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Quantum effects of thermal conductance through atomic chains
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We present a formalism for an atomic scale study of phononic heat transfer. The expression of thermal
energy current can be cast in the Landauer form and incorporates the transmission coefficient explicitly.
Calculation of the thermal conductance of a monoatomic chaiN etoms between two reservoirs shows
interesting quantum features. The conductance density appears as Lorentzian type resonances at the eigenfre-
quencies of the chain. At low-temperature limit the discrete vibrational frequency spectrum of a “soft” chain
may reflect on the thermal conductance by giving rise to a sudden increase. At room temperature, the conduc-
tance through a “stiff” chain may oscillate with the number of chain atoms. The obtained quantum features are
compared with similar effects found in the quantized electrical conductance.
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[. INTRODUCTION numerical calculations on a finite atomic chain compridihg
atoms (N=1-16) between two electrodésr reservoirsre-

The advances in nanofabrication and emerging novel reveal interesting quantum features, such as resonances and
sults are now challenging the investigation of very funda-step behavior of thermal conductance, and clarify issues on
mental concepts in quantum physics. Nanowireven the variation oflC with N and temperatur&. Our results are
monoatomic chairfs suspended between two metal elec-Of particular interest for the energy transfer through semicon-
trodes are produced; their stability, electronic and mechaniducting carbon nanotubes and molecules coupled to two res-
cal properties have become the focus of attentidnRe-  ervoirs. In Sec. II, we present the description of our model of
cently, the single walled carbon nanotuBBeshich can be phononic heat transfer through an atomic chain and the for-
produced with variety of diameter and chirality have shownmalism of heat current and conductance developed by using
very interesting electromechanical properties and dimensiori<eldysh’s theory of nonequilibrium processes. The results of
ality effects® These properties have been actively exploredhumerical calculations and various quantum effects revealed
with the hope of discovering novel applications in nanotechiherefrom are discussed in Sec. Ill.
nology. The ballistic electron transport through an atom or
atomic chain have revealed interesting quantum Il. MODEL AND METHOD
features-?®70Owing to the finite level spacing of vibrational _ _ _ _ _
frequencies the phononic energy transfer through an electri- 1€ Physical system of interest is schematically described
cally nonconducting nanoobjeéte., a molecule, an atomic &S @n inset in Fig. @&). Two reservoirdL andR) with tem-
chain or a single atolrbetween two reservoirs appears to bePeraturest, andTg are described by the vibrational Hamil-
an equally interesting subject. Questions one can raise at@niansH, and7{g, respectivelyL andR are connected by
whether the discrete vibrational frequency spectrum can re2 dielectric chain oN atoms, that is described by the follow-

flect on the thermal conductand& what quantum features N9 Hamiltonian:

similar to those of ballistic electron conduction would be N2 NSl K K
involved in th_e phononic energy transfer 'ghroggh a small HSZE p_i+ E (X=X 11)2+ —X§+ —xﬁ, 1)
molecule or wire. Beyond being an academical interest, pro- -12M =12 2 2

vidin isf ry answer h ions i ntial for .
ding satisfactory answers o these questions is essentia (\)/vherepi andx; are the momentum and displacement of the

several physical events and chemical processes in biOIOthh atom, respectively. In this Hamiltonian the coupling-to

molecular electronics, and nanoscience. dRi ¢ included din the chai v the h .
The phononic energy transfer through dielectric wires2! IS not included, and In the chan only the harmonic

have been subject of recent inter¥sf While wires with interactions with the nearest neighbor coupligcare taken

relatively larger cross section have been treated within th to account. The end atoms=1 andi=N) are connected
continuum approach? the heat transfer through a nanoob- o the surfaces of the reservoirs. The coupling of the chain to

ject or a monoatomic chain presents interesting features aHd andRis described at the lowest order by the Hamiltonian

complexities owing to atomic scale contacts with the heat
reservoirs. In this study, we develop a formalism for an
atomic scale study of phononic heat transfer. It is based owhereu’s stands for the lateral displacements of reservoir
the Keldysh's theory of non-equilibrium processésThe  atoms which are coupled with the chaif, and Ag are

Keldysh’'s theory was used earlier to investigate the ballisticoupling parameters. It is assumed that only one atom from
electron conduction through a point cont&¥cOur work pre-  each reservoir interacts with the chain and only the longitu-
sents the formalism for bosons, which is applied for the therdinal modes are considered. Using this simple model we aim
mal conductance. We obtained an expression for the therm#b reveal the underlying physics of phononic energy transfer
energy currend which can be cast in the Landauer form. Our through atomic wires. Nevertheless, generalization to con-

