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Coherent electron-phonon coupling and polaronlike transport in molecular wires

H. Ness,* S. A. Shevlin, and A. J. Fisher†

Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, United Kingdom
~Received 24 July 2000; published 13 March 2001!

We present a technique to calculate the transport properties through one-dimensional models of molecular
wires. The calculations include inelastic electron scattering due to electron-lattice interaction. The coupling
between the electron and the lattice is crucial to determine the transport properties in one-dimensional systems
subject to Peierls transition since it drives the transition itself. The electron-phonon coupling is treated as a
quantum coherent process, in the sense that no random dephasing due to electron-phonon interactions is
introduced in the scattering wave functions. We show that charge-carrier injection, even in the tunneling
regime, induces lattice distortions localized around the tunneling electron. The transport in the molecular wire
is due to polaronlike propagation. We show typical examples of the lattice distortions induced by charge
injection into the wire. In the tunneling regime, the electron transmission is strongly enhanced in comparison
with the case of elastic scattering through the undistorted molecular wire. We also show that although lattice
fluctuations modify the electron transmission through the wire, the modifications are qualitatively different
from those obtained by the quantum electron-phonon inelastic scattering technique. Our results should hold in
principle for other one-dimensional atomic-scale wires subject to Peierls transitions.

DOI: 10.1103/PhysRevB.63.125422 PACS number~s!: 85.35.Be, 73.50.2h, 73.40.Gk, 73.61.Ph
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I. INTRODUCTION

Developments in nanofabrication, including bo
‘‘bottom-up’’ approaches and ‘‘top-down’’ methods are fo
cusing renewed attention on the properties of molecu
scale entities and their potential as electronic dev
components.1 One of the most basic theoretical questio
that can be asked in this context is, what determines
conductance of a molecule if it is used as a current-carry
element bridging two reservoirs of differing electron chem
cal potential? This question now has an immediate releva
for experiments in which such conductances are measu
using either~i! scanning probe tips for individual molecule
adsorbed on surfaces,2–5 for molecular wires adsorbed at ste
edges,6 embedded in self-assembled monolayers,7,8 or ~ii !
~macroscopic! electrodes obtained by nanolithography9–13 or
from a mechanically controllable break junction.14–16

Since the seminal work of Aviram and Ratner17 concern-
ing the electron-transfer rate between acceptor and do
groups linked by a conjugated molecular bridge, numer
theoretical studies on electron transfer and transport thro
molecular systems have been performed. In the followi
we briefly review some contributions on the electron tra
port through a single organic molecule~or a few molecules!
whose ends are connected to electron reservoirs. Calcula
of the electronic transmission through such systems h
been done for purely one-dimensional models18–25 and two-
dimensional models.26–28 More realistic descriptions of the
electrode/molecule system have also been developed. C
bining elastic electron-scattering theories with thre
dimensional tight-bindinglike Hamiltonians, models ha
been developed for molecular wires connected to two se
infinite surfaces16,19,29,30or to two semi-infinite ‘‘rods,’’31 or
to clusterlike leads where imaginary parts are introduced
the Hamiltonian to take into account the fact that electro
can leak into the metallic reservoirs.25,32,33Within a frame-
work equivalent to the latter model, calculations have be
0163-1829/2001/63~12!/125422~16!/$15.00 63 1254
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extended to the Hartree-Fock level for a molecule attache
gold clusters.34 More recently, a density-functional theor
has been applied to a molecular wire~described by atomic
pseudopotentials! connected to two jellium surfaces.35

These theoretical studies have clarified the importance
three major points crucial for the transport properties of
molecular wire connected to the reservoirs. First, they h
shown the importance of the electronic and chemical in
action between the ends of the molecular wire and the re
voirs. The larger the Hamiltonian matrix elements betwe
the delocalized electronic states of the electron reservoirs
those molecular electronic states that extend along the w
the better the conductance properties will be; furthermo
these matrix elements should be large compared with
characteristic intramolecular Coulomb interaction betwe
electrons in order to avoid the Coulomb blockade36. Second,
the theories show that in the limit of a small applied volta
and away from the Coulomb blockade regime, the transp
is dominated by charge carrier tunneling inside the high
occupied molecular orbital–lowest unoccupied molecular
bital ~HOMO-LUMO! gap of the molecule. This gap is an
other crucial parameter for control of the conductance of
wire. The smaller the gap is, the larger the tunneling tra
mission will be. More generally, the gap of a molecule d
pends on the chemical nature and atomic structure of
system. This gap can also be modified by the electr
electron interactions or by a change of the structure of
molecule due to~i! external forces,~ii ! ~thermal! lattice fluc-
tuations, or~iii ! electron-lattice interaction. Third, the calcu
lations highlight the importance of the position of the m
lecular electronic levels with respect to the Fermi levels
the reservoirs in the presence of an applied voltage, and
related issue of where the potential drops occur inside
junction. This has been done both empirically33 and by using
approximate24 or exact35 self-consistent schemes.

Although the above theoretical work has shed light
several important physical processes for the transport in
lecular wires, and has matched, to a certain level of accur
©2001 The American Physical Society22-1



e
u

n-
a

n
on
et
w
i-
t

th
di

on
f
e

uc

en
ce
en
in

n
n
x

fs
is
x

ion
e
s
.
od
n

on
d
ve
he
th
rg
e-
ec
tic
e

th
le
rm
on
in
. I
n
ng

y
n

ling

ys-
p-
ort
een
trate
ular
it.

ins
on
e-

onal

ent
the
lso
ns

al-

he
ion
by
ent
tum
the
ect
e,
the
ults

pho-
in

ian
is

rge
the
in

ire
it a

and
t of
’’

to
e
uch

an a

H. NESS, S. A. SHEVLIN, AND A. J. FISHER PHYSICAL REVIEW B63 125422
with some experimental measurements, all the models pr
ously cited are based on elastic electron scattering thro
the rigid lattice of the wire. However, in such highly co
fined electron systems, the coupling between electron
other excitations~phonons for instance! is strongly enhanced
because of the size of the system and its quasi o
dimensionality. This makes the rigid lattice approximati
questionable—particularly so since a one-dimensional m
is generically unstable to a Peierls transition at lo
temperature.37 In an infinite system, such a transition typ
cally produces a semiconductor in which the states near
band extrema are very strongly coupled to distortions of
system; in a conjugated organic molecule, the correspon
phenomenon is a strong coupling of thep-electrons occupy-
ing the HOMO and LUMO states to the bond-alternati
pattern. This coupling means that the low-lying states o
charged molecule~via which any net transport of charg
through the molecule must proceed! involve an intimate cou-
pling of electronic and lattice degrees of freedom, to prod
excitations such as polarons or solitons.38,39 These coupled
excitations can be thought of as conspiring to lower the
ergy gap locally around a charge carrier when it is introdu
into the system. Such polaronic and solitonic phenom
have been studied in bulk or thin film samples of conduct
polymers for decades.38,40–42

The importance of this electron-lattice coupling mea
that the conventional manner of introducing lattice vibratio
within a Landauer-type approach to conductance, as an e
broadening of the electronic levels~extra imaginary part in
the corresponding Hamiltonian, see for example Re
33,50!, is not sufficient to describe the coherent lattice d
tortion due to charge injection. To our knowledge, the e
plicit nature of the distortion accompanying charge inject
has only so far been partially addressed in two simplifi
limits.43 In the first case, a molecular wire was treated a
rigid lattice in which a static solitonlike defect is present45

Although it possesses a midgap electronic state, this m
does not permit the study of the dynamics of formation a
transport of charge-induced lattice distortions. In the sec
case, the atoms of a conjugated molecule were assume
respond classically to the injection of a electron wa
packet,46 via forces calculated from expectation values of t
electron wave packet and other electronic states. In
model, the lattice is able to respond to the injected cha
but not in the physically correct manner: within a wav
packet approach to tunneling, only a small part of the el
tronic charge enters the tunnel barrier. Therefore, the lat
responds with probability unity to a small fraction of th
charge of the injected particle, rather than responding wi
small probability to the total charge of the injected partic

The only way to overcome these limitations is to perfo
transport calculations in which the full dynamical correlati
between charge carriers and quantum phonons is reta
We report the results of such calculations in this paper
order to focus on this particular mechanism for charge tra
port, we use a simple tight-binding model of a conducti
polymer @the Su-Schrieffer-Heeger~SSH! model for
trans-polyacetylene38# that does not explicitly include an
electron-electron interactions. However, our calculatio
12542
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cover a range of transport regimes that includes tunne
transport ~virtual electrons! and resonant transport~where
there is sufficient energy to inject real electrons into the s
tem!. In contrast to the more usual ‘‘phase-breaking’’ a
proaches to the electron-phonon interaction in transp
problems, we explicitly retain the phase coherence betw
elastic and inelastic processes. In this paper we concen
on systems where the boundary conditions on the molec
wires force them to be semiconducting in the zero-bias lim
Within the SSH model, this correponds to molecular cha
containing an even number of monomers. Calculations
odd-length chains, which incorporate mobile solitonic d
fects with associated midgap states that make an additi
contribution to the transport, will be reported separately.

