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Quantum theory of high-energy electron transport in the surface region
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A quantum Boltzmann’s equation is derived to describe the transport of high-energy electrons in spatially
inhomogeneous media. In the lowest approximation this equation reduces to a local Boltzmann’s equation
where the scattering function is expressed in terms of a generalized dielectric function of the media. The
inelastic scattering of high-energy electrons near the surface of the solid is investigated by use of the local
Boltzmann's equation. For a solid with an abrupt surface and a nondispersive dielectric function the inelastic-
scattering function shows an oscillatory behavior in the surface region that can be explained as a resonant
interaction of the electron with its image. Numerical calculations of the scattering function for several previ-
ously introduced models for a solid with a dispersive dielectric function are also presented. The calculated
results indicate that the oscillatory behavior near the surface is a general phenomenon. Moreover, it is found
that the inelastic-scattering function depends significantly on the surface model. A proper choice of model is
therefore a prerequisite for a correct interpretation of experimental energy-loss spectra.
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I. INTRODUCTION face on the electron energy loss can be described by the
surface loss function, which in the case of nondispersive
In recent years electron spectroscopy has become an inselid, has the form If+ 1/[8(w)+l]}.13’15 In the single-
portant tool for investigating properties of solids, particularly plasmon model of a solid with bulk plasmon frequency
in the surface regioh.® Because of the limited penetration this form reproduces a peak with a frequengy/\2 corre-
depth of the electron, the spectral information refers to aponding to surface-plasmon excitations. In a solid with spa-
surface layer usually not exceeding 100 A in depth. It istial dispersion of the dielectric function the surface loss func-
well-established experimentally that surface excitations contion becomes more complicated and, in general, the
tribute with significant features to the electron spectrum forscattering properties of the surface has to be expressed by a
energies below 1 keV. These effects are more prominent fogeneralized dielectric functioa(q,k;w) of the spatially in-
low electron energies since the mean free path, and thus themogeneous solitf 8
penetration depth, of the electron decreases with decreasing In order to include the interaction with surface excitations
electron energy. A quantitative analysis of low-energy elecinto the transport equation the spatial dependence of the
tron spectra therefore necessitates a proper treatment of tiheelastic-scattering probabilities near the surface must be
interaction of electrons with surface excitations. considered. Previously, there have been several attempts to
Many author§™*! have used a Boltzmann-type transport obtain the spatial dependence of the scattering function from
equation as a basis for quantitative interpretations of electronalculations of the stopping power for electrons moving
spectra obtained by various spectroscopical techniques sualong classical trajectori¢S-?> However, the relation be-
as x-ray photoelectron spectroscof¥PS), Auger electron tween the scattering function obtained by these approaches
spectroscopyAES), and reflected-electron-energy-loss spec-and the transport equation has not been clarified.
troscopy(REELS. In these approaches the elastic-scattering The aim of the present paper is to derive, from first prin-
processes are treated by means of electron-atom scatteringples, a transport equation for high-energy electrons in sol-
cross sections and it is assumed that the angular deflectioids where the effects of spatial inhomogeneities of the solid
due to inelastic-scattering processes can be neglected f@uch as the surfagen the inelastic-scattering properties are
high electron energies. The inelastic scattering is thereforeaken into account self-consistently.
described by a differential inverse inelastic mean-free-path In Sec. Il we derive a quantum Boltzmann’s equation
(DIMFP) which for the bulk of the solid can be expressed in(QBE) for transport of high-energy electrons interacting with
terms of the loss functior Im[ ¢ ~1(q,w) ], wheree(q,w) is  the solid. This general equation is then approximated by a
the dielectric function of the solitf'3 Surface scattering is transport equation with local inelastic-scattering probabili-
neglected and it is assumed that the inelastic-scattering progies. The spatially varying scattering functions and the
erties of the solid are homogeneous within the bulk volumeDIMFP are expressed in terms of a generalized dielectric
and up to the surface. For energy losses much smaller tha&anction of the solid.
the electron energy the solution of the transport equation can In Sec. Ill we apply the expressions derived in Sec. Il to
be then writtef as a convolution of the path distribution transport of high-energy electrons in the surface region. By
function of the electrons in the solid with the Landau energy-using a simple model for a nondispersive solid we obtain an
loss functiori* expressed via the bulk differential inverse in- explicit analytical expression for the spatial dependence of
elastic mean free pattbIMFP). the scattering function, which displays an oscillating behav-
Earlier solutions to the problem of electron scattering byior near the surface. This phenomenon can be explained as
the surface of a soltd'>~8show that the effect of the sur- the effect of the resonant interaction of the electron with its
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image. Calculations of the DIMFP for transport along the The basic entity in the theory, which is directly related to
surface normal are also performed for two previous surfacexperimentally measured quantities, is the bilinear combina-
models, that use dispersive sofitl&®??1t is demonstrated tion of the electron’s wave functions, which can be written as
that the scattering properties of the surface depend signifa nonequilibrium correlation function
cantly on the choice of the surface model.

In Sec. IV a quantitative analysis of surface effects in p(rtr )= (g (r' ) (r,)) e, 2.9
electron energy-loss spectra is discussed in terms of the dihoere( .. .)ne denotes an average with the nonegquilibrium

ferential surface excitation parameter. An algorithm for re-gengity operator, and the time dependence of the operators
trieving this parameter from REELS spectra is proposed. " and  is given by y(t) = exp(Ht/k)yexp(—iHt/k). The

_Finally, in Sec. V- we compare the results of our theory cyeqiinn of the high-energy electrons in the solid can be de-
with those derived from the quasiclassical approach based U ribed by a source functioh(rg,te:r},ts) such that the
0:to:loslg

stopping-power calculations. evolution of the created electrons can be written as

Il. TRANSPORT EQUATION o ® , . .
p(r.t;r’ t)=1| dtg| dty| d°rg| drg
A quantum theory describing the transport of high-energy — —o0

electrons interacting with a solid has recently been devel-
oped by Dudareet al?* In this section we reformulate their

basic transport equation in the form of a QBE. The quasi- (2.5
classical limit of this equation is then used to derive a spa- h
tially inhomogeneous inelastic-scattering function for non-"""€r€

XK1t ro,to;rd to)1(ro,toirg,to),

crystalline solids. KOE AT Pt r! 1) = B(t—t t—t! XY
The Hamiltonian of the high-energy electrons interacting (r 61, tIro,to;ro,to) = 01~ 1) 61" ~to)(4(ro, o)
with the solid can be written as X sz(r’,t’)w(r,t)zﬂ(ro,to)}

(2.6

is the two-particle Green’s function for the electron.

