e) or

s̄xy
(e)5s̄yx

(e)5s̄ (e) , respectively, of the applied stresss̄ i j
(e) . In

the further treatment we will apply the dislocation theory
cracks:12 The crack will be described by virtual lattice plane
filling its interior such that there is no free crack surface. T
lattice planes terminate in crack dislocations with Burg
vectorb(c). The whole crack is then given by a collection
dislocations ~and antidislocations! ba

(c) at positions ra

5(xa,0), see Fig. 1. Crack dislocations interact with the e
©2001 The American Physical Society04-1
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ternal stresss̄ i j
(e) and the disorder made up of impurities a

frozen dislocations. For the further discussion, it turns ou
be convenient to introduce a two-dimensional dislocat
density b(r )5(abad(r -ra) .The actual distribution of the
crack dislocation will be determined later from a minimu
condition for the free energy for given external stresses
crystal imperfections. It should be mentioned, however, t
the crack description by dislocations isnot essential for the
final results. We could also have used more traditional e
ticity theory combined with the appropriate boundary con
tions on the crack surface. In this sense also amorphous
terials are included~but there are no frozen dislocations
this case!.

The interaction between the external stresss̄ i j
(e) and a dis-

location with Burgers vectorb is given by the Peach-Ko¨hler
force13 f i52e i l bms̄ lm

(e) , wheree i l denotes the total antisym
metric unit tensor. With the help of this relation one obta
for the total contribution ofs̄ i j

(e) on the crack dislocation
energy

E(e)52exls̄ lm
(e) (

a
xaba,m

(c) 52s̄ym
(e) E

2a

a

dxxbm
(c)~x!.

~2.2!

Thus, in mode I~II ! only the y(x) component ofb(c)(x)
contributes toE(e). SinceE(e) is the only macroscopic term
which favors the existence of crack dislocations, it is cle
that in mode I~II ! only those withb(c)(r ) parallel to they(x)
axis will occur. This will be used in the following.14

The stress fields̄ i j generated by dislocations is related
the Airy stress functionx(r ) by15 s̄ i j 5e ike j l ]k] lx(r ), where
x is a solution of

~“2!2x~r !5Ȳe j i ] jbi~r ! . ~2.3!

Here Ȳ54m̄(l̄1m̄)/(2m̄1l̄) denotes the Young modulu
in two dimensions.

In an infinite system the solution of Eq.~2.3! is given by13

x~r !5ȲE d2r 8 g~r2r 8!e i j ] i8bj~r 8!. ~2.4!

FIG. 1. Lattice planes terminating in crack dislocations in mo
I ~a! and mode II~b! cracks. The dislocation vectors are perpe
dicular to the lattice planes. The arrows denote the direction of
external forcesf (e). Changingf (e) crack dislocations in mode I an
II climb and glide, respectively.
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Here g(r )5r2(lnur u1C)/(8p), and C is an arbitrary con-
stant. The elastic energy of the dislocations is then given

E(c)5
1

2 E d2r s̄ i j ui j

52
Ȳ

2E d2rE d2r 8e i j eklbj~r !bl~r 8!] i]kg~r2r 8!,

~2.5!

where we used the relation

uik5
1

2m̄
s̄ ik2

l̄

4m̄~ l̄1m̄ !
d iks̄ l l . ~2.6!

The elastic energy of the crack dislocations is then given

E(c)52
Ȳ

8p E
2a

a

dx E
2a

a

dx8 b(c)~x!b(c)~x8!lnUx2x8

a0
U.
~2.7!

b(c)(x) denotes the crack dislocation density along thex axis
and a0 denotes a microscopic cutoff~of the order of the
lattice spacing and in general different for mode I and mo
II !. Equation ~2.7! is valid both for mode I and mode I
cracks. Note thatE(c) is always positive.

So far we did not consider the core contributions of t
dislocations. In the present context this is replaced by
two-dimensional energy densityḡ(x)5ḡ01ḡ1(x) of the
crack surface:

E(s)52E
2a

a

dxḡ~x!54ḡ0a1E1
(s)~a!. ~2.8!

