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Quantum theory of high-energy electron transport in the surface region
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Fysisk Institut, Syddansk Universitet, DK-5230 Odense M, Denmark

~Received 3 November 2000; published 13 March 2001!

A quantum Boltzmann’s equation is derived to describe the transport of high-energy electrons in spatially
inhomogeneous media. In the lowest approximation this equation reduces to a local Boltzmann’s equation
where the scattering function is expressed in terms of a generalized dielectric function of the media. The
inelastic scattering of high-energy electrons near the surface of the solid is investigated by use of the local
Boltzmann’s equation. For a solid with an abrupt surface and a nondispersive dielectric function the inelastic-
scattering function shows an oscillatory behavior in the surface region that can be explained as a resonant
interaction of the electron with its image. Numerical calculations of the scattering function for several previ-
ously introduced models for a solid with a dispersive dielectric function are also presented. The calculated
results indicate that the oscillatory behavior near the surface is a general phenomenon. Moreover, it is found
that the inelastic-scattering function depends significantly on the surface model. A proper choice of model is
therefore a prerequisite for a correct interpretation of experimental energy-loss spectra.
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I. INTRODUCTION

In recent years electron spectroscopy has become an
portant tool for investigating properties of solids, particula
in the surface region.1–5 Because of the limited penetratio
depth of the electron, the spectral information refers to
surface layer usually not exceeding 100 Å in depth. It
well-established experimentally that surface excitations c
tribute with significant features to the electron spectrum
energies below 1 keV. These effects are more prominen
low electron energies since the mean free path, and thus
penetration depth, of the electron decreases with decrea
electron energy. A quantitative analysis of low-energy el
tron spectra therefore necessitates a proper treatment o
interaction of electrons with surface excitations.

Many authors6–11 have used a Boltzmann-type transpo
equation as a basis for quantitative interpretations of elec
spectra obtained by various spectroscopical techniques
as x-ray photoelectron spectroscopy~XPS!, Auger electron
spectroscopy~AES!, and reflected-electron-energy-loss spe
troscopy~REELS!. In these approaches the elastic-scatter
processes are treated by means of electron-atom scatt
cross sections and it is assumed that the angular deflec
due to inelastic-scattering processes can be neglected
high electron energies. The inelastic scattering is there
described by a differential inverse inelastic mean-free-p
~DIMFP! which for the bulk of the solid can be expressed
terms of the loss function2Im@«21(q,v)#, where«(q,v) is
the dielectric function of the solid.12,13 Surface scattering is
neglected and it is assumed that the inelastic-scattering p
erties of the solid are homogeneous within the bulk volu
and up to the surface. For energy losses much smaller
the electron energy the solution of the transport equation
be then written6 as a convolution of the path distributio
function of the electrons in the solid with the Landau ener
loss function14 expressed via the bulk differential inverse i
elastic mean free path~DIMFP!.

Earlier solutions to the problem of electron scattering
the surface of a solid13,15–18show that the effect of the sur
0163-1829/2001/63~12!/125412~15!/$15.00 63 1254
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face on the electron energy loss can be described by
surface loss function, which in the case of nondispers
solid, has the form Im$21/@«(v)11#%.13,15 In the single-
plasmon model of a solid with bulk plasmon frequencyv0

this form reproduces a peak with a frequencyv0 /A2 corre-
sponding to surface-plasmon excitations. In a solid with s
tial dispersion of the dielectric function the surface loss fun
tion becomes more complicated and, in general,
scattering properties of the surface has to be expressed
generalized dielectric function«(q,k;v) of the spatially in-
homogeneous solid.16–18

In order to include the interaction with surface excitatio
into the transport equation the spatial dependence of
inelastic-scattering probabilities near the surface must
considered. Previously, there have been several attemp
obtain the spatial dependence of the scattering function f
calculations of the stopping power for electrons movi
along classical trajectories.19–22 However, the relation be-
tween the scattering function obtained by these approac
and the transport equation has not been clarified.

The aim of the present paper is to derive, from first pr
ciples, a transport equation for high-energy electrons in s
ids where the effects of spatial inhomogeneities of the so
~such as the surface! on the inelastic-scattering properties a
taken into account self-consistently.

In Sec. II we derive a quantum Boltzmann’s equati
~QBE! for transport of high-energy electrons interacting w
the solid. This general equation is then approximated b
transport equation with local inelastic-scattering probab
ties. The spatially varying scattering functions and t
DIMFP are expressed in terms of a generalized dielec
function of the solid.

In Sec. III we apply the expressions derived in Sec. II
transport of high-energy electrons in the surface region.
using a simple model for a nondispersive solid we obtain
explicit analytical expression for the spatial dependence
the scattering function, which displays an oscillating beh
ior near the surface. This phenomenon can be explaine
the effect of the resonant interaction of the electron with
©2001 The American Physical Society12-1
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image. Calculations of the DIMFP for transport along t
surface normal are also performed for two previous surf
models, that use dispersive solids23,19,22 It is demonstrated
that the scattering properties of the surface depend sig
cantly on the choice of the surface model.

In Sec. IV a quantitative analysis of surface effects
electron energy-loss spectra is discussed in terms of the
ferential surface excitation parameter. An algorithm for
trieving this parameter from REELS spectra is proposed

Finally, in Sec. V we compare the results of our theo
with those derived from the quasiclassical approach base
stopping-power calculations.

II. TRANSPORT EQUATION

A quantum theory describing the transport of high-ene
electrons interacting with a solid has recently been de
oped by Dudarevet al.24 In this section we reformulate the
basic transport equation in the form of a QBE. The qua
classical limit of this equation is then used to derive a s
tially inhomogeneous inelastic-scattering function for no
crystalline solids.

The Hamiltonian of the high-energy electrons interact
with the solid can be written as

H5E d3rc†~r !F2
\2

2m
¹ r

21V~r !Gc~r !1Hs , ~2.1!

wherec† andc are creation and annihilation operators, r
spectively, of the high-energy electrons,V(r ) is the interac-
tion potential of the solid acting on the electron at the po
r , andHs is the Hamiltonian of the solid.

For a solid in thermodynamical equilibrium, the potent
can be separated into a static part and a dynamic parts

V~r !5^V~r !&1dV~r !. ~2.2!

Here^ . . . & denotes an average with the equilibrium dens
operator, which in Dirac notation has the form

r05
1

Z (
s

exp~2es /kBT!us,0&^s,0u, ~2.3!

where the combined stateus,0& indicates that the solid is in
an eigenstateus& with energyes and the electron is in the
vacuum state,Z5(sexp(2es/kBT) is the partition function,T
is the temperature, andkB is Boltzmann’s constant.