+ ) o Another function, which must be calculated in order to
wherey’ and ¢ are creation and annihilation operators, re-gg|ye the transport problem, is the single electron Green’s

spectively, of the high-energy electron4(r) is the interac-  fynction, which is defined as

tion potential of the solid acting on the electron at the point

r, andHg is the Hamiltonian of the solid. G(r,r'|t—t")=—i0(t—t"){y(r,O)g'(r' t")). (2.7
For a solid in thermodynamical equilibrium, the potential

can be separated into a static part and a dynamic parts as Note that only_the time qlifference is used as argument in the
Green’s function(2.7) since we have chosen the vacuum

ﬁZ
H=fd3r¢T(r) —%anLV(r)}://(r)JrHs, (2.2

V(r)=(V(r))+8V(r). (2.2 state of the high-energy electron as the thermodynamic equi-
librium.
Here( ...) denotes an average with the equilibrium density It is possible to derive equations for the two Green'’s func-
operator, which in Dirac notation has the form tions G andK by applying diagrammatic methods to a cal-

culation of the nonequilibrium contour-ordered correlation
functions®® The equations obtained in Ref. 24 can then be
modified as follows. The single-particle Green'’s function
(2.7) satisfies a Dyson equation which, can be written as

1
Po=> E exp(— €5/ksT)|s,0)(s,0], (2.3

where the combined stats,0) indicates that the solid is in
an eigenstatés) with energyes and the electron is in the
vacuum stateZ =3 ;exp(— e/kgT) is the partition functionT
is the temperature, arldg; is Boltzmann'’s constant.

The static par{V(r)) is responsible for the elastic scat- XS(rx|t)G(xr'[t—t")
tering of the electrons by the atoms of the solid situated in = S(r—1")8(t) 2.8
their average or equilibrium positions. The fluctuating part of ' '
the potentialsV(r) is responsible for the inelastic scattering where
of the electrons, which is caused by the interaction of the
electrons with the excitations of the solid. For noncrystalline 1
solids the elastic- and inelastic-scattering parts can usually béS(r.r'[t") = — (expliH st/%) SV(r)exp(—iH /%) V("))
treated separately~** Therefore, for the sake of simplicity, h 2.9
we will neglect the static part of the potential and assume ’
that the elastic scattering can be included in the quasiclassis the equilibrium correlation function of the fluctuations of
cal Boltzmann’s equation at a later stage. The form of thehe solid potential. Note that in E¢2.8) the self-consistent
elastic-scattering term in the transport equation is well-Born approximation is used for the self-energy and both
known for noncrystalline solids, see e.g., Ref. 11. Green'’s functions in the integrand appear “dressed,” which

2 hVZG ’ fdsfd’G '
LT 5 Vi |G [ — | di | dt'G(rx|t")
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makes the equation different from the corresponding(EQ).  Our aim is to obtain a closed form of the QBE for the
in Ref. 24. The use of “dressed” Green’s functions makesWigner distribution function, which is related to the density

the transition to the QBE more consistéaée below. correlation function(2.4) as
An equation for the two-particle Green’s functid@.6)
may be found in Ref. 24, E§B10), which may be written as p(k,w;R,T)=J d3rf dte(@t=kn,

K(r,t;r',t'ro,to;rg,t0) ; ( ; (
X| R+ E,T"‘ E;R_E’T_E .

=G(r,rolt—tg)G* (r',rg|t’ —tg)

(2.11)
+f drf dr’f d3xf d3x' G(r,x|t—7) First, we use Eq(2.8) and its complex conjugate to eliminate
G or G* from the right-hand side of Eq2.10. By taking
XG*(r' x|t/ —=7")S(X" x| 7' — 1) the difference between the resulting integro-differential
equations and using EQ.5 we obtain an equation for the

XK(x,7x", 7' [rg, 10370, t0)- (2.10  density distribution functiori2.4) in the form

(24 2 0 2 vey?
ot " o) T am ViV

Xp(X,T;r’,t')—f d3xf drG*(r' x|t = 7)S(x,r|7—t) = G* (r' X|t' — 7)S(X,r'| 7—t") ]p(r,t;X,7)

p(r,t;r’,t’)—f d3xf dr[G(r,x|t—7)S(r X|t—7) = G(r,x|t—7)S(r’' x|t' — 7)]

zf d3xf drdG*(r' x|t"=)I(r,t;x,7) = G(r,x[t—7) | (X, 751" ,t")]. (2.12

The following steps towards a quasiclassical Boltzmann's =Ak,0;R)I(k,w;R,T), (2.19
equation are identical to those used in nonequilibrium

Green's functions theor”:*° New independent variableb  \yherev,=#k/2m is the velocity of the electron, and
=(t1+1t)/2, R=(r{+ry)/2, t=t;—t,, andr=r,—r, are '
introduced into Eq(2.12) and Fourier transformations over
the r andt variables, as in Eq(2.11), are performed. The

integrals in Eq(2.12 are transformed according to the iden- ) ) )
tity is the spectral intensity function of the electron. We replace

this function by its free-electron valueAy(k,w;R)
=278(w— €,) With e,=%k?/2m. In the limit where the qua-
3 . . k k
f d XJ d7A(r1,t X DB(X 7M. L) siclassical approximation is valid the functipncan be ap-
proximated by

Ak, 0;R)=i[G(k,w;R)—G*(k,w;R)]  (2.15

—expli(dhd3— 072 —VRVE+VRVE/2]A(K,0;R,T)
XB(k,w;R,T). (2.13 p(k' 0 ;R T =27w8w—e)p(k,R;T), (2.16

If we assume that the functions vary slowly wighand T wherep(k,R;T) is the quasiclassical electron-density distri-
then we may neglect all but the lowest term in the expansiomution function. By integrating Eq2.14) over w we finally

of Eq. (2.13 and obtain obtain the Boltzmann’s equation in the form
A +fdw J K o R) 8 K’
—= TVKVR - , W' = , ’oe.
aT 2w ] (2m)3 &t"'VkV + 7 (f)}P(k,r,t) J(zw)‘ngk (rp(k’,r;t)
X S(k—k',0—w":R) | p(k,w;R,T) =1tkry), (219
where
43K’
f f A(k,w;R)
(2m” S| X (1) (2.18
7 ()= r :
XSk’ —k,0' — w;R)p(K,0":R,T) “ (2m®
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is the inverse mean time between inelastic-scattering events, and the inelastic-scattering function

Wkkr(r)Z fjowdtj daxexp[i(fkr_ Gk)t_i(k, _k)X]

X S

5 5 t), (2.19

whereSis defined in Eq(2.9). By using the relatioff between the correlation functid@.9) of the solid potential fluctuations
and the inverse generalized dielectric function we can express the inelastic-scattering f(fhd¢®bas

X X
r+5.0r—5

8 dq sl(k—k'-l—g,k—k'—g ek—ek,)
’ = - ——0 - ’ iqr .
W)=~ =5 oteeom | [ 25 ) , 220
k—k'— =
2
|
wheree is the charge of the electron and the inverse gener- e Xq,q'|w)=2m)3%5(qg—q)e qw) (2.2

alized dielectric function is defined by

and Eqgs(2.20 and(2.23 simplify to the well-known previ-

3 ous expressions:?8

d>q’
(2m)°

¢(q,w>=f 60,0 | @) bod s ), (2.21
IIl. INELASTIC SCATTERING IN THE SURFACE

whereg.,; and ¢ are the scalar potentials of the external and REGION

the induced electric fields.
For large electron energies, the angular deflections of the |n this section we treat the transport of high-energy elec-
electron’s trajectory due to inelastic-scattering processes affons in the near-surface region of noncrystalline solids using
small and are usually neglected. The effects of the inelastighe inelastic-scattering function for the spatially inhomoge-
scattering for that case are described by an energy-loss fungeous solid derived in the previous section. We choose the
tion also known as the DIMFP. We denote this probability surface to be the plane=0 with the bulk of the solid ex-
densityK(E,r, ¢;fiw) for an electron at position, having  tending in the directiorz<0. Also, for the simplicity, we
an energyE, and moving in the directiokp, to loose energy assume that the solid is invariant with respect to rotations
fiw in the next inelastic-scattering event. In analogy with thearound thez axis. With this geometry, the inverse general-

inverse mean-free-time defined in Hg.18 we obtain ized dielectric function can be written as
37
K(ﬁsk,r,qﬁk;ﬁw):if&Mek_ﬁek,_hw) e 7Yq,9'|w)=(2m)28(Q—Q")e ~X(a,.,q} ;Q|w),
v (2m)® (3.1
X Wk (1), (222 where Q and g, are the components of the wave vector,

where ¢, defines the direction of the vectér, i.e., the di- parallel to and normal to the surface, respectively.