Here ḡ1(x) reflects the randomness in the strength of
bonds broken. For simplicity we assume Gaussian diso
with ^ḡ1(x)&50 and

^ḡ1~x!ḡ1~x8!&5 d̄g2a0da0
~x2x8!, ~2.9!

where ^•••& denotes the average over the disorder a
da0

(x) a delta function of widtha0. In general the correlation

length a0 of the disorder appearing in Eq.~2.9! is different
from the cutoff appearing in Eq.~2.7!. Similarly, further cor-
relation lengths could be introduced for the distribution
impurities and frozen dislocations to be considered belo
To avoid a too clumsy notation we will, however, use eve
where the lengtha0 as a small scale cutoff but keeping
mind this complication. Depending on the type of mater
under consideration,a0 may vary between the size of a
atom in crystalline and the size of a grain in granular ma
rials, respectively. The precise value ofa0 will be of course
important if comparison with experiments is made. Th
^E1

(s)(a)&50 and we find for the variance ofE1
(s)(a)

e
-
e

4-2



to

l

n
s

gt

r

t
on
s

ws

t

ions

-
ari-
s.

CRITERION FOR CRACK FORMATION IN . . . PHYSICAL REVIEW B63 134204
^@E1
(s)~a!2E1

(s)~a8!#2&5D (s)ua2a8u, ~2.10!

where D (s)58d̄g2a0. Clearly Eq. ~2.9! is only valid for
ua2a8u*a0.

In the following we add the contributionsE(d)5E(fd)

1E(i) from randomly frozen dislocations and impurities
the energy.E(d) is given by*d2r s̄ i j

(d)ui j
(c) wheres̄ i j

(d) denotes
the stress generated by the disorder andui j

(c) the strain field
generated from cracks, respectively.

Using Eq.~2.5!, E(d) can be written in the form

E(d)52
Ȳ

4pE2a

a

dxb(c)~x!V~x!, ~2.11!

V~x!5V(fd)~x!1V(i)~x!. ~2.12!

From Eqs.~2.3!, ~2.4!, and~2.6! one obtains for the potentia
created from dislocations

V(fd)~x!54pE d2r 8e i j @]k] ig~r2r 8!#y50bj
(fd)~r 8!,

~2.13!

wherek5x,y for mode I, II cracks, respectively. The froze
dislocations are assumed to have both random positionra
and directions of their Burgers vectors such that^b(fd)(r )&
50 and

^bi
(fd)~r !bj

(fd)~r 8!&5b(fd)
2 c(fd)da0

~r2r 8!d i j . ~2.14!

Herec(fd) andb(fd) denote the concentration and the stren
of the dislocation.

Impurities~or more macroscopic inclusions! also generate
a long-range elastic displacement fieldu(i) (r ). Repeating the
calculation of Eshelby16 for d52 dimensions one finds fo
the strain tensor of an impurity located at the origin

ui j
(i)~r !5

V

2p

l̄1m̄

2m̄1l̄
] i] j lnur u. ~2.15!

HereV denotes the two-dimensional volume change due
the impurity which can be of either sign. The interacti
energy between the crack dislocations and the impuritie
densityc̄(i) (r ) takes the form

E(i)5
1

2
VE d2r s̄ i i

(c)~r !c̄(i)~r !. ~2.16!

Here we used Eq.~2.15! and

c̄(i)~r !5(
a

da0
~r2ra!2 c̄(i) , ~2.17!

where the summation is over all impurity sitesra and c̄(i)
denotes the impurity concentration. With Eqs.~2.3!–~2.6! we
find

V(i)~x!5VE d2r 8c~r 8!S ]k lnUr2r 8
a0

U D
y50

, ~2.18!

where againk5x,y for mode I, II cracks, respectively.
13420
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The total energyE5E(e)1E(c)1E(s)1E(d) is a functional
of the crack dislocation densityb(c)(x). Differentiating the
saddle point equationdE/db(c)(x)50 with respect tox, we
find

4p

Ȳ
s̄ (e)1E

2a

a

dx8b(c)~x8!
1

x2x8
1V8~x!50. ~2.19!