The static part̂ V(r )& is responsible for the elastic sca
tering of the electrons by the atoms of the solid situated
their average or equilibrium positions. The fluctuating part
the potentialdV(r ) is responsible for the inelastic scatterin
of the electrons, which is caused by the interaction of
electrons with the excitations of the solid. For noncrystall
solids the elastic- and inelastic-scattering parts can usuall
treated separately.6–11 Therefore, for the sake of simplicity
we will neglect the static part of the potential and assu
that the elastic scattering can be included in the quasicla
cal Boltzmann’s equation at a later stage. The form of
elastic-scattering term in the transport equation is w
known for noncrystalline solids, see e.g., Ref. 11.
12541
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The basic entity in the theory, which is directly related
experimentally measured quantities, is the bilinear combi
tion of the electron’s wave functions, which can be written
a nonequilibrium correlation function

r~r ,t;r 8,t8!5^c†~r 8,t8!c~r ,t !&ne, ~2.4!

where^ . . . &ne denotes an average with the nonequilibriu
density operator, and the time dependence of the opera
c† and c is given byc(t)5exp(iHt/\)c exp(2iHt/\). The
creation of the high-energy electrons in the solid can be
scribed by a source functionI (r0 ,t0 ;r08 ,t08) such that the
evolution of the created electrons can be written as

r~r ,t;r 8,t8!5E
2`

`

dt0E
2`

`

dt08E d3r 0E d3r 08

3K~r ,t;r 8,t8ur0 ,t0 ;r08 ,t08!I ~r0 ,t0 ;r08 ,t08!,

~2.5!

where

K~r ,t;r 8,t8ur0 ,t0 ;r08 ,t08!5u~ t2t0!u~ t82t08!^c~r08 ,t08!

3c†~r 8,t8!c~r ,t !c†~r0 ,t0!&

~2.6!

is the two-particle Green’s function for the electron.
Another function, which must be calculated in order

solve the transport problem, is the single electron Gree
function, which is defined as

G~r ,r 8ut2t8!52 iu~ t2t8!^c~r ,t !c†~r 8,t8!&. ~2.7!

Note that only the time difference is used as argument in
Green’s function~2.7! since we have chosen the vacuu
state of the high-energy electron as the thermodynamic e
librium.

It is possible to derive equations for the two Green’s fun
tions G and K by applying diagrammatic methods to a ca
culation of the nonequilibrium contour-ordered correlati
functions.25 The equations obtained in Ref. 24 can then
modified as follows. The single-particle Green’s functio
~2.7! satisfies a Dyson equation which, can be written as

F i
]

]t
1

\

2m
¹ r

2GG~r ,r 8ut !2E d3xE dt8G~r ,xut8!

3S~r ,xut8!G~x,r 8ut2t8!

5d~r2r 8!d~ t !, ~2.8!

where

S~r ,r 8ut8!5
1

\2
^exp~ iH st/\!dV~r !exp~2 iH st/\!dV~r 8!&

~2.9!

is the equilibrium correlation function of the fluctuations
the solid potential. Note that in Eq.~2.8! the self-consistent
Born approximation is used for the self-energy and b
Green’s functions in the integrand appear ‘‘dressed,’’ wh
2-2
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QUANTUM THEORY OF HIGH-ENERGY ELECTRON . . . PHYSICAL REVIEW B63 125412
makes the equation different from the corresponding Eq.~10!
in Ref. 24. The use of ‘‘dressed’’ Green’s functions mak
the transition to the QBE more consistent~see below!.

An equation for the two-particle Green’s function~2.6!
may be found in Ref. 24, Eq.~B10!, which may be written as

K~r ,t;r 8,t8ur0 ,t0 ;r08 ,t08!

5G~r ,r0ut2t0!G* ~r 8,r08ut82t08!

1E dtE dt8E d3xE d3x8G~r ,xut2t!

3G* ~r 8,x8ut82t8!S~x8,xut82t!

3K~x,t;x8,t8ur0 ,t0 ;r08 ,t08!. ~2.10!
n’
um

r

n-

io
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s
Our aim is to obtain a closed form of the QBE for th
Wigner distribution function, which is related to the dens
correlation function~2.4! as

r~k,v;R,T!5E d3r E dtei ~vt2kr !r

3S R1
r

2
,T1

t

2
;R2

r

2
,T2

t

2D .

~2.11!

First, we use Eq.~2.8! and its complex conjugate to eliminat
G or G* from the right-hand side of Eq.~2.10!. By taking
the difference between the resulting integro-different
equations and using Eq.~2.5! we obtain an equation for the
density distribution function~2.4! in the form
F i S ]

]t
1

]

]t8
D 1

\

2m
~¹ r

22¹ r8
2

!Gr~r ,t;r 8,t8!2E d3xE dt@G~r ,xut2t!S~r ,xut2t!2G~r ,xut2t!S~r 8,xut82t!#

3r~x,t;r 8,t8!2E d3xE dt@G* ~r 8,xut82t!S~x,r ut2t !2G* ~r 8,xut82t!S~x,r 8ut2t8!#r~r ,t;x,t!

5E d3xE dt@G* ~r 8,xut82t!I ~r ,t;x,t!2G~r ,xut2t!I ~x,t;r 8,t8!#. ~2.12!
ce

ri-
The following steps towards a quasiclassical Boltzman
equation are identical to those used in nonequilibri
Green’s functions theory.25,26 New independent variablesT
5(t11t2)/2, R5(r11r2)/2, t5t12t2, and r5r12r2 are
introduced into Eq.~2.12! and Fourier transformations ove
the r and t variables, as in Eq.~2.11!, are performed. The
integrals in Eq.~2.12! are transformed according to the ide
tity

E d3xE dtA~r1 ,t1 ;x,t!B~x,t;r2 ,t2!

→exp [i (]v
A]T

B2]T
A]v

B2¹k
A¹R

B1¹R
A¹k

B!/2]A~k,v;R,T!

3B~k,v;R,T!. ~2.13!

If we assume that the functions vary slowly withR and T
then we may neglect all but the lowest term in the expans
of Eq. ~2.13! and obtain

F ]

]T
1vk¹R1E dv8

2p E d3k8

~2p!3
A~k8,v8;R!

3S~k2k8,v2v8;R!Gr~k,v;R,T!

2E dv8

2p E d3k8

~2p!3
A~k,v;R!

3S~k82k,v82v;R!r~k8,v8;R,T!
s

n

5A~k,v;R!I ~k,v;R,T!, ~2.14!

wherevk5\k/2m is the velocity of the electron, and

A~k,v;R![ i @G~k,v;R!2G* ~k,v;R!# ~2.15!

is the spectral intensity function of the electron. We repla
this function by its free-electron valueA0(k,v;R)
52pd(v2ek) with ek[\k2/2m. In the limit where the qua-
siclassical approximation is valid the functionr can be ap-
proximated by

r~k8,v8;R,T!.2pd~v2ek!r~k,R;T!, ~2.16!

wherer(k,R;T) is the quasiclassical electron-density dist
bution function. By integrating Eq.~2.14! over v we finally
obtain the Boltzmann’s equation in the form

F ]

]t
1vk¹ r1tk

21~r !Gr~k,r ;t !2E d3k8

~2p!3
Wkk8~r !r~k8,r ;t !

