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Continuous quantum measurement of two coupled quantum dots using a point contact:
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We obtain the finite-temperature unconditional master equation of the density matrix for two coupled
guantum dot$CQD’s) when one dot is subjected to a measurement of its electron occupation number using a
point contact(PC). To determine how the CQD system state depends on the actual current through the PC
device, we use the so-called quantum trajectory method to derive the zero-temperature conditional master
equation. We first treat the electron tunneling through the PC barrier as a classical stochastic point@rocess
guantum-jump model Then we show explicitly that our results can be extended to the quantum-diffusive limit
when the average electron tunneling rate is very large compared to the extra change of the tunneling rate due
to the presence of the electron in the dot closer to the PC. We find that in both quantum-jump and quantum-
diffusive cases, the conditional dynamics of the CQD system can be described by the stochastim@ahro
equations for its conditioned state vector if and only if the information carried away from the CQD system by
the PC reservoirs can be recovered by the perfect detection of the measurements.
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[. INTRODUCTION ronmental degrees of the freedom in the total, system plus
environment, density matrix. The master equation rate

The origins and mechanisms of decoherefwephasing  equations for this CQD system have been derived and ana-
for quantum systems in condensed-matter physics have dttzed in Refs. 16 and 1éhere we refer to the rate equations
tracted much attention recently due to a number of studies ias the first-order differential equations in time for both diag-
nanostructure mesoscopic systémsand various proposals onal and off-diagonal reduced density matrix elemerthis
for quantum computer® One of the issues is the connec- (unconditional master equation is obtained when the results
tion between decoherence and quantum measurethéhts of all measurement recordslectron current records in this
for a quantum system. It was reported in a recenicase are completely ignored or averaged over, and describes
experimert with a “which-path” interferometer that only the ensemble average property for the CQD system.
Aharonov-Bohm interference is suppressed owing to thddowever, if a measurement is made on the system and the
measurement of which path an electron takes through theesults are available, the state or density matrix is a condi-
double-path interferometer. A biased quantum point contadional state conditioned on the measurement results. Hence
(QPQ located close to a quantum dot, which is built in onethe deterministic, unconditional master equation cannot de-
of the interferometer’s arms, acts as a measurement devicecribe the conditional dynamics of the CQD system in a
The change of transmission coefficient of the QPC, whiclsingle realization of continuous measurements that reflects
depends on the electron charge state of the quantum dot, céime stochastic nature of an electron tunneling through the PC
be detected. The decoherence rate due to the measurementtisyrier. Consequently, the conditional master equation
the QPC in this experiment has been calculated in Refs. 12—
16.

A quantum-mechanical two-state system, coupled to a
dissipative environment, provides a universal model for
many physical systems. The indication of quantum coher-
ence can be regarded as the oscillation or the interference
between the probability amplitudes of finding a particle be- dot 1
tween the two states. In this paper, we consider the problem
of an electron tunneling between two coupled quantum dots
(CQD’s) using a low-transparency point cont&PtC) or tun- cQD ~
nel junction as a detect@environment measuring the posi- )
tion of the electronsee Fig. 1 This problem has been ex-
tensively studied in Refs. 16—24. The case of measurements dot 2
by a general QPC detector with arbitrary transparency has
also been investigated in Refs. 12-15, 25, and 26. In addi-

tion, a similar system measured by a single electron transis- F|G. 1. Schematic representation of two coupled quantum dots

tor rather than a PC has been studied in Refs(cQDs)when one dotis subjected to a measurement of its electron
27,21,19,22,24,28,29, and 30. The influence of the detectajccupation number using a low-transparency point corfa€} or