Hint= ALULX1 T ARURXN (2
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--- T=50K i i ]
-— T=100K i . , . .
2010 | - T=200K [ In terms of the Fourier transformed Green’s function matri-
j,n — T=400K | ces, the Dyson’s equation takes the foﬁirp(w)=°gij(w)
I: JL JR ’\|||‘ +Ejr_k/0gij/(w)lzj/k/(w)gk/j(w). Note that these Green’s
3 M, M M, M At functions are linearly dependehitUsing the linear depen-
® 005 T R 1 dence, the matrice§;; andX;; can be transformed and the
L 1 2 NI N R D tion for advanced®, retardedz R, and Keldysh
fERY yson equation for a , , y!
AN G, Green’s functions are writte!f.
0.00 :/_//'\f\:: We note that the operator corresponding to the current at
' the contact can be obtained from the continuity equation
015 | (b) written in the form,de/dt=—(Jg—J,), wheree is the total
energy operator of the wire. The operators corresponding to
the heat current leaving. and entering inR, respective-
ly, can be expressed ag,=-—(A_ /M)u.p; and Jg
'g 0.10 =(Ar/M)ugrpyn . Then the expectation value of the current
N through the wire is
B : P
T 0.05 I J=(J0)=—(AL/M){u (t)pa(t)) 4
) "‘U 1 U which can be expressed as
0.00 ‘ JL ) " ‘\.\_z/ﬁ'\‘_\—’i"“\g'«“u’\\ ! *» dw
e I=—AL f - (Fie)(u®xi().,, (5)

FIG. 1. Variation of the conductance densiffw) with tem-
perature T, and number of atoms in the chaiN, for Vk/M
=0.5wp . The inset describes the model used for the phononic en-
ergy transfer. The chain consistsfatoms; each atom of masé

is under the harmonic interaction with nearest neighbor couging
(@) N=1; (b) N=10.

where

do . ,
<UL(t)Xi(t/)>:f§elw(t_t u (H)x(t)),. (6

sider the coupling between distant atoms beyond the neareg%/ using the Wick's theorem Ed5) can be written as
neighbor interaction and to include transversal modes is pos-
sible. Even the first-principles calculation of phonon spec-
trum for a specific sample can be provided. While these
sample specific complex models require tremendous compu-
tational efforts, their conclusions concerning the objective of )
this study would not change in any essential manner as long
as the eigenfrequencies of the atomic chain have finite levdn the present study, the summation sign in Eg.involves
spacings. Sinc&, andTr are kept constant anf| >Tg, the  only a=1 ande=N terms since in our model we have just
system is not in equilibrium, but in steady state. Then thehese two contacts. In the general case one should sum over
phononic energy transfer from to R can conveniently be all contacts. In our model, whefé is given by Eq.(2), the
described by the Keldysh’s theot?. self-energy can be calculated exactly:Xj;(w)

A few comments about the application of the Keldysh's =211(®) 8161+ 2nn(@) Sindjn,  where  3j(t—t’)
theory are in order; for a more detailed discussion, see Ref=(7Zcu;(t)ui(t’))o. Finally, substituting;; (w) into the ex-
11, eg. Within the Keldysh formalism, the expectation valuepression of Dyson equation, the current expression can be
of any operatoiO in steady state can be expressed(d@®, cast in the following form;
=(T:O0(0")e MIcHnOdty - edby using the path order-
ing operator,Zc, and summing only connected Feynman
diagrams. In terms of the two-point correlation func-
tion of the displacement of the atomgfjlgz(t—t’)

d
J:_a;l,N %(ﬁa))[zf;(w)ng(w)

+3 7 (0)G 1 (0)].

1
J=—2> fdwﬁw[nL(w)—nR(w)]Tm.(w), (8)
2 ‘mi
:<7_'Cxi(tgl)xj(tlgz)> with £j=+ or —, one defines the fol- ihat has the Landauer forfA.n“(w,T) and nR(w,T) are
lowing Green’s function matrices and self-energy matrices: gose-Einstein distribution functions fdr and R, respec-
G T(t=t') G (t=t)
Gy tt=t') G (t—=t))’

tively. T, (w) stands for the transmission coefficient for a
phonon of frequencyw at the mth branch ofL to the Ith
branch ofR, and is expressed as

Gij(t—=t")=
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A Ag 2 dence of the resonances, i.e., the irregular and nonmonotic
Toi(w)=(2m)? 5 ng(w)gF(w)detglN(w) dependence of the heights of resonances on temperature, in
contrast to the I7 dependence of the Fermi distribution, is
k5 % explained in terms of the participation of multiple electronic
% .
Mo M’ (9) levels in each resonanc@.

