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Spin-charge decoupling and orthofermi quantum statistics
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Currently Gutzwiller projection technique and nested Bethe ansatz are two main methods used to handle
electronic systems in theU infinity limit. We demonstrate that these two approaches describe two distinct
physical systems. In the nested Bethe ansatz solutions, there is a decoupling between the spin and charge
degrees of freedom. Such a decoupling is absent in the Gutzwiller projection technique. Whereas in the
Gutzwiller approach, the usual antisymmetry of space and spin coordinates is maintained, we show that the
Bethe ansatz wave function is compatible with a form of quantum statistics, viz., orthofermi statistics. In these
statistics, the wave function is antisymmetric in spatial coordinates alone. This feature ultimately leads to
spin-charge decoupling.
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We had earlier envisaged a quantum system of spin-
particles obeying a new exclusion principle, viz., an orbi
state should not contain more than one particle, whether
up or spin down.1 This modified exclusion principle is mor
restrictive than Pauli’s principle, which allows two electro
having opposite spin to occupy the same orbital state. W
the Coulomb interactionU between two such electrons ten
to infinity, the resulting system naturally satisfies the n
exclusion principle~NEP!.

In the present paper, we consider the physical con
quences of such a singular potential on a system of electr
In particular, we show that in the limit ofU→`, there exists
a possibility that the antisymmetry under the simultane
exchange of spatial and spin coordinates in an electro
wave function may be violated. Instead, the antisymmetr
valid only with respect to the spatial coordinates, whereas
symmetry isa priori imposed on the spin component of
multiparticle wave function. Next we elucidate how this ne
symmetry of the wave function ultimately leads to~i! a form
of quantum statistics, namely, orthofermi statistics,1–3 and
~ii ! a concept of spin-charge decoupling proposed in the c
text of high-temperature superconductivity.4–7 We also pro-
vide a critical comparison of our results with the existi
algebraic approaches to theU infinity problem.

Both Pauli’s exclusion principle and the NEP can be f
mulated in terms of particle creation operatorc†. Given an
orbital indexi, and spin indicess, s̄, the former is expresse
as

cia
† cia

† 50, ~a5s or s̄ !. ~1!

The more exclusive NEP satisfies

cia
† cib

† 50, ~a,b5s or s̄ !. ~2!

The relation~2! completely takes into account the local e
fect of the intraorbital infinite Coulomb potential, and lea
to an alteration in the conventional fermionic Fock or st
space.

It is pertinent here to ask whether~i! the U infinity con-
straint has any possible nonlocal manifestation, and~ii ! it is
possible to describe such a system consistently through
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propriate commutation relations involving particle creati
and annihilation operators. Concerning the first query,
note that the earlier-mentioned modified symmetry prope
of the wave function reflects the nonlocal consequence of
U infinity limit. The answer to the second question is also
the affirmative. In fact consistent with the NEP, two ind
pendent sets of commutation relations, valid for any spa
dimension, can be constructed.1

The first set of the commutation relations~CRI! is

ciacj b1~12d i j !cj bcia50, ~3!

ciacj b
† 1~12d i j !cj b

† cia5d i j dabS 12(
g

cig
† cigD . ~4!

The second set of commutation relations~CRII! is

ciacj b1cj acib50, ~5!

ciacj b
† 5dabS d i j 2(

g
cj g

† cigD . ~6!

Using either set of commutation relations independen
it can be shown that the only permissible states associ
with an orbital indexi are u0&, u1is&, and u1i s̄&. The states
$u1ia1ib&% are always null states. Thus both sets of comm
tation relations are compatible with the NEP. Now a syst
of electrons subject to theU→` constraint cannot be de
scribed through two distinct types of commutation relatio
But before taking up this important aspect of the proble
we consider salient features as well as the critical differen
between the two algebras. This step would also help u
determining the correct set of commutation relations.

The CRI is not invariant under the unitary transformati

dia5(
j

Ui j cj a ; UU†5U†U51. ~7!

As a consequence, it is not preserved under a chang
representation. This contrasts with the usual fermionic a
commutation relations which are representation invariant

The CRI is invariant under the phase transformation
©2001 The American Physical Society05-1
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eia5eif iacia . ~8!

Therefore, the particle number operatorNia exists. Next, the
commutation relation~3! signifies the antisymmetry whe
both spatial and spin coordinates are simultaneously
changed. We note that both these features are valid for
usual fermions too.