rection of the trajectory before the collision. Substitution of

Eqg. (2.20 into Eq.(2.22 leads to A. Nondispersive solid
K(hewr, dyihho) As a simple case, we consider a model of a nondispersive
kol %o semi-infinite solid with an abrupt surface. The dielectric
8re? d%q d3q’ function for this model can easily be obtained by calculating
=———0( f 3 3 the potential induced by a pointlike charge near the surface
hvy (2mm)°J) (2m) and comparing the result with the definitid@.21). This
5 ) yields
€~ €Ek— "o — W
x— 2 —imieY(q,q']w)
q [
; ) kK =2mw8(k—K')+ —_
xXexp[i(q—a')rl}. (2.23 e (ki Qw)=2me ) 'B(w)k—k’+i0
Equations(2.20 and (2.23 represent our results for the 1 1
inelastic-scattering function that enters the Boltzmann’s limit +[(T(co)—,8(a))]Q_ K + U(w)Q+ e
of the transport equation for a spatially inhomogeneous solid.
For the homogeneous case (3.2

125412-4
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where thes-function term corresponds to the external field ,

part of the total induced potential, and the bulk and surface
scattering functions have been defined as é
1 /
B(w)= @) 1, (3.3 /
e(w 27 %

2 > f @ Elect
= - Image O ectron
o(w) (@) +1 1. (3.9 y
The inelastic-scattering functiaf2.20) for this model is ,
8me? /
Wiek(2)= Py O(€ex— €xr) (3.9 y
a 4
X{b(ex—ew) 0(—2)[1—F(2|2|q,,2|2|q))] (
y
+s(ec— e )F(2]2]q,,2|2|q)}, ,
whereq=k—k’, and ,
- P /
F(pz,p)=e" cos(pz)+p—sm(pz) : (3.6 y
z
Surface
b(w)=—ImB(w),

FIG. 1. Resonant interaction between the electron and its image
s(w)=—Imo(w). (see text The scattering is enhanced if the distance between the
electron and the image contains an integer number of wavelengths
It is seen that the scattering function consists of two sepaef the effective wave of charge-density fluctuations excited during
rate contributions. The first term, which contains the functionthe scattering process.
b, is zero at the surface and increases exponentially to its
limiting bulk value asz— —o. The other term, which con- exactly the conditior(3.7). Consequently the oscillatory be-
tains the functiors, is maximal at the surface and decreasedhavior of the surface part of the scattering function can be
exponentially with the distance from the surface. The inelasexplained as this resonance process.
tic scattering of the electrons in the bulk of the solid For the present model it is relatively easy to obtain an
(z— — ) are due only to interaction with bulk plasmons, asanalytic expression for the DIMFP for electron transport
described by the functioh. Near the surface the interaction along the surface normal. By substituting £8.5) into Eq.
with surface plasmon@lescribed by the functios) plays an  (2.22 we obtain
important role. Precisely at the surface and outside the solid ]
(z=0), only interaction with surface plasmons leads to elec- K(E,z,¢=0w)
tron scattering. The interaction with surface plasmons are 0(w)
present at both sides of the surface and it is symmetrical with =

{6(=2)b(w)[I1(B) = J2(B,a)]

respect to surface reflection. maok
It is interesting to note that the surface part of the scatter- +s(w)Jy(B,a)}, (3.9
ing function(3.5), besides being exponentially damped with
increasing distance from the surface, has an oscillatory be- B= \/m
havior with a characteristic wavelength
— 2
Noo= 74, . 3.7 a=2|z|\2m(E—-fhw)/h?,

here ¢ is the angle between the surface normal and the
irection of the electron’s patla, is the Bohr radius, and

B+1
B—1|’

The physical meaning of these oscillations can be understoo
as follows. The surface part of the scattering results from th
interaction of the electron with its own image near the sur-
face. We can imagine the scattering process as a simulta- Ji(B)=In
neous exchange of energy of both the electron and its image

with an effective wave of charge fluctuations of the s¢éide

Fig. 1). Both the electron and the image transfer an amount 1 Fla(x—PB), ayl—x?]

of momentumAk=gq, to the wave and this process is most JZ(B*Q)Zﬁf_ldX B2—2Bx+1 . (310
effective when a resonance condition is satisfied. This im-

plies that the distance between the electron and its imag€he integral(3.10 can be evaluated and expressed by means
should equal an integer number of wavelengths. But this if exponential integrals of the first kind. However, the ex-

(3.9
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it appears useful to introduce an integral parameter to char-
acterize the effect of the surface. In R a differential
surface excitation parameter was introduced as

» dz
PS(E’¢;ﬁw)=f_wcos¢

K E,z,d;hw). (3.14

Additionally, a surface excitation parameter for an electron
crossing the surface is defined as

E

PS(E,qS):f PsE, ¢ hw)d(hw). (3.19

0

In the present simple model for a nondispersive solid, the
differential surface excitation parameter can easily be calcu-

0 10 20 lated by use of the approximation E@.11) and by neglect
of the recoil effect. Substitution of E@3.5) into Eq. (2.22
zZ A and performing the integration in E¢3.14) leads to
2
FIG. 2. Depth dependence of the bytotted ling and surface Ps(E,¢;ﬁw):e—S¢[25(w)— b(w)], (3.16

(solid line) components of the scattering function given by Eq. 242wy co
(3.8). The model calculations for electron transport normal to the . . . .
surface are performed for a nondispersive solid with an abrupt sutvherev is the velocity of the electron. Since it follows from
face. The parameter values af and 8 used in the calculation Eds.(3.9—(3.5) that
correspond to an electron ener§y=175 eV and an energy loss

_ 2
hw=10 eV. 25(w)—b(w)=Im | <L)

€(w)[1te(w)] |

tve find that Eq.(3.16 reproduces the result recently ob-
tained by Chen and Ch&husing a different surface scatter-
Sex— e q— ®)=~ 80 —VyQ) (3.11) ipg functiqn; this is discussed later in Sec. V. N_ote that the
first term in Eq.(3.16 corresponds to the scattering on sur-
in Eqg. (2.22, and taking the recoil effect into account by face excitations while the second term represents the de-
limiting the range of integration ovey by the condition crease of scattering on bulk excitations near the surface.
If we use the dielectric function for the free-electron gas

(3.17

pression is quite complicated and we omit it here. We jus
note that the usual approximations of replacing

9> <0’<q?, (3.12
2
w
4. = \2miRZ E= VEFro], f(w)=1-———, 70, (3.18

(w+in)?
work fairly well for high electron energies.

