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Coherent electron-phonon coupling and polaronlike transport in molecular wires

H. Ness® S. A. Shevlin, and A. J. Fisher
Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, United Kingdom
(Received 24 July 2000; published 13 March 2001

We present a technique to calculate the transport properties through one-dimensional models of molecular
wires. The calculations include inelastic electron scattering due to electron-lattice interaction. The coupling
between the electron and the lattice is crucial to determine the transport properties in one-dimensional systems
subject to Peierls transition since it drives the transition itself. The electron-phonon coupling is treated as a
guantum coherent process, in the sense that no random dephasing due to electron-phonon interactions is
introduced in the scattering wave functions. We show that charge-carrier injection, even in the tunneling
regime, induces lattice distortions localized around the tunneling electron. The transport in the molecular wire
is due to polaronlike propagation. We show typical examples of the lattice distortions induced by charge
injection into the wire. In the tunneling regime, the electron transmission is strongly enhanced in comparison
with the case of elastic scattering through the undistorted molecular wire. We also show that although lattice
fluctuations modify the electron transmission through the wire, the modifications are qualitatively different
from those obtained by the quantum electron-phonon inelastic scattering technique. Our results should hold in
principle for other one-dimensional atomic-scale wires subject to Peierls transitions.
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[. INTRODUCTION extended to the Hartree-Fock level for a molecule attached to
gold clusters* More recently, a density-functional theory
Developments in nanofabrication, including both has been applied to a molecular wiescribed by atomic
“bottom-up” approaches and “top-down” methods are fo- PSeudopotentialsconnected to two jellium surfacés.
cusing renewed attention on the properties of molecular- 1hese theoretical studies have clarified the importance of
scale entities and their potential as electronic devicérfhree major points crucial for the transport properties of the

' . .~ molecular wire connected to the reservoirs. First, they have
components. One Of. the_ most baSI_c theoretical qu_estlonsshown the importance of the electronic and chemical inter-
that can be asked in this context is, what determines th

Iy NS ction between the ends of the molecular wire and the reser-
conductance of a molecule if it is used as a current-caryingi.s ‘The |arger the Hamiltonian matrix elements between

element bridging two reservoirs of differing electron chemi- e qejocalized electronic states of the electron reservoirs and
cal potential? This question now has an immediate relevancgose molecular electronic states that extend along the wire,
for experiments in which such conductances are measureghe petter the conductance properties will be; furthermore,
using either(i) scanning probe tips for individual molecules these matrix elements should be large compared with the
adsorbed on surfacés; for molecular wires adsorbed at step characteristic intramolecular Coulomb interaction between
edges, embedded in self-assembled monolayérsyr (i)  electrons in order to avoid the Coulomb block¥d&econd,
(macroscopitelectrodes obtained by nanolithograpifor  the theories show that in the limit of a small applied voltage
from a mechanically controllable break junctithi® and away from the Coulomb blockade regime, the transport
Since the seminal work of Aviram and Ratheconcern-  is dominated by charge carrier tunneling inside the highest
ing the electron-transfer rate between acceptor and donarccupied molecular orbital—-lowest unoccupied molecular or-
groups linked by a conjugated molecular bridge, numerousital (HOMO-LUMO) gap of the molecule. This gap is an-
theoretical studies on electron transfer and transport througbther crucial parameter for control of the conductance of the
molecular systems have been performed. In the followingwire. The smaller the gap is, the larger the tunneling trans-
we briefly review some contributions on the electron trans-mission will be. More generally, the gap of a molecule de-
port through a single organic moleculer a few molecules  pends on the chemical nature and atomic structure of the
whose ends are connected to electron reservoirs. Calculatiosgstem. This gap can also be modified by the electron-
of the electronic transmission through such systems havelectron interactions or by a change of the structure of the
been done for purely one-dimensional mo#&$ and two-  molecule due tdi) external forces(ii) (therma) lattice fluc-
dimensional model&~28 More realistic descriptions of the tuations, oriii) electron-lattice interaction. Third, the calcu-
electrode/molecule system have also been developed. Corations highlight the importance of the position of the mo-
bining elastic electron-scattering theories with three-lecular electronic levels with respect to the Fermi levels of
dimensional tight-bindinglike Hamiltonians, models havethe reservoirs in the presence of an applied voltage, and the
been developed for molecular wires connected to two semirelated issue of where the potential drops occur inside the
infinite surface®192%3% to two semi-infinite “rods,®* or  junction. This has been done both empiricllgnd by using
to clusterlike leads where imaginary parts are introduced impproximaté* or exact® self-consistent schemes.
the Hamiltonian to take into account the fact that electrons Although the above theoretical work has shed light on
can leak into the metallic reservo$>233Within a frame-  several important physical processes for the transport in mo-
work equivalent to the latter model, calculations have beemecular wires, and has matched, to a certain level of accuracy
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with some experimental measurements, all the models prevcover a range of transport regimes that includes tunneling
ously cited are based on elastic electron scattering througtiansport(virtual electrong and resonant transpoftvhere

the rigid lattice of the wire. However, in such highly con- there is sufficient energy to inject real electrons into the sys-
fined electron systems, the coupling between electron an@m. In contrast to the more usual “phase-breaking” ap-
other excitationgphonons for instanges strongly enhanced Proaches to the electron-phonon interaction in transport
because of the size of the system and its quasi onglfoblems, we explicitly retain the phase coherence between
dimensionality. This makes the rigid lattice approximatione|a$tic and inelastic processes. In this paper we concentrate

questionable—particularly so since a one-dimensional metl" SyStems where the boundary conditions on the molecular
is generically unstable to a Peierls transition at lowWires force them to be semiconducting in the zero-bias limit.

temperaturé’ In an infinite system, such a transition typi- Within the SSH model, this correponds to molecular chains

cally produces a semiconductor in which the states near thgontaining an even number of monomers. Calculations on
band extrema are very strongly coupled to distortions of th@dd-length chains, which incorporate mobile solitonic de-
system; in a conjugated organic molecule, the correspondinE‘fCtSIW'th associated midgap states that make an additional
phenomenon is a strong coupling of theelectrons occupy- contribution to the transport, will be reported separately.
ing the HOMO and LUMO states to the bond-alternation 1he Paper is organized as follows. In Sec. Il, we present
pattern. This coupling means that the low-lying states of 4he multlchannel_ scattering techmque_used tq calcu_late the
charged moleculdvia which any net transport of charge transport properties of the molecular wires. This section also
through the molecule must proceédvolve an intimate cou- includes a detailed analysis of the different approximations
pling of electronic and lattice degrees of freedom, to produc&'Sed for modeling the molecular wirégvolving harmonic
excitations such as polarons or solitdR€® These coupled Phononsand for reducing the computational cost of the cal-
excitations can be thought of as conspiring to lower the enulations(involving a reduction of the parameter spackhe
ergy gap locally around a charge carrier when it is introduced®Sults obtained, in the limit of low temperatures, for the
into the system. Such polaronic and solitonic phenomen&eSPonse of the molecular wires to charge-carrier injection
have been studied in bulk or thin film samples of conducting®"® 9iven in Sec. Ill. We show how the lattice is distorted by
polymers for decade:*0-42 the injection of a tunneling electron and how the coherent
The importance of this electron-lattice coupling meansCOUPIing between the tunneling electron and the quantum
that the conventional manner of introducing lattice vibrationsPhonons affects the transmission properties through the

within a Landauer-type approach to conductance, as an ext‘4res- We also compare our transport results with lthe effect
broadening of the electronic levelextra imaginary part in of straightforward static fluctuations in the harmonic lattice,

the corresponding Hamiltonian, see for example RefseéXcluding the dynamical correlation of the electrons and the
33,50, is not sufficient to describe the coherent lattice dis-Phonons. Finally, we summarize the most important results
tortion due to charge injection. To our knowledge, the ex-2nd propose further developments of the present peees.
plicit nature of the distortion accompanying charge injection!V)- Additionally, in the Appendix, we recall briefly the

has only so far been partially addressed in two simplifiedM€thods used to get the ground state and the harmonic pho-
limits.4% In the first case, a molecular wire was treated as 40" modes from the original SSH model. We also derive in

