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Spin-charge decoupling and orthofermi quantum statistics
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Currently Gutzwiller projection technique and nested Bethe ansatz are two main methods used to handle
electronic systems in th¥ infinity limit. We demonstrate that these two approaches describe two distinct
physical systems. In the nested Bethe ansatz solutions, there is a decoupling between the spin and charge
degrees of freedom. Such a decoupling is absent in the Gutzwiller projection technique. Whereas in the
Gutzwiller approach, the usual antisymmetry of space and spin coordinates is maintained, we show that the
Bethe ansatz wave function is compatible with a form of quantum statistics, viz., orthofermi statistics. In these
statistics, the wave function is antisymmetric in spatial coordinates alone. This feature ultimately leads to
spin-charge decoupling.
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We had earlier envisaged a quantum system of spin-halpropriate commutation relations involving particle creation
particles obeying a new exclusion principle, viz., an orbitaland annihilation operators. Concerning the first query, we
state should not contain more than one particle, whether spinote that the earlier-mentioned modified symmetry property
up or spin dowrt. This modified exclusion principle is more of the wave function reflects the nonlocal consequence of the
restrictive than Pauli’s principle, which allows two electrons U infinity limit. The answer to the second question is also in
having opposite spin to occupy the same orbital state. Whethe affirmative. In fact consistent with the NEP, two inde-
the Coulomb interactiotd between two such electrons tends pendent sets of commutation relations, valid for any spatial
to infinity, the resulting system naturally satisfies the newdimension, can be constructéd.

exclusion principleNEP). The first set of the commutation relatiofGRI) is
In the present paper, we consider the physical conse-
quences of such a singular potential on a system of electrons. CiaCjpt (1 6i)CjpCin=0, ()

In particular, we show that in the limit & —«, there exists

a possibility that the antisymmetry under the simultaneous
exchange of spatial and spin coordinates in an electronic
wave function may be violated. Instead, the antisymmetry i
valid only with respect to the spatial coordinates, whereas n
symmetry isa priori imposed on the spin component of a

CiaCJTB_I—(l_ 5ij)cjrﬁcia: 8” 8aﬁ

1- c?ycw). (4)
Y

he second set of commutation relatid@RlIl) is

Lo X . . CiaCjptCjaCip=0, )
multiparticle wave function. Next we elucidate how this new
symmetry of the wave function ultimately leads(ipa form
of quantum statistics, namely, orthofermi statisticsand CiaCl= 8ap| 8~ 2 cl.c; y>. (6)
Y

(ii) a concept of spin-charge decoupling proposed in the con-
text of high-temperature superconductivity.We also pro-
vide a critical comparison of our results with the existing
algebraic approaches to theinfinity problem.

Both Pauli's exclusion principle and the NEP can be for-
mulated in terms of particle creation operatdt Given an
orbital indexi, and spin indices, o, the former is expressed

Using either set of commutation relations independently,
it can be shown that the only permissible states associated
with an orbital indexi are [0), |1;,), and|1;;). The states
{|1i,1i)} are always null states. Thus both sets of commu-
tation relations are compatible with the NEP. Now a system
of electrons subject to thel —o constraint cannot be de-

as scribed through two distinct types of commutation relations.
Ci’raci‘ra:O’ (a=0 or o). (1) But befo_re taking up this important aspect qf_ the problem,
we consider salient features as well as the critical differences
The more exclusive NEP satisfies between the two algebras. This step would also help us in
determining the correct set of commutation relations.
cl,cly=0, (a.B=0 or o). ) The CRI is not invariant under the unitary transformation
The relation(2) completely takes into account the local ef-
fect of the intraorbital infinite Coulomb potential, and leads dia=> UjjCj,; UUT=UTU=1. (7)
to an alteration in the conventional fermionic Fock or state .
space. As a consequence, it is not preserved under a change in