Figure 2 illustrates the forms of the functions
Jo(B,a)/J1(B) and 1-J,(B,a)/J1(B). These functions o
represent the depth dependencies of the surface and bulk b(w)=—0[5(w—wo)—5(a)+ wo) ], (3.19
parts of the inelastic-scattering function, as described by the 2
functionss and b. The relative probability of scattering by

then we immediately find that

surface plasmon_s Qecreases_from its maximal va_Iue at the s(w)= S[é(w—ws)—é(erwS)], (3.20
surface to a vanishing value in the bulk. The relative prob- 2

ability of inelastic scattering on bulk plasmons is zero at the

surface and increases asymptotically to the bulk value, as ws= wo/\/i-

expected. The functions have an oscillatory behavior with A he intearation in Ea(3.15 can now easily be performed
period 1/2)_ corresponding to the cutoff of the minimum with ;he ?eSl.Illt n Eq(3.19 W eastly P

momentum transfer from the electron-image pair to the solid.

Quite naturally, the DIMFP can be split into bulk and 1
surface parts as P«E,¢)= @[Qs— Qsl, (3.2
K(E,z,¢p;hw)=0(—2)Kg(E;iw)+K4E,z,¢;hw), o2
v
(313 Qs=2Qe=5;—

whereKg is the only term appearing in the transport equa-

tions when surface effects are neglected. In a situation whenehere Qg is the probability that the electron will excite a
the effective penetration depth of the electron into the solicsurface excitation while passing through the surface along
is large compared to the width of the surface scattering layethe normal direction. This result is well knovif?%:2°
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B. Surface models of dispersive solids e Yz,2;Qlw)=68(z—2")+ 6(—2)B(z— 7' ,Q; )
It is commonly recognized that thedependence of the .
dielectric functione (k,w) must be taken into account in or- + Bz, Qiw) [6(2)e Q7— 6(—2)
der to provide a proper quantitative description of the effects 2+B(Q,0)
of bulk scattering on the electron energy-loss spectra. Fortu- _
nately, for calculations of solid parameters like the DIMFP, x{e%+ B(z,Q; w)}]. (3.2

only the behavior at smal values plays a major role and . ) . B
quite simple models can be employed for the dielectric funcy,0" nondispersive models with(q, ) = &(w), both Egs.

tion. The problem becomes more complicated when the ef(3'22) and (3.27) simplify to
fects of the surface are considered. One needs to choose an

-1 I — 5! _
appropriate model for the generalized dielectric function ¢ (2.21Qlw)=8(z=2") + B(w) 6(~2)

(3.1), which includes information both on the bulk and on X[8(z—2")— 8(z")e%?]
the surface excitations of the actual solid. During the past A
decades considerable progress has been achieved in develop- +o(w)d(z')e” =", (3.28

i_ng a q“a”t“m'mem?”ica' thec_)ry of surf_ace plasmon exCitav'vhich conforms with the result obtained in Ref. 32 and after
tions and the dielectric properties of solid surfaces; Ref. 3]Fourier transformation coincides with E.2) '

mention just a few of these works. However, these results are In order to see how the choice of surface model can affect
difficult to use in practical electron spectroscopy appllcatlons[he results of a simulation of electron scattering in the sur-

since they require excessive calculations. Therefore, a num: . :
: O ace region we performed some calculations. We chose Al as
ber of semiempirical surface models have been

. an example since it is one of the simplest real materials. As
developed®1°18222)e will use two of these models for a P P

calculation of the surface scattering function based on th%oﬁgg% function for the bulk dielectric function we

theory presented above.
The first model, known as the specular reflection surface 2
model, was suggested in Ref. 23. The generalized dielectric e N qw) =1+ “o (3.29
function for this model has the foriisee the Appendix for a ’ (0+iy)?—w(q)?
derivation

e 2,2:Qlw)=8(z—2')+ 6(—2)6(—2') w(4)=wo+hg*/2m, (330

X[B(z—7',Q,w)+ B(z+2',Q;w)]

which corresponds to a single plasmon mode with damping
v and a free-electron dispersion law. We used the parameters

28(z',Q:w) valuesy=0.54 eV (Ref. 39 and wyg=15.0 eV.
+0(-2)—————— Figure 3 displays the results of a calculation of the
2+ B(Q,w) DIMFP defined by Eq(2.22 for the case of electron trans-
X[ 0(2)e~ %~ (—2) port along the normal to the surfacé€0). The energy of
the electron if€y=175 eV. The calculation was performed
X{eQZ+E(z,Q;w)}], (3.22 for the two surface models defined by E(%.22) and(3.27).

. . _ As expected, the surface-plasmon peak located near the sur-
where we have used the mixed, Q) representation defined face (z=0) is observed with an energy about 10 eV. The

by bulk scattering foz= — 15 A is determined by the bulk plas-
- d mon peak with an energy about 15 eV and the shoulder
f(Z,Q):J &eiqZZf(q) (3.23  extending to the region of higher energies due to bulk plas-
— 27 mon dispersion. There is a clearly observed difference be-

and, similar to Eq(3.3), tweer_l the res_ults. of the two ;urface. mpdels, e.g., more
prominent oscillations of the differential inverse inelastic
= dg,[ 1 _ mean frge path is found for the spe'cular reflection surface
J' o 2(q.0) e'9%  (3.29 mode_I[Flg. 3(a)]. The presence of oscillations for _both of the
o ' two dispersive models indicates that the oscillations are not
Also just a property of the nondispersive solid model. One might
expect, however, that the effect of the resonance interaction
_ - B(q,w)e' of the electron with its image will be degraded more seri-
BzQuw)=—| do7———— (3.25  ously when nonabruptness of the surface is taken into ac-
o q count.
and Figure 4 displays the differential surface excitation pa-
rameter, defined in Eq3.14), calculated for the same two
B(Q,w)=B(z=0Q,0). (3.26  models and with the same parameter values as in Fig. 3. The
difference between the two models is again rather evident
The second model, which can be found in Ref. 22, givesand, as one can see, concerns mainly the shape and position
the following generalized dielectric function: of the surface scattering peak. For both models the surface

-1

B(z',Q;w)
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for both of the two considered models, is determined by the
equation

B(Q,w)=-2 (3.31

Kev=A "

and which is positive for smafD values?® This behavior is

in contradiction with the known experimental d&tdrom
which a negative dispersion law for the surface plasmons
follows and which indicates, as first shown in Ref. 36, that
the surface charge density profile plays an important role, so
that the abruptness of the surface will be a poor approxima-
tion.

The conclusion is that data obtained by high-energy elec-
tron scattering experiments are sensitive to quite subtle prop-
erties of the surface when the surface effects on the electron
transport can be parametrized by either the DIMFP or the
differential surface excitation parameter. Thus one might
hope to obtain useful information about the surface from
such experiments. In the next section we consider possible
ways to include the effects of surface scattering in a descrip-
tion of REELS and XPS/AES data.