rigid lattice in which a static solitonlike defect is preséht. he Appendix the quantum electron-phonon Hamiltonian
Although it possesses a midgap electronic state, this modéised for the molecular wires. A brief account of part of this
does not permit the study of the dynamics of formation andVOTk has already appearéd.
transport of charge-induced lattice distortions. In the second
case, the atoms of a conjugated molecule were assumed to
respond classically to the injection of a electron wave
packet?® via forces calculated from expectation values of the We are interested in modeling the coherent electmn
electron wave packet and other electronic states. In thikole) transport through a finite-size systefine molecular
model, the lattice is able to respond to the injected chargayire) connected to two leads that inject or collect the charge
but not in the physically correct manner: within a wave- carriers. Within the wire, the charge carriers interact with the
packet approach to tunneling, only a small part of the elecatomic motion that originally drives the Peierls transition in
tronic charge enters the tunnel barrier. Therefore, the lattiche molecule.
responds with probability unity to a small fraction of the  The interaction between the ends of the molecular wire
charge of the injected particle, rather than responding with @and the leads is supposed to be strong enough to permit a
small probability to the total charge of the injected particle. good overlap between the electronic states of the wire and
The only way to overcome these limitations is to performthe surface electronic wave functions of the leads. In most of
transport calculations in which the full dynamical correlationthe practical applications, molecular wires end in “active”
between charge carriers and quantum phonons is retainechemical groups, like thiolS-H) for example, which are
We report the results of such calculations in this paper. Irknown to react easily in the presence of a gold surface to
order to focus on this particular mechanism for charge transtorm chemical Au-S bond® We therefore assume that the
port, we use a simple tight-binding model of a conductingelectron transfer rate at the molecule-lead interface is such
polymer [the Su-Schrieffer-Heeger(SSH model for that we can consider the electréimle) transport as being a
trans-polyacetylerté] that does not explicitly include any coherent process throughout the nanojunction, rather than a
electron-electron interactions. However, our calculationsequential, incoherent two-step process.

1. MODEL
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In the coherent transport regime, a stationary state waveronic structures of the reference system, the phonon modes
function scattering technique can be used to calculate thand frequencies are calculated within the harmonic approxi-
electron transfer through the molecular wire. Since we asmation (Appendi¥. The e-ph matrix elements are derived
sume that the basis sets used to describe the leads and tinem the SSH model by expanding the atomic displacements
molecular wire form a complete set, there are basically twanduced by adding a charge onto the phonon modes of the
ways to solve the scattering problem for a single incidenneutral moleculéAppendix. We have checked the accurary
charge carrier. The technique is reminiscent of thevllim  and the validity of the harmonic approximation for the
transformatiorf® If one projects out the basis set associatedohonons(see below Sec. Il B
to the molecular wire, the problem is reformulated as a
“single impurity” with on-site energies and coupling matrix
elements to the leads depending on the injection energy of _ . )
the charge carrie® 2 If one chooses to project out the basis ~ We are interested in solving the problem of electron trans-
set associated to the leads, one can effectively remove tHRO" through a “nanojunction” within a two-terminal device.
leads from the problem. This technique is identical to theWe are mostly mtere;ted in the. coherent regime for the elec-
embedding technique where(finite size effective Hamil-  tron transport, that is, the regime where no random-phase
tonian describing the region of interest is obtained by intro_breaklng is arbitrarily introduced betwgen different electro_n-
ducing complex embedding potentidfs®2 The embedding scattering states. Furthermore, we W_lsh to use a formallsm
potentials characterize the matching of the electronic spedhat can treati) different transport regimegpure tunneling,
trum of the wire to the continuum of states of the semi-fésonant tunneling, eventually ballistic transpor an equal
infinite leads. These potentials also depend on the chard@0ting or in a transparent way, arid) the coupling of an
injection energy. _elect_ron with o_the_r degrees of freedom Wlt_hln the “nan_o-

As we wish to obtain the response of the molecular wirgunction.” In principle, to study the electronlc_ transport in _
to charge injection, as well as the transport propertie$Uch open systems, one would have to deal with the nonequi-
through the junction, we choose the embedding approach t#Prium Green’s functions formalisreh.
solve the electrofhole) transport in the system. For this, we N this paper, we use a model that maps a many-body
use a technique that permits us to map the many-bod roblem(to be accurate, a one-electron/many-bosons prob-

electron-phonon problem onto a single-particle problem witHeM onto & single-particle problem with many chanrigls’
many channel&%* In such a model, one deals directly with the multichannel

In the remainder of this section, we present the basis ofcattering states, although the formalism can be reformulated

the many-channel scattering technique and discuss the diffe}? terms of Green’s functions. This multichannel scattering
ent approximations introduced to reduce the computationdfchnique has already been used to study electron transport
cost of the calculations. Details of the construction of thethrough one-dimensional models 6§ double-barrier reso-
quantum Hamiltonian for the molecular wire from the mode|"ant tunneling junctions with electron coupled to a localized
originally proposed by Su, Schrieffer, and Heé§&t (SSH  Single-phonon mod#°*®X(ii) the Holstein phonon model in
are given in the Appendix. the presence of an electric _f|e%, (!u) mesoscopic
Starting from this model, we have derived a quantumStrUCt}Jrege%nd Aharonov-Bohm rings with on-site phonon
electron-phonon Hamiltonian: coupling;>®® (iv) tunneling barriers with the electron
coupled to surface plasmon modésviore recently, such a
technique has also been used to study inelastic electron tun-
HW=2 EnC$Cn+E hwqagaq neling through small molecules in a scanning tunneling mi-
n a croscopy tunneling barriér:5
We start with the following heterojunction: a molecular
+ > Yanu( @8+ ag)Clcn, (1) wire containingN, atomic sites, described by the Hamil-
a.n.m tonianH,, in Eq. (1), is connected to ideal one-dimensional
right (R) and left(L) metallic leads, whose Hamiltonians are

A. Multichannel scattering technique

wherec/ creates an electron in theh one-electron state of

the molecular wire with energy,, andag creates an excita- +oo
tion in theqth eigenmode of wbrquo(phonor) of the mol- He= 2 eRdFd|+BR(dFd|71+dﬁ_1d|) @)
ecule with energyiw,. The Hamiltonian Eq(1) goes be- I=Na+1

yond the Holstein and Fhdich model for the electron-
phonon €-ph) interaction, in the sense that the electron@nd

couples to different nonlocal eigenmodes of vibration, each 0

mode having a different frequency. The electron-phonon _ + + +
coupling is Ii%ear in the phon%n fie?/d displacement gnd in- H'-_|,2m e didi+ Buldidy g +diyd), ©)
volves electronic transitions via a general form for &aph
coupling matrix elementyg, . via the coupling matrices,
The electronic eigenstates and eigenvalues are determined
self-consistently with the atomic configuration for the ground Tr=v R(dLal+ 1Cn, T cLadNaH) 4

state of the neutral dimerized molecular chain taken to be the
reference systentAppendiy. From the atomic and elec- and
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Ti=v.(des+c]do). (5
—_—

The operatorsi,’r (d)) create(annihilate an electron on sité
inside the leads, with on-site energst g and nearest-
neighbors hopping i (e ~ "

ghbors hopping integral8, g, the operatorg; (c;) are
the corresponding operators for an electron on isitgthin
the molecule, and andv, are the hopping matrix elements « .
between the ends of the molecule and the right and left leads outgoing outgoing

respectively. Within the molecular wire, the transformation T«l?lﬂecteld transmitted
. X . L . ., Channels —— channels
from site representation to eigenstate representation is easil -—

performed knowing thamﬁ=2i'\'f‘12§(i) cfr , whereZ(i) are

the components of thath electronic eigenstate of the wire -—
(See the Append)x incoming electron