(environmenkon the measured system can be determined byunnel junction. Hereu, and ug stand for the chemical potentials
the reduced density matrix obtained by tracing out the enviin the left and right reservoirs, respectively.
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should be employed. In condensed-matter physics usuallfles for future events conditioned on past null events. At
many identical quantum systems are prepared at the saniandomly determined time&onditionally Poisson distrib-
time and a measurement is made upon the systems. For eited, there is a detection result. When this occurs, the sys-
ample, in nuclear or electron magnetic resonance experfem undergoes a finite evolution, calledjgantum jumpin
ments, generally an ensemble of systems of nuclei and ele¢eality these point processes are not seen exactly due to a
trons are probed to obtain the resonance signals. This impli€#nite frequency response of the circuit that averages each
that the measurement result in this case is an average r8vent over some time. Nevertheless, we first take the zero-
sponse of the ensemble systems. On the other hand, for vaf@SPonse time limit and consider the electron_tunnellng cur-
ous proposed condensed-matter quantum computdé®nt consisting of a sequence of rand@nfunction pulses,
architecture$;® how to read out physical properties of a I-€., @ series of stochastic point processes. Then we show
single electronic qubit, such as charge or spin at a singl€Xplicitly that our results can be extended to the quantum-
electron level, is demanding. This is a nontrivial problemdiffusive limit and reproduce the rate equations obtained by
since it involves an individual quantum particle measured by<orotkov.'>**We refer to the case studied by Korotk&¢
a practical detector in a realistic environment. It is particu-2S quantum diffusion, in contrast to the case of quantum
larly important to take account of the decoherence introJumps considered here. Hence our quantum trajectory ap-
duced by the measurements on the qubit as well as to undePfoach may be considered as a formal derivéfiofithe rate
stand how the quantum state of the qubit, conditioned on &quations in Refs. 18 and 20. We find in both quantum-jump
particular single realization of measurement, evolves in timé@nd quantum-diffusive cases that the conditional dynamics of
for the purpose of quantum computing. the CQD system car714bti described by the st_o_chastlc Schro
Korotkov'®2° has obtained the Langevin rate equationsdinger equations-*>*"“%4¥SSgg for the conditioned state
for the CQD system. These rate equations describe the raMector, provided that the information carried away from the
dom evolution of the density matrix that both conditions andCQD system by the PC reservoirs can be recovered by the
is conditioned by the PC detector output. In his approach, theerfect detection of the measurements.
individual electrons tunneling through the PC barrier were This paper is organized as follows. In Sec. I, we sketch
ignored and the tunneling current was treated as a contindbe derivation of the finite-temperature unconditional master
ous, diffusive variable. More precisely, he considered thetquation for the QCD system. To determine how the CQD
change of the output current average over some smalltjme System state depends on the actual current through the PC
(1Y, with respect to the average currdnt as a Gaussian device, we de_rlve in Sec. lll the zero-temperature conditional
white-noise distribution. He then updatéd in the density- ~Master equation and the SSE in the quantum-jump model.
matrix elements using the new values(bf after each time T_hen_ln Sec. IV we extend the results_to the case of quantum
interval 7. However, treating the tunneling current as a con-diffusion and obtain the corresponding conditional master
tinuous, diffusive variable is valid only when the average€duation and SSE. The analytical results in terms of Bloch
electron tunneling rate is very large compared to the extréphere vanable;_for the condmonal_ dyn_am|cs.are presented
change of the tunneling rate due to the presence of the ele} Sec. V. Spemﬁgqlly, we %T%'zyZ.e in this section the Ipcal-
tron in the dot closer to the PC. The resulting derivation oflZation rate and mixing raé:*" Finally, a short conclusion
the stochastic rate equations is semiphenomenological, basjgiven in Sec. VI. The Appendix is devoted to the demon-
on basic physical reasoning to deduce the properties of thefration of .the equwalence between the condlltlonal s_tochastlp
density matrix elements, rather than microscopic. rate equations in Refs. 18—20 and those derived microscopi-

To make contact with the measurement output, in thic@lly in the present paper.

paper we present guantum trajectory*>>-422measure-
ment analysis to the CQD system. We first use the quantum Il. UNCONDITIONAL MASTER EQUATION
open system approath>*to obtain the unconditional Mar- FOR THE CQD AND PC MODEL

kovian master equation for the CQD system, taking into ac-

count the finite-temperature effect of the PC reservoirs. Pars Jhlems is to treat the measured system, the detéeoi-
ticularly, we assume that the transparency of the PC detect Bnmenl, and the coupling between them microscopically.

‘? sma}ll, in the tnnel-junction limit. Subsequgqtly, we de'Following from Refs. 16,18 and 20, we describe the whole
rive microscopically the zero-temperature conditional maSteEystem(see Fig. 1 by the, following Ii|amiltonian'

equation by treating the electron tunneling through the PC as
a classical stochastic point procdsdso called aguantum- H=Henn+ Hort+ H. (1)
. . CQD PC )

jump mode).3"4228 Generally the evolution of the system © coup

state undergoing quantum jumgsr other stochastic pro- Where

cessepis known as a quantum trajectdty Real measure-
ments(for example, the photon number detecjidhat cor-
respond approximately to the ideal quantum-juap point-
process measurement are madfe re_gularly in expenmental HpczﬁE (wkazkaLk_FwEaTRkaRk)

guantum optics. For almost all-infinitesimal time intervals, K

the measurement result is ngtlo photon detectedThe sys-

tem in this case changes infinitesimally, but not unitarily. + Toal ae +T*al a 3
The nonunitary component reflects the changing probabili- % (Tr@Lk@rqT Tqr@RreALK), ()

