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Quantum effects of thermal conductance through atomic chains
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~Received 31 July 2000; revised manuscript received 21 November 2000; published 13 March 2001!

We present a formalism for an atomic scale study of phononic heat transfer. The expression of thermal
energy current can be cast in the Landauer form and incorporates the transmission coefficient explicitly.
Calculation of the thermal conductance of a monoatomic chain ofN atoms between two reservoirs shows
interesting quantum features. The conductance density appears as Lorentzian type resonances at the eigenfre-
quencies of the chain. At low-temperature limit the discrete vibrational frequency spectrum of a ‘‘soft’’ chain
may reflect on the thermal conductance by giving rise to a sudden increase. At room temperature, the conduc-
tance through a ‘‘stiff’’ chain may oscillate with the number of chain atoms. The obtained quantum features are
compared with similar effects found in the quantized electrical conductance.
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I. INTRODUCTION

The advances in nanofabrication and emerging novel
sults are now challenging the investigation of very fund
mental concepts in quantum physics. Nanowires1 even
monoatomic chains2 suspended between two metal ele
trodes are produced; their stability, electronic and mech
cal properties have become the focus of attention.1–3 Re-
cently, the single walled carbon nanotubes,4 which can be
produced with variety of diameter and chirality have sho
very interesting electromechanical properties and dimens
ality effects.5 These properties have been actively explo
with the hope of discovering novel applications in nanote
nology. The ballistic electron transport through an atom
atomic chain have revealed interesting quant
features.1,2,6,7Owing to the finite level spacing of vibrationa
frequencies the phononic energy transfer through an ele
cally nonconducting nanoobject~i.e., a molecule, an atomi
chain or a single atom! between two reservoirs appears to
an equally interesting subject. Questions one can raise
whether the discrete vibrational frequency spectrum can
flect on the thermal conductanceK; what quantum feature
similar to those of ballistic electron conduction would
involved in the phononic energy transfer through a sm
molecule or wire. Beyond being an academical interest, p
viding satisfactory answers to these questions is essentia
several physical events and chemical processes in biol
molecular electronics, and nanoscience.

The phononic energy transfer through dielectric wir
have been subject of recent interest.8–10 While wires with
relatively larger cross section have been treated within
continuum approach,8,9 the heat transfer through a nanoo
ject or a monoatomic chain presents interesting features
complexities owing to atomic scale contacts with the h
reservoirs. In this study, we develop a formalism for
atomic scale study of phononic heat transfer. It is based
the Keldysh’s theory of non-equilibrium processes.11 The
Keldysh’s theory was used earlier to investigate the balli
electron conduction through a point contact.12 Our work pre-
sents the formalism for bosons, which is applied for the th
mal conductance. We obtained an expression for the the
energy currentJ which can be cast in the Landauer form. O
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numerical calculations on a finite atomic chain comprisingN
atoms (N51 – 16) between two electrodes~or reservoirs! re-
veal interesting quantum features, such as resonances
step behavior of thermal conductance, and clarify issues
the variation ofK with N and temperatureT. Our results are
of particular interest for the energy transfer through semic
ducting carbon nanotubes and molecules coupled to two
ervoirs. In Sec. II, we present the description of our mode
phononic heat transfer through an atomic chain and the
malism of heat current and conductance developed by u
Keldysh’s theory of nonequilibrium processes. The results
numerical calculations and various quantum effects revea
therefrom are discussed in Sec. III.

II. MODEL AND METHOD

The physical system of interest is schematically descri
as an inset in Fig. 1~a!. Two reservoirs~L andR! with tem-
peraturesTL andTR are described by the vibrational Hami
toniansHL andHR , respectively.L andR are connected by
a dielectric chain ofN atoms, that is described by the follow
ing Hamiltonian:

HS5(
i 51

N pi
2

2M
1 (

i 51

N21
k

2
~xi2xi 11!21

k

2
x1

21
k

2
xN

2 , ~1!

wherepi andxi are the momentum and displacement of t
i th atom, respectively. In this Hamiltonian the coupling toL
and R is not included, and in the chain only the harmon
interactions with the nearest neighbor couplingk, are taken
into account. The end atoms (i 51 andi 5N) are connected
to the surfaces of the reservoirs. The coupling of the chain
L andR is described at the lowest order by the Hamiltoni

Hint5ALuLx11ARuRxN , ~2!