The procedure for mapping the problem onto a single-
particle system with many channels is performed by writing

the total scattering wave functidi (E)), for the total en- Iélet q Molecular wire Elight q
ergy E of the electron-phonon system as ectrode ectrode
FIG. 1. Schematic representation of the multichannel configura-
|W(E))= E E @ (n }(E)|I ,{nq}), (6) tions for a molecular wire connected to two electrodes. The differ-
T o{ngt 9 ent diagrams represent the bond-length alternation in the wire for

t&e different channels. Initially the wire is its ground-state phonon

where the basis set used to expand the scattering Wavesconfiguration(lower diagram showing a perfect bond-length alter-

deﬂTned (|Tnn the case of electron transpprés |I,{ny}) nation in the middle of the wipe The incoming electron can ex-
=G Hq(aq) ol \/n_q!|0> (for 1<I<Ng and |I ,{nq}> change energy with the phonon modes inside the wire and therefore
=dqu(a$)nq/\/n_q!|0> (for other values of), |0) being the  modify the initial bond-length patterfother diagramys
vacuum state, anfin,} being the phonon occupations. The
vacuum stat¢0) is taken to be the neutral ground state of theare the reflectiom {mg} and transmissiom{mq} coefficients of
system, with a definite number of electrons in each of the lefihg glectron in the different channels. For an injected electron
Igad, right lead, gnd molecu!e. The_ electronic states We CONom the left lead(for example, we have
sider, therefore, involve adding a single electron to this neu-
tral state; the added electron may be anywhere in the system L L
(in the left lead, the right lead, or the molecul&or hole ay (1= €% Sy 4 my T m 1€ Kimg! (8)
transport we use an identical basis, except that electron cre- K e K
atip_n operators are rgplaced by annihila_tion operators. BYnside the left lead (< — 1) and
writing the wave-function coefficients as in E@), no ex-
plicit separation between the electronic and phonon degrees
of freedom has been assumed. @ gy =t }eik{qu}l 9)
As far as the electrorthole) propagation is concerned, T q
each different channel is associated with a different set of ) LR )
phonon occupation numbefs;}. The total wave-function nside the right leadl&N,+2). Thekg, , are the dimen-
| (E)) is the eigenstate of the total Hamiltonidh=H,  sionless wave vectors of the Bloch waves in the different
+ T +H,+Tr+Hg, HIW(E))=E|¥(E)), with the full channels. For a given total ener@y the wave vectors de-
scattering boundary conditions appliée., an incident elec- pend on the phonon occupation numbers. Figure 1 shows a
tron or hole with the molecule in a given vibrational sjate simplified sketch of the multichannel technique for different
In the absence of dissipation, the total eneEyf the  phonon excitations inside the molecular wire.
system is conserved during the scattering process, i.e., The solutions of the Schdindger equatio{l|H| ¥ (E))
=E(l|W(E)) inside the leads give the dispersion relations
for the electron wave vectors inside the different channels,
En=€.+2B8. cosk'{‘nq} for the incoming wave and, ;= €,

+28,. cosk{Lmq} for the outgoing reflected wave and K

E=E;,+ % Ngfiwq=Eout % Myfiwq, 7)

whereEj, is the energy of the incoming electron afit,} is

the initial set of phonon occupation numbes,; is the en- = ert28r cosk?mq} for the transmitted wave to the right
ergy of the outgoing reflected or transmitted electron withjegd.

the corresponding set of phonon occupangimg}. For in- In this paper, we report calculations valid in the limit of
elastic scattering processgs,}#{mg}; for elastic scatter- |ow temperatures assuming tha§T<%w,. Therefore, we
ing, the phonon distribution is conserved. take for the initial set of phonon occupation numbers, the set

The wave-function coefficients,  , take an asympotic  corresponding to all phonon modes in the ground sfa
form inside the leads. The form corresponds to propagating={0}. The dispersion relations become simpl~= ¢ g
Bloch waves inside the left and right leads whose amplitudes-2[5’|_‘Rcoski'(’,}R for the elastic channels anE=¢ g
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+23, g COSKi + ZqMqfi g for the inelastic channels. Note [ E~H,,~Re X(E) ImX(E) Rea(E)
that in this case, the total energyalso represents the elec- Im3,(E) —E+Hy+ReS(E) || m a(E)
tron injection energy.

Solving({I|H|¥(E))=E(I|¥(E)) at the interfaces of the Res(E)
heterojunction is the next step to perform in order to resolve _ } (17)
the unknown wave-function coefficients inside the molecular —Ims(E) |’

wire. Forl=0 andl=N,+ 1, the relations between the re- here R d Im denote th land i . s of th

flection and transmission coefficients with the wave-function’ 1c'¢ <€ and Im denote (E reaR and imaginary paris ot the

coefficients at the ends of the wire are obtained: different quantitites an&d = 3"+ 3. The matrix in the left-
hand side of Eq(17) is therefore real and symmetric. We

then use the standard conjugate gradi€@®) technique to

UR 7ikR N . - .
tm )= 2N, (mg€ Mg, (100  solve the linear system|x)=|b), where A is a real and
v Br ! symmetric matrix” An efficient algorithm has been devised
and for gomputing the prpductlsiw|xi) genera}ted during _the it-
erative CG steps. It is based on an optimal adressing of the
v vector components and uses the selection rules foiythg
Fimgt= — 10} qmgh T B, timg) (1) matrix elementg§see Appendix B
for the elastic{0} and inelastigmg}# {0} channels. B. Isolated molecular wire: harmonic phonons and reduced
Finally, solving the Schmdinger equation on site$ parameter space

e[1,N,] permits one to effectively remove the leads by in-
troducing complex embedding potentidfsThen the solution
of the full scattering problem is obtained by solving the fol-
lowing complex linear system

We have shown that the solution of the scattering problem
is obtained by solving Eq(12) for the value of the wave
functions inside the molecular wire. Assuming a truncated
phonon space up to a finitg number of excitatiof§’, the

[E—H,—3YE)-3RE)]|a(E))=|s(E)), (12 Size of the basis set is given Hyg,e=NeX (Npe1)Nen
with N (Np,) being the number of electronic statgdonon
where H,, is the molecular wire Hamiltonian Ed1), the = modes. Even for relatively short wires, the si2&,, of the
components ofe) are the scattering wave-function coeffi- basis set quickly becomes too large for tractable numerical
cients inside the molecular wire expressed in the moleculealculations and/or reasonable computing times. For example
eigenstate representation, i.aﬂy{nq}zzizn(i) i ng} and for N,=20 atomic sites l,,=19 acoustic- and optic-
1R are the embedding potentials due to the left and righphonon modeswith only ngZ'=2, we obtainNg;e>1C°. In
lead, respectively. The embedding potentials are diagondhe following, we show how to reduce the basis set size and
matrices in thqn,{nq}> basis set with components prove the validity of the approximations introduced. The cor-
responding Hilbert space can be reduced(ipyconsidering
Eh,{nq}(E)=Zn(1)UL9|{nq}(E)ULZn(1)v (13 only valence-(conduction band electronic sta_te($his W_i_II
correspond to holéelectron transport, respectivelyby (ii)
and considering a limited but sufficient set of phonon modes, and
finally by (iii) using only a few excitations in each phonon
Eﬁ,{n }(E):zn(Na)ng{Rn \(E)vrZn(Na), (14 mode(truncated harmonic-oscillator approximatjon '
a a In order to determine which phonon modes are mainly
Whereg'{'ﬁ':} are the surface Green’s function of the isolatedcontributing to the charge-induced deformation of the chain,
left and right leads for the different channels given by we calculat'e éhe ground—stgte atomic cqnflguratlon.s' for a
neutral chairu; and for a chain charged with one additional
LR — il LR electronu’. Note that because of the charge-conjugation
(E)=exd ik W(E)]/ . (15 i N g Jug
Jing) LiKihg) A symmetry(which holds exactly for the SSH modeddding
Finally, |S(E)) represents the source tefire., the injected an extra electron or removing an electf@e., adding a hole

electron or hole at energg) with components given by produces exactly the same lattice distortion. Such a lattice
distortion is known as an electrdor hole polaron(cf. Fig.

s E)=45 —2iv, sinkt)Z(1). 16) 3. The lattice distortion is then projected onto the harmonic
n'{nq}( ) {0}'{nq}( - {0}) (1) (18 eigenmodes of vibratiok; of the neutral chain and the cor-
In the present paper, the boundary condition chosen for theesponding Huang-Rhys factogg are determined b

source term corresponds to the injection of the charge, into 1

the elastic chann€l0}, from the left lead towards the right M w2A2
lead. 2 a=q
The solution of Eq(12) can be obtained by several means Sg= ho. (18

using algorithms for sparse matrices. In the present paper, we a

explicitly separate the real and imaginary parts of vectorsvhereA,=X;V(i) (uf— uio). The Huang-Rhys factors give
and matrices as follows the averaged number of quantum phonons that would be
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TABLE |. Huang-Rhys factors,, the deformation energy E=Eq[uf]— Eo[uio], the harmonic distor-
tion energy= fw,S,, and the charging energg " %=E_ [uf]—Eo[u’] for different molecular wire
lengths. See main text for the definition of the different quantities.