The appropriate way to approach quantum measurement

Heop=h[wiClci+wycico+ Q(cle,+cie)],  (2)
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fermion reservoirs in the PC as thermal equilibrium free-
Heoup= 2 C1C1( Xkl k@RqT X kAR ALK)- (4)  electron baths(b) weak system-bath couplingc) small
k,q . R . . L

transparency of the PC, i.e., in the tunnel-junction lirfal,
Hcop represents the effective tunneling Hamiltonian for theuncorrelated and factorizable system-bath initial conditions,
measured CQD system. For simplicity, we assume stron¢e) relaxation time scales of the reservoirs being much
inner and interdot Coulomb repulsion, so only one electrorshorter than that of the system stafig, Markovian approxi-
can occupy this CQD system. We label each dot with amation, (g) |eV|,kgT<u(ry, and (h) energy-independent
index 1,2(see Fig. 1 and letc; (¢]) and%w; represent the electron tunneling amplitudes and density of states over the
electron annihilation(creation operator and energy for a bandwidth of maxe\| kgT). Herekg is the Boltzmann con-
single electron state in each dot, respectively. The couplingtant, T represents the temperatueey= u — ug is the ex-
between these two dots is given k). The tunneling ternal bias applied across the PC, gndand ug stand for
Hamiltonian for the PC detector is represented hy.  the chemical potentials in the left and right reservoirs, re-
wherea, ,, aRkandhwk, hwE are, respectively, the fermion spectively. In Eq.(7), n1=cIc1 is the occupation number
(electron field annihilation operators and energies for theoperator for dot 1. The parametefs and X are given by
left and right reservoir states at wave numke©ne should

not be confused by the electron in the CQD with the elec- |7.|?=D.=2me|Tod’gLgrV = /%, (82
trons in the PC reservoirs. The tunneling matrix element be- 5 ) )
tween statek andq in left and right reservoir, respectively, | 7.+ X.|*=D% =2me|Too+ X0 “9L9rV = /%, (8D)

is given byT,,. Equation(4), H¢oup, describes the interac- , .
tion between c{he detector and thepmeasured system, deperﬁ?ﬁ&eﬁihangg E are the average elzctron tgnnebl!ng (rjz;tes_
ing on which dot is occupied. When the electron in the CQD.. gn the arrier in po§|t|ve an nggatlve 1as direc

system is close to the PGe., dot 1 is occupied there is a tions at f|n|te_temperatures, W_|thout and with the presence of
change in the PC tunneling barrier. This barrier change re:E—he electtron n ?Ot 1|' ggspecttlveltéynge t.he eLfecttrllveffllnlte-
sults in a change of the effective tunneling amplitude fromlempera ure ex err]a 1as potentey.. 1S given Dy the fol-
Tkg— Tigt Xkq- AS a consequence, the current through the OWING EXPression.
PC is also modified. This changed current can be detected, eV
and thus a measurement of the location of the electron in the eV, = — . 9)
CQD system is effected. - 1-exgd+eVi(kgT)]

. The t_otal (_jensny op_er_ath(t) for the entire system in the Too and yoo are energy-independent tunneling amplitudes
interaction picture satisfies near the average chemical potential, andand gg are the
i energy-independent density of states for the left and right
Rl(t): — —[H,(t),R(0)] fermion baths. Note that the average electron currents
h through the PC barrier is proportional to the difference be-
1 rt tween the average electron tunneling rate in opposite direc-
— | dt'[H,(t),[H,(t),R(t)]]. (5)  tions. Hence, the average currere®=e(D,.—D_) and
h2Jo eD'=e(D/.—D"), foIIowiéwg from Egs. (8) and (9), are
The dynamics of the entire system is determined by the timet_emperature independént afc _Ieast for a range of low tem-
dependent Hamiltoniaff peratyrgsk'BT<,u.L(R). In addition, thg current—volltage char-
acteristic in the linear response reg||rml|<m_(R) is of the
L R same form as that for an Ohmic resistor, though the nature of
Hi(1)=2 (Tkgt XkoCiC1)al @ra€' (k" “K'+H.c., (6)  charge transport is quite different in both cases.
ka We have also introduced, in Eq(7), an elegant
where we have treated the sum of the tunneling Hamiltoniasuperoperatdf-?#4’=49 D, widely used in measurement
parts inHpc and Hqoyp as the interaction Hamiltoniaf, , theory in quantum optics. Physically the “irreversible” part
and H.c. stands for Hermitian conjugate of the entire previcaused by the influence of the environment in the uncondi-
ous term. By tracing both sides of E¢) over the bath tional master equation is represented byZhsuperoperator.
(reservoiy variables and then changing from the interactingGenerally superoperators transform one operator into another
picture to the Schidinger picture, we obtaii~*3the finite-  operator. Mathematically, the expressibfiB]p means that
temperature, Markovian master equation for the CQDsuperoperatoD takes its operator argumeBt acting onp.