The paper is organized as follows. In Sec. II, we pres
the multichannel scattering technique used to calculate
transport properties of the molecular wires. This section a
includes a detailed analysis of the different approximatio
used for modeling the molecular wires~involving harmonic
phonons! and for reducing the computational cost of the c
culations~involving a reduction of the parameter space!. The
results obtained, in the limit of low temperatures, for t
response of the molecular wires to charge-carrier inject
are given in Sec. III. We show how the lattice is distorted
the injection of a tunneling electron and how the coher
coupling between the tunneling electron and the quan
phonons affects the transmission properties through
wires. We also compare our transport results with the eff
of straightforward static fluctuations in the harmonic lattic
excluding the dynamical correlation of the electrons and
phonons. Finally, we summarize the most important res
and propose further developments of the present paper~Sec.
IV !. Additionally, in the Appendix, we recall briefly the
methods used to get the ground state and the harmonic
non modes from the original SSH model. We also derive
the Appendix the quantum electron-phonon Hamilton
used for the molecular wires. A brief account of part of th
work has already appeared.47

II. MODEL

We are interested in modeling the coherent electron~or
hole! transport through a finite-size system~the molecular
wire! connected to two leads that inject or collect the cha
carriers. Within the wire, the charge carriers interact with
atomic motion that originally drives the Peierls transition
the molecule.

The interaction between the ends of the molecular w
and the leads is supposed to be strong enough to perm
good overlap between the electronic states of the wire
the surface electronic wave functions of the leads. In mos
the practical applications, molecular wires end in ‘‘active
chemical groups, like thiol~S-H! for example, which are
known to react easily in the presence of a gold surface
form chemical Au-S bonds.48 We therefore assume that th
electron transfer rate at the molecule-lead interface is s
that we can consider the electron~hole! transport as being a
coherent process throughout the nanojunction, rather th
sequential, incoherent two-step process.
2-2



v
th
a
d
w
en

te

x
y
is
t

th

ro

e
i

ar

ir
tie
h
e
od
it

iffe
n
h
e

m

f
-

on
c
o
in

in
nd
th
-

des
oxi-
d
nts
the

ry
e

ns-
.
lec-
ase
n-

lism

o-
in
qui-

ody
ob-

el
ted

ng
port

ed

n
n

tun-
i-

ar
l-
al
re

COHERENT ELECTRON-PHONON COUPLING AND . . . PHYSICAL REVIEW B63 125422
In the coherent transport regime, a stationary state wa
function scattering technique can be used to calculate
electron transfer through the molecular wire. Since we
sume that the basis sets used to describe the leads an
molecular wire form a complete set, there are basically t
ways to solve the scattering problem for a single incid
charge carrier. The technique is reminiscent of the Lo¨wdin
transformation.49 If one projects out the basis set associa
to the molecular wire, the problem is reformulated as
‘‘single impurity’’ with on-site energies and coupling matri
elements to the leads depending on the injection energ
the charge carrier.18,21 If one chooses to project out the bas
set associated to the leads, one can effectively remove
leads from the problem. This technique is identical to
embedding technique where a~finite size! effective Hamil-
tonian describing the region of interest is obtained by int
ducing complex embedding potentials.50–52 The embedding
potentials characterize the matching of the electronic sp
trum of the wire to the continuum of states of the sem
infinite leads. These potentials also depend on the ch
injection energy.

As we wish to obtain the response of the molecular w
to charge injection, as well as the transport proper
through the junction, we choose the embedding approac
solve the electron~hole! transport in the system. For this, w
use a technique that permits us to map the many-b
electron-phonon problem onto a single-particle problem w
many channels.53,54

In the remainder of this section, we present the basis
the many-channel scattering technique and discuss the d
ent approximations introduced to reduce the computatio
cost of the calculations. Details of the construction of t
quantum Hamiltonian for the molecular wire from the mod
originally proposed by Su, Schrieffer, and Heeger38,55 ~SSH!
are given in the Appendix.

Starting from this model, we have derived a quantu
electron-phonon Hamiltonian:

Hw5(
n

encn
†cn1(

q
\vqaq

†aq

1 (
q,n,m

gqnm~aq
†1aq!cn

†cm , ~1!

wherecn
† creates an electron in thenth one-electron state o

the molecular wire with energy,en andaq
† creates an excita

tion in theqth eigenmode of vibration~phonon! of the mol-
ecule with energy\vq . The Hamiltonian Eq.~1! goes be-
yond the Holstein and Fro¨hlich model for the electron-
phonon (e-ph) interaction, in the sense that the electr
couples to different nonlocal eigenmodes of vibration, ea
mode having a different frequency. The electron-phon
coupling is linear in the phonon field displacement and
volves electronic transitions via a general form for thee-ph
coupling matrix elementsgqnm.

The electronic eigenstates and eigenvalues are determ
self-consistently with the atomic configuration for the grou
state of the neutral dimerized molecular chain taken to be
reference system~Appendix!. From the atomic and elec
12542
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tronic structures of the reference system, the phonon mo
and frequencies are calculated within the harmonic appr
mation ~Appendix!. The e-ph matrix elements are derive
from the SSH model by expanding the atomic displaceme
induced by adding a charge onto the phonon modes of
neutral molecule~Appendix!. We have checked the accura
and the validity of the harmonic approximation for th
phonons~see below Sec. II B!.

A. Multichannel scattering technique

We are interested in solving the problem of electron tra
port through a ‘‘nanojunction’’ within a two-terminal device
We are mostly interested in the coherent regime for the e
tron transport, that is, the regime where no random-ph
breaking is arbitrarily introduced between different electro
scattering states. Furthermore, we wish to use a forma
that can treat~i! different transport regimes~pure tunneling,
resonant tunneling, eventually ballistic transport! on an equal
footing or in a transparent way, and~ii ! the coupling of an
electron with other degrees of freedom within the ‘‘nan
junction.’’ In principle, to study the electronic transport
such open systems, one would have to deal with the none
librium Green’s functions formalism.56–59

In this paper, we use a model that maps a many-b
problem ~to be accurate, a one-electron/many-bosons pr
lem! onto a single-particle problem with many channels.53,54

In such a model, one deals directly with the multichann
scattering states, although the formalism can be reformula
in terms of Green’s functions. This multichannel scatteri
technique has already been used to study electron trans
through one-dimensional models of~i! double-barrier reso-
nant tunneling junctions with electron coupled to a localiz
single-phonon mode,54,60,61~ii ! the Holstein phonon model in
the presence of an electric field,62 ~iii ! mesoscopic
structures53 and Aharonov-Bohm rings with on-site phono
coupling,53,63 ~iv! tunneling barriers with the electro
coupled to surface plasmon modes.64 More recently, such a
technique has also been used to study inelastic electron
neling through small molecules in a scanning tunneling m
croscopy tunneling barrier.65,66

We start with the following heterojunction: a molecul
wire containingNa atomic sites, described by the Hami
tonianHw in Eq. ~1!, is connected to ideal one-dimension
right ~R! and left~L! metallic leads, whose Hamiltonians a

HR5 (
l 5Na11

1`

eR dl
†dl1bR~dl

†dl 211dl 21
† dl ! ~2!

and

HL5 (
l 52`

0

eL dl
†dl1bL~dl

†dl 211dl 21
† dl !, ~3!

via the coupling matrices,

TR5vR~dNa11
† cNa

1cNa

† dNa11! ~4!

and
2-3
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TL5vL~d0
†c11c1

†d0!. ~5!

The operatorsdl
† (dl) create~annihilate! an electron on sitel

inside the leads, with on-site energyeL,R and nearest-
neighbors hopping integralsbL,R , the operatorsci

† (ci) are
the corresponding operators for an electron on sitei within
the molecule, andvR andvL are the hopping matrix elemen
between the ends of the molecule and the right and left le
respectively. Within the molecular wire, the transformati
from site representation to eigenstate representation is e
performed knowing thatcn

†5( i 51
Na Zn* ( i ) ci

† , whereZn( i ) are
the components of thenth electronic eigenstate of the wir
~see the Appendix!.