Equation~2.19! has the solution17

b(c)~x!5E
2a

a

dx8 f ~x,x8;a!S 4p

Ȳ
s̄ (e)1V8~x8!D

5b0
(c)~x!1b1

(c)~x!, ~2.20!

where

f ~x,x8;a!52
1

p2 S a22x82

a22x2 D 1/2
1

x82x
. ~2.21!

The total energy as a function of the crack length follo
with the help of Eq.~2.19!:

E~a!5
Ȳ

8pE2a

a

dxE
2a

a

dx8b(c)~x!b(c)~x8!

3 lnUx2x8

a0
U12E

2a

a

dxḡ~x!, ~2.22!

whereb(c)(x) is given by Eq.~2.20!.
For vanishing disorderb(c)(x)→b0

(c)(x,a) for which we
obtain from Eqs.~2.20!, ~2.21!, and~A1!

b0
(c)~x,a!5

4s̄ (e)

Ȳ

x

~a22x2!1/2
, ~2.23!

which yields in mode I an elliptic crack of maximal heigh
2s̄ (e)a/Ȳ.

As follows from Eq.~2.20! the total energy~2.22! can be
divided into contributionsEn which are proportional to
(s̄ (e))

22n with n50,1,2, respectively. HereE1 and E2 de-
pend on the disorder. The disorder-independent contribut
to the energy are given by the Griffith expression

E0~a!54ḡ0a2
pa2s̄ (e)

2

Ȳ
54ḡ0aS 12

a

2ac
D , ~2.24!

which shows a maximum ata5ac52ḡ0Ȳ/(ps̄ (e)
2) corre-

sponding to an energy barrierE0(ac)52ḡ0ac .
The contributionsE1 andE2 depend on the frozen disor

der and can be characterized by their mean value and v
ance.E1 can be rewritten using partial integration and Eq
~A1! and ~A2! as
4-3
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E15
Ȳ

4pE2a

a E
2a

a

dxdx8b0
(c)~x!b1

(c)~x8!lnUx2x8

a0
U

52
Ȳ

4pE2a

a

dxV~x!b0
(c)~x!. ~2.25!

For impurities we obtain from Eqs.~2.17! and ~2.18!

^V(i)~x!V(i)~x8!&5V2c̄(i)p ln g
R

ux2x8u
, ~2.26!

whereR is a cutoff of the order of the system size which h
to be send to infinity. This gives with Eqs.~A1! and~A2! for
the impurity contributionE1

(i) to the variance ofE1

^@E1
(i)~a!2E1

(i)~a8!#2&5D (i) ua22a82u. ~2.27!

HereD (i)5(p/2)c̄(i) (Vs̄ (e))
25 c̄(i)V

2ḡ0Ȳ/ac .
For frozen dislocations we get from Eqs.~2.13! and~2.14!

^V(fd)~x!V(fd)~x8!&5
6

p
c(fd)b(fd)

2 S ~pR!2

3
2~x2x8!2D ,

~2.28!

which gives with Eq.~2.25! for the dislocation contribution
E1

(fd) to the variance ofE1

^@E1
(fd)~a!2E1

(fd)~a8!#2&5D (fd)~a22a82!2, ~2.29!

with D (fd)5(3/p)c(fd)(b(fd)s̄
(e))256c(fd)b(fd)

2 ḡ0Ȳ/(p2ac). It
is easy to see from Eq.~2.11! and the condition that the crac
be closed, i.e.,*2a

a dxb(c)(x)50, that there the dependenc
on R vanishes in Eqs.~2.27! and~2.29!. These equations ar
clearly valid only for ua2a8u larger thana0. For ua2a8u
smaller than the mean distance between the impurities
dislocations, respectively, the statistics ofE1(a) is no longer
Gaussian, but Eqs.~2.27! and ~2.29! still give the correct
order of magnitude of the fluctuations ofE1(a).