The dependence of the total conductakten the mate-
where de;y=G4GR,. g-® andM g, are the density of I‘i.al parametersk andM throughQ = \/I§/M is iIIustra_ted in
states corresponding tmth branch and mass of atoms of Figs. 2@, 2(b). As () increases, the eigenfrequencies of the
L(R), respectively. modes, w;, increase; starting from the highest one, they
Next we apply the above formalism to investigate theCross the Debye frequencyy, one by one. Eacly; rised
phononic heat transfer and related thermal conductanc@bove wp, and thus came out of the range gf®(w)
through a finite, monoatomic chain between two reservoirseases to contribute to the thermal conductance. This way, a
as schematically presented in Figall We assume that both channel is closed antl is decreased suddenly leading to a
reservoirs are identical and their phonon densities of statestep structure in the variation & with (0. The larger the
are treated within the Debye approximation. We taikeg level spacingA w;, the longer becomes the plateaus. Since
=hwp=hwp=37.6 meV;M =Mg=56 amuM =28 amu;  all w;<wp contribute to the thermal conduction at high tem-
A =Agr=—19 Jm?. Also the heat current from L to R at perature, one can obtain several step structure for Iarge
steady state is,J(T, ,TR)zféde(XwD ,TL,Tr), where (N>3). Also the step structure becomes pronounced at high
J(w,T) is the heat current density at the frequereyThen  temperature. This situation is contrary to the electronic coun-
the heat conductance density @tis defined by K(w) terpart; ballistic electron conductance, where the steps be-
=limy1_0J(w, T+AT,T)/AT, so that the total conductance come less pronounced due to the smearing of Fermi
is obtained by the integral= [ $dxK(xwp ,T). distribution® We also note thati) the step behavior of elec-
trical conductance is obtained by changing the width of the
constriction or by stretching the metallic wire between two
electrodes. In principle, the step behavior of the ballistic
In this section, we discuss the results obtained from thelectrical conductance could have also been achieved by
model described in the previous section. The numerical rechanging the Fermi energiir (or chemical potentiap at
sults illustrated in Figs. 1-4 reveal novel features and interfinite temperature In the present case, the step behavior of
esting quantum effects in atomic scale heat transfer. FigurelS can be realized to some extent by varykgndM, and
1(a),1(b) shows the variation of the conductance densityalso wp. Of coursewp is an artificial cutoff due to the
K(w), with temperature and number of atoms in the ctidiin  Debye model. In real crystal, the cutoff af(k) at the zone
K(w) appears as Lorentzian type resonances at the eigenfrboundary has to be taken into account. Cutoff frequency can
guencies of the chainy; . The height of resonances dependsbe modified by applying strong external pressure or the
onT andw; . The higherw; and the lowefT, the lower is the eigenfrequencies;, can be changed by stretching the chain.
height of resonances. This behavior originates from theéAccording to present results, the value /6fis changed by
Bose-Einstein distribution function. At sufficiently high tem- replacing chain atoms with their isotopés) The step struc-
peratures, the heights of the resonances become independéumte shown in Fig. 2 is modified if there is surface phonons in
of N. However,K(w) resonances become narrow Mse-  the gapdiii) In calculating the step structure, the broadening
comes large. This can be understood in terms of the wealef the modes, which normally smears the sharp structure, is
ening of the coupling constant of each mode which is protaken into account. This smearing is more pronounced for
portional to 1A/N+1. the first several steps, since the higher eigenmodes are more
A system analogous to the present model has been reatlosely spaced, and hence they overlap due to broadening.
ized in the electrical conductance through a constrictfon. (iv) The Debye density of states has a very sharp cutoff at the
Similar to the central atomic chain in the present model, arbebye frequency. Therefore, as the resonances passes the
impurity atom was placed or a double barrier resonant tunDebye frequency due to the variation@f their contribution
neling (DBRT) structure was formed in the constriction con- to the conductance ceases abruptly. In a more realistic den-
necting two 2D electron gas reservoirs. The quantized energsity of states of crystals, the closing of the channel would be
levels of the impurity atom or the DBRT structure with finite gradual resulting in the smearing of the steps. However, it is
level spacing has reflected on the transport of electrons yieldexpected that the Van Hove singularities are reflectedCon
ing periodic oscillations as a function of the gate voltage orversus) curve.(v) The anharmonic coupling which is not
equally chemical potentidf. The behavior of the observed taken into account here, may modify the step behavior espe-
conductance is reminiscent of the phononic conductance deially for very large N, and fow;> wp .
scribed in Fig. 1, except the temperature dependence of the The variation of the total conductance with temperature is
heights of resonanceg®r peak$ and their periodic oscilla- shown in Fig. 3 for a particular chain paramefeérand N
tions. The periodic oscillations were explained in terms of=5. At the high-temperature limif,n"(w)—n®(w)] in Eq.
single-electron charginy. In the absence of the Coulomb (8) can be approximated g AT/% w. ThenK saturates at a
interaction energy the resonances occur at the quantizedilue that depends on the couplings andA, as well as on
energie¥® as in Fig. 1. The anomalous temperature depenthe density of states of the reservoirsand R. At low-