The procedure for mapping the problem onto a sing
particle system with many channels is performed by writ
the total scattering wave functionuC(E)&, for the total en-
ergy E of the electron-phonon system as

uC~E!&5(
l

(
$nq%

a l ,$nq%~E!u l ,$nq%&, ~6!

where the basis set used to expand the scattering wav
defined ~in the case of electron transport! as u l ,$nq%&
5cl

†)q(aq
†)nq/Anq! u0& ~for 1< l<Na) and u l ,$nq%&

5dl
†)q(aq

†)nq/Anq! u0& ~for other values ofl ), u0& being the
vacuum state, and$nq% being the phonon occupations. Th
vacuum stateu0& is taken to be the neutral ground state of t
system, with a definite number of electrons in each of the
lead, right lead, and molecule. The electronic states we c
sider, therefore, involve adding a single electron to this n
tral state; the added electron may be anywhere in the sys
~in the left lead, the right lead, or the molecule!. For hole
transport we use an identical basis, except that electron
ation operators are replaced by annihilation operators.
writing the wave-function coefficients as in Eq.~6!, no ex-
plicit separation between the electronic and phonon deg
of freedom has been assumed.

As far as the electron~hole! propagation is concerned
each different channel is associated with a different se
phonon occupation numbers$nq%. The total wave-function
uC(E)& is the eigenstate of the total HamiltonianH5HL
1TL1Hw1TR1HR, HuC(E)&5EuC(E)&, with the full
scattering boundary conditions applied~i.e., an incident elec-
tron or hole with the molecule in a given vibrational state!.

In the absence of dissipation, the total energyE of the
system is conserved during the scattering process, i.e.,

E5Ein1(
q

nq\vq5Eout1(
q

mq\vq , ~7!

whereEin is the energy of the incoming electron and$nq% is
the initial set of phonon occupation numbers.Eout is the en-
ergy of the outgoing reflected or transmitted electron w
the corresponding set of phonon occupancies$mq%. For in-
elastic scattering processes$nq%Þ$mq%; for elastic scatter-
ing, the phonon distribution is conserved.

The wave-function coefficientsa l ,$mq% take an asympotic
form inside the leads. The form corresponds to propaga
Bloch waves inside the left and right leads whose amplitu
12542
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are the reflectionr $mq% and transmissiont $mq% coefficients of
the electron in the different channels. For an injected elect
from the left lead~for example!, we have

a l ,$mq%5eik$nq%
L ld$nq%,$mq%1r $mq%e

2 ik$mq%
L l ~8!

inside the left lead (l<21) and

a l ,$mq%5t $mq%e
ik$mq%

R l ~9!

inside the right lead (l>Na12). The k$nq%
L,R are the dimen-

sionless wave vectors of the Bloch waves in the differ
channels. For a given total energyE, the wave vectors de
pend on the phonon occupation numbers. Figure 1 show
simplified sketch of the multichannel technique for differe
phonon excitations inside the molecular wire.

The solutions of the Schro¨dindger equation̂ l uHuC(E)&
5E^ l uC(E)& inside the leads give the dispersion relatio
for the electron wave vectors inside the different chann
Ein5eL12bL cosk$nq%

L for the incoming wave andEout5eL

12bL cosk$mq%
L for the outgoing reflected wave and toEout

5eR12bR cosk$mq%
R for the transmitted wave to the righ

lead.
In this paper, we report calculations valid in the limit o

low temperatures assuming thatkBT!\vq . Therefore, we
take for the initial set of phonon occupation numbers, the
corresponding to all phonon modes in the ground state$nq%
5$0%. The dispersion relations become simplyE5eL,R

12bL,R cosk$0%
L,R for the elastic channels andE5eL,R

FIG. 1. Schematic representation of the multichannel configu
tions for a molecular wire connected to two electrodes. The diff
ent diagrams represent the bond-length alternation in the wire
the different channels. Initially the wire is its ground-state phon
configuration~lower diagram showing a perfect bond-length alte
nation in the middle of the wire!. The incoming electron can ex
change energy with the phonon modes inside the wire and there
modify the initial bond-length pattern~other diagrams!.
2-4
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COHERENT ELECTRON-PHONON COUPLING AND . . . PHYSICAL REVIEW B63 125422
12bL,R cosk$mq%
L,R 1(qmq\vq for the inelastic channels. Not

that in this case, the total energyE also represents the elec
tron injection energy.

Solving ^ l uHuC(E)&5E^ l uC(E)& at the interfaces of the
heterojunction is the next step to perform in order to reso
the unknown wave-function coefficients inside the molecu
wire. For l 50 and l 5Na11, the relations between the re
flection and transmission coefficients with the wave-funct
coefficients at the ends of the wire are obtained:

t $mq%5
vR

bR
aNa ,$mq%e

2 ik$mq%
R Na, ~10!

and

r $mq%52d$0%,$mq%1
vL

bL
a1,$mq% , ~11!

for the elastic$0% and inelastic$mq%Þ$0% channels.
Finally, solving the Schro¨dinger equation on sitesl

P@1,Na# permits one to effectively remove the leads by
troducing complex embedding potentials.50 Then the solution
of the full scattering problem is obtained by solving the fo
lowing complex linear system

@E2Hw2SL~E!2SR~E!#ua~E!&5us~E!&, ~12!

where Hw is the molecular wire Hamiltonian Eq.~1!, the
components ofua& are the scattering wave-function coef
cients inside the molecular wire expressed in the molec
eigenstate representation, i.e.,an,$nq%5( iZn( i ) a i ,$nq% , and

SL,R are the embedding potentials due to the left and ri
lead, respectively. The embedding potentials are diago
matrices in theun,$nq%& basis set with components

Sn,$nq%
L ~E!5Zn~1!vLg$nq%

L ~E!vLZn~1!, ~13!

and

Sn,$nq%
R ~E!5Zn~Na!vRg$nq%

R ~E!vRZn~Na!, ~14!

whereg$nq%
L,R are the surface Green’s function of the isolat

left and right leads for the different channels given by

g$nq%
L,R ~E!5exp@ ik$nq%

L,R ~E!#/bL,R . ~15!

Finally, us(E)& represents the source term~i.e., the injected
electron or hole at energyE) with components given by

sn,$nq%~E!5d$0%,$nq%~22ivL sink$0%
L !Zn~1!. ~16!

In the present paper, the boundary condition chosen for
source term corresponds to the injection of the charge,
the elastic channel$0%, from the left lead towards the righ
lead.

The solution of Eq.~12! can be obtained by several mea
using algorithms for sparse matrices. In the present paper
explicitly separate the real and imaginary parts of vect
and matrices as follows
12542
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FE2Hw2Re S~E! Im S~E!

Im S~E! 2E1Hw1ReS~E!G FRea~E!

Im a~E!
G

5F Res~E!

2Im s~E!
G , ~17!

where Re and Im denote the real and imaginary parts of
different quantitites andS5SL1SR. The matrix in the left-
hand side of Eq.~17! is therefore real and symmetric. W
then use the standard conjugate gradient~CG! technique to
solve the linear systemAux&5ub&, where A is a real and
symmetric matrix.67 An efficient algorithm has been devise
for computing the productsHwuxi& generated during the it
erative CG steps. It is based on an optimal adressing of
vector components and uses the selection rules for thegqnm
matrix elements@see Appendix 3#.

B. Isolated molecular wire: harmonic phonons and reduced
parameter space

We have shown that the solution of the scattering probl
is obtained by solving Eq.~12! for the value of the wave
functions inside the molecular wire. Assuming a trunca
phonon space up to a finite number of excitationsnocc

max, the
size of the basis set is given byNsize5Ne3(nocc

max11)Nph

with Ne (Nph) being the number of electronic states~phonon
modes!. Even for relatively short wires, the sizeNsize of the
basis set quickly becomes too large for tractable numer
calculations and/or reasonable computing times. For exam
for Na520 atomic sites (Nph519 acoustic- and optic-
phonon modes! with only nocc

max52, we obtainNsize@106. In
the following, we show how to reduce the basis set size
prove the validity of the approximations introduced. The c
responding Hilbert space can be reduced by~i! considering
only valence-~conduction! band electronic states~this will
correspond to hole~electron! transport, respectively!, by ~ii !
considering a limited but sufficient set of phonon modes, a
finally by ~iii ! using only a few excitations in each phono
mode~truncated harmonic-oscillator approximation!.