It is pertinent here to ask wheth@p the U infinity con-  representation. This contrasts with the usual fermionic anti-
straint has any possible nonlocal manifestation, @ndt is ~ commutation relations which are representation invariant.
possible to describe such a system consistently through ap- The CRI is invariant under the phase transformation
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e ,=e%iac,. (8) Algebraic relations similar to the CRI have been reported
earlier in the context of Gutzwiller projectibhand Hubbard
Therefore, the particle number operabdr, exists. Next, the operators?~'* But problems exist with these earlier con-
commutation relation(3) signifies the antisymmetry when structions. The algebra satisfied by the Gutzwiller projection
both spatial and spin coordinates are simultaneously exeperator is not closed, as shown in Ref. 1. On the other hand,
changed. We note that both these features are valid for thgubbard operators are local in natdfeand additional pos-
usual fermions too. tulates are needed to obtain their multisite relatibifiese
The overall antisymmetry prevents the spin-charge decoysroblems do not arise in the CRI.
pling when the number of particlé$ exceeds 2. This is true In the context of CRII, the quantum-mechanical problem
for the particles obeying CRI as well as for canonical fermi-associated with a system of electrons in one dimension, mu-
ons. In fact for arlN particle system havingl down spins, tually interacting with delta-function potential having weight
the spatial and spin part of the wave function, respectivelyl, can be mentioned. This problem has been exactly solved
satisfy conjugate symmetrig2<1N~2¢] and[N—K,K], 0 using the nested Bethe ans#@BA) by Yang®® The NBA
<K=M.% In this case, the associated wave function cannotises Bethe ansatz twice—once for the chafge spatial
be represented as a product of the Slater determinant corrdegree of freedom, and thereafter for the spin component.
sponding to spinless fermions multiplied by a spin-waveThe solution for the discrete version of this problem, namely
function, or a superposition of such states, unlss2 or  the one-dimensiona{1D) Hubbard Hamiltonian has been
K=0. given by Lieb and W8 TheU — o limit of the 1D Hubbard
The CRII is invariant under the unitary transformation Hamiltonian has been considered by Ogata and Stiba.
(7), and hence it is representation invariant. But the relationgheir work, theU is taken to be infinity while calculating the
in CRII are not invariant under the phase transformat®)n  spatial component of the wave function. The ensuing wave
involving both indices anda. These are invariant only with function is a Slater determinant describing noninteracting

respect to the following phase transformations: spinless fermions. As for the spin pad,is not exactly in-
A finity in the sense that terms up to the ordert&fU are
hi,=€e'%c,; l,,=e?%c,. (9) retained. This is equivalent to effectively replacing the Hub-

bard Hamiltonian by the t-J Hamiltonian where
Consequently only number operatdss and N, exist, but J=4t?/U.*"® The complete wave function is a product of a
not the number operatd¥;,. We note here that it is the Slater determinant involving only the spatial variables mul-
relation(5) in CRII that decouples the spatial and spin coor-tiplied by a spin wave function, which is the exact solution
dinates. It is this decoupling that prevents us from mapping of the 1D Heisenberg Hamiltonian. It may be mentioned here
anda to a single index—a mapping that is possible for usualthat if U is put exactly as infinity in the sense thht0, all
fermions and in CRI. Therefore, we cannot defiig with  possible 2' spin configurations become degenerate. Retain-
composite indexa. Only the number operatofs; andN,, ing aJ as 4%/U removes this degenerafyHowever, the

are allowed. symmetry properties of the spin degree of freedom remains
The commutation relatiofb) implies that a state vector is the same whethef=0 or is finite.
antisymmetric only when the spatial indiceand| are ex- It has been also mentioned in the literature that instead of

changed, whereas states having different permutatiors of using complicated NBA, this wave function can be obtained
and o are independent, orthonormal states. It may be notedirectly through simple physical argumenfs.The three
here that as far as the spin variables are concerned, a similarain characteristics of the wave function are as follows.

situation arises in Greenberg’s infinite statisfi¢c8 The only (1) Decoupling occurs between space and spin compo-
difference is that in infinite statistics, the range of indeis  nents.

unrestricted, whereas in the present contextan take only (2) The spatial part of the wave function is antisymmetric
two values, viz.,oc ando. when two spatial coordinates are exchanged. It vanishes

To summarize, the quanta characterized by CRII satisfyvhen any two coordinates coincide.
Fermi-Dirac statistics with respect to spatial coordinates, and (3) Because of the factorization or decoupling between
infinite statistics with regard to the spin variable. Eventhe space and spin parts, it is no longer possible to specify
though noa priori symmetry restriction is imposed on the whether a particle with a given spatial coordinate also has a
spin variables, it is always possible to construct states thatefinite spino or o, and vice versa. As a result, the number
are an eigenfunction of a given spin Hamiltonian. To achieveoperatorN;, with composite indexa cannot be defined.
this, one has to take an appropriate superposition of states These features of the wave function are valid both for the
constructed through strings of creation operators acting ohalf-filled and less than half-filled cases. That the factoriza-
the unique vacuum state). tion of the wave function constitutes a remarkable result has
We have termed the statistics associated with the CRII abeen earlier highlighted by Fulde.
orthofermi statistics. This represents an instance wherein We have shown earlitthat the orthofermions character-
guanta having composite statistical charadiger., indices ized by CRIl possess all of the above three characteristics.
belonging to different classes exhibit uncorrelated permuta- We may also clarify why in thé) — o limit, the symme-
tion properties is proposed. try property of the wave function gets altered only in the
The above discussion makes it clear that the CRI andNBA, and not in the Gutzwiller projection technique. In the
CRII describe two fundamentally distinct physical systems. conventional approach, the symmetry property of the wave
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function (and hence the statistics of the sysjama priori Eq. (13), [Q,P]=—[Q,P’] always holds true, irrespective
postulated. Starting with a given eigenfunction, the corre-of the representation dP; ;.. It is this peculiar limiting
sponding wave function having a particular symmetry is ob-behavior of the operatoy that is responsible for the spin-
tained through appropriate usage of permutation operatorgharge decoupling in the infinity limit, and subsequently
For example, for a three-particle boson system, we can stagfives rise to spinless fermions.