The overall antisymmetry prevents the spin-charge dec
pling when the number of particlesN exceeds 2. This is true
for the particles obeying CRI as well as for canonical ferm
ons. In fact for anN particle system havingM down spins,
the spatial and spin part of the wave function, respectiv
satisfy conjugate symmetries@2K1N22K# and @N2K,K#, 0
<K<M .8 In this case, the associated wave function can
be represented as a product of the Slater determinant c
sponding to spinless fermions multiplied by a spin-wa
function, or a superposition of such states, unlessN<2 or
K50.

The CRII is invariant under the unitary transformatio
~7!, and hence it is representation invariant. But the relati
in CRII are not invariant under the phase transformation~8!
involving both indicesi anda. These are invariant only with
respect to the following phase transformations:

hia5eif icia ; l ia5eifacia . ~9!

Consequently only number operatorsNi and Na exist, but
not the number operatorNia . We note here that it is the
relation~5! in CRII that decouples the spatial and spin co
dinates. It is this decoupling that prevents us from mappini
anda to a single index—a mapping that is possible for us
fermions and in CRI. Therefore, we cannot defineNia with
composite indexia. Only the number operatorsNi andNa
are allowed.

The commutation relation~5! implies that a state vector i
antisymmetric only when the spatial indicesi and j are ex-
changed, whereas states having different permutationss
and s̄ are independent, orthonormal states. It may be no
here that as far as the spin variables are concerned, a si
situation arises in Greenberg’s infinite statistics.9,10 The only
difference is that in infinite statistics, the range of indexa is
unrestricted, whereas in the present context,a can take only
two values, viz.,s and s̄.

To summarize, the quanta characterized by CRII sat
Fermi-Dirac statistics with respect to spatial coordinates,
infinite statistics with regard to the spin variable. Ev
though noa priori symmetry restriction is imposed on th
spin variables, it is always possible to construct states
are an eigenfunction of a given spin Hamiltonian. To achie
this, one has to take an appropriate superposition of st
constructed through strings of creation operators acting
the unique vacuum stateu0&.

We have termed the statistics associated with the CRI
orthofermi statistics. This represents an instance whe
quanta having composite statistical character~viz., indices
belonging to different classes exhibit uncorrelated permu
tion properties! is proposed.

The above discussion makes it clear that the CRI
CRII describe two fundamentally distinct physical system
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Algebraic relations similar to the CRI have been repor
earlier in the context of Gutzwiller projection11 and Hubbard
operators.12–14 But problems exist with these earlier con
structions. The algebra satisfied by the Gutzwiller project
operator is not closed, as shown in Ref. 1. On the other ha
Hubbard operators are local in nature,14 and additional pos-
tulates are needed to obtain their multisite relations.1 These
problems do not arise in the CRI.

In the context of CRII, the quantum-mechanical proble
associated with a system of electrons in one dimension,
tually interacting with delta-function potential having weig
U, can be mentioned. This problem has been exactly so
using the nested Bethe ansatz~NBA! by Yang.15 The NBA
uses Bethe ansatz twice—once for the charge~or spatial!
degree of freedom, and thereafter for the spin compon
The solution for the discrete version of this problem, nam
the one-dimensional~1D! Hubbard Hamiltonian has bee
given by Lieb and Wu.16 TheU→` limit of the 1D Hubbard
Hamiltonian has been considered by Ogata and Shiba.4,5 In
their work, theU is taken to be infinity while calculating the
spatial component of the wave function. The ensuing wa
function is a Slater determinant describing noninteract
spinless fermions. As for the spin part,U is not exactly in-
finity in the sense that terms up to the order oft2/U are
retained. This is equivalent to effectively replacing the Hu
bard Hamiltonian by the t-J Hamiltonian where
J54t2/U.4–6 The complete wave function is a product of
Slater determinant involving only the spatial variables m
tiplied by a spin wave function, which is the exact solutio
of the 1D Heisenberg Hamiltonian. It may be mentioned h
that if U is put exactly as infinity in the sense thatJ50, all
possible 2N spin configurations become degenerate. Reta
ing a J as 4t2/U removes this degeneracy.6 However, the
symmetry properties of the spin degree of freedom rema
the same whetherJ50 or is finite.

It has been also mentioned in the literature that instead
using complicated NBA, this wave function can be obtain
directly through simple physical arguments.5,6 The three
main characteristics of the wave function are as follows.

~1! Decoupling occurs between space and spin com
nents.

~2! The spatial part of the wave function is antisymmet
when two spatial coordinates are exchanged. It vanis
when any two coordinates coincide.

~3! Because of the factorization or decoupling betwe
the space and spin parts, it is no longer possible to spe
whether a particle with a given spatial coordinate also ha
definite spins or s̄, and vice versa. As a result, the numb
operatorNia with composite indexia cannot be defined.