The mean values as well as the fluctuations ofE2 are
proportional toc̄(i) andc(fd) and hence small if the disorde
is weak as we will assume in the following. Then the avera
energy of the crack is given by the Griffith expressionE0(a).
The energy barrierE0(ac)52ḡ0ac is typically large and
cannot be overcome by thermal fluctuations. Indeed,
crystalline solids with5 ḡ0&Ȳa0 one finds

E0~ac!&kBTm~Ȳ/s̄ !2, Tm5ḡ0a0 /kB , ~2.30!

whereTm is a characteristic temperature comparable to,
typically bigger than, the solid’s melting temperature18

For relatively large strainȲ/s̄ is of order 10 such tha
the nucleation rate for a supercritical crack is of ord
v0 exp(2100Tm /T). Herev0 is a microscopic attempt fre
quency of order 1013 s21. In the further discussion we wil
therefore mostly neglect thermal fluctuations.

Let us denote the probability that a crack of lengtha has
a negative energy byWE,0(a). The smallest crack one ca
think of has a length of the ordera0. Thus a crack can only
appear if this smallest crack has a negative energy,E(a0)
13420
or

e

r

t

r

,0. This occurs with the probabilityWE,0(a0). ~On this
smallest scale even thermal fluctuations may help to crea
crack as we will see below.! The crack can then only propa
gate further if for a given disorder configuration the force
the crack tipf (a)52]E/]a is positive forall a>a0 ~we
neglect effects of inertia!.

Because of its mathematical simplicity, we consider h
first a necessarycondition to be fulfilled which isE(a),0
for all a. Clearly, if E(a).0, an ~essentially! macroscopic
energy barrier exists and the crack cannot propagate.
probability WE,0(a) is given by

WE,0~a!5
1

A2p
E

2`

2f(a)

dxe2x2/2, ~2.31!

with

f~a!5
4ḡ0a@12a/~2ac!#

~D (s)a1D (i)a
21D (fd)a

4!1/2
. ~2.32!

Here we used the fact thatE1
(s)1E1

(i)1E1
(fd) is Gaussian dis-

tributed with varianceD (s)a1D (i)a
21D (fd)a

4. Note that this
expression for the variance makes sense only fora much
larger thana0. Among the cracks of various lengthsa there
is one lengthãc for which the probabilityWE,0 is minimal.
This minimum appears at the maximum off(a). One finds
ãc given by the solution of

05S 12
3a

2ac
DD (s)2

a2

ac
D (i)22a3D (fd) . ~2.33!

It is tempting to considerWE,0(ãc)[W̃E,0 @compare
Eqs.~2.31! and ~2.33!# as the probability for the occurrenc
of the crack. This conclusion will be elucidated further b
low. It is instructive to consider the three different sources
disorder separately.

~i! If only the surface energy is random, thenf (s)(a)
vanishes ata50 and a52ac and has an maximum atãc

FIG. 2. Schematic plot of the crack energy as a function ofa in
the pure and random system.
4-4
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5(2/3)ac . For weak disorderf (s)(ãc)[f̃ (s) is large and
since, for f(a)@1, WE,0(a)'2exp(2f2/2)/(A2pf),
we get

W̃E,0
(s) '

1

A2pf (s)~ ãc!
expS 2

16ḡ0
2ac

27d̄g2a0
D . ~2.34!

~ii ! In the case of randomly distributed impuritiesf (i) (a)
has a maximum for vanishinga. For weak disorder andac
@a0 we get

W̃E,0
(i) '

1

A2pf (i)~ ãc!
expS 2

8ḡ0ac

V2c̄(i)Ȳ
D . ~2.35!

~iii ! Finally, for frozen dislocations f (fd)(a)
54ḡ0@1/a-1/(2ac)#/AD (fd). Hencef (fd)(a) takes its maxi-
mum again ata→0 wheref(a) diverges. In this casea has
to be replaced by the minimal length scalea0. This gives

W̃E,0
(fd) '

1

A2pf (fd)~ ãc!
expS 2

4p2ḡ0ac

3b(fd)
2 c(fd)a0

2Ȳ
D .