with the state(1,2,3, and get the symmetric state using the In the Gutzwiller projection technique, on the other hand,

following symmetrizer: we start with antisymmetric wave functions. These wave
functions are constructed analogous to 8d), but they use

#s(1,2,3={1 +P(12) + P(13) + P(23) + P(123) an antisymmetrizer in place of a symmetrizer operator. In

+P(132}4(1,2,3). (10) fact the wave function is a Slater determinant built from the

Bloch states of electrons on a lattice, and théfinity con-
We note that in this process of generating the wave functiostraint is then implemented through the projection operator
of a particular symmetry type, permutation operators ardl;(1—n;,n;5).® Note that in this process of constructing the
never scaled by any dynamical variable. wave function, the permutation operators never get scaled by
In the NBA, one starts with the wave function in a par- U or t. Also the original fermionic antisymmetry now re-
ticular ordered configuratioh>'®Next, in order to generate mains intact.
the wave function(of a required symmetry typeover the It would be instructive here to consider the particular case
entire configuration space, we use permutation operators araf NBA when theU infinity limit is taken for both spatial
suitable boundary conditions. In this process, the permutaand spin components. It has been often argued that in this
tion operators get scaled by the dynamical variabsdU.  situation, electrons cannot exchange their positions within
And this is quite a nontrivial feature. We note that this scal-the 1D chair’® But a closer examination reveals that the
ing is absent whetd =0, and the corresponding situation is antisymmetry associated with the spatial part of the wave
similar to the one depicted in Eg10). On the other hand, function allows us to exchange the spatial coordinates of the
when we take th&J infinity limit, the permutation operators electrons. Similarly, a finitd term implies that spin coordi-
linking the one sector to anothér exchanging the particles nates can also be permuted. However wher0 (U=c), it
residing in the adjacent sectprsiccording to the desired may appear that the spin sequence gets frozen to its initial
symmetry requirement, become redundant. To make thessder. If this is true, then the decoupled spin component of
points more explicit, we consider the wave function given inthe system would satisfy the “null statisticst” Also the
Refs. 4 and 16. The amplitude in the wave function, wherearlier statement that the electrons cannot exchange their po-
down spins are located at the sites... ,x and up spins at sitions within the chain has to be modified to read, “the
XM+1s---XNs IS given as spatial coordinates can be exchanged in the 1D chain, but not
N the spin coordinates.”
. Irrespective of the above discussion, we ought to demand
F(X1,0xn) = ; [Q,P]ex;{ 'le kPJXQi) (1D that even whed =0, the wave function is still an eigenfunc-
tion of the totalS®> and S, operators. Consequently, for a
whereP=(P1,P2,..PN) andQ=(Q1,Q2,..QN) are two  given set of spatial coordinates and wi$, being (N
permutations of (1,2,.N) andf is given in the sectokg;  —2M)/2, all the spin configurations, classified according to
<Xp2<...<Xgn. The[Q,P] are determined by the relation {{N—K,K], 0O<K<M} symmetries, are accessible. On the
other hand, in the case of frozen spin order, only one spin

[Q.P]=Yim '[Q.P'], (12 configuration is allowed for a given set of spatial coordinates
_ i ; _ / and a given value 0§, .
\il?gf PPZ (?1mP2P’IT\:) mP@+i)=n...PN) and P We have already highlighted the important distinction be-
oo tween CRI and CRII. Next, tht) =« case of the Hubbard
- P....—X Hamiltonian, i.e.,
YI’I+1= ihi+1 nm (13)
T X,
H=t> clcj, (15
Xnm=1(U/2)/(t sink,—t sinkp,). (14 (i)

can be taken as a typical example to show how these com-

P‘:‘“ Is a.permutation operator fpr the mterch'ange t.)etwee%utation relations lead to different types of dynamical evo-
Qi andQ(i+1) and for anN particle system, it admits an i, \we consider the time evolution equation fo, ,

appropriateN XN matrix representation of the symmetry \ynich s needed to evaluate single-particle Green's function

