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Crossover from percolation to diffusion
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A problem of the crossover from percolation to diffusion transport is considered. A general scaling theory is
proposed. It introduces phenomenologically four critical exponents which are connected by two equations. One
exponent is completely new. It describes the increase of the diffusion below percolation threshold. As an
example, an exact solution of one-dimensional lattice problem is given. In this case the new expeg@ent
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Percolation theory is often used to describe transporfluctuations of the positions of the conducting and noncon-
properties of disordered systems with a large disorder. Thducting elements. In this case the transition from diffusion to
typical problems of this type are, for example, the conducpercolation mechanism has all features of the phase transi-
tion of random mixture of conducting and nonconductingtion and it can be characterized by critical exponents. In this
elements and hopping conductibibove the percolation paper we introduce a set of these exponents and establish
threshold the transport in such systems may be described telation between them. For illustration we present an exact
terms of electrical conductivity and diffusion coefficient, that solution of one dimensional lattice problem.
are connected by the Einstein r.elatﬁ).hus important, how- Thus, we consider here a random mixture of the conduct-
ever, that such a description is valid at a distances mucfhg and nonconducting elements which can change their spa-
larger than the correlation length of the percolaton theorytia| configuration but very slowly. In this situation the result-
This length tends to infinity at the percolation threshold andpq giffusion (or conductivity of the particless nonzero at
it is large near the threshold. One can consider this length az§ny small fraction p of the conducting elemeritae mecha-

? typ|c?jllff5|z<.a of the tperc_olatut)n n?_twck);rllm sgﬁller dis- nism of this diffusion is as follows. A particle can diffuse
ances difiusion equation 1S not applicable and the process I(§nly in the conducting medium. To move from one conduct-
not Markovian. . o . . .

: e - ing element to the other it is waiting until another conducting

For calculation of the large-scale diffusion coefficient one . . .

element comes to the element where it resides. At this mo-

should use the percolation theory which is very far from an . . : L
P y y Y ent of time a particle is able to do a next move. This is a

Boltzmann-type transport approach. Say, both the electricd]’ lar diffusi hich is ch ed b | .
conductivity and the diffusion coefficient of the conductive reguiar dirfusion which 1S ¢ aracterized by some slow wait-

and nonconductive mixture behave like p,)', wherep is ing time Ts. The diffusion insid_e the conducting me_dium is
a fraction of conductive elementgs, is a percolation thresh- characterized by much faster time. When the fraction of

old value, and is a critical exponent. Both of them are zero conducting e'em¢r!t$’ pecomes close to the percqlatlon
atp<p thresholdp., but it is still less tharp., the resulting diffu-
-

. . . res S . i )
Thus, there is an important difference between a regular'©" |ncre?]$eshas P pb) , whereﬂ IS a ngveli C”t'clal ex 5
diffusion, which is a Markovian process at all lengths,start-POnent. This happens because the conducting clusters be-

ing with the characteristic length of the order of a diffusion €M large. But since they are disconnected the particle still
hop, and the large-scale diffusion resulting from theshould wait before jumping from one of them to the other.

percolation-type process. For brevity we call these two profnally, above the percolation threshold, wher-p. be-
cesses diffusion and percolation, respectively. comes larger than the width of some critical region described

The regular percolation theory assumes that the randoelow, the ciliffusion is desn_:ribed by a regular_ percolation Ia_lw
elements do not change their positions with time so that thf ~(P—Pc)" and slow motion of the conducting elements is
percolation paths do not change their spatial locations. ThB°t important. In our terminology this is a crossover from
low-temperature electron transport is one of examples wher@gular diffusion to percolation with increasipg The diffu-
this assumption is not valid. Due to the electron-electrorsON coefficientD has a crltlcal- behavior in a small interval
interaction the random potential persistently and substarf?€@rPc- To describe this physics one can use the same scal-
tially changes with timé?* which may affect conductivity N9 arguments as for the problem of the frozen mixture of
near the metal-insulator transition. Such problems appedfiements with large and small conductivfty Note that the
outside solid state physics as well. The class of this problerf}€W Problem is not equivalent to the old one, so that the
is known asdynamical percolationThey have been studied €XPonentq might be different. The scaling hypothesis is
theoretically using effective medium approximati¢See, valid in the proximity of the perpolathn thresholq so that
e.g., Ref. 5, and references thejei®ne-dimensional prob- X[/pe=<1, whereX=p—p;. In this region the scaling hy-
lems of this type have been considered for some modelBOthesis can be written in the form
without any approximation$,but far from the percolation
transitionp,= 1.