5I ~k,r ;t !, ~2.17!

where

tk
21~r !5E d3k8

~2p!3
Wk8k~r ! ~2.18!
2-3
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is the inverse mean time between inelastic-scattering events, and the inelastic-scattering function

Wkk8~r !5E
2`

`

dtE d3xexp@ i ~ek82ek!t2 i ~k82k!x#

3SS r1
x

2
,r2

x

2 Ut D , ~2.19!

whereS is defined in Eq.~2.9!. By using the relation27 between the correlation function~2.9! of the solid potential fluctuations
and the inverse generalized dielectric function we can express the inelastic-scattering function~2.19! as

Wk8k~r !52
8pe2

\
u~ek2ek8!Im F E d3q

~2p!3
eiqr

«21S k2k81
q

2
,k2k82

q

2 Uek2ek8D
S k2k82

q

2D 2 G , ~2.20!
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wheree is the charge of the electron and the inverse gen
alized dielectric function is defined by

f~q,v!5E d3q8

~2p!3
«21~q,q8uv!fext~q8,v!, ~2.21!

wherefext andf are the scalar potentials of the external a
the induced electric fields.

For large electron energies, the angular deflections of
electron’s trajectory due to inelastic-scattering processes
small and are usually neglected. The effects of the inela
scattering for that case are described by an energy-loss f
tion also known as the DIMFP. We denote this probabil
densityK(E,r ,f;\v) for an electron at positionr , having
an energyE, and moving in the directionf, to loose energy
\v in the next inelastic-scattering event. In analogy with t
inverse mean-free-time defined in Eq.~2.18! we obtain

K~\ek ,r ,fk ;\v!5
1

vk
E d3k8

~2p!3
d~\ek2\ek82\v!

3Wk8k~r !, ~2.22!

wherefk defines the direction of the vectork, i.e., the di-
rection of the trajectory before the collision. Substitution
Eq. ~2.20! into Eq. ~2.22! leads to

K~\ek,r ,fk;\v!

52
8pe2

\2vk

u~v!E d3q

~2p!3E d3q8

~2p!3

3
d~ek2ek2(q1q8)/22v!

q82
Im$«21~q,q8uv!

3exp@ i ~q2q8!r #%. ~2.23!

Equations~2.20! and ~2.23! represent our results for th
inelastic-scattering function that enters the Boltzmann’s li
of the transport equation for a spatially inhomogeneous so
For the homogeneous case
12541
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«21~q,q8uv!5~2p!3d~q2q8!«21~q,v! ~2.24!

and Eqs.~2.20! and~2.23! simplify to the well-known previ-
ous expressions.13,28

III. INELASTIC SCATTERING IN THE SURFACE
REGION

In this section we treat the transport of high-energy el
trons in the near-surface region of noncrystalline solids us
the inelastic-scattering function for the spatially inhomog
neous solid derived in the previous section. We choose
surface to be the planez50 with the bulk of the solid ex-
tending in the directionz,0. Also, for the simplicity, we
assume that the solid is invariant with respect to rotatio
around thez axis. With this geometry, the inverse genera
ized dielectric function can be written as

«21~q,q8uv!5~2p!2d~Q2Q8!«21~qz ,qz8 ;Quv!,
~3.1!

where Q and qz are the components of the wave vecto
parallel to and normal to the surface, respectively.

A. Nondispersive solid

As a simple case, we consider a model of a nondisper
semi-infinite solid with an abrupt surface. The dielect
function for this model can easily be obtained by calculat
the potential induced by a pointlike charge near the surf
and comparing the result with the definition~2.21!. This
yields

«21~k,k8;Quv!52pd~k2k8!1b~v!
i

k2k81 i0

1@s~v!2b~v!#
1

Q2 ik
1s~v!

1

Q1 ik
,

~3.2!
2-4
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where thed-function term corresponds to the external fie
part of the total induced potential, and the bulk and surf
scattering functions have been defined as

b~v!5
1

e~v!
21, ~3.3!

s~v!5
2

e~v!11
21. ~3.4!

The inelastic-scattering function~2.20! for this model is

Wk8k~z!5
8pe2

\q2
u~ek2ek8! ~3.5!

3$b~ek2ek8!u~2z!@12F~2uzuqz ,2uzuqi!#

1s~ek2ek8!F~2uzuqz ,2uzuqi!%,

whereq[k2k8, and

F~pz ,pi!5e2piFcos~pz!1
pi

pz
sin~pz!G , ~3.6!

b~v!52Im b~v!,

s~v!52Im s~v!.

It is seen that the scattering function consists of two se
rate contributions. The first term, which contains the funct
b, is zero at the surface and increases exponentially to
limiting bulk value asz→2`. The other term, which con
tains the functions, is maximal at the surface and decreas
exponentially with the distance from the surface. The inel
tic scattering of the electrons in the bulk of the so
(z→2`) are due only to interaction with bulk plasmons,
described by the functionb. Near the surface the interactio
with surface plasmons~described by the functions) plays an
important role. Precisely at the surface and outside the s
(z>0), only interaction with surface plasmons leads to el
tron scattering. The interaction with surface plasmons
present at both sides of the surface and it is symmetrical w
respect to surface reflection.

It is interesting to note that the surface part of the scat
ing function~3.5!, besides being exponentially damped w
increasing distance from the surface, has an oscillatory
havior with a characteristic wavelength

losc5p/qz . ~3.7!

The physical meaning of these oscillations can be unders
as follows. The surface part of the scattering results from
interaction of the electron with its own image near the s
face. We can imagine the scattering process as a sim
neous exchange of energy of both the electron and its im
with an effective wave of charge fluctuations of the solid~see
Fig. 1!. Both the electron and the image transfer an amo
of momentumDk5qz to the wave and this process is mo
effective when a resonance condition is satisfied. This
plies that the distance between the electron and its im
should equal an integer number of wavelengths. But thi
12541
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exactly the condition~3.7!. Consequently the oscillatory be
havior of the surface part of the scattering function can
explained as this resonance process.

For the present model it is relatively easy to obtain
analytic expression for the DIMFP for electron transp
along the surface normal. By substituting Eq.~3.5! into Eq.
~2.22! we obtain

K~E,z,f50;\v!

5
u~v!

pa0E
$u~2z!b~v!@J1~b!2J2~b,a!#

1s~v!J2~b,a!%, ~3.8!

b5AE/~E2\v!,

a52uzuA2m~E2\v!/\2,

where f is the angle between the surface normal and
direction of the electron’s path,a0 is the Bohr radius, and

J1~b!5 lnUb11

b21U, ~3.9!

J2~b,a!5bE
21

1

dx
F@a~x2b!, aA12x2#

b222bx11
. ~3.10!