where u’s stands for the lateral displacements of reserv
atoms which are coupled with the chain.AL and AR are
coupling parameters. It is assumed that only one atom fr
each reservoir interacts with the chain and only the long
dinal modes are considered. Using this simple model we
to reveal the underlying physics of phononic energy trans
through atomic wires. Nevertheless, generalization to c
©2001 The American Physical Society15-1
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sider the coupling between distant atoms beyond the nea
neighbor interaction and to include transversal modes is p
sible. Even the first-principles calculation of phonon sp
trum for a specific sample can be provided. While the
sample specific complex models require tremendous com
tational efforts, their conclusions concerning the objective
this study would not change in any essential manner as
as the eigenfrequencies of the atomic chain have finite le
spacings. SinceTL andTR are kept constant andTL.TR , the
system is not in equilibrium, but in steady state. Then
phononic energy transfer fromL to R can conveniently be
described by the Keldysh’s theory.11

A few comments about the application of the Keldysh
theory are in order; for a more detailed discussion, see
11, eg. Within the Keldysh formalism, the expectation va
of any operatorO in steady state can be expressed as,^O&
5^TCO(01)e2( i /\)*CH int(t)dt&connectedby using the path order
ing operator,TC , and summing only connected Feynm
diagrams. In terms of the two-point correlation fun
tion of the displacement of the atomsG i j

z1z2(t2t8)
5^TCxi(t

z1)xj (t8
z2)& with z i51 or 2, one defines the fol-

lowing Green’s function matrices and self-energy matrice

Gi j ~ t2t8!5S G i j
11~ t2t8! G i j

12~ t2t8!

G i j
21~ t2t8! G i j

22~ t2t8!
D ,

FIG. 1. Variation of the conductance densityK(v) with tem-
perature T, and number of atoms in the chainN, for Ak/M
50.5vD . The inset describes the model used for the phononic
ergy transfer. The chain consists ofN atoms; each atom of massM
is under the harmonic interaction with nearest neighbor couplink.
~a! N51; ~b! N510.
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S i j ~ t2t8!5S S i j
11~ t2t8! S i j

12~ t2t8!

S i j
21~ t2t8! S i j

22~ t2t8!
D . ~3!

In terms of the Fourier transformed Green’s function ma
ces, the Dyson’s equation takes the formGi j (v)50Gi j (v)
1( j 8k8

0Gi j 8(v)S j 8k8(v)Gk8 j (v). Note that these Green’
functions are linearly dependent.13 Using the linear depen
dence, the matricesGi j and S i j can be transformed and th
Dyson equation for advancedG A, retardedG R, and Keldysh
G K, Green’s functions are written.14

We note that the operator corresponding to the curren
the contact can be obtained from the continuity equat
written in the form,de/dt52(JR2JL), wheree is the total
energy operator of the wire. The operators correspondin
the heat current leavingL and entering inR, respective-
ly, can be expressed asJL52(AL /M )uLp1 and JR
5(AR /M )uRpN . Then the expectation value of the curre
through the wire is

J5^JL&52~AL /M !^uL~ t !p1~ t !& ~4!

which can be expressed as

J52ALE
2`

` dv

2p
~2 iv!^uL~ t !xi~ t !&v , ~5!

where

^uL~ t !xi~ t8!&5E dv

2p
eiv(t2t8)^uL~ t !xi~ t8!&v . ~6!

By using the Wick’s theorem Eq.~5! can be written as

J52 (
a51,N

E dv

2p
~\v!@S1a

11~v!G a1
11~v!

1S1a
12~v!G a1

21~v!#. ~7!

In the present study, the summation sign in Eq.~7! involves
only a51 anda5N terms since in our model we have ju
these two contacts. In the general case one should sum
all contacts. In our model, whereHint is given by Eq.~2!, the
self-energy can be calculated exactly:S i j (v)
5S11(v)d i1d j 11SNN(v)d iNd jN , where S i i (t2t8)
5^TCui(t)ui(t8)&0. Finally, substitutingS i j (v) into the ex-
pression of Dyson equation, the current expression can
cast in the following form;

J5
1

2p (
ml

E dv\v@nL~v!2nR~v!#Tml~v!, ~8!

that has the Landauer form.15 nL(v,T) and nR(v,T) are
Bose-Einstein distribution functions forL and R, respec-
tively. Tml(v) stands for the transmission coefficient for
phonon of frequencyv at the mth branch ofL to the l th
branch ofR, and is expressed as

n-
5-2
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Tml~v!5~2p!2S ALAR

\2 D 2

gm
L ~v!gl

R~v!detG1N~v!

