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Elasticity of a one-dimensional tiling model and its implication to the phason elasticity
of quasicrystals
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A one-dimensional tiling model with matching rule eneXgytiferromagnetic Ising Hamiltoniais studied.
We present an analytic study of a transition from the unlocked phase, where free energy is proportional to the
square gradient of the perp-space figle- (dw)?], to the locked phasef |aw]|) in perp-space elasticity. The
phase diagram and the temperature dependence of the elastic constant in the unlocked phase show similarity
with the two-dimensional Penrose tiling. The results imply that the unlocking transition of a two-dimensional
Penrose tiling model is related to the disordering transition in a one-dimensional Ising model.
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Since the discovery of quasicrystafsphason elasticity —> > X > KO
has been one of4the mpst important issues of quasicrystal A B aa ab ba bb
structure studie$? Quasicrystals have two types of low-
energy elastic excitations: phonons and phasons. In the long- () (b)

wavelength limits, phonons become uniform translations

while phasons C(_)rrespor_1d 0 r_earrangements of ato_ms fro%e end points of each tile are decorated with arrows. These deco-

one perfect quasicrystalline lattice to anoth@&hason disor- rations give rise to four possible states to the vefix

ders, either grown in or quenched, have been observed in

almost all kinds of quasicrystalline materidls® Recently, yith arrows. These decorations give rise to four possible

thermal phason fluctuations in quasicrystals have been ditates to the vertex, as illustrated in Figb)L

I’eCtly Observed in high-reso|uti0n tl’ansmission electl’on mi- Our 1D tiiing model is introduced by assigning an energy

croscopy images: g, =0 for the vertices §b) and (a), ¢,= e for the vertices
There are two different phases in phason elasticity: thgaa) and (pb). The ground state has onlyak) or (ba)

locked phase and unlocked phdsé®In the locked phase, vertices; hence thé-type tiles and thd-type tiles lie alter-

where the system behaves like a Penrose tiling, the elastitately.

free energy shows a linear dependence on the magnitude of The total energy of a tiling is defined as a sum of vertex

the phason gradient, whereas it varies quadratically with thenergy:

phason gradient in the unlocked phase as in a random tiling

phase?'41® phase transitions between these two phases E= & 1)

have been studied numerically with tiling models for vertex

quasicrystalé>*®However, it has been a difficult problem to If we assign spirS= 1 for anA-type tile andS=—1 for an

show the transition analytically and predict the equilibriumB_type tile, this model is equivaleriexcept over all energy
thermal fluctuations in the locked phase because the free €Bhift) to a '1D antiferromagnetic Ising model

ergy becomes nonanalytic. In this paper, we consider a toy

model in which perp-space elasticifgnalogous to phason

FIG. 1. (a) Two types of tilesA andB in the 1D tiling model.

€
elasticity in quasicrystal modetan be studied analytically E=35 > S-St 2
and demonstrate the transition in perp-space elasticity from '
the unlocked phase to the locked phase. with §;=+1 (—1) if theith site is anA(B) type.
A one-dimensional1D) commensurate tiling with mis- Phasons and phonons are elastic Goldstone modes in a

match energy is considered. A perp-space fig() is in-  quasiperiodic system. Phonons are associated with uniform
troduced by assigning-1 for one type of tiles and-1 for  translations as in a periodic system while phasons are asso-
the other type. This assignment shows that our 1D tilingciated with relative translations of incommensurate period-
model is equivalent to a 1D antiferromagnetic Ising modelicities, hence found only in a quasiperiodic system. On the
and the perp-space strain is nothing but a magnetization. Wicroscopic level, phason excitations of finite wavelength
derive the perp-space straiavf) dependence of the elastic correspond to rearrangements of atoms, and in the tiling pic-
free energy and show that it is quadratic in the stfdin  ture, rearrangements of tiles.
~(ow)?] at T>0. We also show how the free energy depen- The phason degree of freedom or, more generally, the
dence on the strain crosses overfto|dw| as T—0. The perp-spacddefined below degree of freedom is easily un-
connection between this 1D tiling and a two-dimensionalderstood by introducing the concept of the hyperspace. Fig-
(2D) Penrose tiling is also addressed. ure 2 illustrates a way to get the 1D tiling by the projection
Consider a 1D tiling which has two types of tildsandB ~ method from a square lattice in a 2D hyperspace. The lattice
shown in Fig. 1a). The end points of each tile are decoratedsites of the 2D square structure can be projected onto a 1D

0163-1829/2001/633)/13220%4)/$20.00 63 132205-1 ©2001 The American Physical Society



BRIEF REPORTS PHYSICAL REVIEW B 63 132205

of the free energy is easily derived by introducing a magne-
tization fieldh to the Hamiltonian of Eq(2):

N N
H=535:S.1-h3 §. ®)