The integral~3.10! can be evaluated and expressed by me
of exponential integrals of the first kind. However, the e

FIG. 1. Resonant interaction between the electron and its im
~see text!. The scattering is enhanced if the distance between
electron and the image contains an integer number of wavelen
of the effective wave of charge-density fluctuations excited dur
the scattering process.
2-5
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K. L. AMINOV AND J. BOIDEN PEDERSEN PHYSICAL REVIEW B63 125412
pression is quite complicated and we omit it here. We j
note that the usual approximations of replacing

d~ek2ek2q2v!'d~v2vkq! ~3.11!

in Eq. ~2.22!, and taking the recoil effect into account b
limiting the range of integration overq by the condition

q2
2 <q2<q1

2 , ~3.12!

q65A2m/\2@AE6AE2\v#,

work fairly well for high electron energies.
Figure 2 illustrates the forms of the function

J2(b,a)/J1(b) and 12J2(b,a)/J1(b). These functions
represent the depth dependencies of the surface and
parts of the inelastic-scattering function, as described by
functionss and b. The relative probability of scattering b
surface plasmons decreases from its maximal value at
surface to a vanishing value in the bulk. The relative pro
ability of inelastic scattering on bulk plasmons is zero at
surface and increases asymptotically to the bulk value
expected. The functions have an oscillatory behavior wit
period 1/2q2 corresponding to the cutoff of the minimum
momentum transfer from the electron-image pair to the so

Quite naturally, the DIMFP can be split into bulk an
surface parts as

K~E,z,f;\v!5u~2z!KB~E;\v!1KS~E,z,f;\v!,
~3.13!

whereKB is the only term appearing in the transport equ
tions when surface effects are neglected. In a situation wh
the effective penetration depth of the electron into the so
is large compared to the width of the surface scattering la

FIG. 2. Depth dependence of the bulk~dotted line! and surface
~solid line! components of the scattering function given by E
~3.8!. The model calculations for electron transport normal to
surface are performed for a nondispersive solid with an abrupt
face. The parameter values ofa and b used in the calculation
correspond to an electron energyE5175 eV and an energy los
\v510 eV.
12541
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it appears useful to introduce an integral parameter to c
acterize the effect of the surface. In Ref. 2 a differential
surface excitation parameter was introduced as

PS~E,f;\v!5E
2`

` dz

cosf
KS~E,z,f;\v!. ~3.14!

Additionally, a surface excitation parameter for an electr
crossing the surface is defined as2

PS~E,f!5E
0

E

PS~E,f;\v!d~\v!. ~3.15!

In the present simple model for a nondispersive solid,
differential surface excitation parameter can easily be ca
lated by use of the approximation Eq.~3.11! and by neglect
of the recoil effect. Substitution of Eq.~3.5! into Eq. ~2.22!
and performing the integration in Eq.~3.14! leads to

PS~E,f;\v!5
e2

2\2vv cosf
@2s~v!2b~v!#, ~3.16!

wherev is the velocity of the electron. Since it follows from
Eqs.~3.3!–~3.5! that

2s~v!2b~v!5Im F @12e ~v !#2

e ~v !@11e ~v !# G , ~3.17!

we find that Eq.~3.16! reproduces the result recently ob
tained by Chen and Chen22 using a different surface scatte
ing function; this is discussed later in Sec. V. Note that
first term in Eq.~3.16! corresponds to the scattering on su
face excitations while the second term represents the
crease of scattering on bulk excitations near the surface

If we use the dielectric function for the free-electron g

e~v!512
v0

2

~v1 ih!2
, h→0, ~3.18!

then we immediately find that

b~v!5
pv0

2
@d~v2v0!2d~v1v0!#, ~3.19!

s~v!5
pvs

2
@d~v2vs!2d~v1vs!#, ~3.20!

vs5v0 /A2.

The integration in Eq.~3.15! can now easily be performe
with the result

PS~E,f!5
1

cosf
@QS2QB#, ~3.21!

QS52QB5
pe2

2\v
.

where QS is the probability that the electron will excite
surface excitation while passing through the surface al
the normal direction. This result is well known.13,29,30

.
e
r-
2-6
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B. Surface models of dispersive solids

It is commonly recognized that thek dependence of the
dielectric function«(k,v) must be taken into account in o
der to provide a proper quantitative description of the effe
of bulk scattering on the electron energy-loss spectra. Fo
nately, for calculations of solid parameters like the DIMF
only the behavior at smallk values plays a major role an
quite simple models can be employed for the dielectric fu
tion. The problem becomes more complicated when the
fects of the surface are considered. One needs to choos
appropriate model for the generalized dielectric funct
~3.1!, which includes information both on the bulk and o
the surface excitations of the actual solid. During the p
decades considerable progress has been achieved in dev
ing a quantum-mechanical theory of surface plasmon exc
tions and the dielectric properties of solid surfaces; Ref.
mention just a few of these works. However, these results
difficult to use in practical electron spectroscopy applicatio
since they require excessive calculations. Therefore, a n
ber of semiempirical surface models have be
developed.23,19,18,22,21We will use two of these models for
calculation of the surface scattering function based on
theory presented above.

The first model, known as the specular reflection surf
model, was suggested in Ref. 23. The generalized diele
function for this model has the form~see the Appendix for a
derivation!

«21~z,z8;Quv!5d~z2z8!1u~2z!u~2z8!

3@b~z2z8,Q;v!1b~z1z8,Q;v!#

1u~2z8!
2b~z8,Q;v!

21b̃~Q,v!

3@u~z!e2Qz2u~2z!

3$eQz1b̃~z,Q;v!%#, ~3.22!

where we have used the mixed (z,Q) representation define
by

f ~z,Q!5E
2`

` dqz

2p
eiqzzf ~q! ~3.23!

and, similar to Eq.~3.3!,

b~z8,Q;v![E
2`

` dqz

2p F 1

«~q,v!
21Geiqzz. ~3.24!

Also

b̃~z,Q,v![
Q

pE2`

`

dqz

b~q,v!eiqzz

q2
~3.25!

and

b̃~Q,v![b̃~z50,Q,v!. ~3.26!

The second model, which can be found in Ref. 22, giv
the following generalized dielectric function:
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«21~z,z8;Quv!5d~z2z8!1u~2z!b~z2z8,Q;v!

1
b~z8,Q;v!

21b̃~Q,v!
@u~z!e2Qz2u~2z!

3$eQz1b̃~z,Q;v!%#. ~3.27!

For nondispersive models with«(q,v)5e(v), both Eqs.
~3.22! and ~3.27! simplify to

«21~z,z8;Quv!5d~z2z8!1b~v!u~2z!

3@d~z2z8!2d~z8!eQz#

1s~v!d~z8!e2Quzu, ~3.28!

which conforms with the result obtained in Ref. 32 and af
Fourier transformation coincides with Eq.~3.2!.

In order to see how the choice of surface model can af
the results of a simulation of electron scattering in the s
face region we performed some calculations. We chose A
an example since it is one of the simplest real materials.
a model function for the bulk dielectric function w
took1,33,20

«21~q,v!511
v0

2

~v1 ig!22v~q!2
, ~3.29!

v~q!5v01\q2/2m, ~3.30!

which corresponds to a single plasmon mode with damp
g and a free-electron dispersion law. We used the parame
valuesg50.54 eV~Ref. 34! andv0515.0 eV.