We concentrate here on the case when the diffusion d=h3¢<£) 1)
through a conducting medium is drastically faster than the hm/”
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Hered=D/D¢, h=D4/D¢, whereD is the resulting diffu- cluster. This type of averaging we dendte. .). Now we
sion coefficient at a given value of Dy=a?/2r is the dif- introduce the functior?(7)) by the equation
fusion coefficient in the conducting medium,is a charac- .
teristic length which depends on the mod2,=a?/2r,, and Tt
Y(Z) is some analytical function at all real values of its ’\Il'inw
argument, —o<Z<w, We assume thah<1l and that
$(0)=1. _ _ N The diffusion coefficienD can be expressed through this
Equation(1) contains two independent critical exponents. fynction
The meaning of the exponestis thatd=h® at p=p.. The
exponent m describes the width of the critical region Crt) (r¥(ry)
|p—pc/=h™ between the percolation and diffusion. D=lim TR ()
All the critical exponents which describé(X) can be e S
related tos andm. At X>0 andX>h"™ the slow changes of

the percolation paths are not important. Thus, we have thﬁrs?fhratst,[rﬁéegﬁ;t% rfsmc(#rth(gs\?v>hiltz 2}Stef§|:;\évsﬁo¥v\?e?s;urm:so
diffusion on the percolation cluster. If the system is larger y larg

than the correlation radius of the percolation cluster, the dif-that the particle, which changes position during the time

fusion coefficient is related to the conductivity by the Ein- Crosses t.hese clus_ters_to and f_ro many t.ime.s during t_h_e time
stein relation. Then one hals- X', where the exponeritis a 75. In this approximation we find the d|ﬁg$|on coefﬁue:nt
usual percolation exponent which describes the conductivity 1 For Fhe .Iargelr clusters we use the antlnuum approxima-
above the percolation threshold. To get this result from Eq ion, which is valid at 1_ p§1 only, and findD.,. We show

(1) one should assume that=s/t. At X<0 and|X|>h™ we fthat these two approximations have a large region of overlap
expect thatd~h/(|X|)%. This givess+mg=1. Finally we if

get two connections between four exponesig,t, and m, T

namelyg=t(s *—1) andm=s/t. <1, (6)

As an example, we consider below an exactly soluble one Ts
dimensional site or bond model on a lattice. At the beginning\ﬂatchinng andD2 in the over|ap region we find the result
we concentrate on the site model. The sites may be white anghich is exact if Eq.(6) is fulfilled.
black with the fractiong and 1-p, respectively. The par-  To calculateD,; we assume that the particle appears on
ticle may occupy the white sites only and it is able to jump ateach white site of a cluster so many times during the time
the nearest site, if this site is white, during the time The | that it can be found on each site of the cluster with the
configuration of the white and black sites slowly changessame probability.
with time. This change can be introduced by many ways. We |f the particle is within the cluster of size, the average
consider the simplest one. After each time intervalthe  quadratic displaceme®R?(L) is given by the equation
configuration of all sites completely changes preserving the
samep, while the particle remains at the same site and this a2 L a?
site remains white. In this model time; can be called a RA(L)=— > > (n—k)ZZE(LZ—l), )
renewal time. We assume tha>7¢. Sincep,=1 in the L% n=1k=1
one-dimensional case, our solution may only illustrate theyhere we have averaged over initial positions of the particle
increase of the diffusion coefficier~(1—p)? and the  within the cluster. The probability that a particle is within a
width of the critical region X|, where it deviates from this cluster ofL white sites is
law and tends to the valug;=a?2r; asp—1.

Thus, in our model the particle occurs inside the com- w,=(1-p)*p- L. (8
pletely different cluster of white sites after each time interval
7. Then the time average of squared displacemg(t) can
be written in a form

=(r?(ry). 4

L

By averagingR?(L) over all cluster sizes one gets

=SS gLz n= 2P
r<(rg))=—=(1-p p -1)= .
2O =[ry(r)+ra(r9)+ - +ry(1912, 2 778 =1 (1-p)? ©)
9
wheret=Nrg, r;(7s) is a displacement of a particle inside Th
the cluster numbei. us,
Since both the numbers of sites in any new cluster and the - D

initial positions of a particle inside this cluster are random, Dl:<r (79) — sP ) (10)
all ri(7s) are statistically independent. Then 275 (1-p)?

r2(t)=r2(rg) +r2(7g)+ -+ +r(s). 3) Note that Eq(10) has been obtained by Drugetral® and

it also can be extracted from the paper by Plyukhite Eq.
If we divide the right-hand side of Eq3) by N, we get a  (10) is valid if (r?(rs))<D¢7s. That means that displace-
squared displacement averaged over both the number of sitesent of a particle during the timeg is much less than it
in clusters and the initial positions of a particle within eachwould be in the infinite system. This condition is fulfilled if
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P - One can see from Eq17) that for relatively small times,
S

o7 <_ (11 t<L%Dy, the displacement’(t) grows as Dt just as for
(1=p) f the normal diffusion, while at large times the valué(t)
At p<1 one getd,=pD;. tends to the asymptotic vale/6 indicating that the particle
To calculateD, we use the continuous approximation crosses the cluster many times.
which is valid when the sizes of white clustérs-1. This is To find the diffusion coefficienD, one has to average
true if 1—p<<1. In this approximation one should use the rf(rs) over all clusters with the distribution function given
diffusion equation for the probability density(x,t). by Eq.(8). In the region (- p)<1 one can substitute sum-

mation over the cluster sizes by integration to get
u(x,t) 5 J2u(x,t)