In order to determine which phonon modes are mai
contributing to the charge-induced deformation of the cha
we calculate the ground-state atomic configurations fo
neutral chainui

0 and for a chain charged with one addition
electron ui

c . Note that because of the charge-conjugat
symmetry~which holds exactly for the SSH model! adding
an extra electron or removing an electron~i.e., adding a hole!
produces exactly the same lattice distortion. Such a lat
distortion is known as an electron~or hole! polaron~cf. Fig.
3!. The lattice distortion is then projected onto the harmo
eigenmodes of vibrationVq of the neutral chain and the cor
responding Huang-Rhys factorsSq are determined by68

Sq5

1

2
Mvq

2Dq
2

\vq
, ~18!

whereDq5( iVq( i ) (ui
c2ui

0). The Huang-Rhys factors give
the averaged number of quantum phonons that would
2-5
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TABLE I. Huang-Rhys factorsSq , the deformation energyDE5E0@ui
c#2E0@ui

0#, the harmonic distor-
tion energy (q\vqSq , and the charging energyEcharg5E11@ui

c#2E0@ui
0# for different molecular wire

lengths. See main text for the definition of the different quantities.

Na520 Na540 Na560 Na580 Na5100

LargestSq 0.806 0.855 0.901 0.885 0.825
SecondSq 1.0331023 6.1331024 5.0131023 1.6731022 3.6631022

DE ~eV! 0.127 0.111 0.108 0.104 0.098
(q\vqSq ~eV! 0.136 0.127 0.128 0.125 0.118
Echarg ~eV! 0.823 0.531 0.446 0.413 0.399
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needed to achieve the corresponding elastic energy of
lattice distortion. We have checked that the largest values
those factors are obtained for the lowest energy~longest
wave length! optical-phonon modes of the molecular wires69

In particular, the optical-phonon mode having the lowest
ergy also has the most important contribution~i.e., Sq.0.8
as can be seen for different chain lengths in Table I!.

From these results, we can already reduce the numbe
phonon modes necessary by considering only the lon
wave-length optical modes to describe the lattice deform
tion induced by adding a charge into the chain. A typical
of these modes is shown in Fig. 2.

Furthermore, we can also check the validity of the h
monic approximation used to determine the phonon mo
of the wire. Note that in Sec. , the elastic energy is expan
up to second order for small displacements around the e
librium atomic positions in order to obtain the dynamic
matrix from which the eigenmodes of vibration are det
mined. The deformation of the lattice due to charge addit
is not purely harmonic because of the distance dependen
the electron hopping matrix elements, cf. Eq.~A1!. However

FIG. 2. Lowest energy~longest wavelength! optical-phonon
modesVq( j ) for the neutral chain containingNa5100 atomic sites.
The frequencies~energies! of the modes are\vq50.136, 0.141,
0.147, 0.153, 0.158, and 0.163 eV for the modeq541, 44, 47, 50,
54, and 58, respectively. The phonon mode indexesq of the finite-
length chain are taken such that the~acoustic and optic! phonons
are ordered by increasing frequency.
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there are good reasons to believe that the potential sur
can be fairly well described by the harmonic approximati
to the neutral chain. To confirm this, we compare the def
mation energyDE with the harmonic distortion energ

Eharm5(q
1
2 Mvq

2Dq
25(q\vq Sq . The deformation energy is

obtained fromDE5E0@ui
c#2E0@ui

0# where E0@ui
0# is the

self-consistent total energy of the SSH Hamiltonian for
neutral chain with the corresponding atomic positionsui

0 .
E0@ui

c# is the nonself-consistent total energy of the neut
chain where the atomic positionsui

c are taken to be those o
the charged chain. InE0@ui

c#, the effects of the imposed lat
tice distortions on the electronic spectrum are taken into
count. Typical values ofDE andEharm are given in Table I
for different wire lengths. For short chains, the values ofDE
andEharm are almost indentical~less than'5% difference!.
For longer chains, the difference betweenDE andEharm in-
creases but never exceed'15%. We also show below tha
the harmonic expansion of the elastic energy is sufficien
describe the formation of a static polaron by adding a p
manent extra charge in the molecular chains.

Now we turn on the reduction of the Hilbert space
relation to the electron states. We want to check the valid
of using only half the electronic spectum on the values of
atomic displacements induced by adding a charge~electron
or hole! into the molecular chain. As mentioned in Ref. 4
we consider the action of the model Hamiltonian Eq.~1! on
the (Na61)-electron Hilbert space obtained by adding
charge into the neutral chain. It is thought that it is sufficie
to consider only the (Na61) electron because for molecula
wires strongly~electronically! coupled to the leads, the mea
time between charge passages is'1027 s ~for a correspond-
ing current of 1 pA!, a value orders of magnitude bigger tha
a typical residence time ('10215 s!. Then we project out the
addition of a charge into the electronic states by work
with the electronic eigenstates representation, i.e., the s
over the eigenstates will only include the occupied valen
band states when adding a hole~and later for hole transport!
and only the empty conduction-band states when adding
electron~for electron transport!. In the following, we show
that the static lattice distortions due to adding a charge
well reproduced by considering only one half of the ele
tronic spectrum.

We start from the ground state of the reference sys
~neutral chain with atomic positionsui

0). The lattice distor-
tions due to charging are expanded onto the harmonic p
2-6
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FIG. 3. Dimerization patterndj ~in Å! induced by adding an extra electron into the molecular wire for three different wire lengthNa

540, 70, and 100. The dip in the dimerization patterns is characteristic of the formation of a static polaron located in the middle of th
The dotted lines correspond to the dimerization obtained form the original SSH model with the full electronic spectrum. The dime
obtained by considering half the electronic spectrum and classical phonons is given by the solid lines~all the phonon modes!, and circles~six
optical modes forNa540, 70, and 10 modes forNa5100). The dimerization calculated for quantum phonons is represented b
dot-dashed lines~six optical modes andnocc

max56 for Na540, 6 modes andnocc
max54 for Na570, 4 optical modes andnocc

max55 for Na

5100).
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non modesVq( i ) as ui5ui
01(qVq( i )Dq . Then the influ-

ence of the lattice distortions on the electronic Hamilton
H0[endnm are taken into account by introducing the corr
spondinge-ph coupling off-diagonal elementsgqnm in H0.
The electronic Hamiltonian of the isolated molecule is

Hnm
el 5Hnm

0 1Hnm
e2ph5endnm1(

q
D̃qgqnm, ~19!

where the matrix elementsgqnm are given by Eq.~A9! in the
Appendix, andD̃q is the dimensionless displacementDq

5D̃qA\/(2Mvq). The total energy of the distorted lattice

Ehalf~$Dq%!5(
q

1

2
Mvq

2Dq
21Tr@relHel~$Dq%!#, ~20!

whererel is the electronic density operator. To find the co
responding ground state,Ehalf($Dq%) has to be minimized
versus the classical lattice phonon displacements$Dq%.

Within the half spectrum approximation, the trace in E
~20! runs only over the conduction-~or valence-! band eigen-
states when we consider the wire charged by an extra e
tron ~or hole!. Adding a charge to the system involves on
the LUMO or HOMO electronic state for an electron
hole, respectively, therefore the functional to be minimiz

is actually Ehalf($Dq%)5(q
1
2 Mvq

2Dq
21le($Dq%) where le
12542
n
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-

.

c-

d

5^weuHel($Dq%)uwe& is the lowest~or highest! energy eigen-
value of the electronic half-space HamiltonianHel($Dq%) and
corresponds to the LUMO ~or HOMO! as modi-
fied by the atomic distortion. The minimization o
Ehalf($Dq%) is obtained when the forcesFq5Mvq

2Dq

1^weuĝquwe&A(2Mvq)/\ are zero for all the phonon mode
q, ĝq being the e-ph coupling matrix with components
gqnm. With this procedure, we can also study the contrib
tion of the different phonon modesq and check the validity
of using only a limited number of optical-phonon modes
create the distortions as we have already suggested from
values of the Huang-Rhys factors.