Figure 3 displays the results of a calculation of t
DIMFP defined by Eq.~2.22! for the case of electron trans
port along the normal to the surface (f50). The energy of
the electron isE05175 eV. The calculation was performe
for the two surface models defined by Eqs.~3.22! and~3.27!.
As expected, the surface-plasmon peak located near the
face (z50) is observed with an energy about 10 eV. T
bulk scattering forz<215 Å is determined by the bulk plas
mon peak with an energy about 15 eV and the shoul
extending to the region of higher energies due to bulk pl
mon dispersion. There is a clearly observed difference
tween the results of the two surface models, e.g., m
prominent oscillations of the differential inverse inelas
mean free path is found for the specular reflection surf
model@Fig. 3~a!#. The presence of oscillations for both of th
two dispersive models indicates that the oscillations are
just a property of the nondispersive solid model. One mi
expect, however, that the effect of the resonance interac
of the electron with its image will be degraded more se
ously when nonabruptness of the surface is taken into
count.

Figure 4 displays the differential surface excitation p
rameter, defined in Eq.~3.14!, calculated for the same two
models and with the same parameter values as in Fig. 3.
difference between the two models is again rather evid
and, as one can see, concerns mainly the shape and po
of the surface scattering peak. For both models the sur
2-7
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peak is positioned at higher energies than would be expe
from the nondispersive valuev0 /A2510.6 eV. The surface
peak in the specular reflection model is shifted to hig
energies than the corresponding peak in the model descr
by Eq. ~3.27!. The positive shift of the surface peak orig
nates from the dispersion law of the surface plasmon, wh

FIG. 3. Differential inverse inelastic mean-free-pathK(E0 ,z,f
50;\v) for Al at electron energyE05175 eV calculated using~a!
the specular reflection model@Eq. ~3.22!#, ~b! the model of Ref. 22
@Eq. ~3.27!#. Equation~3.29! was used for the calculation of th
bulk dielectric function withv0515.0 eV andg50.54 eV.

FIG. 4. Differential surface excitation parameterPS(E0 ,f
50;\v) for Al at electron energyE05175 eV. Solid line: specular
reflection model@Eq. ~3.22!#. Dotted line: the model of Ref. 22@Eq.
~3.27!#.
12541
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for both of the two considered models, is determined by
equation

b̃~Q,v!522 ~3.31!

and which is positive for smallQ values.23 This behavior is
in contradiction with the known experimental data35 from
which a negative dispersion law for the surface plasm
follows and which indicates, as first shown in Ref. 36, th
the surface charge density profile plays an important role
that the abruptness of the surface will be a poor approxim
tion.

The conclusion is that data obtained by high-energy e
tron scattering experiments are sensitive to quite subtle p
erties of the surface when the surface effects on the elec
transport can be parametrized by either the DIMFP or
differential surface excitation parameter. Thus one mi
hope to obtain useful information about the surface fro
such experiments. In the next section we consider poss
ways to include the effects of surface scattering in a desc
tion of REELS and XPS/AES data.

IV. EFFECTS OF SURFACE SCATTERING IN REELS
AND XPSÕAES

We start by considering a particularly simple case,
so-called straight-line approximation~SLA!, where both the
elastic scattering and the angular deflection of the elec
due to inelastic scattering are neglected. By exploiting
symmetry of the surface, we can write the stationary form
the Boltzmann’s equation~2.17!, in a source free region, as

Fcosf
]

]z
1l i~E,z,f!21Gr~E,z,f!

5E
2`

`

dE8K~E8,z,f;E82E!r~E8,z,f!,

~4.1!

wherer(E,z,f) is the density of electrons with energyE at
depthz and with a path direction~velocity of the electron!
given by the polar anglef. The inelastic mean free pat
l i(E,z,f) is defined by

l i~E,z,f!21[E
2`

`

deK~E,z,f;e!. ~4.2!

If the energy loss due to inelastic scattering is mu
smaller than the total kinetic energy of the electrons then
solution to Eq.~4.1! can be written as

r~E,z,f!5E
2`

`

dE8G~E,z,z0 ,f;E82E!r~E8,z0 ,f!,

~4.3!

where the energy loss for any paths fromz0 to z is equal to
2-8
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G~E,z,z0 ,f;e!5E
2`

` ds

2p
expF ise

2E
z0

z dz8

cosf
S~E,z8,f;s!G ~4.4!

with

S~E,z,f;s!5E
2`

`

deK~E,z,f;e!@12e2 ise#. ~4.5!

Equations~4.3!–~4.5! generalize Landau’s formula14 to spa-
tially inhomogeneous scattering functions.

We will now try to derive simple formulas that can b
used for analysis of REELS and XPS or AES spectra
include the effects of surface scattering. In order to do so,
assume that the transport of the electrons through the su
layer can be treated by the straight-line approximation. T
assumption requires that the effective width of the surf
layer must be sufficiently smaller than the transport me
free-path for elastic scattering. This requirement is usu
fulfilled for electron energies above 50 eV, which are co
monly used in REELS and XPS/AES except for grazi
angle values (f.90°). Under the same conditions, we m
also assume that the major part of the electrons observe
the recorded spectra cross the surface layer completely,
we neglect electrons originating from within the surfa
layer in the case of XPS/AES and electrons backscatte
within the surface layer in the case of REELS.

The electrons observed in an experiment are those lea
the surface. The observed spectrum can therefore be re
sented as

S~E,f!5cosf r~E,z5`,f!

5cosfE
2`

`

dE8G~E,`,2d,f;E82E!

3r~E8,2d,f!, ~4.6!

where the value ofz052d should be larger than the widt
of the surface but small enough that the SLA can be u
within the layer2d,z,0. According to Eq.~3.13! we may
split the function~4.5! into a bulk and a surface part as

S~E,z,f;s!5SS~E,z,f;s!1u~2z!SB~E;s! ~4.7!

with

SS~E,z,f;s!5E
2`

`

deKS~E,z,f;e!@12e2 ise# ~4.8!

and

SB~E;s!5E
2`

`

deKB~E;e!@12e2 ise#. ~4.9!

By use of Eq.~4.7! the integral term in the exponent of Eq
~4.4! can, forz5` andz052d, be rewritten as
12541
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E
2d

` dz8

cosf
S~E,z8,f;s!

5E
2d

` dz8

cosf
SS~E,z8,f;s!1E

2d

0 dz8

cosf
SB~E;s!

.E
2`

` dz8

cosf
SS~E,z8,f;s!1

d

cosf
SB~E;s!.

~4.10!

The energy-loss function in Eq.~4.6! can then be written as
the convolution

G~E,`,2d,f;e!5E
2`

`

de8GS~E,f;e8!