N,=20 N, =40 N, =60 N,=80 N,=100
LargestS, 0.806 0.855 0.901 0.885 0.825
SecondsS, 1.03x10°2 6.13x10°4 5.01x10°* 1.67x10°2 3.66x10°?
AE (eV) 0.127 0.111 0.108 0.104 0.098
SqhweSy (eV) 0.136 0.127 0.128 0.125 0.118
ECh9 (eV) 0.823 0.531 0.446 0.413 0.399

needed to achieve the corresponding elastic energy of thiere are good reasons to believe that the potential surface
lattice distortion. We have checked that the largest values fotan be fairly well described by the harmonic approximation
those factors are obtained for the lowest ene(l_wggast to the neutral chain. To confirm this, we compare the defor-
wave length optical-phonon modes of the molecular wifés. mation energyAE with the harmonic distortion energy
In particular, the optical-phonon mode having the lowest N 5 IMw2A2=S %w.S.. Th ; ;
’ i S =243 = . The deformation energy is

ergy also has the most important contributig®., S,>0.8 harm™ = g2 V1 @q2q™ =gt ®q = :

9y P \ a obtained fromAE=Eg[uf]—Eo[u’] where Eq[u’] is the

as can be seen for different chain lengths in Tahle | ) g
From these results, we can already reduce the number §elf-consistent total energy of the SSH Hamiltonian for a

phonon modes necessary by considering only the longe&€utral chain with the corresponding atomic positiafs

wave-length optical modes to describe the lattice deformaEo[u;] is the nonself-consistent total energy of the neutral

tion induced by adding a charge into the chain. A typical sethain where the atomic position§ are taken to be those of

of these modes is shown in Fig. 2. the charged chain. B[ uf], the effects of the imposed lat-
Furthermore, we can also check the validity of the har+jce distortions on the electronic spectrum are taken into ac-

monic approximation used to determine the phonon modegg nt. Typical values oAE andE, ., are given in Table |

of the wire. Note that in Sec. , the elastic energy is expandeg,, gifferent wire lengths. For short chains, the valued&

up to second_ order. fpr S”.‘a” displacemenfcs around the _equ'—nd Epam are almost indenticaless than~5% difference.

librium atomic positions in order to obtain the dynamical For longer chains, the difference betwesE and Ep o in-

matrix from which the eigenmodes of vibration are deter—Creases but never exceedl5% We also show below that

mined. The deformation of the lattice due to charge additiort e harmonic expansion of the elastic enerav is sufficient to
is not purely harmonic because of the distance dependence(f . pan: . ay :
escribe the formation of a static polaron by adding a per-

the electron hopping matrix elements, cf. E41). However . .
pping EAL) manent extra charge in the molecular chains.

o I I Now we turn on the reduction of the Hilbert space in
=41 =44 q=47 relation to the electron states. We want to check the validity
of using only half the electronic spectum on the values of the
‘ | it (i ‘ atomic displacements induced by adding a charjectron
R b A | ' or hole into the molecular chain. As mentioned in Ref. 47,
i (At M ‘ ‘ we consider the action of the model Hamiltonian ED.on
‘ the (N,=1)-electron Hilbert space obtained by adding a
charge into the neutral chain. It is thought that it is sufficient

o
T
L
T
1
T
I

Displacement V(j)
o

02 ey et et to consider only theN,= 1) electron because for molecular
=50 =54 q=58 wires strongly(electronically coupled to the leads, the mean
o1 | 4t 1t 1 time between charge passages-i$0 ' s (for a correspond-

i (. f |l ing current of 1 pA, a value orders of magnitude bigger than
a typical residence time<10 °s). Then we project out the
‘ addition of a charge into the electronic states by working
01 il il ] with the electronic eigenstates representation, i.e., the sums
over the eigenstates will only include the occupied valence-
020" 30 40 60 80 100 20 40 60 8 100 20 40 60 g 100 band states when adding a hésend later for hole transport
atomic site ] atomic site J atomic site ] and only the empty conduction-band states when adding an
electron(for electron transpoyt In the following, we show
modesV,(j) for the neutral chain containirlg,= 100 atomic sites. that the static lattice distortions due to adding a charge are
The frequenciesenergie of the modes areiw,=0.136, 0.141, well reproduced by considering only one half of the elec-
0.147, 0.153, 0.158, and 0.163 eV for the magle41, 44, 47, 50, ~ Lronic spectrum.

Displacement V (j)

FIG. 2. Lowest energy(longest wavelengbhoptical-phonon

54, and 58, respectively. The phonon mode indexes the finite- We start _from the grqund state (?f the "Efe_renC? system
length chain are taken such that tfeeoustic and opticphonons  (neutral chain with atomic positionsg’). The lattice distor-
are ordered by increasing frequency. tions due to charging are expanded onto the harmonic pho-
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FIG. 3. Dimerization patterd; (in A) induced by adding an extra electron into the molecular wire for three different wire leNgths
=40, 70, and 100. The dip in the dimerization patterns is characteristic of the formation of a static polaron located in the middle of the chain.
The dotted lines correspond to the dimerization obtained form the original SSH model with the full electronic spectrum. The dimerization
obtained by considering half the electronic spectrum and classical phonons is given by the solalllthegphonon modgsand circlegsix
optical modes forN,=40, 70, and 10 modes fdl,=100). The dimerization calculated for quantum phonons is represented by the
dot-dashed linegsix optical modes angige=6 for N,=40, 6 modes anthjw=4 for N,=70, 4 optical modes andjw=>5 for N,
=100).

non modesVy(i) asui=u’+2qVq(i)Aq. Then the influ-  =(eJH({A})|@e) is the lowest(or highest energy eigen-
ence of the lattice distortions on the electronic Hamiltonianvalue of the electronic half-space HamiItoniaﬁ'({Aq}) and
HO=¢, 6, are taken into account by introducing the corre-corresponds to the LUMO (or HOMO) as modi-
spondinge-ph coupling off-diagonal elements,y in HO  fied by the atomic distortion. The minimization of
The electronic Hamiltonian of the isolated molecule is Ena({Aq}) is obtained when the force§,=MwjA
+ (el :yq|<pe)\/(2M wq)/h are zero for all the phonon modes
Hﬁlm:Hgm+ Hﬁaph: En5nm+2 quqnm, (19 as ;q being the e-ph coupling matrix with components
q Ygqnm- With this procedure, we can also study the contribu-

; - : tion of the different phonon modegand check the validity
where the matrix elementgy, are given by Eq(A9) in the of using only a limited number of optical-phonon modes to

Appendix, andAq is the dimensionless displacemedf  create the distortions as we have already suggested from the
=AyVhl(2Mwg). The total energy of the distorted lattice is values of the Huang-Rhys factors.
1 Figure 3 shows the lattice distortions calculated within
2.2 different approximations from the ground state of a charged
Enai({Aq}) = % EM “’qu+Tr[pelH EI({Aq})]' (20 chain. Theplgttice distortions are begst represented by the gtag—
. ) ) ) gered differenced; between adjacent bond lengths. The
wherep® is the electronic density operator. To find the COr- quantity d;=(—1)'(u,,;—2u;+U;_;) is known as the
responding ground stat&h,({Aq}) has to be minimized  gimerization. A constant dimerization pattern indicates a per-
versus the classical lattice phonon displaceméatg. fect bond length alternation in the chain, while a decrease of
Within the half spectrum approximation, the trace in Eq.the dimerization indicates a deformation of the bond lengths
(20) runs only over the conductiorer valence} band eigen-  (je. an increase of the short bonds and a decrease of the
states when we consider the wire charged by an extra elegong ponds. These lattice distortions are localized around
tron (or holg. Adding a charge to the system involves only the charge added and are characteristic of the polaron defect
the LUMO or HOMO electronic state for an electron or i the molecular chain. The general shape of the dimerization
hole, respectively, therefore the functional to be m'n'm'zedpattern in Fig. 3 indicates that a static polaron has formed in
is actually Epal({Ag}) ==z M wéAéH\e({Aq}) where A the chain and it extends over several atomic sites.
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The dimerization patterns obtained from the original SSHwith half electronic spectrum. The slight differences may be
model are shown on Fig. 3 with the dimerizations patternglue to quantum delocalization of the eigenstate of (&p.
calculated by considering half the electronic spectrum and Finally, it can be noticed that the general shape of the
classical phonon modéall the modes and the reduced set of dimerization induced by charging and the spatial extent of
long wave-length optical modesNe can see that the lattice the corresponding polaron are well reproduced by the differ-
distortions representing a static polaron defect in the chaifnt approximationghalf electronic spectrum, limited set of
are very well reproduced by considering only the long-OPtical-phonon modes, finite number of phonon expitat)ions
wavelength optical phonondor example, those shown on introduced to reduce the Hilbert space. The reduction of the
Fig. 2 for the N;=100). The discrepancies between theParameter space is therefore entirely justified. This reduction

dimerization amplitudes obtained for the full and half elec-PETMIts US to Treat a great range of molecular wire lengths

tronic spectrum are more important for long chains than forand to determine the transport properties of the wires pre-

short chains. For the short chains, the difference in dimeriza§ented in the next section, with reasonable computing times.