The partition functionzy= e #" of the system of Eq(3)
can be easily calculated using the transfer matrix method:

where \; ,=e A< coshphxe P9 sint?gh+e?#<]"?are ei-
genvalues of the transfer matrix angd=X\,.
In the thermodynamic limit, the free energy
=In\_.(Zy/N) depends on the largest eigenvalug) of the
~transfer matrix only and is given ly=In\;. Note thatg is a

FIG. 2. A 1D tiling on the “parallel space’X obtained by the

projection method from the square lattice in a 2D “hyperspace. . . . ) -
Points in a strip parallel t&X and having width cog+sin«a (shad- function of the intensive variable$ and h [g=g(T,h)],

owed regions are projected ontX. The movement of the strip SINC€Zy is so. To get then dependence of the free energy,
along the “perp spaceW gives rise to rearrangements of tiles from We need to do a Legendre transformation

one perfect sequend®BABAB. .. to the other perfect sequence _

BABABA. ... If theslope ofX, tane, is irrational, the perp space BT(B,m)=pg(B,h(B,m)+mh(B,m). ®)

is called a “phason space” and the projection gives a quasiperiodidhe magnetic fieldh in the above equation is easily ex-
sequence. The figure is for the case of a rational slope wita'tan pressed in terms ofn when we use the fact than=

=1 —d(gn)BY:

subspace, which is a straight lin¢ (parallel spaceat an Bh= lln[(l—m2)+2m2e2f‘f
angle a with respect to the horizontal rows of the square 2

lattices. The complementary spat® is called a “perp 1

space.” If the slope of the line is irrational, the projection of +2mefe(1—m?+ m?e?f<) 12— Eln[l— m?]. (6)
all 2D lattice points toX forms a dense set of points. If we

restrict projections orX to points confined within a strip Hence the free energy(T,m) as a function of the variables
which is parallel toX and has a cross sectionW equal to T andmis given by

the perp-space projection of a square unit cell, then the pro-
jection to X gives two types of finite-size tiles and obeys a
guasiperiodic sequence. The movement of the strip along the
perp spacé&V gives rise to rearrangements of tiles from one

Bf(B,m)=—Bel2+ %In[l—mz]

- 2.1 m2a2Be
perfect quasiperiodic sequence to another. This corresponds —In[1+e £¢(1-m’+m?e?’ )17

to the long-wavelength limit of the phason, and perp space m

with an irrational slope is called phason space. + Eln[(l—m2)+2m2e235+ 2mefe(1—m?

For the case of a rational slope, the projection s
periodic as shown in Fig. 2. The movemeiinger than m
certain amountof the strip along perp space still causes the +m2e?8) 12| — —In[1—m?]. (7
rearrangement of tiles from one perfect sequence to another. 2

In any case, ifw(x) is the perp-space field, a smoothed The m— 0 limit of Eq. (6) governs the thermal behaviors of
function constructed as an average of the perp-space poshe perp-space elastic excitations of sufficiently long wave-
tions at the vertices neat, uniform perp-space straim length. In this limit,
=gJw produces a number of mismatchés configuration
which is not in a perfect sequenceroportional to|m|.
Hence the elastic energy is nonanalytie~|dw|), and this
phase has been called a “locked phadé>’

Our 1D tiling model with the Hamiltonian of Eq2) cor-
responds to the case of a rational slope withetari and 2D
lattice constant= /2. Both A- and B-type tiles have unit
length in physical space. The spin variablel) [(—1)] of a
type A[B] tile is the perp-space projection values of a type
A[B] tile. Hence the perp-space positianat a vertex posi- 1
tion x, w(x)=3_,;S+w(0), and theuniform perp-space Bf=(cons}+ EK(T)mZ—O(m“),
strainm is nothing but a magnetization of the Ising model
(m=[w(N)—w(0)]/N==),S;/N), and them dependence is given by

Bf(m)=—Bel2—In[1+e P+ %eﬁfszr omd). (8

We see that the perp-space elastic free energy shows a qua-
dratic dependence on the strairfor sufficiently small strain
[F~(ow)?]. This phase, where the free energy is analytic,
has been called an “unlocked phasé!®

The elastic constarK in this phase, defined by
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FIG. 3. The phase diagram of the 1D tiling model with Hamil-
separates the two regions —

tonian, Eq.(1). The curvem=e €T

the locked phase and the unlocked phase. Haregw is a perp-
space straing is the mismatch energy, afdis the temperature.

K(T)=eT. 9

Now let us see how the free energy, which shows a qua-
dratic dependence on the strainTat 0, changes to a linear

behavior €~|m|) at T=0. From Eq.(6), atT=0,

( 26'35/2) 1/2
1-m?

Bf(m)=—In

m
2m

) 1/2
1 me_zﬁe) }
2
m

m
+ Elnl 2me?he

1-m?
1+ 5 e‘zﬁf)

+|m|{ 1+

m
=~ pel2+ 5 [A],

where
A=2m?(1+1)e?P +[(1—m?)/m](1=1)
F[(1—m?)/2m]%e 2P¢

(%= represents the sign o).