3GLS E,
d

cosf
;e2e8D , ~4.11!

where

GL~E,R;e!5E
2`

` ds

2p
exp@ ise2RSB~E;s!# ~4.12!

is Landau’s energy loss function,14 and

GS~E,f;e!5E
2`

` ds

2p
exp@ ise2J~E,f;s!# ~4.13!

with

J~E,f;s!5E
2`

`

dePS~E,f;e!@12e2 ise# ~4.14!

is the surface loss function that can be found in Refs. 37.
definition ~3.14! of the differential surface excitation param
eter (PS) was used to obtain Eq.~4.14!. Since we have as
sumed that the value ofd is small enough that the SLA ca
be applied, we find that

r0~E,z50;f!5E
2`

`

dE8GLS E,
d

cosf
;E82ED

3r~E8,2d,f! ~4.15!

is the density of outgoing electrons atz50, which would
result if surface scattering was absent. By inserting
~4.11! into Eq. ~4.6! and using the Eq.~4.15! we finally ob-
tain the expression

S~E,f!5E
2`

`

dE8GS~E,f;E82E!S0~E8,f!,

~4.16!

which relates the actually observed spectrum (S) with the
spectrum (S0) of a ‘‘nonperturbed’’ solid, i.e., one for which
the effect of surface scattering is neglected. This relation
recently been obtained by Chen and Chen22 who applied it to
an analysis of XPS spectra with surface scattering effe
taken into account.
2-9
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Similar arguments can be used to derive the modificati
of the spectrum of incident electrons caused by surface s
tering. The effective electron density atz50 corresponding
to a ‘‘nonperturbed’’ solid is related to the density of inc
dent electrons by

r0~E,z50;f!5E
2`

`

dE8GS~E,f;E82E!r~E8,z5`,f!.

~4.17!

Combining Eqs.~4.16! and ~4.17! yields a relation between
the reflected electron energy-loss spectrum observed ex
mentally and the corresponding spectrum calculated w
surface scattering neglected. This relation can be written

R~E0 ,f0 ;E,f!5E
2`

`

dE8GSS~E0 ,f0 ,f;E82E!

3R0~E0 ,f0 ;E8,f!, ~4.18!

whereR(E0 ,f0 ;E,f) is the conditional probability distribu
tion for an incident electron with energyE0 and directionf0
to be reflected in the directionf with energyE; the corre-
sponding value for the ‘‘nonperturbed’’ solid is denotedR0.
As before, we neglect the dependence of the total elec
energy in comparison with that of the energy loss. The ‘‘no
perturbed’’ reflection spectrum is modified through a conv
lution with the surface double-loss function

GSS~E0 ,f0 ,f;e!5E
2`

`

de8GS~E0 ,f0 ;e8!GS~E0 ,f;e2e8!

5E
2`

` ds

2p
exp@ ise2J~E0 ,f;s!

2J~E0 ,f0 ;s!#. ~4.19!

Equations~4.16! and ~4.18! provide a correction proce
dure for model spectra calculated without consideration
the effects of surfacing scattering. The corrected spectra,
include the effect of surface scattering, are obtained sim
by a convolution with the appropriate surface loss functi
Since bulk and surface properties are completely separate
these formulas it may be possible to determine the sur
properties, expressed by the differential surface excita
parameterPS(E,f;e), from experimental data by using th
‘‘nonperturbed’’ spectra as references.

We now outline an algorithm for retrieving the surfa
loss function from experimental REELS spectra. We supp
for simplicity that the bulk differential inverse inelastic mea
free pathKB(e) has been determined from other sources a
that the corresponding ‘‘nonperturbed’’ energy loss spectr
R0(e) can be calculated by a theoretical model, e.g., theP1
approximation7 or the transport approximation,38,10,11which
are known to give more or less reliable results. For brev
we omit the dependence on the energy and direction of
incident electron, leaving only the energy losse as variable.
By defining s as the Fourier transformed variable corr
12541
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sponding to the energy variablee we can, quite generally
write the Fourier transform of the ‘‘nonperturbed’’ energ
loss spectrum as

R0~s!5R01R1KB~s!1R2KB
2~s!1•••5R01Q0~s!,

~4.20!

whereR0 represents the elastic reflection peak andQ0(s) is
the inelastic energy-loss spectrum consisting of one-, tw
and more inelastic scattering peaks~represented byR1 , R2,
etc.!. The experimental spectrum can also be represented
combination of the elastic peak and the inelastic energy
part as

R~s!5R1Q~s!, ~4.21!

where the inelastic partQ(s) is now a mixture of multiple
bulk and surface scattering peaks. Similarly, the surface
function may be split into a combination of an ‘‘elastic
peak and an inelastic-scattering part as

GSS~s!5G01Ginel~s! ~4.22!

with

G05exp@2PS~E,f!2PS~E,f0!#, ~4.23!

Ginel~s!5G0(
k51

`
1

k!
@PS~E,f;s!1PS~E,f0 ;s!#k.

~4.24!

Fourier transformation of Eq.~4.18! gives the simple relation

R~s!5GSS~s!R0~s!, ~4.25!

which after insertion of Eqs.~4.20!–~4.22! and separation
into a constant part and one that depends on the variabs
yields

G05R/R0 ~4.26!

and

Ginel~s!5A~s!2B~s!Ginel~s!, ~4.27!

where we have defined

A~s!5
Q~s!

R0
2

RQ0~s!

R0
2

, ~4.28!

B~s!5
Q0~s!

R0
. ~4.29!

Since all the energy-loss functionsQ(e), Q0(e), and
Ginel(e) have nonzero values only fore.0, Eq.~4.27! trans-
formed into the energy variables has the form

Ginel~e!5A~e!2E
0

e

de8B~e2e8!Ginel~e8!. ~4.30!

This integral equation forGinel(e) can be solved recursively
e.g., by the procedure proposed in Ref. 39. AfterG0 and
Ginel(e) are found, the values ofPS(E,f)1PS(E,f0) and
PS(E,f;e)1PS(E,f0 ;e) can be obtained from Eqs.~4.23!
and~4.24!. For f5f0 this would give us both the differen
2-10
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tial surface excitation parameter and the surface excita
parameter of the surface scattering. A consistency chec
the procedure is provided by the relation~3.15!.

V. COMPARISON WITH STOPPING-POWER METHODS

In this section we compare the present results, obtaine
a quantum-mechanical derivation of a localized Boltzman
equation, with those based on a calculation of the stopp
power.13,19,20,22,21In the stopping-power approach, it is a
sumed that the fast electron moves along a classical tra
tory and the effect of the medium is calculated as the fo
acting upon the electron due to the induced potential of
medium caused by the field of the moving electron. Let
consider an electron moving along a straight line with vel
ity v, for which the charge density

r~r ,t !5ed~r2r02vt !, ~5.1!

and its Fourier transform

r~q,v!5ed~v2vq!e2 iqr0. ~5.2!

The direct field of the moving charge is then

fext~q,v!5
8p2e

q2
d~v2vq!e2 iqr0. ~5.3!