~2.36!

It may be worthwhile to mention that thermal fluctuatio
could be at least partially incorporated into the present tr
ment by relaxing the conditionE(a),0 to E(a)
,kBT ln(v0t) since barriers of orderE are overcome on
time scales of ordert'v0exp(E/T). This replacement
changes the numerator off(a) in Eq. ~2.32! from 4ḡ0a@1
2a/(2ac)# to 4ḡ0a@12a/(2ac)#2kBT ln(v0t). Since bar-
riers on scalesa&aT with

aT'a0

T

4Tm
ln~v0t ! ~2.37!

disappear,a0 has to be replaced by max(a0,aT) in the expres-
sions forW̃E,0 ~we still assumeac@aT). This replacement
effects essentially only the result for the frozen dislocatio
Eq. ~2.36!. We emphasize, however, that in general the th
types of disorder will work in parallel.

Next we consider the probability to fulfill thesufficient
condition ]E/]a,0 for 0,a,`, i.e., that the forcef (a)
acting on the crack tip is always positive and the crack
propagate forever~see Fig. 2!. We decomposef into a deter-
ministic and a stochastic contribution:

f ~a!52
]E~a!

]a
5 f 0~a!1 f 1~a!, ~2.38!

f 0~a!54ḡ0S 12
a

ac
D , ~2.39!

f 1~a!5 f 1
(s)~a!1 f 1

(i)~a!1 f 1
(fd)~a!. ~2.40!

Since f 1(a)52]E/]a is Gaussian distributed, the join
probability distribution off 1(a) for 0,a,` is also Gauss-
ian but in generalnonlocal. Its form can be reconstructe
from the second moments
13420
t-

,
e

n

^ f 1
(s)~a! f 1

(s)~a8!&5D (s)da0
~a2a8!,

^ f 1
(i)~a! f 1

(i)~a8!&52aD (i)da0
~a2a8!,

^ f 1
(fd)~a! f 1

(fd)~a8!&54aa8D (fd) .

In the case of random surface tension and randomly dist
uted impurities correlations are local and the joint probabi
distribution of thef ’s factorizes. In this case the probabilit
that the forcef (a) on the tip of a crack of lengtha is positive
is given by

Wf .0~a!5E
2`

2 f 0(a)/^ f 1
2(a)&1/2

dx
1

A2p
e2x2/2. ~2.41!

The total probabilityW̃f .0 for f (a).0 for 0,a,` is given
by the product of allWf .0(a) factors. Here we take into
account that the forces are correlated over a distance of o
a0 such that we can decompose the crack in pieces of
ordera0. It is more convenient to consider the logarithm
W̃f .0:

ln W̃f .05(
a

ln Wf .0~a!. ~2.42!

The sum overa5na0 is here meant over integer numbersn.
Since fora@ac the integrals~2.41! are essentially equal to
unity, it is sufficient to restrict the summation in Eq.~2.42! to
the region 0,a&ac . Moreover, the sum is dominated b
the smallest values ofWf .0(a) for which we can replace the
Gaussian integral~2.41! by the approximate expression use
above. This gives

ln W̃f .0'2E
0

ac da

2a0
S f 0

2~a!

^ f 1
2~a!&

1 ln
^ f 1

2~a!&

2p f 0
2~a!

D .

~2.43!

In the case of a random surface tension only we obtain

ln W̃f .0
(s) '2

ac

a0
S ḡ0

2

3d̄g2
111

1

2
ln

d̄g2

4pḡ0
2D . ~2.44!

Thus W̃f .0
(s) is essentially of the same form asW̃E,0 apart

from a replacement of the numerical factor in the expon

( 16
27 is replaced by1

3 ). A similar calculation for the case o
random impurities gives

ln W̃f .0
(i) '2

ac

a0
F 4ḡ0a0

c̄(i)V
2Ȳ

S ln
ac

a0
2

2

3D
111

1

2
ln

c̄(i)V
2Ȳ

32pa0ḡ0
G , ~2.45!

which is again the same result for the exponent as forW̃E,0,
apart from the logarithmic factor which replaces 2.