tion amplitude does not exceed10%. In the extreme case
of the shortest two-atom chain, working with half the elec-

tronic spectrum gives the exact results. For the long chains, |n this section, we present results for the electron trans-
the difference in dimerization amplitude increases and isort through typical heterojunctions made of a molecular
~17% for theN,= 100 chain length. We attribute the origin wire connected to two electron reservoirs. In our calcula-
of these differences to the fact that the gap of the moleculations, the dynamicafi.e., energy-dependentorrelation be-
wires decreases with the chain length. However, as we shoween the electron and the phonon degrees of freedom is
in the next section, an asymptotic regime is reached for chaikept. Such quantum coherence between the electron and the
lengthN,=100, where the gap becomes independent of théattice is essential to treat the propagation of polarons
chain length. We therefore can assume that for longer chain#jrough the wire in the tunneling regintiee., for an injection
the difference in dimerization amplitude should not increaseenergyE inside the gap of the molecular wjreNe use the
further. term coherence because there is no random dephasing of the
We also calculated the corresponding lattice distortiongvave functions introduced by the electron-phonon interac-
using quantum phonons. The calculations were done by ddion. Instead, each wave vectfjr{ng}) has both a definite
termining the ground state of the fully quantum electron/""mp““}'sczie and phase, which are both dependent on the en-
phonon Hamiltonian Eq(1) where we introduced a cutoff €9 E-
for the number of possible phonon excitations. Each har-
monic quantum phonon mode can contain only umii* A. Lattice distortions induced by a tunneling electron
quanta. Note again, that the calculations were performed In order to analyze the response of the molecular wire
with the n,m sums running only over half of the electronic lattice to a tunneling electron in the stationary state, we cal-
spectrum. Then, for the sums running over the originallyculate the expectation value of a correlation function be-
empty conductance-band states, the ground flage corre-  tween the phonon field displacements and the electron den-
sponds to the situation where an extra electron has beesity. Such a correlation function is defined as the following
added to the chain. The equivalent situation corresponding tguantum average:
removing an electron is obtained by summing the electronic

eigenstates only over the originally occupied valence-band p. | h (ag+al)P,
states and considering among these eigenstates oflEq. Sil_ 'VN2Mo, 4 "9
“ (Pi) ’

that with the highest eigenvalue.
In practice, here we choose to calculate the situation cor-

responding to a chain charged with one extra electron. DuwhereP;=c/c; is the electron wave-function projector onto

to charge-conjugation symmetry, the results for hole injec-atomic sitei (the electron density operator on sife The

tion will be identical. Once the ground stgt ) of Eq.(1) ~ quantum average of any electron and/or phonon opecator

is obtained, we can calculate the quantum averégg IS given t_))/((')?‘:<O(E)>=<‘I’(E)|O|‘I’(E)_>- The correla-

:<qr0|5q|\p0> for the mean displacement of the phonontion function 5q'] represents the mean dl's.placement of the

modeq, whered,, is given by Eq(A7). The atomic displace- Phonon modey when the electron is on siie We can then

ments (u;) induced by charging are obtained frofw;) define the conditionally averaged atomic displaceméHt

=3Vq4(i) (8g). The resulting dimerization patterns are =2yVq(j) 5[;] representing the atomic displacement on site

shown on Fig. 3. Convergence of the results is obtained for aon the condition that the electron is on site~rom these

small and finite number of quanta in each mode, roughlyatomic displacements, we can obtain the dimerization pattern

npe=4,5,6. We will show in the next section that the resultsd{" = (—1)/(x{'] ; —2x{"1+-xI1 ).

for the transport properties of the molecular wire coupled to We have calculated the response of the molecular lattice

the electrodes converge faster with respect to the values &b the tunneling electron for different wire lengths and dif-

noer, especially when one considers charge transport in théerent injection energiek. For example, Figure 4 shows a

tunneling regime. As expected, the dimerization patterns artvo-dimensional magatomic positionj/electron positiori)

very close to those obtained from the classical phonon modeif the dimerizationd}'] for a N,=100 chain length. The

IIl. RESULTS

(21)
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FIG. 4. Two-dimensional(atomic position-electron position
map of the dimerization patterfin A) obtained from the atomic FIG. 5. Dimerization pattern obtained from the atomic displace-
displacements<{"! for a N,=100 chain length. For the boundary mentsxj' for N,=100 (identical to Fig. 4 for three different elec-
conditions chosen, an electron is injected from the (&fiection  tron positionsi=19 (solid line), i=51 (dot-dashed ling and i
energy E=0.0 at midgap The charge current is flowing from =81 (dotted ling. The corresponding dimerization pattern for a
atomic sitej=1 to sitej =100 (horizontal axi$. The bright parts  static polaron inside an isolated chain is also shdthim dashed
represent a dip in the dimerization pattern, i.e., the formation of dine, identical to the dimerization shown in Fig. 3 as the dot-dashed
virtual polaron. The induced atomic distortions are always locatedine). Note the difference in the width of the polaron defect for a
around thegtunneling electron position (vertical axi$ when there  static electron and a tunneling electron. Note also the “wake” of
is enough “room” for the polaron to exist inside the chain. lattice distortion left by the tunneling electron.

tunneling electron is injected at midgag+€0.0) from the

- = : to the phonons and therefore to more important lattice dis-
left (j=1) and propagates to_the_rlghtzé 100). The br_|ght tortions. Above the first resonance peak, the electron is not,
part around the first diagonal in Fig. 4 represents a dip in th

AT . I .%trictly speaking, tunneling anymore through the molecular
?I’Ilrene:’Z\?itcl)?Jr; 22252?1 aIS?Jr;% tg?a?ttigg]gsagftlité?ln; Q‘Z SSTOr\:QLJ? ap. For these energies, the transport regime is better de-
P ' 9 cribed as tunneling resonantly through the couptguh

\?ifrttS;I fog:g?(t)lr? rl;gé;uggliﬁrr]léntsrf:sitgr?t%Z?Lnr.evgfe tﬂgTuenlr:eaﬁ'tates of the system. The scattering wave function acquires
. P . o . .~“more weight from these quasistanding waves that in turn
ing electron injected inside the molecular wire gap. The in-

duced atomic distortions are located around the electron Orpodify qualitatively the polaronlike nature of the corre-
sition i (vertical axi3. As can be seen in Figs. 4 and 5 thg sponding atomic distortions. A detailed analysis of such dis-
. L N gs. . ' tortions is out of the scope of this paper and will be pre-
virtual polaron has its own intrinsinc widtliestimated
around~ 15 atomic sites for the present model of molecularsemed elsewheré.
hains that i nsistent with thp rrelation lendthf th The coherent electron-lattice distortion leads to a modifi-
chains that 1S consiste the correfation le g € cation of the electronic spectrum of the molecular wire com-
continuum modéP). Its formation is therefore not possible

for the electron positions at the ends of the molecular wirepared o the spectrum of the undistorted chain. In all the
. . . . X tases studied, the polaron formation is associated with a re-
For short chainsN,<15), the lattice distortion associated P

) ; ! . duction of the gap of the originally undistorted chain. Be-
with the polaron cannot be accommodated in the wire. Th'% use the atomic distortions induced in the case of a static

has art1_ Important %orrlsequgn(iﬁ on t?e elt_ectronlc transpolfeciron added in the chain are different from those obtained
Properties, as we shafl see in the next section. for a tunneling electron, we expect the electron transport