Figure 3 shows the lattice distortions calculated with
different approximations from the ground state of a charg
chain. The lattice distortions are best represented by the s
gered differencedi between adjacent bond lengths. Th
quantity di5(21)i(ui 1122ui1ui 21) is known as the
dimerization. A constant dimerization pattern indicates a p
fect bond length alternation in the chain, while a decrease
the dimerization indicates a deformation of the bond leng
~i.e., an increase of the short bonds and a decrease o
long bonds!. These lattice distortions are localized arou
the charge added and are characteristic of the polaron de
in the molecular chain. The general shape of the dimeriza
pattern in Fig. 3 indicates that a static polaron has formed
the chain and it extends over several atomic sites.
2-7
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H. NESS, S. A. SHEVLIN, AND A. J. FISHER PHYSICAL REVIEW B63 125422
The dimerization patterns obtained from the original S
model are shown on Fig. 3 with the dimerizations patte
calculated by considering half the electronic spectrum
classical phonon modes~all the modes and the reduced set
long wave-length optical modes!. We can see that the lattic
distortions representing a static polaron defect in the ch
are very well reproduced by considering only the lon
wavelength optical phonons~for example, those shown o
Fig. 2 for the Na5100). The discrepancies between t
dimerization amplitudes obtained for the full and half ele
tronic spectrum are more important for long chains than
short chains. For the short chains, the difference in dimer
tion amplitude does not exceed'10%. In the extreme cas
of the shortest two-atom chain, working with half the ele
tronic spectrum gives the exact results. For the long cha
the difference in dimerization amplitude increases and
'17% for theNa5100 chain length. We attribute the origi
of these differences to the fact that the gap of the molec
wires decreases with the chain length. However, as we s
in the next section, an asymptotic regime is reached for ch
lengthNa>100, where the gap becomes independent of
chain length. We therefore can assume that for longer cha
the difference in dimerization amplitude should not increa
further.

We also calculated the corresponding lattice distortio
using quantum phonons. The calculations were done by
termining the ground state of the fully quantum electro
phonon Hamiltonian Eq.~1! where we introduced a cutof
for the number of possible phonon excitations. Each h
monic quantum phonon mode can contain only up tonocc

max

quanta. Note again, that the calculations were perform
with the n,m sums running only over half of the electron
spectrum. Then, for the sums running over the origina
empty conductance-band states, the ground stateuC0& corre-
sponds to the situation where an extra electron has b
added to the chain. The equivalent situation correspondin
removing an electron is obtained by summing the electro
eigenstates only over the originally occupied valence-b
states and considering among these eigenstates of Eq~1!,
that with the highest eigenvalue.

In practice, here we choose to calculate the situation c
responding to a chain charged with one extra electron. D
to charge-conjugation symmetry, the results for hole inj
tion will be identical. Once the ground stateuC0& of Eq. ~1!
is obtained, we can calculate the quantum average^dq&
5^C0udquC0& for the mean displacement of the phon
modeq, wheredq is given by Eq.~A7!. The atomic displace-
ments ^ui& induced by charging are obtained from̂ui&
5(qVq( i ) ^dq&. The resulting dimerization patterns a
shown on Fig. 3. Convergence of the results is obtained f
small and finite number of quanta in each mode, roug
nocc

max'4,5,6. We will show in the next section that the resu
for the transport properties of the molecular wire coupled
the electrodes converge faster with respect to the value
nocc

max, especially when one considers charge transport in
tunneling regime. As expected, the dimerization patterns
very close to those obtained from the classical phonon mo
12542
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with half electronic spectrum. The slight differences may
due to quantum delocalization of the eigenstate of Eq.~1!.

Finally, it can be noticed that the general shape of
dimerization induced by charging and the spatial extent
the corresponding polaron are well reproduced by the dif
ent approximations~half electronic spectrum, limited set o
optical-phonon modes, finite number of phonon excitatio!
introduced to reduce the Hilbert space. The reduction of
parameter space is therefore entirely justified. This reduc
permits us to treat a great range of molecular wire leng
and to determine the transport properties of the wires p
sented in the next section, with reasonable computing tim

III. RESULTS

In this section, we present results for the electron tra
port through typical heterojunctions made of a molecu
wire connected to two electron reservoirs. In our calcu
tions, the dynamical~i.e., energy-dependent! correlation be-
tween the electron and the phonon degrees of freedom
kept. Such quantum coherence between the electron and
lattice is essential to treat the propagation of polaro
through the wire in the tunneling regime~i.e., for an injection
energyE inside the gap of the molecular wire!. We use the
term coherence because there is no random dephasing o
wave functions introduced by the electron-phonon inter
tion. Instead, each wave vectoru j ,$nq%& has both a definite
amplitude and phase, which are both dependent on the
ergy E.62

A. Lattice distortions induced by a tunneling electron

In order to analyze the response of the molecular w
lattice to a tunneling electron in the stationary state, we c
culate the expectation value of a correlation function b
tween the phonon field displacements and the electron d
sity. Such a correlation function is defined as the followi
quantum average:

dq
[ i ]5

K PiA \

2Mvq
~aq1aq

†!Pi L
^Pi&

, ~21!

wherePi5ci
†ci is the electron wave-function projector on

atomic sitei ~the electron density operator on sitei ). The
quantum average of any electron and/or phonon operatoO
is given by ^O&5^O(E)&5^C(E)uOuC(E)&. The correla-
tion function dq

[ i ] represents the mean displacement of
phonon modeq when the electron is on sitei. We can then
define the conditionally averaged atomic displacementxj

[ i ]

5(qVq( j ) dq
[ i ] representing the atomic displacement on s

j on the condition that the electron is on sitei. From these
atomic displacements, we can obtain the dimerization pat
dj

[ i ]5(21) j (xj 11
[ i ] 22xj

[ i ]1xj 21
[ i ] ).

We have calculated the response of the molecular lat
to the tunneling electron for different wire lengths and d
ferent injection energiesE. For example, Figure 4 shows
two-dimensional map~atomic positionj /electron positioni )
of the dimerizationdj

[ i ] for a Na5100 chain length. The
2-8
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COHERENT ELECTRON-PHONON COUPLING AND . . . PHYSICAL REVIEW B63 125422
tunneling electron is injected at midgap (E50.0) from the
left ( j 51) and propagates to the right (j 5100). The bright
part around the first diagonal in Fig. 4 represents a dip in
dimerization pattern along the atomic positions. As shown
the previous section, such a lattice distortion is the signa
of the formation of a polaron inside the chain. We name
virtual polaron because of the transient nature of the tun
ing electron injected inside the molecular wire gap. The
duced atomic distortions are located around the electron
sition i ~vertical axis!. As can be seen in Figs. 4 and 5, th
virtual polaron has its own intrinsinc width~estimated
around'15 atomic sites for the present model of molecu
chains that is consistent with the correlation lengthj of the
continuum model70!. Its formation is therefore not possibl
for the electron positions at the ends of the molecular w
For short chains (Na,15), the lattice distortion associate
with the polaron cannot be accommodated in the wire. T
has an important consequence on the electronic trans
properties, as we shall see in the next section.

The atomic displacements are, for most electron positio
slightly less than those for an isolated chain~Fig. 5! because
the lattice does not respond fully to the tunneling electron
in the case of the static charge added into the chain.
width of the lattice distortion around the electron is al
smaller for the tunneling electron than for the static char

The amplitude of the virtual polaron slightly increas
when the injection energyE increases above midgap. Such
behavior persists untilE reaches the first resonance peak
the electron transmission~see next section!. This may be
understood from the fact that far from midgap, the elect
wave function gets more weight~the amplitude of the elec
tron wave function gets larger! leading to a stronger couplin

FIG. 4. Two-dimensional~atomic position-electron position!
map of the dimerization pattern~in Å! obtained from the atomic
displacementsxj

[ i ] for a Na5100 chain length. For the boundar
conditions chosen, an electron is injected from the left~injection
energy E50.0 at midgap!. The charge current is flowing from
atomic sitej 51 to site j 5100 ~horizontal axis!. The bright parts
represent a dip in the dimerization pattern, i.e., the formation o
virtual polaron. The induced atomic distortions are always loca
around the~tunneling! electron positioni ~vertical axis! when there
is enough ‘‘room’’ for the polaron to exist inside the chain.
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to the phonons and therefore to more important lattice d
tortions. Above the first resonance peak, the electron is
strictly speaking, tunneling anymore through the molecu
gap. For these energies, the transport regime is better
scribed as tunneling resonantly through the couplede-ph
states of the system. The scattering wave function acqu
more weight from these quasistanding waves that in t
modify qualitatively the polaronlike nature of the corr
sponding atomic distortions. A detailed analysis of such d
tortions is out of the scope of this paper and will be p
sented elsewhere.71

The coherent electron-lattice distortion leads to a mod
cation of the electronic spectrum of the molecular wire co
pared to the spectrum of the undistorted chain. In all
cases studied, the polaron formation is associated with a
duction of the gap of the originally undistorted chain. B
cause the atomic distortions induced in the case of a s
electron added in the chain are different from those obtai
for a tunneling electron, we expect the electron transp
properties through the corresponding spectra to be differ
The behavior of the transport properties in the molecu
wires is shown and analyzed in terms of electron transm
sion probabilities in the next section.