The third case of randomly distributed dislocations
more involved. Here we should indeed take into account
long-range correlations of the forcesf 1

(fd) . This requires a
4-5
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more detailed mathematical investigation which we leave
further studies. However, our experience with the two ot
cases makes it tempting to assume thatW̃E,0

(fd) gives essen-
tially the correct expression of the probability for the occu
rence of a crack.

III. DISCUSSION AND CONCLUSIONS

It is interesting to remark that in all cases conside
aboveW̃ can be written in the form of an Arrhenius law fo
thermal nucleation with an effective temperature determi
by the strength of the disorder:

W̃'W̃0 expS 2
2ḡ0ac

kBTeff
D . ~3.1!

Here

Teff
(s)5

6d̄g2a0

kBḡ0

~3.2!

for random surface tension,

Teff
(i)5

V2c̄(i)Ȳ

4kB
~3.3!

for randomly distributed impurities, and

Teff
(fd)'

3a0
2b(fd)

2 c(fd)Ȳ

2p2kB

~3.4!

for frozen dislocations. The present calculation is not ac
rate enough to determine the preexponential termW̃0, which
we assume to be of the order 1. Relation~3.1! can be given a
very simple meaning: the probability that a crack of minim
length a0 occurs is given by exp@22ḡ0a0 /(kBTeff)#. Here
2ḡ0a0 denotes the energy of such a crack. The total pr
ability is then the (ac /a0)th power of this elementary prob
ability.

Below we want to estimateW̃ for two different materials.
We have to keep in mind, that our calculation was stric
two dimensional. To compare the results with real expe
ments onthin plateswe have to consider their dependen
on the widthh of the plate. A necessary condition for th
application of the two-dimensional theory is that the critic
crack lengthac is much largerthan h. In the following we
will assume that this condition is always fulfilled.

Sinceḡ05g0h, Ȳ5Yh and s̄ (e)5s (e)h are proportional
to h, the nucleation energy 2ḡ0ac54ḡ0

2Ȳ/(ps̄ (e)
2) is also

proportional toh.
Estimating theh dependence ofTeff we have to make sure

that all relevant length scales in thexy plane ~like ac) are
much larger than theh. For Teff

(i) andTeff
(fd) , which were deter-

mined by the small scale cutoffa0, this leads to the sever
restrictionh,a0. We note, however, that this cutoff will b
in general larger than the lattice spacing. It is therefore
propriate to use in these two casesh as the small-scale cutoff
13420
r
r

-

d

d

-

l

-

i-

l

-

The behavior on even smaller scales is described by th
dimensional physics which we will discuss at the end of
section.

With d̄g2'dg2ha0, wheredg denotes the fluctuation o
the three-dimensional surface tensiong0 , Teff

(s) does not de-
pend onh.

Next, c̄(i)5c(i)h is a two-dimensional density propor
tional to h ~the three-dimensional densityc(i) is independent
of h). Here V as a two-dimensional cross section of t
impurity should be replaced byV3/2/h; i.e., we assume es
sentially spherical impurities. Thus

Teff
(i)→ V3c(i)Y

4kB
S 12

h

2ac
D ~3.5!

is essentially independent ofh(!ac).
For randomly distributed dislocationsc(fd) ~as a line den-

sity! andb(fd) are unchanged and hence

Teff
(fd)→

h3b(fd)
2 c(fd)Y

4p2kB

. ~3.6!

In Eqs.~3.5! and ~3.6! we replaceda0 by h.
On scales smaller thanh the cracks arethree dimensional.