3
\

2MLv

\

2MRv
, ~9!

where detG1N5G 1N
A G 1N

R . gm
L(R) andML(R) are the density of

states corresponding tomth branch and mass of atoms
L(R), respectively.

Next we apply the above formalism to investigate t
phononic heat transfer and related thermal conducta
through a finite, monoatomic chain between two reservo
as schematically presented in Fig. 1~a!. We assume that both
reservoirs are identical and their phonon densities of st
are treated within the Debye approximation. We take\vD

R

5\vD
L 5\vD537.6 meV;ML5MR556 amu,M528 amu;

AL5AR5219 J/m2. Also the heat current from L to R a
steady state is,J(TL ,TR)5*0

1dxJ(xvD ,TL ,TR), where
J(v,T) is the heat current density at the frequencyv. Then
the heat conductance density atT is defined by K(v)
5 limDT→0J(v,T1DT,T)/DT, so that the total conductanc
is obtained by the integralK5*0

1dxK(xvD ,T).

III. RESULTS AND DISCUSSION

In this section, we discuss the results obtained from
model described in the previous section. The numerical
sults illustrated in Figs. 1–4 reveal novel features and in
esting quantum effects in atomic scale heat transfer. Fig
1~a!,1~b! shows the variation of the conductance dens
K(v), with temperature and number of atoms in the chainN.
K(v) appears as Lorentzian type resonances at the eige
quencies of the chain,v i . The height of resonances depen
on T andv i . The higherv i and the lowerT, the lower is the
height of resonances. This behavior originates from
Bose-Einstein distribution function. At sufficiently high tem
peratures, the heights of the resonances become indepe
of N. However,K(v) resonances become narrow asN be-
comes large. This can be understood in terms of the we
ening of the coupling constant of each mode which is p
portional to 1/AN11.

A system analogous to the present model has been
ized in the electrical conductance through a constrictio16

Similar to the central atomic chain in the present model,
impurity atom was placed or a double barrier resonant t
neling ~DBRT! structure was formed in the constriction co
necting two 2D electron gas reservoirs. The quantized ene
levels of the impurity atom or the DBRT structure with fini
level spacing has reflected on the transport of electrons yi
ing periodic oscillations as a function of the gate voltage
equally chemical potential.16 The behavior of the observe
conductance is reminiscent of the phononic conductance
scribed in Fig. 1, except the temperature dependence o
heights of resonances~or peaks! and their periodic oscilla-
tions. The periodic oscillations were explained in terms
single-electron charging.17 In the absence of the Coulom
interaction energy the resonances occur at the quant
energies18 as in Fig. 1. The anomalous temperature dep
12541
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dence of the resonances, i.e., the irregular and nonmon
dependence of the heights of resonances on temperatur
contrast to the 1/T dependence of the Fermi distribution,
explained in terms of the participation of multiple electron
levels in each resonance.19

The dependence of the total conductanceK on the mate-
rial parameters,k andM throughV5Ak/M is illustrated in
Figs. 2~a!, 2~b!. As V increases, the eigenfrequencies of t
modes,v i , increase; starting from the highest one, th
cross the Debye frequency,vD , one by one. Eachv i rised
above vD , and thus came out of the range ofgL(R)(v)
ceases to contribute to the thermal conductance. This wa
channel is closed andK is decreased suddenly leading to
step structure in the variation ofK with V. The larger the
level spacingDv i , the longer becomes the plateaus. Sin
all v i,vD contribute to the thermal conduction at high tem
perature, one can obtain several step structure for largN
(N.3). Also the step structure becomes pronounced at h
temperature. This situation is contrary to the electronic co
terpart; ballistic electron conductance, where the steps
come less pronounced due to the smearing of Fe
distribution.6 We also note that~i! the step behavior of elec
trical conductance is obtained by changing the width of
constriction or by stretching the metallic wire between tw
electrodes. In principle, the step behavior of the ballis
electrical conductance could have also been achieved
changing the Fermi energyEF ~or chemical potentialm at
finite temperature!. In the present case, the step behavior
K can be realized to some extent by varyingk and M, and
also vD . Of coursevD is an artificial cutoff due to the
Debye model. In real crystal, the cutoff ofv(k) at the zone
boundary has to be taken into account. Cutoff frequency
be modified by applying strong external pressure or
eigenfrequenciesv i , can be changed by stretching the cha
According to present results, the value ofK is changed by
replacing chain atoms with their isotopes.~ii ! The step struc-
ture shown in Fig. 2 is modified if there is surface phonons
the gap.~iii ! In calculating the step structure, the broadeni
of the modes, which normally smears the sharp structure
taken into account. This smearing is more pronounced
the first several steps, since the higher eigenmodes are m
closely spaced, and hence they overlap due to broaden
~iv! The Debye density of states has a very sharp cutoff at
Debye frequency. Therefore, as the resonances passe
Debye frequency due to the variation ofV, their contribution
to the conductance ceases abruptly. In a more realistic d
sity of states of crystals, the closing of the channel would
gradual resulting in the smearing of the steps. However,
expected that the Van Hove singularities are reflected oK
versusV curve. ~v! The anharmonic coupling which is no
taken into account here, may modify the step behavior es
cially for very large N, and forv i.vD .