system: Its precise definition is in terms of another two superopera-
_ tors J and A:
) i
p(t):—g[HcQD1P(t)]+D[T++X+n1]P(t) D[Blp=JBlp—A[B]p, (10
+D[ T+ X (1), (n ~ Where
wherep(t) =TrgR(t) and T indicates a trace over reservoir JBlp=BpBT, (12)
variables. In arriving at Eq.7), we have made the following
assumption and approximatior(s) treating the left and right A[B]p=(B"Bp+pB'B)/2. (12
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The form of the master equatiofY), defined through the I'y(T) e(V.i+V.) eV

superoperatoD[ B]p(t), preserves the positivity of the den- ) = SV, =con 5 - (15
sity matrix operatop(t). Such a Markovian master equation d ) o B )

is called a Lindblagf form. As expected]'y(T) increases with increasing temperature,

To demonstrate the equivalence between the master equalthough the averageé%lljfrgneling current through the PC is
tion (7) and the rate equations derived in Ref. 16, we evalu!émperature independéent”for the same range of low tem-

ate the density matrix operator in the same basis as in Ref. JfTaluréskgT<u (). This temperature dependence of the
and obtain decoherence rate is in fact just the temperature dependence

of the zero-frequency noise power spectrum of the current
fluctuation in a low-transparency PC or tunnel junctidn.
The CQD system weakly coupled to another (finite-
. temperature environment beside the PC detector was dis-
Pan(t) =iepap(t) +1Q[paa(t) = ppp(t)] cussed in Ref. 20. However, the influence of the finite-
2 . temperature PC reservoirs on the CQD system, presented
= (|X1[%12) pan(t) +i IM(T; X, here, was not taken into account. The finite-temperature de-
— T X ) pa(t). (13b) coherence rate of a one-electron state in a quantum dot dl_Je
to charge fluctuation of a general QPC has been calculated in
Here e =7 (w,— w;) is the energy mismatch between the Ref. 13. In Ref. 26, the temperature-dependent decoherence
two dots, p;; (t) =(i[p(t)|j), and paa(t) and ppe(t) are the rate for a two-state system caused by a QPC detector has
probabilities of finding the electron in dot 1 and dot 2, re-been discussed specifically in the context of the measure-
spectively. The rate equations for the other two density mament problem.
trix elements can be easily obtained from the relations:
Pob(t) =1—paa(t) andppa(t) = pi,(t). Compared to an iso-
lated CQD system, the presence of the PC detector intro-
duces two effects to the CQD system. First, the imaginary So far we have considered the evolution of the reduced
part of the product off; X, —T* X_ [the last term in Eq. density matrix when all the measurement results are ignored,
(13b] causes an effective temperature-independent shift ier averaged over. To make contact with a single realization
the energy mismatch between the two dots. HeFe X, of the measurement records and study the stochastic evolu-
—T* X, =T X_)=TXis atemperature-independent quan-tion of the quantum state, conditioned on a particular mea-
tity where7=7,(0), i.e., 7, andX, evaluated at zero tem- surement realization, we derive in this section the quantum-
perature, respectively. Second, it generates a decoherenigénp, conditional master equation at zero temperature.
(dephasinyrate The nature of the measurable quantities, such as accumu-
lated number of electrons tunneling through the PC barrier,
Iy= |XT|2/2 (14) is stochastic. On average, of course, the same current flows
in both reservoirs. However, the current is actually made up
for the off-diagonal density matrix elements, whé#g|>  of contributions from random pulses in each reservoir, which
=|&,|?+|X_|?>. We note that the decoherence rate comeslo not necessarily occur at the same time. They are indeed
entirely from the effect of the measurement revealing whereseparated in time by the times at which the electrons tunnel
the electron in the CQD’s is located. If the PC detector doeshrough the PC. In this section, we treat the electron tunnel-
not distinguish which of the dots the electron occupies, i.e.ing current consisting of a sequence of randérfunction
X.=0, thenl'4=0. The rate equations in E¢L3) are ex-  pulses. In other words, the measured current is regarded as a
actly the same as the zero-temperature rate equations in Rakries of point processéa quantum-jump modgf’42?8The
16 if we assume that the tunneling amplitudes are fEgJ, case of quantum diffusion will be analyzed in Sec. IV.
=Tgo and xoo= xgo- In that case, the last term in E(L3b) Before going directly to the derivation, we discuss some
vanishes and = X2/2=(\/D' — yD)%2. Actually, the rela- ~general ideas concerning quantum measurements. If the sys-
tive phase between the two complex tunneling amplitudeéeém under observation is in a pure quantum state at the be-
may produce additional effects on conditional dynamics ofginning of the measurement, then it will still be in a pure
the CQD system as well. This will be shown later when weconditional state after the measurement, conditioned on the
discuss conditional dynamics. Physically, the presence of theesult, provided no information is lost. For example, if the
electron in dot 1 raises the effective tunneling barrier of thenitial normalized state isy(t)), the unnormalized final state
PC due to electrostatic repulsion. As a consequence, the egiven the resultr at the end of the time intervét,t+dt) of
fective tunneling amplitude becomes lower, i.@/=|7 the measurement becomes
+X2<D=|T|? This sets a condition on the relative phase ~
6 betweent and 7: cos6<—|X1/(2|T]). [ o(t+d1)) =M ,(d)[ (1)), (16)
The dynamics of the unconditional rate equations at zerguhere{M ,(t)} represents a set of operators that define the
temperature was analyzed in Ref. 16. Here, following frommeasurements and satisfies the completeness condition
Egs. (14), (8), and (9), we find that the temperature-
dependent decoherence rate due to the PC thermal reservoirs t _
has the following expression: ; Ma(OM(0)=1. a7