The atomic displacements are, for most electron positionsp : ; :
. - X roperties through the corresponding spectra to be different.
slightly less than those for an isolated chéfig. 5) because The behavior of the transport properties in the molecular

Fhe lattice does not respond fully to the tu_nneling eIec'Fron 3ires is shown and analyzed in terms of electron transmis-
in the case of the static charge added into the chain. Thgion probabilities in the next section

width of the lattice distortion around the electron is also
smaller for the tunneling electron than for the static charge.
The amplitude of the virtual polaron slightly increases B. Transport properties
when the injection energl increases above midgap. Such a  The current flowing through the different channéler
behavior persists untiE reaches the first resonance peak inexample in the right outgoing channkls given by
the electron transmissiofsee next section This may be
understood from the fact that far from midgap, the electron 26
wave function gets more weiglithe amplitude of the elec- ‘R _Z= *
tron wave function gets largeleading to a stronger coupling Jimg) (B) = Im(aiiimg Breti + 1(mqy) (22)
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FIG. 6. Electron transmission probabilitfon a logarithmic
scalg versus electron injection energthrough molecular wires of FIG. 7. Half gap obtained from the original SSH model versus
different length. Calculations were performed wity,=6, nJe the chain length for a neutral moleculsolid Ilne).and for a mol-
=2 for N,=40 and withNy,=4, ni&=3 for N,=100. Effective ecule _charged Wlth one extra electrottashed Ilnb_z The_ corre-
total transmissiorT (E) (solid lineg, transmission from the elastic SPonding charging energy is also shovaftted line with dia-
channel|t;q,(E)|? only (dotted lineg, transmission from the first monds. The energy positions of the first resonance peak in the
inelastic channen,_,=1 andn,-,=0} (dashed lines We recall trar?smlssmn are also shown: for purely .elastlc scatte.rlng, i.e., ig-
that the first optical modg=1 is the optical mode with the longest Noring the coupling to the phonokempty circle$, and for inelastic
wavelength (i.e., lowest energy The corresponding energy is Scattering including the coupling of the electron to Mg=4 low-
fiwq=0.148 eV(for N,=40) andiwy=0.136 eV(for N,=100). In est_frequenc_y opt_lcal modéwith nJw=2) (filled circles. All en-
the tunneling regime, i.e., for energy E belew0.51 eV (for N, ergies are given in eV.

=40), and~ 0.39 eV (for N,=100), the main contribution to ) ) )
T(E) comes from the elastic channel. the tunneling regime&below the first resonance pega&nd

present resonances through the spectrum of the system for
: — . higher energies.
for sites| >N, +1 located inside the right lead. From the It is interesting to note that in the tunneling regime when

asymptotlc_fqrm of the W$Ve funct|ons inside the Iea.dS.Eqsthe injection energies are below the first resonance pEak (
(8) and(9), it is found thatj{mq} is related to the transmission _ 59 ay forN,=40 andE<0.39 eV forN,=100), the
probability by j{, ,=2(e/h) Brsinky|tim (E)|%. Simi-  most important contribution to the total transmissib(E)
larly, the current inside the left-lead channja}t,ﬁ  is related ~ comes from the elastic channel. Above the first resonance,
q the contribution of the other inelastic channels may become
_ i . ... as important as the contribution of the elastic channel. Al-
We can define an effective total transmission probabilityhq,gh the contribution of the elastic process is dominant in
the tunneling regime, it should be noted that this contribution
is quite different from that obtained from an elastic-
scattering treatment of the transport through the undistorted
molecule. This is because the “elastic channel” corresponds
to processes in which, once the electron has crossed the mol-
ecule, there is no overall absorption or emission of phonons.
Nevertheless, phonons are emitted and absorbed during the
This takes the form of a sum of contributions from the dif- intermediate stages of the transport, and therefore this ‘elas-
ferent outgoing channels. tic channel’ is quite different from a rigid-molecule calcula-

In the following, we present results for the injection of an tion where no coupling to the phonons is present. We have
electron and transport by tunneling effect inside the gap andlready shown in Ref. 47 that the transmission is actually
by resonant tunneling through the levels of the system abovenhancedin the tunneling regime and in the limit of low
the gap. The electron injection energy is defined as positiveemperatureésbecause of the-ph coupling. The transmis-
with respect to the reference eneigy: O for all the molecu-  sion enhancement comes from an effective gap reduction as-
lar wires. The Fermi energies of the leads are assumed to l®ciated with the virtual polaron formation. This gap reduc-
pinned at midgap in the absence of any applied bias. tion is also different from the one obtained by charging a

Figure 6 shows typical results for the effective total trans-(classical latticg chain with a static electron.
missionT(E) and the contribution from the elastic channel Figure 7 represents half the HOMO-LUMO gap of iso-
and from one inelastic channel. The different transmissiodated neutral and charged chains obtained from the SSH
probabilities have, as expected, an exponential behavior imodel and the effective gap of our coupled quantum

to the reflection probabilitYr{mq}(E)F.

as

BrSiN kaq}

: : (23
By sinkig,

T(E)= tim 1 (E)|?
(E) %}l{q}< )
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TABLE Il. Characteristic times associated to the electron and phormuss the residence time for the electron estimated from the width
of the first resonance peakg, is the Bltiker-Landauer traversal tunneling time for the electron. The values,faare a range correspond-
ing to the range of optic phonon frequencies. The differeate given in fs.

Na 08 10 20 40 50 60 70 80 90 100
Tres 0.40 0.51 1.56 551 10.82 15.05 20.67 30.21 37.5 45.29
TBL 0.77-0.90 1.64-1.70 3.35-4.50 8.36-25.53

Toh  3.34-3.88 3.34-3.60 3.36-3.93 3.65-4.43 3.79-4.58 3.78-4.68 4.04-4.74 3.99-4.79 4.23-4.82 4.31-4.84

electron-phonon model for different chain lengths. Half thethrough the molecular wire increases because ofetpd
gap corresponds to the value of the lowest unoccupied masoupling for injection energies inside the gap. Although the
lecular stateLUMO) of the isolated(neutral or charged trends for the gap reduction are similar for the static and
chain. The effective gap of the molecular wiiacludinge-  virtual polarons, they differ quantitatively over the whole
ph coupling connected to the leads is obtained from therange of molecular lengths studied here.
position of the first resonance peak in the transmis3idE) . Finally, it should be noticed that for short wiredN{
We also plotted the position of the first resonance peak ob=10) the effective gap obtained from the fully inelastic cal-
tained from purely elastic calculatior(@noring thee-ph  culations converges towards the gap obtained from elastic
coupling. As expected, the positions of these resonances resalculations. Therefore, the values of the electron transmis-
produce the values of half the gap of the corresponding neuwsion are almost identical for both inelastic and purely elastic
tral chains. An energy shift appears in the first resonancealculations. As mentioned in Sec. Il A, although the po-
position because of the real part of the embedding potentialéron cannot be accomodated in very short wires, in these
>t and3R that appear in the solution of the scattering prob-conditions(short tunneling length and large gathe tunnel-
lem Eq.(12). ing process itself is too fast to get significant lattice distor-
For the fully inelastic scattering calculations, the firsttions associated with the charge injection. In order to illus-
resonance ifm(E) occurs for injection energg smaller than  trate this point, we give in Table II, the characteristic times
those obtained from tholely) elastic calculations. The be- associated with the electron and the phonons. We calculate
havior characterizes the effective gap reduction of the wirghe time domainr,, of the phonons from the extremal pho-
due to thee-ph interaction. The energy position of the first non frequencies used in our calculations. We estimate a resi-
resonance im(E) is close to the charging ener@f"@9of  dence timer, for the electron from the full width at half
the isolated molecular wire. The charging ener§§'®9 maximum » of the first resonance peak using.=7%/27.
is defined as the difference between tfeelf-consistent Following Bittiker and Landauef;”® a traversal time
ground-state total energy of the charged ctain[u®] (with  7s_ for the tunneling electron can be obtained; it is calcu-
the distorted lattice positions’ corresponding to a static lated from the elastic channel transmission coefficient as
polaron and the ground-state total energy of the neutradone in Ref. 64. The traversal tims is, by definition,
chain Eq[u®] (with the undistorted, perfectly dimerized, deépendent on the electron injection eneigyWe give in
lattice positionsuio). Some values oES" for different Table I thg range ofrg corresponding to energies inside
molecular wire lengths are given in Table I. Differences be-"€ tunneling gap. We can see that for short wiré§, (

tween the values oE®"@9 and the first resonance if(E) <28), thg tl_JnneIing time(a_nd alSqT’GS) is smaller than the .
do occur, they are due 1) the systematic energy shift in- characteristic times associated with the phonons. The lattice

troduced by the embedding potentials and alsdiitp the dy”a”?‘CS is, therefore, not fa_st enough to respond to _the
differences arising from treating the lattice distortionstunnellng electron. In this regime, the transport properties

classically or with quantum phonons as pointed out in Sec(.)bt"’“ne‘j from purely elastic scatteringigid lattice) are