These features of the wave function are valid both for
half-filled and less than half-filled cases. That the factori
tion of the wave function constitutes a remarkable result
been earlier highlighted by Fulde.6

We have shown earlier1 that the orthofermions characte
ized by CRII possess all of the above three characteristi

We may also clarify why in theU→` limit, the symme-
try property of the wave function gets altered only in t
NBA, and not in the Gutzwiller projection technique. In th
conventional approach, the symmetry property of the wa
5-2
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function ~and hence the statistics of the system! is a priori
postulated. Starting with a given eigenfunction, the cor
sponding wave function having a particular symmetry is o
tained through appropriate usage of permutation opera
For example, for a three-particle boson system, we can
with the statec~1,2,3!, and get the symmetric state using t
following symmetrizer:

cs~1,2,3!5$I 1P~12!1P~13!1P~23!1P~123!

1P~132!%c~1,2,3!. ~10!

We note that in this process of generating the wave func
of a particular symmetry type, permutation operators
never scaled by any dynamical variable.

In the NBA, one starts with the wave function in a pa
ticular ordered configuration.4,15,16Next, in order to generate
the wave function~of a required symmetry type! over the
entire configuration space, we use permutation operators
suitable boundary conditions. In this process, the perm
tion operators get scaled by the dynamical variablest andU.
And this is quite a nontrivial feature. We note that this sc
ing is absent whenU50, and the corresponding situation
similar to the one depicted in Eq.~10!. On the other hand
when we take theU infinity limit, the permutation operators
linking the one sector to another~or exchanging the particle
residing in the adjacent sectors!, according to the desired
symmetry requirement, become redundant. To make th
points more explicit, we consider the wave function given
Refs. 4 and 16. The amplitude in the wave function, wh
down spins are located at the sitesx1 ,...,xM and up spins at
xM11 ,...,xN , is given as

f ~x1 ,...,xN!5(
P

@Q,P#expS i (
j 51

N

kP jxQ jD , ~11!

whereP5(P1,P2,...,PN) and Q5(Q1,Q2,...,QN) are two
permutations of (1,2,...,N) and f is given in the sectorxQ1
,xO2,...,xQN . The@Q,P# are determined by the relatio

@Q,P#5Ynm
i ,i 11@Q,P8#, ~12!

where P5(P1,P2,...,Pi5m,P( i 11)5n,...,PN) and P8
5(P1,P2,...,n,m,...,PN),

Ymn
i ,i 115

Pi ,i 112xnm

11xnm
, ~13!

xnm5 i ~U/2!/~ t sinkn2t sinkm!. ~14!

Pi ,i 11 is a permutation operator for the interchange betw
Qi and Q( i 11) and for anN particle system, it admits an
appropriateN3N matrix representation of the symmet
groupSN .8,15 It may be noted here that the amplitude in t
wave function is in fact the wave function in coordina
representation.15

In Eq. ~13!, if we take antisymmetric representation f
Pi ,i 11 , then Pi ,i 11@Q,P8#52@Q,P8# and hence@Q,P#
52@Q,P8# follows from Eq. ~12!. Note that this result is
not valid for any other representation forPi ,i 11 when U is
either zero or finite. But in caseU is taken to be infinity in
13240
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Eq. ~13!, @Q,P#52@Q,P8# always holds true, irrespectiv
of the representation ofPi ,i 11 . It is this peculiar limiting
behavior of the operatorY that is responsible for the spin
charge decoupling in theU infinity limit, and subsequently
gives rise to spinless fermions.

In the Gutzwiller projection technique, on the other han
we start with antisymmetric wave functions. These wa
functions are constructed analogous to Eq.~10!, but they use
an antisymmetrizer in place of a symmetrizer operator.
fact the wave function is a Slater determinant built from t
Bloch states of electrons on a lattice, and theU infinity con-
straint is then implemented through the projection opera
P i(12nisni s̄).6 Note that in this process of constructing th
wave function, the permutation operators never get scaled
U or t. Also the original fermionic antisymmetry now re
mains intact.

It would be instructive here to consider the particular ca
of NBA when theU infinity limit is taken for both spatial
and spin components. It has been often argued that in
situation, electrons cannot exchange their positions wit
the 1D chain.5,6 But a closer examination reveals that th
antisymmetry associated with the spatial part of the wa
function allows us to exchange the spatial coordinates of
electrons. Similarly, a finiteJ term implies that spin coordi-
nates can also be permuted. However whenJ50 (U5`), it
may appear that the spin sequence gets frozen to its in
order. If this is true, then the decoupled spin componen
the system would satisfy the ‘‘null statistics.’’17 Also the
earlier statement that the electrons cannot exchange thei
sitions within the chain has to be modified to read, ‘‘th
spatial coordinates can be exchanged in the 1D chain, bu
the spin coordinates.’’