B. Transport properties

The current flowing through the different channels~for
example in the right outgoing channels! is given by

j $mq%
R ~E!5

2e

h
Im~a l ,$mq%* bRa l 11,$mq%!, ~22!

a
d

FIG. 5. Dimerization pattern obtained from the atomic displa
mentsxj

[ i ] for Na5100 ~identical to Fig. 4! for three different elec-
tron positionsi 519 ~solid line!, i 551 ~dot-dashed line!, and i
581 ~dotted line!. The corresponding dimerization pattern for
static polaron inside an isolated chain is also shown~thin dashed
line, identical to the dimerization shown in Fig. 3 as the dot-das
line!. Note the difference in the width of the polaron defect for
static electron and a tunneling electron. Note also the ‘‘wake’’
lattice distortion left by the tunneling electron.
2-9
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for sites l .Na11 located inside the right lead. From th
asymptotic form of the wave functions inside the leads E
~8! and~9!, it is found thatj $mq%

R is related to the transmissio

probability by j $mq%
R 52(e/h)bR sink$mq%

R ut $mq%(E)u2. Simi-

larly, the current inside the left-lead channelsj $mq%
L is related

to the reflection probabilityur $mq%(E)u2.
We can define an effective total transmission probabi

as

T~E!5 (
$mq%

ut $mq%~E!u2
bR sink$mq%

R

bL sink$0%
L

. ~23!

This takes the form of a sum of contributions from the d
ferent outgoing channels.73

In the following, we present results for the injection of a
electron and transport by tunneling effect inside the gap
by resonant tunneling through the levels of the system ab
the gap. The electron injection energy is defined as posi
with respect to the reference energyE50 for all the molecu-
lar wires. The Fermi energies of the leads are assumed t
pinned at midgap in the absence of any applied bias.

Figure 6 shows typical results for the effective total tran
missionT(E) and the contribution from the elastic chann
and from one inelastic channel. The different transmiss
probabilities have, as expected, an exponential behavio

FIG. 6. Electron transmission probability~on a logarithmic
scale! versus electron injection energyE through molecular wires of
different length. Calculations were performed withNph56, nocc

max

52 for Na540 and withNph54, nocc
max53 for Na5100. Effective

total transmissionT(E) ~solid lines!, transmission from the elasti
channelut $0%(E)u2 only ~dotted lines!, transmission from the firs
inelastic channel$nq5151 andnq.150% ~dashed lines!. We recall
that the first optical modeq51 is the optical mode with the longes
wavelength ~i.e., lowest energy!. The corresponding energy i
\vq50.148 eV~for Na540) and\vq50.136 eV~for Na5100). In
the tunneling regime, i.e., for energy E below'0.51 eV ~for Na

540), and' 0.39 eV ~for Na5100), the main contribution to
T(E) comes from the elastic channel.
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the tunneling regime~below the first resonance peak! and
present resonances through the spectrum of the system
higher energies.

It is interesting to note that in the tunneling regime wh
the injection energies are below the first resonance peakE
,0.51 eV for Na540 andE,0.39 eV for Na5100), the
most important contribution to the total transmissionT(E)
comes from the elastic channel. Above the first resonan
the contribution of the other inelastic channels may beco
as important as the contribution of the elastic channel.
though the contribution of the elastic process is dominan
the tunneling regime, it should be noted that this contribut
is quite different from that obtained from an elasti
scattering treatment of the transport through the undisto
molecule. This is because the ‘‘elastic channel’’ correspo
to processes in which, once the electron has crossed the
ecule, there is no overall absorption or emission of phono
Nevertheless, phonons are emitted and absorbed during
intermediate stages of the transport, and therefore this ‘e
tic channel’ is quite different from a rigid-molecule calcul
tion where no coupling to the phonons is present. We h
already shown in Ref. 47 that the transmission is actua
enhanced~in the tunneling regime and in the limit of low
temperatures! because of thee-ph coupling. The transmis-
sion enhancement comes from an effective gap reduction
sociated with the virtual polaron formation. This gap redu
tion is also different from the one obtained by charging
~classical lattice! chain with a static electron.

Figure 7 represents half the HOMO-LUMO gap of is
lated neutral and charged chains obtained from the S
model and the effective gap of our coupled quantu

FIG. 7. Half gap obtained from the original SSH model vers
the chain length for a neutral molecule~solid line! and for a mol-
ecule charged with one extra electron~dashed line!. The corre-
sponding charging energy is also shown~dotted line with dia-
monds!. The energy positions of the first resonance peak in
transmission are also shown: for purely elastic scattering, i.e.,
noring the coupling to the phonons~empty circles!, and for inelastic
scattering including the coupling of the electron to theNph54 low-
est frequency optical modes~with nocc

max52) ~filled circles!. All en-
ergies are given in eV.
2-10
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TABLE II. Characteristic times associated to the electron and phonons.t res is the residence time for the electron estimated from the wi
of the first resonance peak.tBL is the Büttiker-Landauer traversal tunneling time for the electron. The values fortph are a range correspond
ing to the range of optic phonon frequencies. The differentt are given in fs.

Na 08 10 20 40 50 60 70 80 90 100

t res 0.40 0.51 1.56 5.51 10.82 15.05 20.67 30.21 37.5 45.29
tBL 0.77–0.90 1.64–1.70 3.35–4.50 8.36-25.5
tph 3.34–3.88 3.34–3.60 3.36–3.93 3.65–4.43 3.79–4.58 3.78–4.68 4.04–4.74 3.99–4.79 4.23–4.82 4.3
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electron-phonon model for different chain lengths. Half t
gap corresponds to the value of the lowest unoccupied
lecular states~LUMO! of the isolated~neutral or charged!
chain. The effective gap of the molecular wire~including e-
ph coupling! connected to the leads is obtained from t
position of the first resonance peak in the transmissionT(E).
We also plotted the position of the first resonance peak
tained from purely elastic calculations~ignoring the e-ph
coupling!. As expected, the positions of these resonances
produce the values of half the gap of the corresponding n
tral chains. An energy shift appears in the first resona
position because of the real part of the embedding poten
SL andSR that appear in the solution of the scattering pro
lem Eq.~12!.

For the fully inelastic scattering calculations, the fir
resonance inT(E) occurs for injection energyE smaller than
those obtained from the~solely! elastic calculations. The be
havior characterizes the effective gap reduction of the w
due to thee-ph interaction. The energy position of the fir
resonance inT(E) is close to the charging energyEcharg of
the isolated molecular wire. The charging energyEcharg

is defined as the difference between the~self-consistent!
ground-state total energy of the charged chainE11@ui

c# ~with
the distorted lattice positionsui

c corresponding to a stati
polaron! and the ground-state total energy of the neu
chain E0@ui

0# ~with the undistorted, perfectly dimerized
lattice positionsui

0). Some values ofEcharg for different
molecular wire lengths are given in Table I. Differences b
tween the values ofEcharg and the first resonance inT(E)
do occur, they are due to~i! the systematic energy shift in
troduced by the embedding potentials and also to~ii ! the
differences arising from treating the lattice distortio
classically or with quantum phonons as pointed out in S
III A.

To summarize, there are two distinct physical proces
that affect the value of the band gap of the molecular w
and therefore the transport properties through this wire. F
the intrinsic band-gap dimishes with increasing wire lengt
The values reach a asymptotic regime for a lengthNa*100.
The asymptotic band-gap value and the length above w
the asympotic regime is obtained depend on the chem
nature of the molecule, i.e., on the SSH parameters use
model the molecular chain~cf. Appendix!. Second, an effec
tive band-gap reduction occurs upon charging the molec
wire with a static charge or with a transient tunneling char
The reduction is due to the the coupling between the cha
and the lattice leading to the formation of static or virtu
polaron, respectively. Therefore, the electron transmiss
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through the molecular wire increases because of thee-ph
coupling for injection energies inside the gap. Although t
trends for the gap reduction are similar for the static a
virtual polarons, they differ quantitatively over the who
range of molecular lengths studied here.