The results of this paper can, however, easily be extende
penny cracks ind dimensions. The Griffith energy then take
the form

E0~a!5g0ad212Y21s (e)
2 ad, ~3.7!

where we neglect here and in the following all numeric
factors which in general depend on the precise crack ge
etry. E0(a) has a maximum atac;g0Y/s (e)

2 ; i.e., ac is es-
sentially unchanged.

If the disorder is taken into account, additional contrib
tions to the energy appear. A randomness in the surface
sion leads to a fluctuation of the order̂@E1

(s)(a)#2&
'dg2(aa0)d21. Following the discussion below Eq.~2.31!,
the minimum ofWE,0(a) follows again forãc;ac . Rewrit-
ing the minimumW̃E,0,d of WE,0(a) in the form

W̃d'W̃d,0 expS 2
g0ac

d21

kBTeff
D , ~3.8!

we obtain for the effective disorder the temperatureTeff
(s)(d)

'dg2a0
d21/(kBg0).

Randomly distributed impurities create an additional co
tribution s (i) to the stress where

us (i) u5Y~Vdc(i) /ad!1/2. ~3.9!

This expression can be understood as follows: An isola
impurity creates in a volumead an average stress13 of the
orderYVd/2/ad. With c(i)a

d the number of impurities in this
volume @the average stress created by the impurities is
sumed to be already incorporated intoE0(a)# the fluctuation
of the stress created by the impurities is given by Eq.~3.9!.
Thus we obtain̂ @E1

(i) (a)#2&'VdYg0adc(i) /ac . The mini-
mal probability follows for d.2 ~contrary to the two-
4-6
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dimensional case! for ãc;ac . The disorder temperature i
now of the orderTeff

(i) (d)5Vdc(i)Y/(4kB). Clearly, for ac

'h, Teff
(i) (d) agrees with the result for the plate, as

should be.
Similarly, randomly distributed dislocation lines will giv

a fluctuation contributions (fd) to the stress of order

us (fd)u5Yb(fd)c(fd)
1/2 . ~3.10!

Indeed, a single dislocation~line! creates a stress of the ord
Yb0 /a. With c(fd)a

2 for the number of dislocation lines in
the volumead which are assumed to have random orien
tions one obtains Eq.~3.10!. The corresponding fluctuatio
of the energy due to dislocations is therefore giv
^@E1

(fd)(a)#2&'a2dg0Yb(fd)
2 c(fd) /ac . The minimal probabil-

ity follows as for d52 from small scalesa'a0, which re-
sults in

Teff
(fd)~d!'a0

2ac
d22Yb(fd)

2 c(fd) /kB . ~3.11!

Clearly, also the case of multiple disorder can be cons
ered as it was done in Eq.~2.31!.

Next we have to compare the different probabilities
order to decide which process dominates the formation
cracks in thin plates. For systems with a random surf
tension and under the conditionac@h, the minimal probabil-
ity W̃ arises both in two and in three dimensions from cra
of length ãc;ac . In this case the probability for crack for
mation is given by Eqs.~3.1! and ~3.2!.

For randomly distributed impuritiesãc(d52)'a0'h in
two dimensions andãc(d53)'ac in three dimensions. Thu
crack formation is dominated here by two-dimension
cracks of minimal lengtha0'h. The corresponding prob
ability is now given by Eqs.~3.1! and ~3.5!.

Finally, for randomly distributed dislocation, crack form
tion in both two and three dimensions is controlled by t
formation of small cracks of sizeãc'a0. Comparing the
corresponding probabilities in two and in three dimensio
~for d52 we have to usea0'h) we find that crack forma-
tion is dominated by penny cracks of sizea0. Its probability
is given by Eqs.~3.8! and ~3.11! for d53.

In a macroscopic sample of linear sizeL regions of dis-
tance greater thanãc can be considered to be essentia
independent. The total probability for crack formation
given by W̃d(L/ãc)

d where d52 for surface and impurity
disorder andd53 for frozen dislocations. Sinceac depends
on s~e!, the relationW̃d(L/ãc)

d'1 determines implicitly the
critical stresss (e),c for crack formation in dependence on th
disorder characteristics and the system size.