Kev A"

IV. EFFECTS OF SURFACE SCATTERING IN REELS
AND XPS/AES

FIG. 3. Differential inverse inelastic mean-free-p#tE,,z, ¢ We start by considering a particularly simple case, the
=0;%w) for Al at electron energ§,= 175 eV calculated usingp) ~ SO-called straight-line approximatidSLA), where both the
the specular reflection modgEq. (3.22], (b) the model of Ref. 22  elastic scattering and the angular deflection of the electron
[Eg. (3.27]. Equation(3.29 was used for the calculation of the due to inelastic scattering are neglected. By exploiting the
bulk dielectric function withw,=15.0 eV andy=0.54 eV. symmetry of the surface, we can write the stationary form of

the Boltzmann’s equatiof2.17), in a source free region, as

peak is positioned at higher energies than would be expected
from the nondispersive value,/2=10.6 eV. The surface
peak in the specular reflection model is shifted to higher
energies than the corresponding peak in the model described
by Eg. (3.27). The positive shift of the surface peak origi-
nates from the dispersion law of the surface plasmon, which = f

COS¢%+M(E,Z,¢)_1 p(E.z,¢)

- dE'K(E’,z,¢;E' —E)p(E’,z,¢),

4.9

wherep(E,z, ¢) is the density of electrons with energyat
depthz and with a path directiorivelocity of the electron
given by the polar anglep. The inelastic mean free path
Ni(E,z,¢) is defined by

N(E,z,¢) 1= f deK(E,z, ¢;€). (4.2

If the energy loss due to inelastic scattering is much
smaller than the total kinetic energy of the electrons then the
10 15 20 solution to Eq.(4.1) can be written as

Energy loss (eV)

. . L p(Eizv(f)):J’ dE,G(E121201¢;E,_E)p(E,1201¢)1
FIG. 4. Differential surface excitation paramet®g(Eq, ¢ —o

=0;%w) for Al at electron energ¥,= 175 eV. Solid line: specular 4.3
reflection mode[Eq. (3.22)]. Dotted line: the model of Ref. 2Eq.
(3.27]. where the energy loss for any paths framto z is equal to

125412-8
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o0 d - d ’
G(E,z,zo,d);e):ﬁx iexr{is«z Ld @2(52,,(1);3)
jz dz’ s o _jw dz' s o JO ’ s .
5, cose (Ez.¢i5) 449 ~ J_q cos¢ (B2, 9+ _g COS¢ s(Eis)
ith 4y |
" :ﬁm Coz¢25(E,Z’,¢;S)+ COS¢EB(E;S).
E(E,z,dxs):fj deK(E,z, ¢;€)[1—e '5€]. (4.5 4.10

The energy-loss function in E¢4.6) can then be written as

Equations(4.3—(4.5) generalize Landau’s formutato spa-  the convolution
tially inhomogeneous scattering functions.

We will now try to derive simple formulas that can be
used for analysis of REELS and XPS or AES spectra and G(E,=,—d, ;€)= J_
include the effects of surface scattering. In order to do so, we
assume that the transport of the electrons through the surface d )
layer can be treated by the straight-line approximation. This XGL( E,m;e—e ) (4.1
assumption requires that the effective width of the surface
layer must be sufficiently smaller than the transport meanwhere
free-path for elastic scattering. This requirement is usually ds
fulfilled for electron energies above 50 eV, which are com- |7 as i .
monly used in REELS and XPS/AES except for grazing GL(E'R’G)_J_OC o SHise REg(Es)] (412
angle values $=90°). Under the same conditions, we may .
also assume that the major part of the electrons observed A
the recorded spectra cross the surface layer completely, i.e., = ds
we neglect electrons originating from within the surface Gs(E,¢;6)=f _
layer in the case of XPS/AES and electrons backscattered —o 27T
within the surface layer in the case of REELS. ith

The electrons observed in an experiment are those Ieavin\gIt
the surface. The observed spectrum can therefore be repre-

o)

de'Gg(E,p;€’)

Landau’s energy loss functidfi,and

exdise—E(E,¢;s)] (4.13

sented as E(E,¢;s)=f ' dePg(E,¢;e)[1—e 5]  (4.14
S(E,¢)=cos¢ p(E,z==,¢) is the surface loss function that can be found in Refs. 37. The
@ definition (3.14) of the differential surface excitation param-
=cos¢f dE'G(E,»,—d,¢;E'—E) eter (Pg) was used to obtain Ed4.14). Since we have as-
_°° sumed that the value af is small enough that the SLA can
X p(E',—d, ), (4.6) be applied, we find that

where the value ofy,=—d should be larger than the width PN e , e

of the surface but small enough that the SLA can be used Po(E.z=0:)= J,wdE GL(E’ cos¢’E E)

within the layer—d<z<0. According to Eq(3.13 we may

split the function(4.5) into a bulk and a surface part as Xp(E',—d, o) (4.19

N . B . is the density of outgoing electrons a0, which would

2(Bz.4:9)=2s(B2.¢:9)+ 0(-2)26(Bis) (4D ot it surface scattering was absent. By inserting Eq.
with (4.1) into Eq. (4.6) and using the Eg4.15 we finally ob-
tain the expression

ES(E,Z,¢,S):J‘iwdEKS(E,Z,(i),E)[l_e_|56] (48) S(E,(){)):Jx dE,Gs(E,(ZS,E,_E)So(E,,QZs),

and (4.16

which relates the actually observed spectruB) (ith the
spectrum §;) of a “nonperturbed” solid, i.e., one for which
the effect of surface scattering is neglected. This relation has
recently been obtained by Chen and Cffevho applied it to

By use of Eq.(4.7) the integral term in the exponent of Eq. an analysis of XPS spectra with surface scattering effects
(4.4) can, forz=c andzy=—d, be rewritten as taken into account.

EB(E;S)=JldeKB(E;e)[l—e’iSG]. (4.9
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Similar arguments can be used to derive the modificationsponding to the energy variablewe can, quite generally,
of the spectrum of incident electrons caused by surface scaivrite the Fourier transform of the “nonperturbed” energy
tering. The effective electron density &0 corresponding loss spectrum as

to a “nonperturbed” solid is related to the density of inci-
dent electrons by Ro(8)=Ro+RyKg(8) + RKE(S)+ - - =Ro+Qo(S),
(4.20
© , , whereR, represents the elastic reflection peak &wls) is
po(E,Z=0;¢)=f_wdE Gs(E,¢,E'—E)p(E',z=,¢). the inelastic energy-loss spectrum consisting of one-, two-
(4.17 and more inelastic scattering peakepresented bir;, Ry,
etc). The experimental spectrum can also be represented as a
Combining Eqs(4.16) and (4.17) yields a relation between combination of the elastic peak and the inelastic energy loss
the reflected electron energy-loss spectrum observed expefart as
mentally and the corresponding spectrum calculated with
surface scattering neglected. This relation can be written as R(s)=R+Q(s), (4.2
where the inelastic pa®(s) is now a mixture of multiple

o bulk and surface scattering peaks. Similarly, the surface loss
R(Eo,¢o;E,¢)=f dE'GsdEg,¢0,¢;E'—E) function may be split into a combination of an “elastic”
o peak and an inelastic-scattering part as
XRy(Eq,d0;E’, 9), 4.1
o(Fo:d0iE0) (419 Ged )= Go+ Gpe(S) (4.2

whereR(Eg, ¢g;E, ¢) is the conditional probability distribu-  with

tion for an incident electron with enerdy, and directiong,

to be reflected in the directiosp with energyE; the corre- Go=exd —Ps(E,¢) = Ps(E, ¢o) ], (4.23
sponding value for the “nonperturbed” solid is denotiegl * 4