Finally, it should be noticed that for short wires (Na
<10) the effective gap obtained from the fully inelastic ca
culations converges towards the gap obtained from ela
calculations. Therefore, the values of the electron transm
sion are almost identical for both inelastic and purely elas
calculations. As mentioned in Sec. III A, although the p
laron cannot be accomodated in very short wires, in th
conditions~short tunneling length and large gap!, the tunnel-
ing process itself is too fast to get significant lattice dist
tions associated with the charge injection. In order to illu
trate this point, we give in Table II, the characteristic tim
associated with the electron and the phonons. We calcu
the time domaintph of the phonons from the extremal pho
non frequencies used in our calculations. We estimate a r
dence timet res for the electron from the full width at hal
maximum h of the first resonance peak usingt res5\/2h.
Following Büttiker and Landauer,74,75 a traversal time
tBL for the tunneling electron can be obtained; it is calc
lated from the elastic channel transmission coefficient
done in Ref. 64. The traversal timetBL is, by definition,
dependent on the electron injection energyE. We give in
Table II the range oftBL corresponding to energies insid
the tunneling gap. We can see that for short wires (Na
!2j), the tunneling time~and alsot res) is smaller than the
characteristic times associated with the phonons. The la
dynamics is, therefore, not fast enough to respond to
tunneling electron. In this regime, the transport propert
obtained from purely elastic scattering~rigid lattice! are
not strongly different from those obtained by inelas
scattering~coherently distorted lattice by thee-ph coupling!.
For longer wires (Na'40@2j), the tunneling time~andt res)
is comparable to or larger than the characteristic pho
times; the polaron can be formed inside the molecular w
It is in this regime that we observe the most important d
ferences between the electron transmission for a rigid latt
and for a lattice that can be deformed by the tunneling e
tron.

C. Lattice fluctuations

The importance of lattice fluctuations on the electron
structure of conjugated molecules has already b
considered.76–79 As the lattice fluctuations~even in the
limit of zero temperature, i.e., the zero-point motion! are
2-11
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of the same order of magnitude than the distortions
duced by charge injection, it is important to know
such species~polarons, solitons! survive the lattice fluctua-
tions.

We present here results for the electron transmiss
through a molecular chain where disorder is introduced
to lattice fluctuations. In order to compare these results w
the full quantum inelastic transmission, we consider the li
of low temperatures where the lattice fluctuations are du
the zero-point motion of each phonon mode. The avera
transmission is obtained by summing up the different ela
transmission probabilitiesT(E;$Dq%) associated with the
displaced phonon configurations$Dq%, weighted by the
Gaussian distribution probability of the ground-state h
monic oscillator wave function. The average of a functi
f ($Dq%) depending on the phonon displacements$Dq% is cal-
culated as

^ f &dis5E dD1 . . . dDq . . . dDNph
f ~$Dq%!

3)
q

expS 2
1

\
MvqDq

2D
A2psq

, ~24!

where the width of the Gaussian distribution is given by
virial theorem for the zero-point fluctuation of eac
mode 1

2 Mvq
2^Xq

2&5 1
2 En505 1

2 (n1 1
2 )\vq5 1

4 \vq and sq

5^Xq
2&1/2.

When f ($Dq%)5T(E;$Dq%), Eq. ~24! is equivalent to the
static lattice approximation expression obtained by Pazy
Laikhtman80 using a path-integral formalism. In our calcul
tions, the transmissionT(E;$Dq%) is calculated from elastic
scattering through the one-electron spectrum of the mole
lar chain distorted by the zero-point lattice fluctuations. T
distorted molecule eigenstates are obtained from the Ha
tonian Eq.~A1! by replacing the equilibrium atomic pos
tionsui

0 by ui5ui
01dui wheredui5(qVq( i )Dq for the dif-

ferent configurations$Dq% of the distorted lattice. In practice
T(E;$Dq%) is calculated in a similar way as described in S
II A, but using the approximation of elastic scattering~i.e.,
no energy exchange between the electron and the phono
allowed, settingnocc

max50 for all the phonon modes consid
ered!. Futhermore, the integrals over the phonon displa
ments are performed using an algorithm to generate ran
deviates with a normal Gaussian distribution with a giv
zero mean value and a variancesq .

The transmission Eq.~24! corresponds to an average ov
the phonon modes, treated classically~as in Appendix! but
with a mean-square displacement equal to the quantum z
point motion, while the electronic transmissionT(E;$Dq%) is
obtained from quantum mechanics. In this average, the in
ence of the phonon displacements on the electronic spec
is taken into account but notvice versa. This is the funda-
mental difference with the transport calculations presente
Sec. III B where both the electron and phonon degrees
freedom are treated at the quantum level and where the
tice distortion is induced by the injected electron. We the
12542
-

n
e
h
it
to
d

ic

-

e

d

u-
e
il-

.

s is

-
m

ro-

u-
m

in
of
t-
-

fore expect the results for zero-point motion to be differe
from the one due to the quantum coherent electron-pho
coupling.

Figure 8 shows the elastic transmission probabi
through the rigid undistorted lattice and the transmission
eraged~in the manner discussed below! over the zero-point
fluctuations. The total effective transmission obtained fro
the inelastic scattering calculations is also shown.

As expected, the lattice fluctuations substantially mod
the electron transmission through the molecular wire. T
transmission is reduced around the resonance peaks o
one-electron spectrum of the undistorted chain, and the pe
are smeared out. However, there is no shift in the position
the resonances corresponding to the formation of virtual
larons.

As in the fully quantum calculations, the transmission
enhanced for injection energies inside the gap of the un
torted chain. However, at this point it becomes important
know exactly how the average over the lattice fluctuations
Eq. ~24! is calculated. It is known81 that the ensemble aver
age of the transmission probability in a disordered o
dimensional conductor is a statistically ill-defined quanti
in the sense that it is dominated by a very small number
exceptional configurations. In other words, the mean is in
way representative of the typical transmission probability
be expected from a randomly sampled member of the
semble. This difficulty does not arise if logT, rather thenT,
is averaged.82 In Fig. 8 we therefore compare logT from our
fully quantum results witĥ logT&dis. In this case we see tha
fully including the electron-phonon coupling~allowing the

FIG. 8. Electron transmissionT(E) versus electron injection
energy E for two molecular wire lengthsNa540 and Na5100.
Transmission through the one-electron eigenstates of the ne
chains from elastic scattering~thin solid lines!. Transmission
through the coupled quantum electron/phonons system from ine
tic scattering~solid lines with circles!, Nph56 andnocc

max52 for Na

540, Nph54 and nocc
max53 for Na5100. Averaged transmission

^ log T(E)&dis from elastic scattering through the one-electron eig
states of the chain distorted by zero-point lattice fluctuations~dotted
lines!, Nph53 for Na540 andNa5100.
2-12
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possibility of polaron formation! gives a greater increase i
the tunneling transmission than averaging over the diso
introduced by the zero-point motion. This shows that o
the fully quantum coherent electron-phonon coupling cal
lations ~exact in the limit of zero temperature! give the cor-
rect physics.

IV. CONCLUSION

In this paper, we have presented a method to calculate
inelastic effects on electron transport through on
dimensional molecular wires, including realistic electro
phonon coupling. The model for the wires is inspired by t
Su-Schrieffer-Heeger model for trans-polyacetylene. T
transport through the quantum electron-phonon system
solved by means of a multichannel scattering techni
where each channel is associated with probabilities for
electron to be reflected or transmitted, given the phonon
cupation number configuration.

The results show that the transport in the one-dimensio
molecular wires does not occur as in traditional~three-
dimensional! semiconducting molecular devices. It does n
involve the propagation of free electronlike particles, but
stead is due to the coherent propagation of ‘‘quasiparticle
an electron~or hole! surrounded by a lattice distortion, cha
acteristic of the formation of an electron~or hole! polaron.
This object is called here a virtual polaron because of
transient nature of the tunneling electron~or hole! injected
inside the HOMO-LUMO gap of the molecular wire. In th
regime and in the limit of low temperatures, the tunneli
transmission probability through the device increases, du
the electron-phonon coupling, in comparison with the tra
mission obtained from elastic scattering through the un
torted molecular wire. Lattice fluctuations also modify t
electron transmission through the wire. However, the co
sponding enhancement of the transmission in the tunne
regime is less than that produced by the virtual polarons

The influence of other defects~such as a solitonlike defec
existing in the chain! on the transmission has already be
considered, and will be presented elsewhere. The trans
for finite temperatures~different initial phonon occupation
and proper statistical averages! is under study and result
will be presented in the near future.