The induced potential of the medium can be expresse
items of the generalized dielectric function, defined by E
~2.21!, as

f ind~r ,t !58p2eE dv

2pE d3q

~2p!3E d3q8

~2p!3

d~v2vq8!

q82

3@«21~q,q8uv!2~2p!3d~q2q8!#eiqr2 iq8r02 ivt.

~5.4!

The spatially dependent stopping power can then be ca
lated from Eq.~5.4! as19,22

2
dW

dS
52

e

v F]f ind~r ,t !

]t G
r5r01vt

~5.5!

with the result

2
dW

dS
52

4ipe2

v E vdvE d3q

~2p!3E d3q8

~2p!3

d~v2vq8!

q82

3@«21~q,q8uv!2~2p!3d~q2q8!#ei (q2q8)r.

~5.6!

In the stopping-power approach, the energy-loss functio
then obtained by use of the relation between the stopp
power and the DIMFP

2
dW

dS
5E

0

`

~\v!K~\v!d~\v!. ~5.7!
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The quantum-mechanical expression for the stopp
power, which follows from our derivation of the differentia
inverse inelastic mean free path given by Eq.~2.23! and the
relation ~5.7!, is

2
dW

dS
52

4ipe2

v E vdvE d3q

~2p!3E d3q8

~2p!3

3
d~v2v~q1q8!/2!

q82
@«21~q,q8uv!

2~2p!3d~q2q8!#ei (q2q8)r , ~5.8!

where we have used the property«21(q,q8uv)5@«21(2q,
2q8u2v)#* and the high-energy approximation given b
Eq. ~3.11!.

It is instructive to compare the above classical a
quantum-mechanical expressions for the stopping powe
use of the coordinate representation for the dielectric fu
tion. If we introduce the definition

b~r ,r 8ut!5E dv

2pE d3q

~2p!3E d3q8

~2p!3
@«21~q,q8uv!

2~2p!3d~q2q8!#exp~ iqr2 iq8r 82 ivt!

~5.9!

then the classical Eq.~5.6! can be written as

2
dW

dS
5

e2

v E d3r 8E dtḃ~r ,r 8ut!
1

ur2vt2r 8u
,

~5.10!

while the quantum-mechanical Eq.~5.8! is transformed into

2
dW

dS
5

e2

v E d3r 8E dtḃS r1
vt

2
,r 81

vt

2 Ut D 1

ur2vt2r 8u
.

~5.11!

As usual,ḃ denotes the time derivative of the function d
fined by Eq.~5.9!. The physical origin of the difference be
tween the classical and the quantum-mechanical express
for the stopping power is clearly seen from Eqs.~5.10! and
~5.11!. In the classical treatment, the stopping power at po
r results from the interaction of the electron at this point w
the polarization of the medium induced by the same electr
the electron is described as a pointlike particle moving alo
a classical trajectory. In our quantum-mechanical treatm
of spatially inhomogeneous media, we must compromise
tween uncertainties in the position and the momentum of
electron. Consequently, instead of a pointlike particle
need a wave packet of finite spatial size. Equation~5.11! for
the stopping power takes into account that the medium
polarized beforehand, i.e., by the front of the moving wa
packet, as reflected by the change of the second argume
the dielectric response function fromr 8 to r 81vt/2. Simi-
larly, the first argument ofḃ is r1vt/2 rather thanr , which
indicates that the front of the packet is first to interact w
the polarization of the medium.
2-11
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A comparison of Eqs.~5.6! and~5.8! shows that there are
two situations where the results obtained from a calcula
of the stopping power for classically moving electrons a
from the Boltzmann equation are equivalent. The first c
occurs for spatially homogeneous media where Eq.~2.24!
holds, and q5q8. The equivalence of the quantum
mechanical and the quasiclassical treatments for hom
neous media has previously been demonstrated
Ritchie.13,28 Another case is found by integrating Eqs.~5.6!
and ~5.8! over the spatial variable. The integration conve
the exponential function exp@i(q2q8)r # into the delta-
function d(q2q8) and thus again we haveq5q8. This
means that the two approaches are equivalent with respe
calculations of the energy loss averaged over the elec
path. This, for example, is of interest for calculations of t
differential surface excitation parameter, Eq.~3.14!, and the
surface excitation parameter, Eq.~3.15!, and we have already
demonstrated the equivalence of the differential surface
citation parameter calculated by our approach, Eq.~3.16!,
with the corresponding result, recently obtained by Chen
Chen,22 by a stopping-power calculation. For these two si
ations the localization of the electron, assumed by usin
classical trajectory, is not essential for the final result. Fo
homogeneous medium the scattering properties are spa
independent~the stopping power given by Eq.~5.6! does not
depend onr for q5q8) and in the latter case an average ov
the trajectory is performed.

The difference between the stopping-power approach
the Boltzmann’s equation approach becomes essential w
the spatial structure of the scattering function is conside
As an example, we use the expression obtained by Chen
Chen22 to calculate the differential inverse inelastic mea
free-path for an electron leaving the solid in the normal
rection using the nondispersive solid model. The result is

K~E,z,f50;\v!5
u~v!

pa0E
$u~2z!b~v!@J12J2~z!#

1s~v!~u~2z!J2~z!1u~z!

3@J3~z!2J2~z!# !%, ~5.12!

whereJ1 is given by Eq.~3.9!,

J2~z!5E
q2

q1

dQ
Qe22Quzu

Q21~v/v !2
, ~5.13!

J3~z!52 cosS vz

v D J2S z

2D , ~5.14!

and q6 is defined in Eq.~3.13!. It is easy to see that Eq
~5.12! differs from the corresponding expression obtained
our theory, Eq.~3.8!. Figure 5 displays the surface part of th
scattering function@the part involvings(v)# for both expres-
sions. Equation~5.12! is asymmetrical for an electron mov
ing inside and outside of the solid, while our expression,
~3.8!, is symmetrical about the surface. Equation~5.12! does
produce oscillations outside the solid, although with a wa
length about twice as large as that obtained by our theor
does not predict oscillations inside the solid.
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The difference between the spatial dependencies of
scattering function obtained by the two methods can be
plained by an internal inconsistency of the problem formu
tion. Due to the uncertainty principle, an exact specificat
of the position of the electron, required in the context o
spatially dependent scattering function, leads to an un
tainty of the electron energy and thus to an uncertainty in
definition of the energy-loss function. The local approxim
tion to the quantum Boltzmann’s equation, which we intr
duced above, provides a reasonable compromise betwee
certainty in position and energy. Therefore, we believe t
the definition of a spatially dependent scattering function
the context of a localized Boltzmann’s equation is more
propriate than the one used previously by stopping-po
calculations based on a classical trajectory of the electro