A not strongly different from those obtained by inelastic
To summarize, there are two distinct physical processeScatteringcoherently distorted lattice by treeph coupling.

that affect the value of the band gap of the molecular wire " longer wires N,~40>2¢), the tunneling timéand 7,9

and therefore the transport properties through this wire. FirstS comparable to or larger than the characteristic phonon

the intrinsic band-gap dimishes with increasing wire lengths!Mes: the polaron can be formed inside the molecular wire.
The values reach a asymptotic regime for a lerggk= 100. It is in this regime that we observe the most important dif-
The asymptotic band-gap value and the length above whicferences between the electron transmission for a rigid lattice,

the asympotic regime is obtained depend on the chemicdﬂ”d for a lattice that can be deformed by the tunneling elec-

nature of the molecule, i.e., on the SSH parameters used feon.
model the molecular chaifcf. Appendi®. Second, an effec-

tive band-gap reduction occurs upon charging the molecular
wire with a static charge or with a transient tunneling charge. The importance of lattice fluctuations on the electronic
The reduction is due to the the coupling between the chargstructure of conjugated molecules has already been
and the lattice leading to the formation of static or virtual considered®"® As the lattice fluctuationsieven in the
polaron, respectively. Therefore, the electron transmissiotimit of zero temperature, i.e., the zero-point molicare

C. Lattice fluctuations

125422-11



H. NESS, S. A. SHEVLIN, AND A. J. FISHER PHYSICAL REVIEW B3 125422
of the same order of magnitude than the distortions in-
duced by charge injection, it is important to know if
such speciegpolarons, solitonssurvive the lattice fluctua-
tions.

We present here results for the electron transmissior
through a molecular chain where disorder is introduced due
to lattice fluctuations. In order to compare these results with
the full quantum inelastic transmission, we consider the Iimitﬁ
of low temperatures where the lattice fluctuations are due ta=
the zero-point motion of each phonon mode. The average(®
transmission is obtained by summing up the different elastic
transmission probabilities (E;{Ay}) associated with the
displaced phonon configurationg,}, weighted by the
Gaussian distribution probability of the ground-state har-
monic oscillator wave function. The average of a function
f({A4}) depending on the phonon displacemets} is cal-

-1t

-1.5 ¢

-2

-2.5

culated as

-3

. E[ev]

0 0.5 1
E[eV]

FIG. 8. Electron transmissiofi(E) versus electron injection
energy E for two molecular wire lengthd\,=40 and N,=100.
Transmission through the one-electron eigenstates of the neutral
chains from elastic scatteringthin solid lineg. Transmission
through the coupled quantum electron/phonons system from inelas-
tic scattering(solid lines with circley Np,=6 andnge=2 for N,

o
h
11
occ

q Ne2mo ’
q =40, Nyy=4 and ngg=3 for N,=100. Averaged transmission

where the width of the Gaussian distribution is given by the<|09 T(E))qis from elastic scattering through the one-electron eigen-
. . . states of the chain distorted by zero-point lattice fluctuatidogted
virial theorem for the zero-point fluctuation of each

lines), N,,=3 for N,=40 andN,=100.
mode $Mwi(X3)=3Eq-0=3(N+3)hog=ihiw, and o ) N : 2

:<X(21>1/2- fore expect the results for zero-point motion to be different
Whenf({Aq}) =T(E;{Aq}), Eq.(24) is equivalent to the  from the one due to the quantum coherent electron-phonon
static lattice approximation expression obtained by Pazy angoup”ng
Laikhtmarf® using a path-integral formalism. In our calcula- Figure 8 shows the elastic transmission probability
tions, the transmissioM(E;{A}) is calculated from elastic  through the rigid undistorted lattice and the transmission av-
scattering through the one-electron spectrum of the molecusraged(in the manner discussed belpwver the zero-point
lar chain distorted by the zero-point lattice fluctuations. Theflyctuations. The total effective transmission obtained from
distorted molecule eigenstates are obtained from the Hamithe inelastic scattering calculations is also shown.
tonian Eq.(Al) by replacing the equilibrium atomic posi-  As expected, the lattice fluctuations substantially modify
tions uf by u;=u’+ su; wheresu; ==V (i)A, for the dif-  the electron transmission through the molecular wire. The
ferent configuration$A,} of the distorted lattice. In practice, transmission is reduced around the resonance peaks of the
T(E;{Ag}) is calculated in a similar way as described in Sec.one-electron spectrum of the undistorted chain, and the peaks
Il A, but using the approximation of elastic scatterifige.,  are smeared out. However, there is no shift in the position of
no energy exchange between the electron and the phononstise resonances corresponding to the formation of virtual po-
allowed, settingngie=0 for all the phonon modes consid- larons.
ered. Futhermore, the integrals over the phonon displace- As in the fully quantum calculations, the transmission is
ments are performed using an algorithm to generate randoenhanced for injection energies inside the gap of the undis-
deviates with a normal Gaussian distribution with a giventorted chain. However, at this point it becomes important to
zero mean value and a varianag. know exactly how the average over the lattice fluctuations in
The transmission Eq24) corresponds to an average over Eq. (24) is calculated. It is knowft that the ensemble aver-
the phonon modes, treated classicdg in Appendix but age of the transmission probability in a disordered one-
with a mean-square displacement equal to the quantum zerdimensional conductor is a statistically ill-defined quantity,
point motion, while the electronic transmissi®(E;{Ay}) is  in the sense that it is dominated by a very small number of
obtained from guantum mechanics. In this average, the influexceptional configurations. In other words, the mean is in no
ence of the phonon displacements on the electronic spectrumway representative of the typical transmission probability to
is taken into account but natice versa This is the funda- be expected from a randomly sampled member of the en-
mental difference with the transport calculations presented isemble. This difficulty does not arise if |dg rather ther,
Sec. Il B where both the electron and phonon degrees ais averaged? In Fig. 8 we therefore compare |dgfrom our
freedom are treated at the quantum level and where the lafully quantum results witllog T)g;s. In this case we see that
tice distortion is induced by the injected electron. We therefully including the electron-phonon couplin@llowing the

(f}diS=J dA;...dAq...dAy f({Ag))
1

quAg)

(29)
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IV. CONCLUSION

In this paper, we have presented a method to calculate the APPENDIX: ISOLATED MOLECULAR WIRES

inelastic effects on electron transport through one- 1. The SSH model

d'r?;igf,'%gal P;Ole%frm\évggsf’o:ntﬂgd'nr%sr?sa!fsuc-rgéegtr?ﬂé Su, Schrieffer, and HeegdSSH modeled a chain of
P coupiing. WITES 1S Inspi y trans-polyacetylene t{PA) as a purely one-dimensional
Su-Schrieffer-Heeger model for trans-polyacetylene. Th

hrouah th | h Gtomic (CH), chain®®*°° The model combines a classical
transport through the quantum electron-phonon system I§,),_anqd-spring term for the distortion of the-bond back-

solved by means of a multichannel scattering techniqu@gne with a tight-binding representation for the delocalised
where each channel is associated with probabilities for the,_g|ectron orbitals along the chain. Furthermore, the electron
electron to be reflected or transmitted, given the phonon O%opping integrals between adjacef@H) groups are ex-

cupation number configuration. _ _ __panded linearly about some reference values. The corre-
The results show that the transport in the one-dimension ponding Hamiltonian is

molecular wires does not occur as in traditior(éthree-

dimensional semiconducting molecular devices. It does not

involve the propagation of free electronlike particles, but in-  Hssi=— 2 [to— a(Uir1—=U) (¢ Citv1s+C 14Ci 5]

stead is due to the coherent propagation of “quasiparticles’: hs

an electronor hole surrounded by a lattice distortion, char- 1

acteristic of the formation of an electrdor hole polaron. +§K2 (Uir 1= )2, (A1)