Paa(t) =1 Q[ pap(t) — ppa(t)], (133

. QUANTUM-JUMP, CONDITIONAL
MASTER EQUATION
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Equation(17) is simply a statement of conservation of prob- density matrixp.(t) is not the solution of the unconditional
ability. The corresponding unnormalized density matrix, fol-reduced master equation, Eg53). It is actually conditioned
lowing from Eq.(16), is given by by dN¢(t") for t' <t.
The stochastic conditional density matrix at a later time
Pa(t+Hdt) = (t+d)) P (t+dt)| =T [M(dt)]p(1), t+dt can be written as
1

(18) ~
wherep(t) = | l/f(t)><l//(t)l and the superoperatgfis defined po(t+dt)=dN(t) ’)jC(t—ert)
in Eq. (11). Of course, if the measurement is made but the Tr pc(t+dt)]
result is ignored, the final state will not be pure but a mixture ~
of the possible outcome weighted by their probabilities. Con- poc(t+dt)

+[1—-dNc(t)] (23

sequently, the unconditional density matrix can be written as Tr[ZOC(t_'—dt)] '
Equation(23) states that whedN.(t) =0 (a null resulj, the
system changes infinitesimally via the operafdr(dt)

and hencep(t+dt)=pg(t+dt). Conversely, if dN.(t)
where Pfa]=Ti[p,(t+dt)] stands for the probability for =1 (a detectioh, the system goes through a finite evolution
the system to be observed in the state and p,(t+dt) induced by the operatdvl ;(dt), called aguantum jumpThe

=, (t+dt)/P{a] is the normalized density matrix at time Corresponding normalized conditional density matrix then
t+dt. becomegp, (t+dt). One can see, with the help of EQO),

Now we proceed to derive the quantum-jump, conditionathat in this approach the instantaneous system state condi-
master equation in the following. Only two measurement op{ions the measured currefsiee Eq(22)], while the measured
eratorsM ,(dt) for a=0,1 are needed for a measurementcurrent itself conditions the future evolution of the measured
record that is a point process. For most of the infinitesimafystem[see Eq.(23)] in a self-consistent manner. It is
time intervals, the measurement resuliis 0, regarded as a Straightforward to show that the ensemble average of the
null result. On the other hand, at randomly determined timesgonditional density matrix equals the unconditional one,
there is a resulte=1, referred as aetectionof an electron  E[pc(t)]=p(t). Tracing over both sides of E¢19) for a
tunneling through the PC barrier. Formally, we can write the=0,1, we obtain
current through the PC as

p(t+d)=2 p(t+dt)=2> Plalp,(t+dt), (19

T poc(t+dt)]=1—Tr[ps(t+dt)]. (24)

i(t)=edNt)/dt, (20 _ . .
Then taking the ensemble average over the stochastic vari-

where e is the electronic charge andiN(t) is a classical ablesdN.(t) on both sides of Eq23), replacingE[ dN(t) ]
point process that represents the num(egther zero or one by using Eq.(22), and comparing the resultant equation with
of tunneling events seen in an infinitesimal tiche We can  Eq. (19) completes the verification.

think of dN(t) as the increment in the number of electrons  Next we find the specific expression pi(t+dt) and

