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Crossover from percolation to diffusion
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~Received 1 May 2000; revised manuscript received 26 October 2000; published 27 February 2001!

A problem of the crossover from percolation to diffusion transport is considered. A general scaling theory is
proposed. It introduces phenomenologically four critical exponents which are connected by two equations. One
exponent is completely new. It describes the increase of the diffusion below percolation threshold. As an
example, an exact solution of one-dimensional lattice problem is given. In this case the new exponentq52.
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Percolation theory is often used to describe transp
properties of disordered systems with a large disorder.
typical problems of this type are, for example, the cond
tion of random mixture of conducting and nonconducti
elements and hopping conduction.1 Above the percolation
threshold the transport in such systems may be describe
terms of electrical conductivity and diffusion coefficient, th
are connected by the Einstein relation.2 It is important, how-
ever, that such a description is valid at a distances m
larger than the correlation length of the percolaton theo
This length tends to infinity at the percolation threshold a
it is large near the threshold. One can consider this lengt
a typical size of the percolation network.1 At smaller dis-
tances diffusion equation is not applicable and the proces
not Markovian.

For calculation of the large-scale diffusion coefficient o
should use the percolation theory which is very far from a
Boltzmann-type transport approach. Say, both the electr
conductivity and the diffusion coefficient of the conducti
and nonconductive mixture behave like (p2pc)

t, wherep is
a fraction of conductive elements,pc is a percolation thresh
old value, andt is a critical exponent. Both of them are ze
at p,pc .

Thus, there is an important difference between a reg
diffusion, which is a Markovian process at all lengths,sta
ing with the characteristic length of the order of a diffusi
hop, and the large-scale diffusion resulting from t
percolation-type process. For brevity we call these two p
cesses diffusion and percolation, respectively.

The regular percolation theory assumes that the rand
elements do not change their positions with time so that
percolation paths do not change their spatial locations.
low-temperature electron transport is one of examples wh
this assumption is not valid. Due to the electron-elect
interaction the random potential persistently and subs
tially changes with time,3,4 which may affect conductivity
near the metal-insulator transition. Such problems app
outside solid state physics as well. The class of this prob
is known asdynamical percolation. They have been studie
theoretically using effective medium approximation~See,
e.g., Ref. 5, and references therein!. One-dimensional prob
lems of this type have been considered for some mo
without any approximations,6 but far from the percolation
transitionpc51.

We concentrate here on the case when the diffus
through a conducting medium is drastically faster than
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fluctuations of the positions of the conducting and nonc
ducting elements. In this case the transition from diffusion
percolation mechanism has all features of the phase tra
tion and it can be characterized by critical exponents. In t
paper we introduce a set of these exponents and esta
relation between them. For illustration we present an ex
solution of one dimensional lattice problem.

Thus, we consider here a random mixture of the condu
ing and nonconducting elements which can change their
tial configuration but very slowly. In this situation the resu
ing diffusion ~or conductivity! of the particlesis nonzero at
any small fraction p of the conducting elements. The mecha-
nism of this diffusion is as follows. A particle can diffus
only in the conducting medium. To move from one condu
ing element to the other it is waiting until another conducti
element comes to the element where it resides. At this m
ment of time a particle is able to do a next move. This is
regular diffusion which is characterized by some slow wa
ing time ts . The diffusion inside the conducting medium
characterized by much faster timet f . When the fraction of
conducting elementsp becomes close to the percolatio
thresholdpc , but it is still less thanpc , the resulting diffu-
sion increases as 1/(pc2p)q, whereq is a novel critical ex-
ponent. This happens because the conducting clusters
come large. But since they are disconnected the particle
should wait before jumping from one of them to the oth
Finally, above the percolation threshold, whenp2pc be-
comes larger than the width of some critical region describ
below, the diffusion is described by a regular percolation l
D;(p2pc)