As before, we neglect the dependence of the total electron _ . R
energy in comparigon with thatpof the energy loss. The “non- G"‘e'(s)_Gokgl ki LPs(E,¢:9) +Ps(E,dois) I
perturbed” reflection spectrum is modified through a convo- (4.24

lution with the surface double-loss function Fourier transformation of Eq4.18 gives the simple relation

R(s)=GsgS)Ro(s), (4.25

which after insertion of Eqs(4.20—(4.22 and separation
into a constant part and one that depends on the var&able

GodEaubo.di6)= | e BB, i€ )Gl g, e~

_fm ds i Z(En. b yields
= _wEeXF[I56 E(Eg,®;s)
—E(Eo,¢0:9)]. 4.1
(Eo.¢0;9)] (4.19 and
Equations(4.16) and (4.18 provide a correction proce- Ginel(S)=A(S) —B(S)Gjnel(S), (4.27

dure for model spectra calculated without consideration of
the effects of surfacing scattering. The corrected spectra, thdf
include the effect of surface scattering, are obtained simply

here we have defined

Q(s) RQu(s)

by a convolution with the appropriate surface loss function. A(s)= , (4.28
Since bulk and surface properties are completely separated in Ro RS

these formulas it may be possible to determine the surface

properties, expressed by the differential surface excitation B(s)= Qo(s) 4.29

parametePg(E, ¢; €), from experimental data by using the
“nonperturbed” spectra as references.

We now outline an algorithm for retrieving the surface
loss function from experimental REELS spectra. We suppos
for simplicity that the bulk differential inverse inelastic mean
free pathKg(€) has been determined from other sources and €
that the corresponding “nonperturbed” energy loss spectrum Ginel(€)=A(€)— f de'B(e—€')Gjpel(€’). (4.30
Ry(€) can be calculated by a theoretical model, e.g.,Rhe 0
approximatiof or the transport approximatiofi!®**which  This integral equation fo6;.(€) can be solved recursively,
are known to give more or less reliable results. For brevitye.g., by the procedure proposed in Ref. 39. A&y and
we omit the dependence on the energy and direction of th&,,(€) are found, the values d?¢(E, ¢) + P<(E, ¢o) and
incident electron, leaving only the energy lasas variable. Pg(E,¢;€)+ Pg(E, ¢q;€) can be obtained from Eq$4.23
By defining s as the Fourier transformed variable corre-and(4.24). For ¢= ¢, this would give us both the differen-

Ro

Since all the energy-loss function®(e), Qq(e), and
?m(e) have nonzero values only fe>0, Eq.(4.27 trans-
ormed into the energy variables has the form
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tial surface excitation parameter and the surface excitation The quantum-mechanical expression for the stopping

parameter of the surface scattering. A consistency check gfower, which follows from our derivation of the differential

the procedure is provided by the relati@15). inverse inelastic mean free path given by E223 and the
relation(5.7), is

V. COMPARISON WITH STOPPING-POWER METHODS

4|7-re d3q  d%q’
In this section we compare the present results, obtained by BT f f 53] (2.3
a quantum-mechanical derivation of a localized Boltzmann’s (2m)*J (2m)
equation, with those based on a calculation of the stopping

powerl319.20.222L1n the stopping-power approach, it is as- X dlo—Vv(q+a)/2) [¢e Xa.q'|w)
sumed that the fast electron moves along a classical trajec- q'?

tory and the effect of the medium is calculated as the force 3 e (d—a')r

acting upon the electron due to the induced potential of the —(2m)°6(q—q’)]e ’ (5.9

medium caused by the field of the moving electron. Let usyhere we have used the property(q,q’|w)=[s " 1(—q,
consider an electron moving along a straight line with veloc-— q'| — ) * and the high-energy approximation given by
ity v, for which the charge density Eq. (3.1D).
It is instructive to compare the above classical and
p(r,)=es(r—ro—vt), (5. guantum-mechanical expressions for the stopping power by
and its Fourier transform use of the.coordinate repre.s<_ar_1tation for the dielectric func-
tion. If we introduce the definition

p(0,0)=ed(w—va)e oo, (5.2 o
rect 1 - - purin= [ 5o S [ S e aale)
The direct field of the moving charge is then 2m?3) 2= )3
2e , —(2m)3%8(g—q")]exp(igr—iq'r’' —iw7)
Do @0) =~ dw-va)e To. (53 araleptara
(5.9
The induced potential of the medium can be expressed ifen the classical Eq5.6) can be written as
items of the generalized dielectric function, defined by Eg.
(2.2, as ——=—f dir’ de,B(r r |T)| t
r_
d3q [ d3q’ S(w—vq') (5.10
Ginal(r,t) =8 eJ’ J 3 3 2 . . . .
(2m)°) (2) q while the quantum-mechanical E.8) is transformed into
x[e"0,q'|w)—(2m)38(q—q’)]e'd 1o Tet, dW e? vr vt 1
E e[ ar 1 2] | 2
(5.4) r=vr—r’
(5.11

The spatially dependent stopping power can then be calcu-

lated from Eq.(5.4) as®?2 As usual, denotes the time derivative of the function de-
fined by Eq.(5.9). The physical origin of the difference be-

dW e[ dding(r.t) tween the classical and the quantum-mechanical expressions
ds vl ot (5.9 for the stopping power is clearly seen from E¢s.10 and
=rotv (5.11). In the classical treatment, the stopping power at point
with the result r results from the interaction of the electron at this point with
the polarization of the medium induced by the same electron;
4| e? d3q d?q’ S(w—vq') the elec_:tron is.described as a pointlike particle moving along
s f f a classical trajectory. In our quantum-mechanical treatment
(2m?®) (2m)?® g2 of spatially inhomogeneous media, we must compromise be-
. ) 3 N ai(d—a)r tween uncertainties in the. position and the_ momentum of the
X[e7H(0,9'[@) = (2m)*8(q—q)]e - electron. Consequently, instead of a pointlike particle we

(5.5  need a wave packet of finite spatial size. Equat@i) for
the stopping power takes into account that the medium is
In the stopping-power approach, the energy-loss function igolarized beforehand, i.e., by the front of the moving wave
then obtained by use of the relation between the stoppingacket, as reflected by the change of the second argument in

power and the DIMFP the dielectric response function from to r’+v/2. Simi-
larly, the first argument of is r +v7/2 rather tharr, which
— fw(ﬁw)K(ﬁw)d(ﬁw). (5.7) indicates that the front of the packet is first to interact with
the polarization of the medium.
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A comparison of Eqs(5.6) and(5.8) shows that there are
two situations where the results obtained from a calculation {
of the stopping power for classically moving electrons and
from the Boltzmann equation are equivalent. The first case
occurs for spatially homogeneous media where 24
holds, and q=q’. The equivalence of the quantum-
mechanical and the quasiclassical treatments for homoge-
neous media has previously been demonstrated by
Ritchie!32® Another case is found by integrating Ed5.6)
and (5.8) over the spatial variable. The integration converts
the exponential function ekigq—q’)r] into the delta-
function 8(q—q') and thus again we havg=q’. This
means that the two approaches are equivalent with respect tc
calculations of the energy loss averaged over the electron
path. This, for example, is of interest for calculations of the
differential surface excitation parameter, £g§.14), and the
surface excitation parameter, £§.15, and we have already =~ 20 -10 0 10 20 30 40
demonstrated the equivalence of the differential surface ex-
citation parameter calculated by our approach, 8416,