Next we consider the probability for crack formation
two different materials, one is amorphous~glass! and one
crystalline~SiC!. The corresponding parameters are summ
rized in Table I. In the case of random surface tension
randomly distributed impurities we express the probabi
for crack formation as a function ofh/s (e)

2 since the prob-
ability can be written in the form
13420
-

-

f
e

s

l

s

-
d

ln~W̃/W̃0!52
4

p

g0
2Y

kBTeff

h

s (e)
2

[2A
h

s (e)
2

. ~3.12!

For frozen dislocations we have

ln~W̃/W̃0!'2
g0

2

a0
3b(fd)

2 c(fd)

a0

s (e)
2

[2A(fd)
a0

s (e)
2

. ~3.13!

The corresponding values forA(s), A(i) , and A(fd) are also
given in Table I.

A number of comments are in order.
~i! The results so far are based on the assumption of sh

range correlations of the disorder~surface energy, impurities
frozen dislocations!. Experimentally this may not be th
most important situation. Long range correlations of the d
order described by a power law decay on the right-hand s
of Eqs.~2.9!, ~2.14!, and~2.16! would in general lead to an
increase of the probability for the occurrence of a crack.

~ii ! In the case of impurities and frozen dislocations t
probabilityW̃ is dominated by the energetics on small leng
scales. Since the stress on the crack tip diverges in the li
elasticity theory used throughout the paper, nonlinear effe

TABLE I. Estimates of the effective temperaturesTeff for glass
and SiC using Eqs.~3.2!, ~3.5!, and~3.6!. The corresponding factors
A in Eqs. ~3.12! and ~3.13! are also given. The material constan
are taken from Ref. 2.

Glass SiC

Y @109 Pa# 70 400
g0 @J m22# 1.0 4.0

Random surface energy
Weak disorder:dg/g050.1, a055310210 m
Teff

(s)(d52) @K# 1087 4348
A(s) @Pa2 m21# 5.931030 1.3631032

Strong disorder:dg/g050.3, a051026 m
Teff

(s)(d52) @K# 3.931010 1.5731011

A(s) @Pa2 m21# 1.6531023 3.7731024

Random impurities
Weak disorder:V52.5310219 m2, c5831024 m23

Teff
(i) (d52) @K# 158.5 905.8

A(i) @Pa2 m21# 4.0731031 6.531032

Strong disorder:V510215 m2, c51017 m23

Teff
(i) (d52) @K# 1.263105 7.243105

A(i) @Pa2 m21# 5.0931028 4.1531029

Random frozen dislocations
Weak disorder:b(fd)55310210 m, c(fd)51014 m22, h51023 m
Teff

(fd)(plate) @K# 1.8331019

a05531029 m
A(fd) @Pa2 m21# 1.7131030

Strong disorder:b(fd)55310210 m, c(fd)51016 m22, h51023 m
Teff

(fd)(plate) @K# 1.8331021

a055310210 m
A(fd) @Pa2 m21# 1.7131031
4-7



ul

.
lie
th
hi
di

o

to

y
ns

PETER F. ARNDT AND THOMAS NATTERMANN PHYSICAL REVIEW B63 134204
may be of particular importance for small cracks. This co
diminish the numerical coefficients in the exponent ofW̃.

~iii ! Defects were assumed everywhere to be frozen
real fatigue experiments often alternating stress is app
which leads to an accumulation of dislocations close to
crack tip, which makes crack propagation easier. T
mechanism could also help in a situation where, due to
order fluctuations, the stress is considerably higher than
average~or the surface energy is lower!.

~iv! An interesting question is the relation of our results
crack propagation in quasicrystals,19 which take an interme-
diate position between periodic and random media.
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APPENDIX

The relevant integrals are

I 15E
21

1

dx8~12x82!1/2
1

x82x
52px for uxu,1,

~A1!

I 25E
21

1

dx8~12x82!21/2
x8

x82x

5H p for uxu,1,

p2puxu~x221!21/2 for uxu.1.
~A2!
or-
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