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Elasticity of a one-dimensional tiling model and its implication to the phason elasticity
of quasicrystals

Hyeong-Chai Jeong
Department of Physics, Sejong University, Kwangjinku, Seoul 143-747, Korea

~Received 30 November 2000; published 15 March 2001!

A one-dimensional tiling model with matching rule energy~antiferromagnetic Ising Hamiltonian! is studied.
We present an analytic study of a transition from the unlocked phase, where free energy is proportional to the
square gradient of the perp-space field@ f ;(]w)2#, to the locked phase (f ;u]wu) in perp-space elasticity. The
phase diagram and the temperature dependence of the elastic constant in the unlocked phase show similarity
with the two-dimensional Penrose tiling. The results imply that the unlocking transition of a two-dimensional
Penrose tiling model is related to the disordering transition in a one-dimensional Ising model.
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Since the discovery of quasicrystals,1,2 phason elasticity
has been one of the most important issues of quasicry
structure studies.3,4 Quasicrystals have two types of low
energy elastic excitations: phonons and phasons. In the l
wavelength limits, phonons become uniform translatio
while phasons correspond to rearrangements of atoms
one perfect quasicrystalline lattice to another.5 Phason disor-
ders, either grown in or quenched, have been observe
almost all kinds of quasicrystalline materials.6–10 Recently,
thermal phason fluctuations in quasicrystals have been
rectly observed in high-resolution transmission electron
croscopy images.11

There are two different phases in phason elasticity:
locked phase and unlocked phase.4,12,13 In the locked phase
where the system behaves like a Penrose tiling, the ela
free energy shows a linear dependence on the magnitud
the phason gradient, whereas it varies quadratically with
phason gradient in the unlocked phase as in a random t
phase.12,14,15 Phase transitions between these two pha
have been studied numerically with tiling models f
quasicrystals.13,16However, it has been a difficult problem t
show the transition analytically and predict the equilibriu
thermal fluctuations in the locked phase because the free
ergy becomes nonanalytic. In this paper, we consider a
model in which perp-space elasticity~analogous to phaso
elasticity in quasicrystal model! can be studied analytically
and demonstrate the transition in perp-space elasticity f
the unlocked phase to the locked phase.

A one-dimensional~1D! commensurate tiling with mis
match energy is considered. A perp-space fieldw(x) is in-
troduced by assigning11 for one type of tiles and21 for
the other type. This assignment shows that our 1D til
model is equivalent to a 1D antiferromagnetic Ising mo
and the perp-space strain is nothing but a magnetization.
derive the perp-space strain (]w) dependence of the elast
free energy and show that it is quadratic in the strain@ f
;(]w)2# at T.0. We also show how the free energy depe
dence on the strain crosses over tof ;u]wu as T→0. The
connection between this 1D tiling and a two-dimensio
~2D! Penrose tiling is also addressed.

Consider a 1D tiling which has two types of tilesA andB
shown in Fig. 1~a!. The end points of each tile are decorat
0163-1829/2001/63~13!/132205~4!/$20.00 63 1322
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with arrows. These decorations give rise to four possi
states to the vertex, as illustrated in Fig. 1~b!.

Our 1D tiling model is introduced by assigning an ener
«v50 for the vertices (ab) and (ba), «v5e for the vertices
(aa) and (bb). The ground state has only (ab) or (ba)
vertices; hence theA-type tiles and theB-type tiles lie alter-
nately.

The total energy of a tilingx is defined as a sum of verte
energy:

E~x!5 (
vertex

«v . ~1!

If we assign spinS51 for anA-type tile andS521 for an
B-type tile, this model is equivalent~except over all energy
shift! to a 1D antiferromagnetic Ising model

E5
e

2 (
i

Si•Si 11 , ~2!

with Si511 (21) if the i th site is anA(B) type.
Phasons and phonons are elastic Goldstone modes

quasiperiodic system. Phonons are associated with unif
translations as in a periodic system while phasons are a
ciated with relative translations of incommensurate peri
icities, hence found only in a quasiperiodic system. On
microscopic level, phason excitations of finite waveleng
correspond to rearrangements of atoms, and in the tiling
ture, rearrangements of tiles.

The phason degree of freedom or, more generally,
perp-space~defined below! degree of freedom is easily un
derstood by introducing the concept of the hyperspace. F
ure 2 illustrates a way to get the 1D tiling by the projecti
method from a square lattice in a 2D hyperspace. The lat
sites of the 2D square structure can be projected onto a

FIG. 1. ~a! Two types of tilesA andB in the 1D tiling model.
The end points of each tile are decorated with arrows. These d
rations give rise to four possible states to the vertex~b!.
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subspace, which is a straight lineX ~parallel space! at an
angle a with respect to the horizontal rows of the squa
lattices. The complementary spaceW is called a ‘‘perp
space.’’ If the slope of the line is irrational, the projection
all 2D lattice points toX forms a dense set of points. If w
restrict projections onX to points confined within a strip
which is parallel toX and has a cross section inW equal to
the perp-space projection of a square unit cell, then the
jection to X gives two types of finite-size tiles and obeys
quasiperiodic sequence. The movement of the strip along
perp spaceW gives rise to rearrangements of tiles from o
perfect quasiperiodic sequence to another. This corresp
to the long-wavelength limit of the phason, and perp sp
with an irrational slope is called phason space.