with tf212e Correspon'ding result, recent!y obtained by Chen'and FIG. 5. Depth dependence of the surface part of the DIMFP for
Chen, by a Sto_pplr_lg-power calculation. For these two _S'tu'an electron leaving the solid in the normal direction. The calcula-
ations the localization of the electron, assumed by Using §ons are performed for the nondispersive solid model with an elec-
classical trajectory, is not essential for the final result. For aron energyE=175 eV and energy lostw=10 eV. Solid line:
homogeneous medium the scattering properties are spatialjaiculation using the stopping-power approach. Dotted line: calcu-
independentthe stopping power given by E¢b.6) does not  |ation based on the theory presented in the present pEpe(3.9)].
depend omr for g=q’) and in the latter case an average over
the trajectory is performed. . The difference between the spatial dependencies of the
The difference between the stopping-power approach angcattering function obtained by the two methods can be ex-
the Boltzmann’s equation approach becomes essential Whgﬂlained by an internal inconsistency of the problem formula-
the Spatlal structure of the Scatterlng fUnCthn is considere ion. Due to the uncertainty princip|e, an exact Speciﬁcation
As an example, we use the expression obtained by Chen argl the position of the electron, required in the context of a
Chel’? to calculate the differential inverse inelastic mean'spatia”y dependent Scattering function, leads to an uncer-
free-path for an electron leaving the solid in the normal di-tainty of the electron energy and thus to an uncertainty in the
rection using the nondispersive solid model. The result is definition of the energy-loss function. The local approxima-
Bw) tion to the quantum Boltzmann’s equation, which we intro-
w . .
K(E,z,¢=0:hw)= ——={0(—2)b(w)[I;— I»(2)] duceq abpve, ptqwdes a reasonable compromise bgtween un-
magkE certainty in position and energy. Therefore, we believe that
_ the definition of a spatially dependent scattering function in
+5(0)(0(=2)2(2) + 6(2) the context of a localized Boltzmann’s equation is more ap-
X[J3(2)—Jx(2) ]}, (5.12 propriat_e than the one used _previoysly by stopping-power
calculations based on a classical trajectory of the electron.

z(A)

whereJ; is given by Eq.(3.9),

Qe72Q|z\ VI. CONCLUSIONS

3o(2)= f RS (5.13

q_ Q%+ (wlv)?’ We have derived a Boltzmann-type transport equation for
high-energy electrons interacting with an inhomogeneous
z solid. The effect of the spatial inhomogeneity on the inelastic
JZ(E : (5.14  scattering of the electrons is described self-consistently by a
generalized dielectric function of the solid. A model calcu-
and g- is defined in Eq.(3.13. It is easy to see that Eq. lation of the transport properties near the surface was per-
(5.12 differs from the corresponding expression obtained byformed. It was found that the spatial dependence of the
our theory, Eq(3.8). Figure 5 displays the surface part of the inelastic-scattering function derived from our description, is
scattering functiofithe part involvings(w) | for both expres-  significantly different from that obtained from a calculation
sions. Equation(5.12) is asymmetrical for an electron mov- of the stopping power for electrons moving along classical
ing inside and outside of the solid, while our expression, Eqtrajectories. The spatial dependence obtained by the present
(3.8), is symmetrical about the surface. Equati{éril2 does formalism has an oscillatory behavior near the surface that
produce oscillations outside the solid, although with a wave€an be explained as resulting from the resonant interaction of
length about twice as large as that obtained by our theory, ithe electron with its image. The two approaches give identi-
does not predict oscillations inside the solid. cal results only when the detailed spatial dependence of the

wZ
v

Js(2)=2 cos{
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scattering function is unimportant. This includes calculations -

of the integrated energy loss of an electron crossing the sur- ¢-(0,0)=—

face, as expressed by the differential surface excitation pa- d°e-(q,»)
rameter. A determination of the differential surface excita- . _—_ .
tion parameter seems to be sufficient for a quantitativéV1€r€ds is the fictitious surface charge, apg ,p, are the
description of surface effects in situations where the mean€ffective symmetrized charge distributions corresponding to
free-path of the electron exceeds the effective width of thé&@ch pseudomedia. These charge distributions are related to
surface layer, e.g., in the high-electron energy limit ofthe real exteral charge distributig(q, ») by

REELS and XPS/AES. However, as we have demonstrated,

the values of the differential surface excitation parameter is Po (2.Q;@)=0(2)po(+2,Q;w)+ 6(—2)po(+2,Q; ).

rather sensitive to the surface parameters and the interpreta- (A3)

tion of experimental data can thus be significantly affected ) . .

by the choice of surface model. We suggest that an experi- BY @Pplying the matching conditions for the normal com-
mental determination of the differential surface excitationPonents of the dielectric displacemefisatz=0 one finds
parameter could be of interest for understanding the surface . B

properties and for a proper quantification of other experi- 05(Qw)=-05(Quw)=0yQ ), (Ad)
mental results. We have outlined an algorithm that could be]_
useful for estimations of the differential surface excitation
parameter from experimental REELS data.

[po (Q,0)+05(Qw)], (A2)

he continuity condition of the potentiéd1) determines the
value of the fictitious surface charge as
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APPENDIX: GENERALIZED DIELECTRIC FUNCTION IN —0(z)[e; (2 ,.Q o) +e (-2 ,.Qw)]},
THE SPECULAR SURFACE MODEL (A5)

In this appendix we present a derivation of the invers :
generalized dielectric function, defined by Eg.21), for the Swhere we have introduced
specular reflection surface model introduced by Ritchie and . i,z
Marusak?® The model assumes that the quasiparticles of the 2:4z2,0,0)= gj dq € (AB)
solid are specularly reflected at the inside of the surface. The - ) 9. (q,0)
problem of finding the induced potential of the medium, as a
response to an external charge distribution, can be succes3?d
fully treated by the method of extended

pseudomedid’*%4+2For the geometry described in Sec. Il 21HQ,0)=2:%2=0Q,0). (A7)
the total potential in the presence of the external charge can - -
be written as Substituting Eqs(A5) and(A3) into Eq.(A2) followed by a
substitution of Eq.(A2) into Eq. (Al) yields the following
$(2,Q0)=0(2) . (2,Qw)+0(—2)¢_(2,Q;w), expression for the total potential in the presence of the ex-

(A1) ternal charge
where ¢, ,¢_ are the potentials in the extended pseudo-
vacuum and pseudosolid, respectively, and the transforma- . _f , ) .
tion of all functions to the variablez(Q) is defined by Eq. (2.Qw)= _mdz #(2,2',Q0)po(Z',.Qiw), (AB)
(3.23. The potentialsp-. for the extended pseudomedia are
defined by where

[

(2,7 ,Q;w)= %T{e(z) 0(z2)[e (z—2',Q,0)+e . N(z+2',Qw)]+6(—2)0(—2)[e-(z—2',Q,0)