t and slow motion of the conducting elements
not important. In our terminology this is a crossover fro
regular diffusion to percolation with increasingp. The diffu-
sion coefficientD has a critical behavior in a small interva
nearpc . To describe this physics one can use the same s
ing arguments as for the problem of the frozen mixture
elements with large and small conductivity.7,8 Note that the
new problem is not equivalent to the old one, so that
exponentq might be different. The scaling hypothesis
valid in the proximity of the percolation threshold so th
uXu/pc!1, whereX5p2pc . In this region the scaling hy-
pothesis can be written in the form

d5hscS X

hmD . ~1!
©2001 The American Physical Society01-1
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Hered5D/D f , h5Ds /D f , whereD is the resulting diffu-
sion coefficient at a given value ofp, D f5a2/2t f is the dif-
fusion coefficient in the conducting medium,a is a charac-
teristic length which depends on the model,Ds5a2/2ts , and
c(Z) is some analytical function at all real values of
argument, 2`,Z,`. We assume thath!1 and that
c(0)51.

Equation~1! contains two independent critical exponen
The meaning of the exponents is thatd5hs at p5pc . The
exponent m describes the width of the critical regio
up2pcu5hm between the percolation and diffusion.

All the critical exponents which described(X) can be
related tos andm. At X.0 andX@hm the slow changes o
the percolation paths are not important. Thus, we have
diffusion on the percolation cluster. If the system is larg
than the correlation radius of the percolation cluster, the
fusion coefficient is related to the conductivity by the Ei
stein relation. Then one hasd;Xt, where the exponentt is a
usual percolation exponent which describes the conducti
above the percolation threshold. To get this result from
~1! one should assume thatm5s/t. At X,0 anduXu@hm we
expect thatd;h/(uXu)q. This givess1mq51. Finally we
get two connections between four exponentss,q,t, and m,
namelyq5t(s2121) andm5s/t.

As an example, we consider below an exactly soluble
dimensional site or bond model on a lattice. At the beginn
we concentrate on the site model. The sites may be white
black with the fractionsp and 12p, respectively. The par
ticle may occupy the white sites only and it is able to jump
the nearest site, if this site is white, during the timet f . The
configuration of the white and black sites slowly chang
with time. This change can be introduced by many ways.
consider the simplest one. After each time intervalts the
configuration of all sites completely changes preserving
samep, while the particle remains at the same site and t
site remains white. In this model timets can be called a
renewal time. We assume thatts@t f . Sincepc51 in the
one-dimensional case, our solution may only illustrate
increase of the diffusion coefficientD;(12p)q and the
width of the critical regionuXu, where it deviates from this
law and tends to the valueD f5a2/2t f asp→1.

Thus, in our model the particle occurs inside the co
pletely different cluster of white sites after each time inter
ts . Then the time average of squared displacementr 2(t) can
be written in a form

r 2~ t !5@r 1~ts!1r 2~ts!1•••1r N~ts!#
2, ~2!

where t5Nts , r i(ts) is a displacement of a particle insid
the cluster numberi.

Since both the numbers of sites in any new cluster and
initial positions of a particle inside this cluster are rando
all r i(ts) are statistically independent. Then

r 2~ t !5r 1
2~ts!1r 2

2~ts!1•••1r N
2 ~ts!. ~3!

If we divide the right-hand side of Eq.~3! by N, we get a
squared displacement averaged over both the number of
in clusters and the initial positions of a particle within ea
13230
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cluster. This type of averaging we denote^ . . . &. Now we
introduce the function̂r 2(ts)& by the equation

lim
N→`

r 2~ t !

N
5^r 2~ts!&. ~4!

The diffusion coefficientD can be expressed through th
function

D5 lim
t→`

r 2~ t !

2t
5

^r 2~ts!&
2ts

. ~5!