For the case om>0, the first term in[A] of the above
equation is dominant when we calculat¢ Aj in the limit
whereT goes to zero, while for the case of<O0, the first
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(a)

]; i
]: 8
(b)

FIG. 4. (a) A piece of Penrose tiling composed from two rhom-
bus shapes, fat and skinny. Along any rail of a perfect Penrose
tiling, each shape of tile appeagdternately in each of its two
possible orientations.«) denotes one orientation of fat tiles and
(—) denotes the other orientation of fat tiléb) A trail in a perfect
Penrose tiling(above and the trail after flipping some hexagons
(shadowed hexagohgbelow). Flipping a hexagon which crosses
the rail exchanges their positions between tiles of different type in
the rail while flipping a hexagon parallel to the rail exchanges tiles
of the same type in the rail. Flipping a hexagon of the PPT violates

the alternation condition at two places in the rail parallel to the
hexagon and costs mismatch energy 2

The phase diagrariig. 3) and the elastic constant in the
unlocked phasgEg. (8)] shows the same qualitative behav-
iors as those of 2D Penrose tiling modét? For the 2D
Penrose tiling model, it has been argued that the elastic con-
stant in the unlocked phase should haK@e,os=e°¢",
whereC is a number of the order of *:*” Using the renor-

malization methods, Tang and Jaric argued that the boundary

two terms are zero and the third term is dominant. In botH?€tween the locked phase and the unlocked phase is given by

cases, IpA] can be expressed asg2/m|/m and the free
energy afT=0 is given by
f(m)=—e/2+€|m|. (10

This equation(Eq. (9)] is valid as long agm|e’e>1—m?,
hence the system is in the locked phasprifs>e™ /T,

Figure 3 shows the phase diagram of our model. The thick

the curvem=e2¢T 12 According to Refs. 12 and 17, the
phason fluctuation of wavelength or longer in a Penrose
tiling should occur when the temperatufe>Ce/InL. The
disordering transition in our 1D model occurs when the en-
tropy termT InL™-, due tomL mismatches in a system of
sizel, is greater than the energy coslLe:
T>¢€lln L.

TInL™>mLe (wherem<1), (12

curve, which separates the two regions — the locked phase

and the unlocked phase—is given by=e~ .

Note that the elastic constalt(T) in the locked phase,
defined by

Bf(m)=(const+K(T)|m|—O(m?), (11)

is linearly proportional to the inverse temperatyt¢(T)
=€/T].

Hence the condition for disordering in the 1D Ising model is
the same as that for phason fluctuations in the 2D Penrose
tiling (with C=1).

The exact connection between our 1D tiling model and
the Penrose tiling model is not clear yet. A piece of Penrose
tiling composed from two rhombus shapes, fat and skinny, is
illustrated in Fig. 4. The shaded tiles in Figajtirepresent a
rail,8 a contiguous strip of tiles which share a common edge
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direction. In the perfect Penrose tilitBPT), the fat tiles and the number of hexagons in the rail. Despite these differences,
the skinny tiles lie quasiperiodically along any rail. Eachwe have found that the phase diagram and the temperature
shape of tile in a rail has two possible orientations, and thesdependence of the elastic constant of our 1D tiling model are
two orientations of each shape tiles appalernatelyin a  Similar to those of the 2D Penrose tiling. This seems to in-
rail of the PPT® In Fig. 4, (+) denotes one orientation of dicate that domain-wall-like defects might play a dominant
fat tiles and () denotes the other orientation of fat tiles. fole in determining the phason properties of the Penrose til-

Two neighboring fat tiles in a rail of the PPT must be either'"9- _
(+)(—) or (=)(+) out of four possible arrangements like In summary, we have presented a toy model which shows

the ground state of our 1D model. Flipping a hexagon in £ transition from_the unlocked phase to the locked p_hase in
rail of the PPT violates the alternation condition at two PEP-SPace elasticity. By connecting the perp-space field and

: Ising spin variable, we show how the analyticity of the free
placesFig. 4b)]. In our model, any arrangement AfandB energy breaks down &6 goes to the transition temperature

Tc-=0. Comparison of the elastic behavior of our model with
hat of the Penrose tiling model indicates that the unlocking

requirement _that the_tiles fill a plane without overlaps Or ansition of 2D Penrose tiling might be analogous to the
9aps. (_)nly t!Ies forr_mn_g a hexagon are allowed to Cr?ang‘%jisordering transition in a 1D Ising model
their orientations. Flipping a hexagon parallel to the rail ex- ‘

changes tiles of the same type while flipping a hexagon
which crosses the rafhot parallel to the trajlexchanges the This work was supported by Korea Research Foundation
positions of the fat and skinny tiles in a rail and may changeGrant No. KRF-99-015-DP0097.
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