+e_Yz+2,Qw)]+[0(2)e(2,Q,0)— 0(—2)e_*(2,Q,0) [ (Q,0) e _1(Qw)] 1

X(0(—2)[e 12", Qo) +e_ (-2 ,Q0)]—-0(z)[e 1 (z,Quw)+e,(—2',Qw)])}.  (A9)

Since the external potential and the external charge distribution is related by
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1, &
pO(ZyQ;w):E Q _E ¢EXI(ZIQ;(1))1 (Alo)

we find that the inverse generalized dielectric function can be obtained as

. 1 92
& (2,2 ,Qo)=—| Q*~ —]a(z.7 ,.Qiw). (A11)
™ 0z
Using the identity
P\~
(QZ— —2>8+1(Z,Q,w)=2Q8+1(Z,Q,w), (A12)
0z

we then obtain
e Yz2,2,Qw)=0(2)0(z)[e; (z— 2" ,Q0) +&,  (z+7,Q,0) |+ 6(—2) (-2 )[e_Nz— 7', Q,w) + &~ (z+7',Q,w)]
+[0(2)e,1(2,Q,0)— 0(—2)s_1(2,Q ) ][ (Qw) +_H(Qw)]
X(0(—2)[e-1(z',Qw)+e_(~2',Qw)]-0(Z)[s1(z',Qw)+&.(—2',Qw)]). (AL3)
By inserting the values ., (q,w)=1 ande_(q,w)=¢(q,w) for the vacuum-solid interface, we finally arrive at the required
expression, Eq(3.22.

A different surface model was used in a recently published work by Chen and?€heterms of our derivation, their
model implies that Eq(A3) should be replaced by

po (2,Q;@)=po(2,Q; w). (A14)
A derivation of the generalized dielectric function for that model yields

e 42,2 ,Q;w)=0(—2)e"Y(z2—2',Q,0)+ 6(2)e; (z— 7' ,Q,w)

+[9(z>’é;l<z,Q,w>—0(—z)Eil(z,Q,m][s:l(—z',<:),w>—ei%—z’.Q.w)]

= = A15
e.(Q ) +&e-Y(Q,0) (A19
which, after insertion of the conditions for the solid-vacuum interface, is transformed int@ 2a).
*On leave from Zavoisky Physical-Technical Institute, Kazan,*L. Landau, J. PhySMoscow 8, 201 (1944).
Russia. 15p. Mills, Surf. Sci.48, 59 (1975.
1H. Raetherjn Excitation of Plasmon and Interband Transitions 6T. Maniv and P. Gies, Surf. Sc211/212, 242(1989.
edited by G. Hofler, Springer Tracts in Modern Physics Vol. 8817K. Sturm, Adv. Phys31, 1 (1982.
(Springer-Verlag, New York, 1980 18y, Nazarov, Phys. Rev. B9, 10 663(1994).
°R.F. EgertonElectron Energy-Loss Spectroscopy in the Electron19¢ Flores and F. Garcia-Moliner, J. Phys1e, 907 (1979.
Microscope(Plenum, New York, 1986 20F. Yubero and S. Tougaard, Phys. Rev4®& 2486(1992.
M. Inokuti, Rev. Mod. Phys43, 297 (1972. 2lE. Yubero, J. M. Sanz, B. Ramskov, and S. Tougaard, Phys. Rev.
4D. P. Woodruff and T. A. DelchaiModern Techniques of Surface B 53, 9719(1996.
ScienceCambridge University Press, New York, 1986 22Y. F. Chen and Y. T. Chen, Phys. Rev.58, 4980(1996.
5J. C. Riviere Surface Analytical Techniqué€larendon, Oxford, 23R. H. Ritchie and A. L. Marusak, Surf. Set, 234 (1966).
1990 243, Dudarev, L.-M. Peng, and M. Whelan, Phys. Rev@13 408
6S. Tougaard and P. Sigmund, Phys. Re2® 4452 (1982). (1993.
’A. L. Tofterup, Phys. Rev. B2, 2808(1985. 25, Keldysh, zh. Esp. Teor. Fiz.47, 1515 (1964 [Sov. Phys.
8A. L. Tofterup, Surf. Sci227, 157 (1990. JETP20, 1018(1965].
%V. M. Dwyer and J. A. D. Matthew, Surf. Scl93 549 (1988. 26| Kadanoff and G. BaymQuantum Statistical Mechani¢8en-
101 3. Tilinin and W. S. M. Werner, Surf. Sc290, 119(1993. jamin, New York, 1962 J. Rammer and H. Smith, Rev. Mod.
Iw. S. M. Werner, 1. S. Tilinin, and M. Hayek, Phys. Rev.5B, Phys.58, 323(1986; G. Mahanjn Quantum Transport in Semi-
4819(1994). conductors edited by D. K. Ferry and C. Jacoboriplenum
123, Lindhard, K. Dan. Vidensk. Selsk. Mat. Fys. MedzB(8) Press, New York, 1991A. P. Jauho, ilQuantum Transport in
(1954. Semiconductoredited by D. K. Ferry and C. Jacobo(®ienum
BR. H. Ritchie, Phys. Rev106, 874 (1957). Press, New York, 1991

125412-14



QUANTUM THEORY OF HIGH-ENERGY ELECTRON. .. PHYSICAL REVIEW B3 125412

27H. Kohl and H. Rose, imdvances in Electronics and Electron °°C. Kunz, Z. Phys196, 311 (1966; A. Bagchi and C. B. Duke,

Physics edited by P. W. HawkeAcademic, Orlando, 1985 Phys. Rev. B5, 2784(1972.
28R. Ritchie, Phys. Revl14, 644 (1959. 36A. J. Bennett, Phys. Rev. B, 203(1970.
29€. stern and R. Ferrell, Phys. Reb20, 130 (1960. S7A. A. Lucas, Phys. Rev. Let26, 229(1971); A. A. Lucas and M.
30G. Mahan, Phys. Status Solidi 5, 703 (1973. Sunjic, Prog. Surf. Sci2, 75(1972; E. Evans and D. L. Mills,
31p. A. Fedders, Phys. Re¥53 438(1967); P. J. Feibelmanibid. Phys. Rev. Bs, 4126(1972; J. Schilling, Z. Phys. B: Condens.
176, 551(1968; J. Harris and A. Griffin, Can. J. Phy48, 2592 Matter 25, 61 (1976.
(1970; D. E. Beck, Phys. Rev. B, 1555(1971); J. F. Dobson  %8I. S. Tilinin, Zh. Eksp. Teor. Fiz.82, 1291 (1982 [Sov. Phys.
and G. H. Harris, J. Phys. 20, 6127(1987). JETP55, 751(1982].
32N. J. M. Horing, E. Kamen, and H. L. Cui, Phys. Rev3R 2184  *°S. Tougaard and I. Chorkendorff, Phys. Rev3B 6570(1987.
(1985. 40F. Garcia-Moliner and F. Floresntroduction to the Theory of
33R. H. Ritchie and A. Howie, Philos. Ma@6, 463 (1977). Solid SurfacegCambridge University Press, Cambridge, En-
34p. C. Gibbons, S. E. Schnatterly, J. J. Ritsko, and J. R. Fields, gland, 1979.
Phys. Rev. B13, 2451(1976. 413, L. Gervasoni and N. R. Arista, Surf. S2i60, 329 (1992.

125412-15