Our strategy to find̂ r 2(ts)& is as follows. We assume
first that the clusters of the white sites are not very large
that the particle, which changes position during the timet f ,
crosses these clusters to and fro many times during the
ts . In this approximation we find the diffusion coefficien
D1. For the larger clusters we use the continuum approxim
tion, which is valid at 12p!1 only, and findD2. We show
that these two approximations have a large region of ove
if

t f

ts
!1. ~6!

MatchingD1 andD2 in the overlap region we find the resu
which is exact if Eq.~6! is fulfilled.

To calculateD1 we assume that the particle appears
each white site of a cluster so many times during the ti
ts , that it can be found on each site of the cluster with t
same probability.

If the particle is within the cluster of sizeL, the average
quadratic displacementR2(L) is given by the equation

R2~L !5
a2

L2 (
n51

L

(
k51

L

~n2k!25
a2

6
~L221!, ~7!

where we have averaged over initial positions of the part
within the cluster. The probability that a particle is within
cluster ofL white sites is

wL5~12p!2pL21L. ~8!

By averagingR2(L) over all cluster sizesL one gets

^r 2~ts!&5
a2

6
~12p!2(

L51

`

pL21L~L221!5
a2p

~12p!2
.

~9!

Thus,

D15
^r 2~ts!&

2ts
5

Dsp

~12p!2
. ~10!

Note that Eq.~10! has been obtained by Drugeret al.6 and
it also can be extracted from the paper by Plyukhin.9 The Eq.
~10! is valid if ^r 2(ts)&!D fts . That means that displace
ment of a particle during the timets is much less than it
would be in the infinite system. This condition is fulfilled
1-2
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p

~12p!2
!

ts

t f
. ~11!

At p!1 one getsD15pDs .
To calculateD2 we use the continuous approximatio

which is valid when the sizes of white clustersL@1. This is
true if 12p!1. In this approximation one should use th
diffusion equation for the probability densityu(x,t).

]u~x,t !

]t
5D f

]2u~x,t !

]x2
~12!

assuming zero current at the beginning and at the end o
cluster (x50,L)

]u~x,t !

]x U
x50,L

50. ~13!

The initial condition is

u~x,t !u t505d~x2x0!, ~14!

wherex0 is a random point within the interval (0,L).
The solution has a form

u~x,t !5
1

L
1 (

n51

`

cosS pnx0

L D cosS pnx

L DexpS 2
p2n2

L2
D ft D .

~15!

The mean-square displacement with respect to the initial
sition x0 is

r L
2~x0 ,t !5E

0

L

~x2x0!2u~x,t !dx

5
L2

3
2~L2x0!x014L2(

n51

` cosS pnx0

L D
~pn!2

3Fx0

L
1~21!nS 12

x0

L D GexpS 2
p2n2

L2
D ft D .

~16!

By averaging over the initial positionsx0 on the cluster,
we get the time dependence of the mean-square displace
of the particle on the cluster of the sizeL.

r L
2~ t !5

1

LE0

L

r 2~x0 ,t !dx0

5
L2

6
2L2(

n50

`
1

Fp2 ~2n11!G4 expF2
p2~2n11!2

L2
D ftG

5
16

p4
L2(

n50

`
1

~2n11!4 F12expS 2
p2n2

L2
D ft D G . ~17!
13230
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One can see from Eq.~17! that for relatively small times,
t!L2/D f , the displacementr L

2(t) grows as 2D ft, just as for
the normal diffusion, while at large times the valuer L

2(t)
tends to the asymptotic valueL2/6 indicating that the particle
crosses the cluster many times.

To find the diffusion coefficientD2 one has to average
r L

2(ts) over all clusters with the distribution function give
by Eq. ~8!. In the region (12p)!1 one can substitute sum
mation over the cluster sizes by integration to get

^r 2~ts!&5
~12p!2

a2 E
0

`

r L
2~ts!L expS L

a
ln pDdL

5
a2

~12p!2
2

16

p4a2
~12p!2(

n50

`
1

~2n11!4

3E
0

`

L3 expS L

a
ln p2

p2n2a2

2L2

ts

t f
D dL. ~18!