For the case of a rational slope, the projection onX is
periodic as shown in Fig. 2. The movement~longer than
certain amount! of the strip along perp space still causes t
rearrangement of tiles from one perfect sequence to ano

In any case, ifw(x) is the perp-space field, a smoothe
function constructed as an average of the perp-space p
tions at the vertices nearx, uniform perp-space strainm
5]w produces a number of mismatches~a configuration
which is not in a perfect sequence! proportional to umu.
Hence the elastic energy is nonanalytic (F;u]wu), and this
phase has been called a ‘‘locked phase.’’4,13

Our 1D tiling model with the Hamiltonian of Eq.~2! cor-
responds to the case of a rational slope with tana51 and 2D
lattice constant5 A2. Both A- and B-type tiles have unit
length in physical space. The spin variable~11! @(21)# of a
type A@B# tile is the perp-space projection values of a ty
A@B# tile. Hence the perp-space positionw at a vertex posi-
tion x, w(x)5( i 51

x Si1w(0), and theuniform perp-space
strain m is nothing but a magnetization of the Ising mod
„m5@w(N)2w(0)#/N5( i 51

N Si /N…, and them dependence

FIG. 2. A 1D tiling on the ‘‘parallel space’’X obtained by the
projection method from the square lattice in a 2D ‘‘hyperspac
Points in a strip parallel toX and having width cosa1sina ~shad-
owed regions! are projected ontoX. The movement of the strip
along the ‘‘perp space’’W gives rise to rearrangements of tiles fro
one perfect sequenceABABAB. . . to the other perfect sequenc
BABABA. . . . If theslope ofX, tana, is irrational, the perp spac
is called a ‘‘phason space’’ and the projection gives a quasiperio
sequence. The figure is for the case of a rational slope with taa
51.
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of the free energy is easily derived by introducing a mag
tization fieldh to the Hamiltonian of Eq.~2!:

H5
e

2 (
i

N

Si•Si 112h(
i 51

N

Si . ~3!

The partition functionZN5(e2bH of the system of Eq.~3!
can be easily calculated using the transfer matrix method

ZN5l1
N1l2

N , ~4!

where l1,25e2be/2 coshbh6e2be/2@sinh2bh1e2be#1/2are ei-
genvalues of the transfer matrix andl1>l2.

In the thermodynamic limit, the free energyg
5 lnN→`(ZN /N) depends on the largest eigenvalue (l1) of the
transfer matrix only and is given byg5 lnl1. Note thatg is a
function of the intensive variablesT and h @g5g(T,h)#,
sinceZN is so. To get them dependence of the free energ
we need to do a Legendre transformation

b f ~b,m!5bg„b,h~b,m!…1mh~b,m!. ~5!

The magnetic fieldh in the above equation is easily ex
pressed in terms ofm when we use the fact thatm5
2] (bh)bg:

bh5
1

2
ln@~12m2!12m2e2be

12mebe~12m21m2e2be!1/2#2
1

2
ln@12m2#. ~6!

Hence the free energyf (T,m) as a function of the variable
T andm is given by

b f ~b,m!52be/21
1

2
ln@12m2#

2 ln@11e2be~12m21m2e2be!1/2#

1
m

2
ln@~12m2!12m2e2be12mebe~12m2

1m2e2be!1/2#2
m

2
ln@12m2#. ~7!

The m→0 limit of Eq. ~6! governs the thermal behaviors o
the perp-space elastic excitations of sufficiently long wa
length. In this limit,

b f ~m!52be/22 ln@11e2be#1
1

2
ebem21O~m3!. ~8!

We see that the perp-space elastic free energy shows a
dratic dependence on the strainm for sufficiently small strain
@F;(]w)2#. This phase, where the free energy is analy
has been called an ‘‘unlocked phase.’’4,13

The elastic constantK in this phase, defined by

b f 5~const!1
1

2
K~T!m22O~m4!,

is given by

’

ic
5-2
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K~T!5ee/T. ~9!

Now let us see how the free energy, which shows a q
dratic dependence on the strain atT.0, changes to a linea
behavior (F;umu) at T50. From Eq.~6!, at T50,

b f ~m!52 lnF S 2ebe/2

12m2D 1/2G
1

m

2
lnH 2me2beFmS 11

12m2

2m2
e22beD

1umuS 11
12m2

m2
e22beD 1/2G J

52be/21
m

2
ln@A#,

where

A52m2~161!e2be1@~12m2!/m#~161!

7@~12m2!/2m#2e22be

(6 represents the sign ofm).
For the case ofm.0, the first term in@A# of the above

equation is dominant when we calculate ln@A# in the limit
whereT goes to zero, while for the case ofm,0, the first
two terms are zero and the third term is dominant. In b
cases, ln@A# can be expressed as 2beumu/m and the free
energy atT50 is given by

f ~m!52e/21eumu. ~10!