Irrespective of the above discussion, we ought to dem
that even whenJ50, the wave function is still an eigenfunc
tion of the totalS2 and Sz operators. Consequently, for
given set of spatial coordinates and withSz being (N
22M )/2, all the spin configurations, classified according
$@N2K,K#, 0<K<M % symmetries, are accessible. On t
other hand, in the case of frozen spin order, only one s
configuration is allowed for a given set of spatial coordina
and a given value ofSz .

We have already highlighted the important distinction b
tween CRI and CRII. Next, theU5` case of the Hubbard
Hamiltonian, i.e.,

H5t (
^ i j &s

cis
† cj s ~15!

can be taken as a typical example to show how these c
mutation relations lead to different types of dynamical ev
lution. We consider the time evolution equation forcis ,
which is needed to evaluate single-particle Green’s funct
or correlation function. In the case wherec†, c satisfy CRII,

i ċsis5t(
j

cj s , ~16!

where ċis is the time derivative ofcis . The presence of
single annihilation operators on the right-hand side impl
that the system remains in the original operator space$cis%
5-3
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and its dual$cis
† %. Consequently, the Hamiltonian is exact

solvable, a feature compatible with the NBA case.
If c†,c obey the CRI,

i ċ is5t(
j

$cj s2ci s̄
† ci s̄cj s1ci s̄

† ciscj s̄%. ~17!

The presence of a triple operator product in the above eq
tion implies no closure in the equation of the motion cha
Thus an exact solution cannot be obtained in this case;
propriate truncations or projections are needed to arrive
approximate solutions.14

By seeking the mutual consistency between~i! the conju-
gate permutation symmetries associated with the spatial
spin components of the wave function of usual fermions, a
~ii ! the U infinity constraint, it is possible to provide a mor
transparent physical argument for the validity of orthofer
statistics and Bethe ansatz solutions and the ensuing s
charge decoupling. For definiteness we consider the c
tinuum case and takeN.2. The U infinity constraint de-
mands that all multiparticle wave functions must van
when the spatial coordinates of any two particles coincid

c~x1 ,x2 ...,xi ...xj ...xN ,a1 ,a2 ...,aN!→0

as xi→xj for any $ i , j %, ~18!

otherwise the energy of the system diverges. This is true
any number of dimensions. As noted earlier, for aN electron
system havingM down spins, the respective permutatio
symmetries for spatial and spin parts of the wave funct
are8,15 @2K1N22K# and @N2K,K#; 0<K<M . Now to be
consistent with theU infinity case, we should retain onl
those wave functions that have a node when any two pos
coordinates coincide, and remove all others that do not h
such nodes. Accordingly, the only permissible spatial wa
function corresponds to@1N# symmetry, i.e., theK50 case.
All other wave functions corresponding to finiteK and N
.2 do not possess required nodes. Also the spatial and
coordinates are not decoupled for the wave functions c
13240
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acterized by mixed-symmetry representations. If we dem
total antisymmetry including the spatial and spin parts, o
allowed spin configuration corresponds to the conjug
symmetry@N#. Though one is able to achieve spin-char
decoupling in this case, the dimension of the state sp
stands greatly reduced. Now only symmetric spin configu
tion is permissible. If we stipulate that all eigenfunctions
S2 andSz are permissible, then every 2N spin configuration,
classified according to$@N2K,K#% symmetries, is allowed
But all these spin configurations are coupled with the sa
spatial configuration @1N#, and not with
the conjugate spatial configuration@2K1N22K#. It is this
@1N#@N2K,K# symmetry of the permissible wave functio
that leads to the spin-charge decoupling. The CRII for
orthofermions obviously reflects this property of the wa
function at kinematic level.

To conclude, we have considered two sets of commu
tion relations ~CRI and CRII! compatible with the ‘‘no
double occupancy in a single orbital’’ constraint for spin-h
particles. The subsequent analysis brings out the distinc
features of CRI and CRII, both at the level of kinematics a
dynamics, and highlights the possibility of a violation of fe
mionic antisymmetry in the present context. Sin
Gutzwiller projection technique is closer to CRI, and t
nested Bethe ansatz to CRII, we conclude that these
widely used approaches to model theU infinity constraint
lead to quite different physical consequences. In fact, t
describe two distinct physical systems. We have finally p
vided the reasons why electrons inU infinity limit may be-
have like orthofermions described by the CRII leading to
spin-charge decoupling, and have supported our anal
through a comparison with the exact NBA solutions.
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