VI. CONCLUSIONS

We have derived a Boltzmann-type transport equation
high-energy electrons interacting with an inhomogene
solid. The effect of the spatial inhomogeneity on the inelas
scattering of the electrons is described self-consistently b
generalized dielectric function of the solid. A model calc
lation of the transport properties near the surface was
formed. It was found that the spatial dependence of
inelastic-scattering function derived from our description,
significantly different from that obtained from a calculatio
of the stopping power for electrons moving along classi
trajectories. The spatial dependence obtained by the pre
formalism has an oscillatory behavior near the surface
can be explained as resulting from the resonant interactio
the electron with its image. The two approaches give ide
cal results only when the detailed spatial dependence of

FIG. 5. Depth dependence of the surface part of the DIMFP
an electron leaving the solid in the normal direction. The calcu
tions are performed for the nondispersive solid model with an e
tron energyE5175 eV and energy loss\v510 eV. Solid line:
calculation using the stopping-power approach. Dotted line: ca
lation based on the theory presented in the present paper@Eq. ~3.8!#.
2-12
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scattering function is unimportant. This includes calculatio
of the integrated energy loss of an electron crossing the
face, as expressed by the differential surface excitation
rameter. A determination of the differential surface exci
tion parameter seems to be sufficient for a quantita
description of surface effects in situations where the me
free-path of the electron exceeds the effective width of
surface layer, e.g., in the high-electron energy limit
REELS and XPS/AES. However, as we have demonstra
the values of the differential surface excitation paramete
rather sensitive to the surface parameters and the interp
tion of experimental data can thus be significantly affec
by the choice of surface model. We suggest that an exp
mental determination of the differential surface excitati
parameter could be of interest for understanding the sur
properties and for a proper quantification of other expe
mental results. We have outlined an algorithm that could
useful for estimations of the differential surface excitati
parameter from experimental REELS data.
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APPENDIX: GENERALIZED DIELECTRIC FUNCTION IN
THE SPECULAR SURFACE MODEL

In this appendix we present a derivation of the inve
generalized dielectric function, defined by Eq.~2.21!, for the
specular reflection surface model introduced by Ritchie
Marusak.23 The model assumes that the quasiparticles of
solid are specularly reflected at the inside of the surface.
problem of finding the induced potential of the medium, a
response to an external charge distribution, can be succ
fully treated by the method of extende
pseudomedia.19,40,41,21For the geometry described in Sec. I
the total potential in the presence of the external charge
be written as

f~z,Q;v!5u~z!f1~z,Q;v!1u~2z!f2~z,Q;v!,
~A1!

where f1 ,f2 are the potentials in the extended pseud
vacuum and pseudosolid, respectively, and the transfor
tion of all functions to the variables (z,Q) is defined by Eq.
~3.23!. The potentialsf6 for the extended pseudomedia a
defined by
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f6~q,v!5
4p

q2«6~q,v!
@r0

6~q,v!1sS
6~Q,v!#, ~A2!

wheresS is the fictitious surface charge, andr0
1 ,r0

2 are the
effective symmetrized charge distributions corresponding
each pseudomedia. These charge distributions are relate
the real external charge distributionr0(q,v) by

r0
6~z,Q;v!5u~z!r0~6z,Q;v!1u~2z!r0~7z,Q;v!.

~A3!

By applying the matching conditions for the normal com
ponents of the dielectric displacementsD at z50 one finds

sS
1~Q,v!52sS

2~Q,v![sS~Q,v!, ~A4!

The continuity condition of the potential~A1! determines the
value of the fictitious surface charge as

sS~Q,v!5@ «̃1
21~Q,v!1 «̃2

21~Q,v!#21E
2`

`

dz8r0~z8,Q;v!

3$u~2z8!@ «̃2
21~z8,Q,v!1 «̃2

21~2z8,Q,v!#

2u~z8!@ «̃1
21~z8,Q,v!1 «̃1

21~2z8,Q,v!#%,

~A5!

where we have introduced

«̃6
21~z,Q,v![

Q

pE2`

`

dqz

eiqzz

q2«6~q,v!
~A6!

and

«̃6
21~Q,v![«̃6

21~z50,Q,v!. ~A7!

Substituting Eqs.~A5! and~A3! into Eq. ~A2! followed by a
substitution of Eq.~A2! into Eq. ~A1! yields the following
expression for the total potential in the presence of the
ternal charge

f~z,Q;v!5E
2`

`

dz8a~z,z8,Q;v!r0~z8,Q;v!, ~A8!

where
a~z,z8,Q;v!5
2p

Q
$u~z!u~z8!@ «̃1

21~z2z8,Q,v!1 «̃1
21~z1z8,Q,v!#1u~2z!u~2z8!@ «̃2

21~z2z8,Q,v!

1 «̃2
21~z1z8,Q,v!#1@u~z!«̃1

21~z,Q,v!2u~2z!«̃2
21~z,Q,v!#@«̃1

21~Q,v!1 «̃2
21~Q,v!#21

3~u~2z8!@ «̃2
21~z8,Q,v!1 «̃2

21~2z8,Q,v!#2u~z8!@ «̃1
21~z8,Q,v!1 «̃1

21~2z8,Q,v!#!%. ~A9!

Since the external potential and the external charge distribution is related by
2-13
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r0~z,Q;v!5
1

4p S Q22
]2

]z2D fext~z,Q;v!, ~A10!

we find that the inverse generalized dielectric function can be obtained as

«21~z,z8,Q;v!5
1

4p S Q22
]2

]z82D a~z,z8,Q;v!. ~A11!

Using the identity

S Q22
]2

]z2D «̃6
21~z,Q,v!52Q«6

21~z,Q,v!, ~A12!

we then obtain

«21~z,z8,Q;v!5u~z!u~z8!@«1
21~z2z8,Q,v!1«1

21~z1z8,Q,v!#1u~2z!u~2z8!@«2
21~z2z8,Q,v!1«2

21~z1z8,Q,v!#

1@u~z!«̃1
21~z,Q,v!2u~2z!«̃2

21~z,Q,v!#@«̃1
21~Q,v!1 «̃2

21~Q,v!#21

3~u~2z8!@«2
21~z8,Q,v!1«2

21~2z8,Q,v!#2u~z8!@«1
21~z8,Q,v!1«1

21~2z8,Q,v!#!. ~A13!

By inserting the values«1(q,v)51 and«2(q,v)5«(q,v) for the vacuum-solid interface, we finally arrive at the requir
expression, Eq.~3.22!.

A different surface model was used in a recently published work by Chen and Chen.22 In terms of our derivation, their
model implies that Eq.~A3! should be replaced by

r0
6~z,Q;v!5r0~z,Q;v!. ~A14!

A derivation of the generalized dielectric function for that model yields

«21~z,z8,Q;v!5u~2z!«2
21~z2z8,Q,v!1u~z!«1

21~z2z8,Q,v!

1
@u~z!«̃1

21~z,Q,v!2u~2z!«̃2
21~z,Q,v!#@«2

21~2z8,Q,v!2«1
21~2z8,Q,v!#

«̃1
21~Q,v!1 «̃2

21~Q,v!
, ~A15!

which, after insertion of the conditions for the solid-vacuum interface, is transformed into Eq.~3.27!.
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