This equation@Eq. ~9!# is valid as long asumuebe@12m2;
hence the system is in the locked phase ifumu@e2e/T.

Figure 3 shows the phase diagram of our model. The th
curve, which separates the two regions — the locked ph
and the unlocked phase—is given bym5e2e/T.

Note that the elastic constantK̃(T) in the locked phase
defined by

b f ~m!5~const!1K̃~T!umu2O~m2!, ~11!

is linearly proportional to the inverse temperature@K(T)
5e/T#.

FIG. 3. The phase diagram of the 1D tiling model with Ham
tonian, Eq.~1!. The curvem5e2e/T separates the two regions —
the locked phase and the unlocked phase. Here,m5]w is a perp-
space strain,e is the mismatch energy, andT is the temperature.
13220
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The phase diagram~Fig. 3! and the elastic constant in th
unlocked phase@Eq. ~8!# shows the same qualitative beha
iors as those of 2D Penrose tiling model.17,12 For the 2D
Penrose tiling model, it has been argued that the elastic c
stant in the unlocked phase should haveKPenrose5eCe/T,
whereC is a number of the order of 1.12,17 Using the renor-
malization methods, Tang and Jaric argued that the boun
between the locked phase and the unlocked phase is give
the curvem5e22e/T.12 According to Refs. 12 and 17, th
phason fluctuation of wavelengthL or longer in a Penrose
tiling should occur when the temperatureT.Ce/ ln L. The
disordering transition in our 1D model occurs when the e
tropy termT ln LmL, due tomL mismatches in a system o
sizeL, is greater than the energy costmLe:

T ln LmL.mLe ~wherem!1!, T.e/ ln L. ~12!

Hence the condition for disordering in the 1D Ising model
the same as that for phason fluctuations in the 2D Pen
tiling ~with C51).

The exact connection between our 1D tiling model a
the Penrose tiling model is not clear yet. A piece of Penr
tiling composed from two rhombus shapes, fat and skinny
illustrated in Fig. 4. The shaded tiles in Fig. 4~a! represent a
rail,18 a contiguous strip of tiles which share a common ed

FIG. 4. ~a! A piece of Penrose tiling composed from two rhom
bus shapes, fat and skinny. Along any rail of a perfect Penr
tiling, each shape of tile appearsalternately in each of its two
possible orientations. (1) denotes one orientation of fat tiles an
(2) denotes the other orientation of fat tiles.~b! A trail in a perfect
Penrose tiling~above! and the trail after flipping some hexagon
~shadowed hexagons! ~below!. Flipping a hexagon which crosse
the rail exchanges their positions between tiles of different type
the rail while flipping a hexagon parallel to the rail exchanges ti
of the same type in the rail. Flipping a hexagon of the PPT viola
the alternation condition at two places in the rail parallel to t
hexagon and costs mismatch energy 2e.
5-3
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BRIEF REPORTS PHYSICAL REVIEW B 63 132205
direction. In the perfect Penrose tiling~PPT!, the fat tiles and
the skinny tiles lie quasiperiodically along any rail. Ea
shape of tile in a rail has two possible orientations, and th
two orientations of each shape tiles appearalternately in a
rail of the PPT.18 In Fig. 4, (1) denotes one orientation o
fat tiles and (2) denotes the other orientation of fat tile
Two neighboring fat tiles in a rail of the PPT must be eith
(1)(2) or (2)(1) out of four possible arrangements lik
the ground state of our 1D model. Flipping a hexagon i
rail of the PPT violates the alternation condition at tw
places@Fig. 4~b!#. In our model, any arrangement ofA andB
is possible atT5`, while possible rearrangements of ti
orientations in a rail of the Penrose tiling are restricted by
requirement that the tiles fill a plane without overlaps
gaps. Only tiles forming a hexagon are allowed to chan
their orientations. Flipping a hexagon parallel to the rail e
changes tiles of the same type while flipping a hexag
which crosses the rail~not parallel to the trail! exchanges the
positions of the fat and skinny tiles in a rail and may chan
e
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the number of hexagons in the rail. Despite these differen
we have found that the phase diagram and the tempera
dependence of the elastic constant of our 1D tiling model
similar to those of the 2D Penrose tiling. This seems to
dicate that domain-wall-like defects might play a domina
role in determining the phason properties of the Penrose
ing.

In summary, we have presented a toy model which sho
a transition from the unlocked phase to the locked phas
perp-space elasticity. By connecting the perp-space field
Ising spin variable, we show how the analyticity of the fr
energy breaks down asT goes to the transition temperatu
TC50. Comparison of the elastic behavior of our model w
that of the Penrose tiling model indicates that the unlock
transition of 2D Penrose tiling might be analogous to t
disordering transition in a 1D Ising model.

This work was supported by Korea Research Founda
Grant No. KRF-99-015-DP0097.
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