(12 —p)2 (=
ot f 2 (1-p)° (55— L
X (r¥(rg))= 2 fo ré(rs)L ex SInpjdL
assuming zero current at the beginning and at the end of the
cluster k=0,L) a2
= - 2( -p) E —
au(x,t) (1—p) (2n+1)
=0. (13
oX X=0L o L 2n2a? s
xf L3exp —Inp— 5 dL. (18
The initial condition is 0 a 2L
u(X,t)|i=o= 8(X—Xo), (14 The diffusion coefficienD, can be represented in a form
wherex, is a random point within the interval (0). -
The solution has a form _(r(7s))
2 27g
D 1 . i S(wnxo) S(7-rnx 772n2D t 16D .
u(x,t)=— co co§ — |exp — : *
L & L L s -p) 2 f L3exp<—|n p)
(15) o’ =0 (2n+1)* a
The mean-square displacement with respect to the initial po- m2n?a? 7
sition X, is X|1-ex oLz dL (19)
JE— L
rf(xo,t):J (X—Xg)2u(x,t)dx or
0
mNXo D,= focxs exp(— X
L2 - COS( L ) > 4<1 p) 20 (2n+1)4 P
=?—(L—xo)x0+4L22 —
n=1 (mn) m2(2n+1)? 74
X|1—exp ———————(Inp)?| |dx, (20)
2,2 2
XO XO mn 2X Tt
X|—+(=D)" 1——| |exp — D¢t |.
L L L2
wherex= —(L/a)In p.
(16) Introducing  the  dimensionless  parameterA
=x?(Inp)®rJ27; and changing the integration variable
By averaging over the initial positions, on the cluster, =b,z, whereb,=A(2n+1) one can perform the sum-

we get the time dependence of the mean-square displacemenhtion ovemn to get
of the particle on the cluster of the sike

a?A (= z[1—exp —1/z)]dz
D,= j [ o )] _ (21)
T T 0

sinh(\/Az)

, o 72(2n+1)2 At A>1 one can neglect the exponent in the nominator of
=——L 2 [—4ex ———— Dy Eqg. (21). Then

2 1=
rL(t)=EJOr (Xg,t)dXg

(2n+1)

w°n?
l—exp — E Dyt

D,=DJ/(1-p)2 (22)

B 16L2 1

- (17) At A<1 one can expand this exponent to §et=D;. One
a4 n=o (2n+1)*

can also get the next term at smAll Thus,
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FIG. 1. The functiorD/D; is plotted vs *-p at different values
of 74/ 7 in the double logarithmic scale. The function-{p) 2 is
shown by the dot-dashed straight line.

dz} .

2JA (= J1 1
D2=Df[1—?f0 \/E E—l+ex;{—;)
D,=D(1-0.479/A)=D{[1—1.06\7s/ (1~ p)]

(23

Calculating the integral in Eq23) one gets

at A<1. Here we expand Ipj at 1—p<<1.

Note that the linear dependence in-p in the second
term of Eq.(24) means that the deviation @f, from D; at
1-p<1 is proportional to the ratio of the mean displace-
ment of a particleyD; s during the timerg to the typical
size of a white cluster (£ p) 1.

The scaling arguments in some different form than &gy.
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1_'0), (25

hm

D,=DsF

whereh= 7; /75 andF(z) is an analytical function. Eq25)
has the same form as E() except thas=0. This relation
is defined app<1 and 1-p<1. In the same way as before,
we putF(0)=1. At large values of (+p)/h™ one hasD
~h/(1—p)9. It follows thatmg=1 which is analogous to
the relations+mqg=1 that is valid in general case. We know
from Eq. (22) that g=2. At 1-p<1 one can writeA
=x?(1—p)?7427¢. Then one gets tham=1/2 in agree-
ment with the scaling relation. The exponémtas no mean-
ing in the one-dimensional case.

Finally, we present the solution for the effective diffusion
coefficient D which is valid at all values op within the
interval O<p=<1. It has been shown th@& =D, if p/(1
—p)2<7/r. On the other hand =D, if (1—p)<1.
Thus, the two approximation have a wide region of overlap
(pr/79)%°<(1—p)<1. In this regionD,;=D¢p/(1—p)?
and D,=D¢/(1—p)2. Thus, one can get a result which is
exact everywhere it 7¢. This result ispD,. Finally,

a’Ap (= Z[1—exp(— 1/z)]dz
D:
w2z Jo sinh(VA2)

This result has been derived above for the site problem. One
can see, however, that it remains unchanged for the bond
problem as well.

The diffusion coefficientD/D; as given by Eq(26) is
plotted in Fig. 1 versus (% p) in the double logarithmic
scale at different values af,/ ;. The function (1 p) 2 is
also shown there as a dot-dashed line. One can see that at the
large values ofr;/ 7 the curves have wide regions which are
parallel to this line. In these regions the diffusion coefficient
increases as (1p) 2.

In conclusion, we have presented a novel problem which
fills a gap between the diffusion and percolation in the case
when the motion of the random media is very slow. We have
considered the dc transport only. It would be interesting to
study a frequency-dependent transport under the same con-
ditions.
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