Ill. RESULTS AND DISCUSSION
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FIG. 3. The total conductanc€ versus temperature foi=5
and Vk/M =0.5w .

tions diminish with increasindyl and decreasing. Note that,
since the low temperature structure of the conductance ver-
sus temperature curve depends on the positions of the eigen-
modes which in turn depend on the number of atoms, con-
ductance might show slight dependence Bbhat low
temperatures.

In conclusion, we developed a formalism to calculate the
phononic heat transfer through an atomic chain between two
reservoirs. The expression of the thermal energy current in-

FIG. 2. The variation of the total conductané® with chain  corporates the contribution of tunneling and ballistic phonon
parameter€) = Jk/M. (8 N=1; (b) N=10. transfers. We showed that the finite level spacings of the

eigenfrequencies of an atomic chdior nanoobjedt reflect
temperature limit, one expects that the discrete vibrationabn the variation of the phononic thermal conductance. Reso-
spectrum can reflect on the variation /6fwith temperature, nance structure is revealed in the variation of conductance
if the wire has a vibrational mode in the rangekgfT. This  density. One channel of heat conduction is closed as soon as
situation examined by considering a “soft” chain witR an eigenfrequency of the chain comes out of the range of
=wp/100. The calculatedC versusT is illustrated as an quasi-continuous phonon frequen@r density of statgsof
inset to Fig. 3. The sudden increase/6fwhen the second reservoirs. This gives rise to an effect analogous to the for-
vibrational mode begins to contribute to the conduction ismation of plateaus observed in the electrical conductance of
clearly seen. The present result justifies the similar jumps im quasi-1D constriction with variable width or of a stretching
the K versusT curve obtained by using a phenomenologicalmetal wire. At high temperature limit, the conductance satu-
approacH? rates at a value that depends on the material properties of the

In Fig. 4, the variation of the total conductanKewith N reservoirs as well as on their couplings with the chain. At
for Q=wp/2 and Q) =wp displays an interesting behavior. room temperature, the conductance through a stiff chain may
For Q= wp/2 andT=300 K, K becomes independent of the oscillate with the number of atonis.
number of atoms in the chain. Only fof<2, K is slightly
decreased, since the conductance deriS{iy) is broadened 15
and it does not contribute to conductance when its tail ex-
ceedswp. Note that if all the eigenfrequenciesy, are

3.0 4.0

smaller tharwp , £ becomes independent bfat high tem- Z 10

perature, despite the number of modes of the chain and hence 5 - —— T=300K; Q=w,/2
. . . o~ e T=150K; Q=w,/2

number of the conductance channels increase Wit his o T_50K; =02

situation can be explained in terms of the weakening of the Z 5 Tk o

coupling of each mode to the modes of reservoirs with in- == T=50K; ©=00,

creasingN. On the other hand K fluctuates for a “stiff”

chain with Q=wp. These two different behaviorgorre- 0
sponding to the case$)=wp;» and Q=wp can be ex-

plained by the fact that all the modes contribute to the con-

ductance in the former case, sineg> w;. Whereas, in the FIG. 4. The dependence of the total conductance on the number
latter casewp lies within the spectrum of the wire and the of atoms at various temperatures for two different chain parameters
number of contributing modes changes withThe fluctua- Q= k/M=wp andQ = \k/M=0.5wp, .

6 9 12 15
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