The diffusion coefficientD2 can be represented in a form

D25
^r 2~ts!&

2ts

5
16Ds

p4a4
~12p!2(

n50

`
1

~2n11!4E0

`

L3 expS L

a
ln pD

3F12expS 2
p2n2a2

2L2

ts

t f
D GdL ~19!

or

D25
16Ds

p4~12p!2 (
n50

`
1

~2n11!4E0

`

x3 exp~2x!

3F12expS 2
p2~2n11!2

2x2

ts

t f
~ ln p!2D Gdx, ~20!

wherex52(L/a)ln p.
Introducing the dimensionless parameterA

5p2(ln p)2ts/2t f and changing the integration variablex
5bnAz, wherebn5AA(2n11) one can perform the sum
mation overn to get

D25
a2A

p2t f
E

0

` z@12exp~21/z!#dz

sinh~AAz!
. ~21!

At A@1 one can neglect the exponent in the nominator
Eq. ~21!. Then

D25Ds /~12p!2. ~22!

At A!1 one can expand this exponent to getD25D f . One
can also get the next term at smallA. Thus,
1-3
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D25D f H 12
2AA

p2 E
0

`
AzF1

z
211expS 2

1

zD GdzJ .

~23!

Calculating the integral in Eq.~23! one gets

D25D f~120.479AA!5D f@121.06Ats /t f~12p!#
~24!

at A!1. Here we expand ln(p) at 12p!1.
Note that the linear dependence in 12p in the second

term of Eq.~24! means that the deviation ofD2 from D f at
12p!1 is proportional to the ratio of the mean displac
ment of a particleAD fts during the timets to the typical
size of a white cluster (12p)21.

The scaling arguments in some different form than Eq.~1!
can be applied to the one-dimensional case as well. It ca
written in a form

FIG. 1. The functionD/D f is plotted vs 12p at different values
of ts /t f in the double logarithmic scale. The function (12p)22 is
shown by the dot-dashed straight line.
ys

13230
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D25D fFS 12p

hm D , ~25!

whereh5t f /ts andF(z) is an analytical function. Eq.~25!
has the same form as Eq.~1! except thats50. This relation
is defined atp<1 and 12p!1. In the same way as before
we put F(0)51. At large values of (12p)/hm one hasD
;h/(12p)q. It follows that mq51 which is analogous to
the relations1mq51 that is valid in general case. We kno
from Eq. ~22! that q52. At 12p!1 one can writeA
5p2(12p)2ts/2t f . Then one gets thatm51/2 in agree-
ment with the scaling relation. The exponentt has no mean-
ing in the one-dimensional case.

Finally, we present the solution for the effective diffusio
coefficient D which is valid at all values ofp within the
interval 0<p<1. It has been shown thatD5D1 if p/(1
2p)2!ts /t f . On the other handD5D2 if (1 2p)!1.
Thus, the two approximation have a wide region of over
(pt f /ts)

0.5!(12p)!1. In this regionD15Dsp/(12p)2

and D25Ds /(12p)2. Thus, one can get a result which
exact everywhere ifts@t f . This result ispD2. Finally,

D5
a2Ap

p2t f
E

0

` z@12exp~21/z!#dz

sinh~AAz!
. ~26!

This result has been derived above for the site problem. O
can see, however, that it remains unchanged for the b
problem as well.

The diffusion coefficientD/D f as given by Eq.~26! is
plotted in Fig. 1 versus (12p) in the double logarithmic
scale at different values ofts /t f . The function (12p)22 is
also shown there as a dot-dashed line. One can see that
large values ofts /t f the curves have wide regions which a
parallel to this line. In these regions the diffusion coefficie
increases as (12p)22.

In conclusion, we have presented a novel problem wh
fills a gap between the diffusion and percolation in the c
when the motion of the random media is very slow. We ha
considered the dc transport only. It would be interesting
study a frequency-dependent transport under the same
ditions.
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