N(t) in the drain in timedt. It i_s this variable, the accumu-- 7 (t+dt) and derive the conditional master equation for the

lated electron number transmitted through the PC, which i QD system measured by the PC. If a perfect PC detector

ES?d 'Q I;efsﬁ 16, 2;.’ .and 22. Ehe Ipom_t plroces(,js IS form%lP(or efficient measuremenis assumed, then whenever an
efined by the conditions on the classical random varablg eciron tunnels through the barrier, there is a measurement

dNc(t): record corresponding to the occurrence of that event; there
are no “misses” in the count of the electron number. As a
result, the information lost from the system to the reservoirs
- can be recovered using a perfect detector. Here we assume a
E[AN:(t)]=Tr{p1c(t+dt)] zero-temperature case for the efficient measurement. At finite
- _ temperatures, the electrons can, in principle, tunnel through
=THIAM (D ]pe(D)} =Pre()dE. (22) the PC barrier in both directions. But experimentally the de-
Here we explicitly use the subscriptto indicate that the tector might not be able to detect these electron tunneling
quantity to which it is attached is conditioned on previousProcesses on both sides of the PC barrier. This may result in
measurement results, the occurren@dstection recordsof information loss at finite temperatures. Hence, at zero tem-
the electrons tunneling through the PC barrier in the past€erature the unconditional master equati@nreduces to
E[Y] denotes an ensemble average of a classical stochastic
processY. Equation(21) simply states thatiN.(t) equals
either zero or one, which is why it is called a point process.
Equation(22) indicates that the ensemble averagel bf.(t)
equals the probabilityquantum averageof detecting elec-

[dN.(t)]?=dN(t), (21)

p(1)= = +[Hego p(D]+ DLT+ Anylp(t) (253

[ .
trons tunneling through the PC barrier in tirdé. In addi- == 7 [Heqp= it (F* X= FA*)ny/2,p(1)]
tion, dN(t) is of orderdt and obviously all momentgow-
ers of dN.(t) are of the same order ds. Note here that the +D[Xn,+ T+ Flp(t), (25b
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=Lp(t), (250 dt, we obtain the stochastic master equation, conditioned on
the observed event in tingt:

J 7T+ Xnq]
Pro(D) _4’%“)

whereD is defined in Eq(10). Here F is an arbitrary com-
plex numbef®4° while we are usingZ and X’ to represent,
respectively, the quantiti€s, andX, in Eq.(8) evaluated at dpc(t)=dN(t)
zero temperature.

Requiring that the ensemble average of the conditioned
density matrixE[ p.(t+dt)]=p(t+dt) satisfies the uncon- +dt
ditional master equatiof25) leads to

—A[T+ & ]pc(t) + Pic(t) pe(t)

- _ i
poc(t+dt)+prc(t+dt)=(1+dtL)p(t). (26) + %[HCQDaPc(t)]Jv (33
Here we have explicitly used the stochastic ¢aculus?>3 where
for the definition of time derivatives a,'s(t)=limdt_>o[p(t
+dt)— p(t)]/dt. This is in contrast to the definitiop(t) P1(t)=D+(D"=D){ny)c(t). (34)
= Iimdt_)o[p(t+dt/2)—p(t—dt/2)]/dt, used in another sto-

hasti cul he S ich calcuits Recall th Note thatdN(t), from Eq.(30), is of orderdt. Hence terms
chastic calculus, the Stratonovich calcultas: Recall that 5 50rtional tod N.(t)dt are ignored in Eq(33). Again av-

Eq. (22) indicates thaE[dN.(t) ]/dt equals the average elec- graging this equation over the observed stochastic process by
tron tunneling rate through the PC barrier. From B, the settingE[dN.(t)] equal to its expected value, EG0), gives

H — 2 — ’
electron Ztunnellng rates a@=|7|* whenn;=0 andD the unconditional, deterministic master equaii®sa. Equa-
=|7+A]* whenn,;=1. From Eq.(22 we thus have the n (33) is one of the main results in this paper.
correspondence So far we have assumed perfect detection or efficient

+ measurement. In this case, the stochastic master equation for
TM1(dDpe()My(dD)] the conditioned density—ma"trix operat@3) is equivalent to
=Tr{p(D[T* +nix* [T+ n.x]}dt. (270  the following stochastic Scliinger equationSSB for the

. conditioned state vector:
Also, for Eq.(26) to reproduce the master equati@bb) we

must havé®*°

T+ Xn, i
d| (1)) = dN(t)( —1)—dt(—7—[
My (dt) = Vat( A, + T+ 7) (28) 9e(0)=| IO T heeP
for some arbitrary complex numbéf. By inspection of Eq. (T + X n)(T+ X)) Pue(b)
(27) we must haveF=0, so that + 5 - ; ) [ e(1)).
pre(t+dt)=7J [T+ An]p(t)dt. (29 (35