The results presented in this paper are general and ca
applied to other types of one-dimensional atomic-scale w
subject to a Peierls transition. For example, it has b
shown both experimentally and theoretically that a Peie
like transition also occurs in dangling-bond~DB! lines fab-
ricated on the H-passivated Si~001! surface.83–85 More re-
cently, it has been shown theoretically that the injection o
static charge in the bands around the band-gap leads
distortion of the atomic positions along the line.86 This dis-
tortion corresponds to the formation of a small polaron in
DB line. We therefore expect that carrier injection in t
band gap of the DB lines will lead to similar physical resu
to those presented here for molecular wires. Many ot
quasi-one-dimensional systems may be expected to s
similar characteristics.
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APPENDIX: ISOLATED MOLECULAR WIRES

1. The SSH model

Su, Schrieffer, and Heeger~SSH! modeled a chain of
trans-polyacetylene (t-PA! as a purely one-dimensiona
atomic ~CH! x chain.38,55 The model combines a classic
ball-and-spring term for the distortion of thes-bond back-
bone with a tight-binding representation for the delocalis
p-electron orbitals along the chain. Furthermore, the elect
hopping integrals between adjacent~CH! groups are ex-
panded linearly about some reference values. The co
sponding Hamiltonian is

HSSH52(
i ,s

@ t02a~ui 112ui !#@ci ,s
† ci 11,s1ci 11,s

† ci ,s#

1
1

2
K(

i
~ui 112ui !

2, ~A1!

whereci ,s
† (ci ,s) creates~annihilates! a p electron of spins at

site i. ui is the displacement of thei th ~CH! group from its
place in the reference~undimerized! system with hopping
integral t0 . K is the spring constant corresponding to thes
bond anda is the electron-lattice coupling constant. As e
plained in the introduction, the undimerized metallic chain
unstable with respect to a Peierls distortion, and the gro
state of an infinite neutral chain has displacements given
ui5(21)i u0, whereu0 is a constant depending ont0 , a,
and K. The values chosen for the different parameterst0
52.5 eV,a56.1 eV/Å, andK542.0 eV/Å2),87 give for an
infinite perfectly dimerized chain a total bandwidth of 10 e
a band gap of 1.4 eV, and a difference between long/s
bond lengths of 0.1 Å in agreement with experiments.

For finite-size chains containingNa atomic sites@i.e. ~CH!
groups#, the ground-state GS(Na ,Ne) of Hamiltonian ~A1!
can be obtained for neutral (Ne5Na) or charged (NeÞNa)
chains,Ne being the total number ofp electrons inside the
chain. The ground state is obtained when the restoring fo
of the springs balance the electronic forces by solving87–90

2a(
n

occ

Zn~ i !@Zn~ i 21!2Zn~ i 11!#1K~2ui2ui 212ui 11!

50, ~A2!

whereZn( i ) are the components of the one-electron eig
states~with energyen) of HSSH for a given atomic configu-
ration$ui%. The sum in Eq.~A2! runs only over the occupied
states and the spin indexs is implicitly taken into account in
the n summations. For the finite size molecular chains
2-13
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study here, the boundary conditions areZn( i )50 and ui
50 wheni ,1 or i .Na . Furthermore, in practice, in orde
to avoid the uniform translation of the chain through spa
one atomic site is kept fixed, for instance, one end of
molecular chain is kept fixed~i.e., uNa

50).

2. Classical phonons

In the limit of small displacements$dui% around the equi-
librium atomic positions $ui

0% of the ground-state
GS(Na ,Ne), it is possible to derive an effective harmon
phonon Hamiltonian by partitioning Eq. ~A1! as
follows:87,89–91

HSSH@$cn%,$ui
01dui%#5Hst@$cn%,$ui

0%#1Hph@$ui
0%,$dui%#

1He2ph@$cn%,$dui%#, ~A3!

whereHst, He2ph, Hph are respectively the static, phono
and electron-phonon coupling parts of the total SSH Ham
tonian.He2ph is usually treated as a perturbation up to s
ond order to give a quadratic term indui in the effective
phonon Hamiltonian( i , jKi j duiduj . The dynamical matrix
Ki j is given by89

Ki j 5K ji 52a2 (
n

unocc

(
m

occ

@F~ i ,n,m!2F~ i 11,n,m!#

3@F~ j ,n,m!2F~ j 11,n,m!#/~em2en!, ~A4!

where F( j ,n,m)5Zn( j )Zm( j 21)1Zm( j )Zn( j 21). The n
(m) sum runs over the empty~occupied! electronic states
The eigenstates of dynamical matrixKi j give the eigenmodes
Vq( i ) of vibration ~phonons! of the finite-size molecular
chain, while the eigenvalues,Mvq

2 , of Ki j are related to the
phonon frequenciesvq (M being the mass of the CH group!.

In the present paper, we use the same boundary condi
as above to determine the phonon modes. However, diffe
boundary conditions could be used: fixed ends~i.e., constant
molecular chain length!, free ends eventually coupled to di
ferent spring constants to simulate the effective coupling
the electrodes. Although, these different boundary conditi
would, in principle, affect the electronic and the vibration
properties of the chain,92 we infer that the main physica
results obtained in the present study will not be drastica
modified. For instance, it appears that these different co
tions will mostly affect the acoustic modes of the cha
Those modes have been, however, neglected in the pre
paper because their contribution to the~virtual! polaron for-
mation is negligible.

3. Quantum phonons

At this stage, we already have all the ingredients to der
a quantum version of the SSH Hamiltonian. From the ref
ence system, chosen to be the neutral molecular chai
lengthNa , we can write the Hamiltonians for the noninte
acting electron and phonon degrees of freedom as

He5(
n

encn
†cn , ~A5!
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wherecn
†5( iZn( i ) ci

† creates (cn annihilates! an electron in
the nth electronic state of the reference system with ene
en . The harmonic phonon Hamiltonian~neglecting the zero-
point energy! is

Hph5(
q

\vqaq
†aq , ~A6!

whereaq
† (aq) creates~annihilates! a phonon modeq with

frequencyvq . The basis set associated toHe1Hph is formed
by the eigenstatesun,$nq%&5cn

†)q(aq
†)nq/Anq! u0& with ei-

genvaluesen,$nq%5en1(qnq \vq , whereu0& is the vacuum

state and$nq% the set of phonon occupation numbers.
We expand the lattice deformationsdxi induced by an

additional charge introduced in the chain onto the phon
modes of the neutral chain:dui5(qVq( i ) dq . The new lat-
tice positions, displaced from the equilibrium positionui

0 ,
areui5ui

01dui . Then, the linear electron-phonon couplin
term of the original SSH Hamiltonian is written in a quantu
form by quantizing the phonon field displacements

dq5A \

2Mvq
~aq1aq

†!. ~A7!

Therefore, thee-ph coupling Hamiltonian is

He2ph5 (
q,n,m

gqnm~aq
†1aq!cn

†cm , ~A8!

where

gqnm5(
i 52

Na

lq~ i !@Zn~ i !Zm~ i 21!1Zn~ i 21!Zm~ i !#,

~A9!

and

lq~ i !5a@Vq~ i !2Vq~ i 21!#3A \

2Mvq
. ~A10!

The total HamiltonianHw for the molecular wire with quan-
tum phonons and linear electron-phonon coupling inspi
by the SSH model is given by the sumHw5He1Hph
1He2ph as in Eq.~1!.

Finally, it should be noted that thee-ph coupling matrix
elementsgqnm obey some selection rules. Generally,gqnm
50 unless the direct productGq^ Gn^ Gm contains the iden-
tity representation (Gn , Gm andGq being the irreducible rep-
resentation of the eigenstaten, m and oflq , respectively!. In
practice,Zn and Vq are even/odd functions with respect
the center of the molecule. The quantityZn( i )Zm( i 21)
1Zn( i 21)Zm( i ) is even~odd! whenn1m is an even~odd!
integer~indexing the eigenvectorsZn by increasing eigenval-
ues andZn51 being even!. Whenever the quantity under th
site i summation in Eq.~A9! is odd,gqnm50. Although it is
not surprising to obtain selection rules for thee-ph coupling,
their existence is very important in order to reduce the co
puting time of the productHwuf& needed to solve Eq.~12!.
2-14
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75M. Büttiker and R. Landauer, Phys. Scr.32, 429 ~1985!; Phys.

Rev. Lett.49, 1739~1982!.
76R.H. McKenzie and J.W. Wilkins, Phys. Rev. Lett.69, 1085

~1992!.
77A. Takahashi, Phys. Rev. B46, 11 550~1992!.
78L. Galli, Phys. Rev. B51, 6863~1995!.
79Z.G. Yu, D.L. Smith, A. Saxena, and A.R. Bishop, Phys. Rev.

56, 6494~1997!.
80E. Pazy and B. Laikhtman, Phys. Rev. B59, 15 854~1999!.
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