The variation of the total conductance with temperature
shown in Fig. 3 for a particular chain parameterV and N
55. At the high-temperature limit,@nL(v)2nR(v)# in Eq.
~8! can be approximated bykBDT/\v. ThenK saturates at a
value that depends on the couplingsAR andAL as well as on
the density of states of the reservoirsL and R. At low-
5-3
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temperature limit, one expects that the discrete vibratio
spectrum can reflect on the variation ofK with temperature,
if the wire has a vibrational mode in the range ofkBT. This
situation examined by considering a ‘‘soft’’ chain withV
5vD/100. The calculatedK versusT is illustrated as an
inset to Fig. 3. The sudden increase ofK when the second
vibrational mode begins to contribute to the conduction
clearly seen. The present result justifies the similar jump
theK versusT curve obtained by using a phenomenologic
approach.10

In Fig. 4, the variation of the total conductanceK with N
for V5vD/2 andV5vD displays an interesting behavio
For V5vD/2 andT5300 K, K becomes independent of th
number of atoms in the chain. Only forN<2, K is slightly
decreased, since the conductance densityK(v) is broadened
and it does not contribute to conductance when its tail
ceedsvD . Note that if all the eigenfrequencies,v i , are
smaller thanvD , K becomes independent ofN at high tem-
perature, despite the number of modes of the chain and h
number of the conductance channels increase withN. This
situation can be explained in terms of the weakening of
coupling of each mode to the modes of reservoirs with
creasingN. On the other hand ,K fluctuates for a ‘‘stiff’’
chain with V5vD . These two different behaviors~corre-
sponding to the cases,V5vD/2 and V5vD can be ex-
plained by the fact that all the modes contribute to the c
ductance in the former case, sincevD.v i . Whereas, in the
latter case,vD lies within the spectrum of the wire and th
number of contributing modes changes withN. The fluctua-

FIG. 2. The variation of the total conductanceK with chain
parametersV5Ak/M . ~a! N51; ~b! N510.
12541
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tions diminish with increasingN and decreasingT. Note that,
since the low temperature structure of the conductance
sus temperature curve depends on the positions of the ei
modes which in turn depend on the number of atoms, c
ductance might show slight dependence onN at low
temperatures.

In conclusion, we developed a formalism to calculate
phononic heat transfer through an atomic chain between
reservoirs. The expression of the thermal energy current
corporates the contribution of tunneling and ballistic phon
transfers. We showed that the finite level spacings of
eigenfrequencies of an atomic chain~or nanoobject! reflect
on the variation of the phononic thermal conductance. Re
nance structure is revealed in the variation of conducta
density. One channel of heat conduction is closed as soo
an eigenfrequency of the chain comes out of the range
quasi-continuous phonon frequency~or density of states! of
reservoirs. This gives rise to an effect analogous to the
mation of plateaus observed in the electrical conductanc
a quasi-1D constriction with variable width or of a stretchi
metal wire. At high temperature limit, the conductance sa
rates at a value that depends on the material properties o
reservoirs as well as on their couplings with the chain.
room temperature, the conductance through a stiff chain m
oscillate with the number of atomsN.

FIG. 3. The total conductanceK versus temperature forN55
andAk/M50.5vD .

FIG. 4. The dependence of the total conductance on the num
of atoms at various temperatures for two different chain parame
V5Ak/M5vD andV5Ak/M50.5vD .
5-4
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