8,15 . .
groupSy.™” It may be noted here that the amplitude in the o o relation function. In the case wher ¢ satisfy CRII,
wave function is in fact the wave function in coordinate

representatior®

In Eq. (13), if we take antisymmetric representation for iCSm:tZ Cjgs (16)
Pii+1, then Pi; 4[Q,P']=~[Q,P'] and hence[Q,P] :
=—[Q,P’] follows from Eq.(12). Note that this result is where¢;, is the time derivative ofc;,. The presence of
not valid for any other representation f8% ;. ; whenU is  single annihilation operators on the right-hand side implies
either zero or finite. But in casd is taken to be infinity in  that the system remains in the original operator sgagg
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and its dualc/ }. Consequently, the Hamiltonian is exactly acterized by mixed-symmetry representations. If we demand
solvable, a feature compatible with the NBA case. total antisymmetry including the spatial and spin parts, only
If ¢’,c obey the CRI, allowed spin configuration corresponds to the conjugate
symmetry[N]. Though one is able to achieve spin-charge
decoupling in this case, the dimension of the state space
stands greatly reduced. Now only symmetric spin configura-
) . tion is permissible. If we stipulate that all eigenfunctions of
The presence of a triple operator product in the above equas? andsS, are permissible, then every!Zpin configuration,
tion implies no closure in the equation of the motion chain.;|assified according t§{ N—K,K]} symmetries, is allowed.
Thus an exact solution cannot be obtained in this case; aggyt all these spin configurations are coupled with the same
propriate truncations or projections are needed to arrive apatial configuration  [1M], and not with

approximate solution®! , , _ the conjugate spatial configuratigri?“1N=2K]. It is this
By seeking the mutual consistency betwéBrthe conju- [1N[N—K,K] symmetry of the permissible wave function

gate permutation symmetries associated with the spatial affls; jeads to the spin-charge decoupling. The CRII for the

spin components of the wave function of usual fermions, anghofermions obviously reflects this property of the wave
(i) the U infinity constraint, it is possible to provide a more ¢,nction at kinematic level.

transparent physical argument for the validity of orthofermi 14 ~onclude. we have considered two sets of commuta-
statistics and Bethe ansatz solutions and the ensuing spifiny relations (éRI and CRI) compatible with the “no

charge decoupling. For definiteness we consider the conyople occupancy in a single orbital” constraint for spin-half
tinuum case and takdl>2. The U infinity constraint de-  psaticles. The subsequent analysis brings out the distinctive
mands that all multiparticle wave functions must vanishgaatres of CRI and CRII, both at the level of kinematics and
when the spatial coordinates of any two particles coincide. dynamics, and highlights the possibility of a violation of fer-
mionic antisymmetry in the present context. Since
Gutzwiller projection technique is closer to CRI, and the
as x;—x; for any {i,j}, (18  nested Bethe ansatz to CRII, we conclude that these two
widely used approaches to model theinfinity constraint
%%ead to quite different physical consequences. In fact, they
describe two distinct physical systems. We have finally pro-
vided the reasons why electronslihinfinity limit may be-
Thave like orthofermions described by the CRII leading to a

,15 KqN-2K _ .
aré’ . [2"1 . ] and_[l_\l. K,K]; 0=K<=M. Now to be spin-charge decoupling, and have supported our analysis
consistent with theU infinity case, we should retain only through a comparison with the exact NBA solutions
those wave functions that have a node when any two position '

coordinates coincide, and remove all others that do not have | am grateful to Professor P. Fulde for a critical reading of
such nodes. Accordingly, the only permissible spatial wavehe manuscript and for suggesting improvements. | am also
function corresponds tplN] symmetry, i.e., th&=0 case. indebted to him for providing valuable insights and many
All other wave functions corresponding to finite and N enlightening discussions during my visit to MPI-PKS. |
>2 do not possess required nodes. Also the spatial and spthank Professors G. Rajasekarn and G. Baskaran for discus-
coordinates are not decoupled for the wave functions charsions and various comments.

L t T B
Icia_t; 1€j6—Ci5Ci5Cjot C5CiuCjot- (17

w(XjI_:XZ---in XJ ...XN,al,az...,aN)—>O

otherwise the energy of the system diverges. This is true f
any number of dimensions. As noted earlier, fo¥ alectron

system havingM down spins, the respective permutation
symmetries for spatial and spin parts of the wave functio
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