This object is called here a virtual polaron because of the '

transient nature of the tunneling electr@r hole injected  wherec/ (c; o) creategannihilate a  electron of spirs at
inside the HOMO-LUMO gap of the molecular wire. In this sjtei. u; is the displacement of thigh (CH) group from its
regime and in the limit of low temperatures, the tunnelingp|ace in the referenc@ndimerized system with hoppmg
transmission probablllty through the device increases, due tp]tegrano_ K is the Spring constant Corresponding to the
the electron-phonon coupling, in comparison with the transhond anda is the electron-lattice coupling constant. As ex-
mission obtained from elastic scattering through the undispained in the introduction, the undimerized metallic chain is
torted molecular wire. Lattice fluctuations also modify the ynstable with respect to a Peierls distortion, and the ground
electron transmission through the wire. However, the correstate of an infinite neutral chain has displacements given by
sponding enhancement of the transmission in the tunneling, = (— 1) u,, whereu, is a constant depending dg, a,

regime is less than that produced by the virtual polarons. and K. The values chosen for the different parametegs (
The influence of other defectsuch as a solitonlike defect —5 g eV,a=6.1 eV/A, andK=42.0 eV/&R) 2 give for an
existing in the chainon the transmission has already beenjnfinite perfectly dimerized chain a total bandwidth of 10 eV,
considered, and will be presented elsewhere. The transpost hand gap of 1.4 eV, and a difference between long/short
for finite temperaturegdifferent initial phonon occupations pong lengths of 0.1 A in agreement with experiments.
and proper statistical averages under study and results  Foy finjte-size chains containird, atomic sitegi.e. (CH)
will be presented in the near future. groupd, the ground-state GS8l;,N.) of Hamiltonian (A1)
The results presented in thls_ paper are gene_ral and can B&n be obtained for neutraN¢=N,) or charged K#N,)
applied to other types of one-dimensional atomic-scale wiregpajins N, being the total number of- electrons inside the
subject to a Peierls transition. For example, it has beeRpain. The ground state is obtained when the restoring forces

shown both experimentally and theoretically that a Peierlsys ihe springs balance the electronic forces by soRim
like transition also occurs in dangling-boii@B) lines fab-

ricated on the H-passivated (801) surface®®=8° More re- oce

cently, it has been shown theoretically that the injection of a ZaE Z.(O[Zp(i—=21)—Z,(i+1)]+K(2uj—Uj_1— Ui 1)
static charge in the bands around the band-gap leads to a "

distortion of the atomic positions along the IiffeThis dis- -0 (A2)
tortion corresponds to the formation of a small polaron in the ’

DB line. We therefore expect that carrier injection in thewhereZ,(i) are the components of the one-electron eigen-
band gap of the DB lines will lead to similar physical results states(with energye,) of Hggy for a given atomic configu-

to those presented here for molecular wires. Many otheration{u;}. The sum in Eq(A2) runs only over the occupied
guasi-one-dimensional systems may be expected to shostates and the spin indexis implicitly taken into account in
similar characteristics. the n summations. For the finite size molecular chains we
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study here, the boundary conditions afg(i)=0 andu;  wherec/=3,Z,(i) ¢! creates ¢, annihilate$ an electron in
=0 wheni<1 ori>N,. Furthermore, in practice, in order the nth electronic state of the reference system with energy
to avoid the uniform translation of the chain through spaceg,. The harmonic phonon Hamiltonigneglecting the zero-
one atomic site is kept fixed, for instance, one end of thepoint energy is
molecular chain is kept fixed.e., uNa:O).
Hon=>, fhwgalag, AB

2. Classical phonons ph Eq: ®a%% (A8)
- I-n the limit qf small _cﬂsplacegnenl{sﬁu& around the equi- whereag (ag) creates(annihilate$ a phonon modey with
librium atomic  positions {uj} of the ground-state frequencyw, . The basis set associatedHg+ H,, is formed

GS(Na.Ne), it is possible to derive an effective harmonic ), {ha e tat =cHI(ah"a/ yn110) with ei-
phonon Hamiltonian by partitioning Eq.(A1l) as y the eigenstatefn, {ng}) = Callg(8g)"/ Vng!|0) with ei

follows:87.89-91 genvalues'sn,{nq}: €nt2gNg hog, where|Q> is the vacuum
state andn,} the set of phonon occupation numbers.
Hssil {Cn} {uP + Ui} 1=Hef {cn} {ul} 1+ H o {uP},{ou;}] We expand the lattice deformatior; induced by an
additional charge introduced in the chain onto the phonon
+Hepl{cn},{ouit], (A3)  modes of the neutral chaidu;==V,(i) d;. The new lat-

whereHg, He pn, Hpn are respectively the static, phonon tice posi'([)ions, displaced frqm the equilibrium positiuﬂ,_
and electron-phonon coupling parts of the total SSH Hamilareu;=u; + éu; . Then, the linear electron-phonon coupling
tonian.He_ , is usually treated as a perturbation up to secterm of the onglnal SSH Hamlltor_uan is written in a quantum
ond order to give a quadratic term u; in the effective form by quantizing the phonon field displacements
phonon Hamiltoniar¥; ;Kj; ou;éu;. The dynamical matrix

onon Hamilt [#
K;; is given by 5=\ 5pr o (@t al). (A7)
q

unocc occ

Kij=Kji=2a? ; ; [F(i,n,m)—F(i+1n,m)] Therefore, thee-ph coupling Hamiltonian is

X[F(j,n,m)—F(j+1n,m)]/(en—€pn), (A4)

where F(j,nm)=Z,()NZn(i—1)+Zx(j)Z,(j—1). Then
(m) sum runs over the emptfoccupied electronic states.
The eigenstates of dynamical matky give the eigenmodes
V(i) of vibration (phonong of the finite-size molecular Ny
chain, while the (_aigenvalueM wg, of Kj; are related to the yqnmzz Ng(D[Za(D)Zin(i = 1)+ Z(i = 1) Z(D)],
phonon frequencies, (M being the mass of the CH group =2

In the present paper, we use the same boundary conditions (A9)
as above to determine the phonon modes. However, differe
boundary conditions could be used: fixed efids, constant

molecular chain lengdh free ends eventually coupled to dif- 7
ferent spring constants to simulate the effective coupling to Ag(i)=a[Vq(i) = Vq(i—1)]X [— (A10)
the electrodes. Although, these different boundary conditions 2Mwq

would, in principle, affect the electronic and the vibrational The total HamiltoniarH,, for the molecular wire with quan-

properties of the chaiff, we infer that the main physical tum phonons and linear electron-phonon coupling inspired
results obtained in the present study will not be drastlcallyby the SSH model is given by the suld,=H,+H
) w— e ph

modified. For instance, it appears that these different condi- :
. ; : . “+He_ynas in Eq.(2).

tions will mostly affect the acoustic modes of the chain. Fingll it should be noted that theph counling matrix
Those modes have been, however, neglected in the preser]t Y: P piing

: _— : elementsy,,, obey some selection rules. Generally,
aper because their contribution to ttvértual) polaron for- anm = . anm
pmarfcion is negligible )P =0 unless the direct produt,®I',®I',, contains the iden-

tity representationlI(,,, Iy, andI'; being the irreducible rep-

resentation of the eigenstatem and of\, respectively. In

practice,Z,, and V, are even/odd functions with respect to
At this stage, we already have all the ingredients to derivehe center of the molecule. The quantiB(i)Z,(i—1)

a quantum version of the SSH Hamiltonian. From the refer+Z (i —1)Z,(i) is even(odd whenn+m is an evenodd

ence system, chosen to be the neutral molecular chain dfiteger(indexing the eigenvectoi, by increasing eigenval-

lengthN,, we can write the Hamiltonians for the noninter- ues andz,,—, being eveh Whenever the quantity under the

He-pn= 2 Yannlaq+3q)Cacm, (A8)

where

3. Quantum phonons

acting electron and phonon degrees of freedom as sitei summation in Eq(A9) is odd, yq,,m,=0. Although it is
not surprising to obtain selection rules for #x@h coupling,

Ho= D fnCLCn, (A5) the!r existence is very important in order to reduce the com-
n puting time of the product, | ¢) needed to solve Eq12).
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