Substituting Eq(29) into (22) yields This equivalence can be easily verified using the stochastic

ELANG()] =T pac(t+ dO]=[D+ (D'~ D)(np)(tyjdt, O CaIoUuS™
(30

dpc(t)= d(| ‘/’c(t)><'pc(t)|)

where (n;)(t)=Tr{nyp.(t)]. The remaining part, except

the jump of Eq.(29), on the right hand side of Eq26) in =[d] (D) e(D)]+] e (1)) d( (1)
time dt, corresponds to the effect of a measurement giving a
Ul st ona (D) aCIZONICIEAGIE (36
~ and keeping terms up to orddt. Since the evolution of the
poc(t+dt)=pc(t) —dt system can be described by a ket state vector, it is obvious
i that an efficient measurement or perfect detection preserves
X{ A[ T+ Xnq]pe(t) — %[HCQDaPc(t)] , state purity if the initial state is a pure state. In this descrip-

tion of the SSE, the quantum average is now defined, for
(31  example, agny)c(t)=(c(t)|n1|#c(t)). The unconditional
. ) ) ) density-matrix operator is equivalent to the ensemble aver-
where A is deflr_1ed in Eq(12). The corresponding measure- age of quantum trajectoriesgenerated by the SSE(t)
ment operator Is = E[|¢(t))(4e(t)|], provided that the initial density opera-
_ : tor can be written ap(0)=|.(0)){.(0)|.
Mo(dt)=1=dt[(i/7)Heqp The interpretatiot for th|e mea>§ured s|ystem state condi-
+(12)(T* + A" ny)(7T+ Any) . (32)  tioned on the measurement, in terms of gain and loss of
information, can be summarized and understood as follows.
Finally, substituting Egs(29), (31), (24), and (30) into  In order for the system to be continuously described by a
Eq. (23), expanding, and keeping the terms of first order instate vectorrather than a general density majrix is nec-
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essary(and sufficient to have maximal knowledge of its pling or weakly responding PC detector. Consider the evolu-
change of state. This requires perfect detection or efficiention of the system over the short-time interjalt+ 6t). We
measurement, which recovers and contains all the informaelate the three parameters, 7, and 6t in our problem as
tion lost from the system to the reservoirs. If the detection i§x|26t~ €2, wheree=(|X |/|T|)<1. This scaling is cho-
not perfect and some information about the systemris  sen so that in timest, the number of detectionglectron
traceable the evolution of the system can no longer be de-counts with dot 1 being unoccupied scales a8 ~|7 |26t
scribed by a pure state vector. For the extreme case of zero e Y2>1. However, the extra change in electron number
efficiency detection, the informatiogfmeasurement results at detections due to the presence of the electron in dot 1 scales
the detectorcarried away from the system to the reservoirsas|x' |26t~ e¥?<1. To be more specific, the average num-
is (arg completely ignored, so that the stochastic masteber of detections, following Eq30), up to order ofe'? is
equation(33) after being averaged over all possible measure-

ment records reduces to the unconditional, deterministic E[SN(1)]=|T|?8t[1+2e cosé(n)(t)], (37
master equatiori25a, leading to decoherence for the sys-

tem. This interpretation highlights the fact that a density-where@ is the relative phase betweénand7. The variance
matrix operator description of a quantum state is only necesh 6N will be dominated by the Poisson statistics of the
sary when information is lost irretrievably. The purity- currenteD=e¢|7 |2 in time 6t. Since the number of counts in
preserving, conditional state evolution for a pure initial statetime 6t is very large, the statistics will be approximately
and gradual purification for a nonpure initial state have beeiGaussian. Indeed, it has been shbhat the statistics of
discussed in Refs. 18—20 and 23 in the quantum-diffusiveSN are consistent with that of a Gaussian random variable of
limit. mean given by Eq(37) and the variance up to order ef 2

is 2=|T|?6t. The fluctuations?, is necessarily as large as
expressed here in order for the statistics5df to be consis-
tent with Gaussian statistics. Thusl\ can be approximately
written as a continuous Gaussian random variabfé:

In this section, we extend the results obtained in the pre- )
vious section and derive the conditional master equation ~ SN(t)={|7|[1+2ecosf(ny).(t)]+|T|£(1)} 6,
when the average electron tunneling current is very large
compared to the extra change of the tunneling current due to . . . . .
the presence of the electron in the dot closer to the PC. Thi\éVhereg(t) Is a Gaussian white noise characterized by
limit is studied and called a “weakly coupling or responding

detector” limit in Refs. 18 and 20. Here, on the other hand, E[£(t1)]=0, E[&(t)&(t")]=68(t—t"). (39

we will refer to this case as quantum diffusion in contrast toere E denotes an ensemble average aft-t') is a delta

the case of quantum jumps/. In the guantugn-diffusive limit,,nction. In stochastic calcul§& £(t)dt=dW(t) is known
many electrons, N>[(D’'+D)/(D'—D)]">1), pass ;g the infinitesimal Wiener increment. In E&9), the accu-
through the PC before one can distinguish which dot is OCtacy in each term is only as great as the highest-order ex-
cupied. In addition, individual electrons tunneling through pression ineY2. But it is sufficient for the discussions below.

the PC are ignored and time averaging of the currents is Although the conditional master equatié83) requires

performed. This allows electron counts, or the accumulateg N.(t) to be a point process, it is possible, in the quantum-

electron number, to be considered as a continuous variablgs sive fimit, to simply replacedN,(t) by the continuous
satisfying a Gaussian white-noise distribution. In Refs. 1 andom variableN(t), Eq.(38). This is because each jump

and 20 a set of Langevin equations for the random evolutiofy jnfinitesimal, so the effect of many jumps is approximately
of the CQD system density-matrix elements conditioned O'Equal to the effect of one jump scaled by the number of

the detecto_r output was pr_esented, based on_Iy_on basic phy I'mps. This can be justified more rigorously as in Ref. 47.
cal reasoning. In this section, we show explicitly, under th inally, expanding Eq.33) in power of e, substituting

guantum-diffusive limit, that our microscopic approacth - SN(t). keepi v the t to th d
reproduce®’ the rate equations in Refs. 18 and 20. 3/2°( )= ONe(t), keeping only the terms up to the order

) €”4, and letting st—dt, we obtain the conditional master
In quantum optics, a measurement scheme known as h%t]uation
modyne detectiott*"*8is closely related to the measure-
ment of the CQD system by a weakly responding PC detec- i
tor. In both cases, there is a large parameter to allow thejjc(t):_ —[Heop.pc(H) ]+ DT+ XN ]p.(t)
photocurrent or electron current to be approximated by a h

IV. QUANTUM-DIFFUSIVE, CONDITIONAL
MASTER EQUATION

continuous function of time. We will follow closely the deri-

1
vation of a smooth master equation for homodyne detection +§(t)?[T" ANnqp(t) + X Tp(t)n —2 RETF X)
given in Ref. 48(sketched first by Carmichadl for the 7]
CQD system. X(Ny)e(t) pe(t)]. (40)

There are two ideal parametefSsand X for the CQD
system. In the quantum-diffusive limit, we assuni@  Thus the quantum-jump evolution of E(B3) has been re-
>|A], which is consistent with the assumptioD €D’) placed by quantum-diffusive evolution, E@L0). Following
>(D'—D), made in Refs. 18 and 20 for the weakly cou- the same reasoning in obtaining the SSE, 8%), for the
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case of quantum-jump process, we find the quantummatrix operator for the CQD system can be expressed in
diffusive, conditional master equatigd0) is equivalent to terms of the Bloch sphere vectox,§/,z) as

the following diffusive SSE:
p()=[1+x(t)ox+y(t)o,+2(t)o,]/2 (439
i 2
d|¢c(t)>:[dt< ~ 7 Hcep™ %[m—%(nﬁc(t) 1 1+z(t)  x(t)—iy(t)

T2\ xt)Fiy(t)y  1-z(t) )’
) (43b)
where the operatorsand o; are defined using the fermion
operators for the two dots:

+{n2(t)]—i Im(7* X)n,

1
+ f(t)dtm{/]* an_ Xk?(nl>c(t)}| ¢c(t)>

| =clc,+cley, (443

(41 _ .t T
This equivalence can be verified using E86) and keeping Ox= €Lt CaCa (44
terms up to ordedt. Note, however, in this case® that oy=—icle;+iclc,, (440

terms of ordeg(t)dt are to be regarded as the same order as
dt, but[g(t)qp]2=[dW(t)]szt. . . S o,=cle,—cley. (440)
Our conditional master equation by its derivation is for-
mulated in terms of ftocalculus, while the stochastic rate It is easy to see that p(t)=1, | is a unit operator, and
equations in Refs. 18 and 20 are written in a Stratonoviclflefined above satisfies the properties of Pauli matrices. In
calculus forn?°3In contrast to the Stratonovich form of the this representation, the variati€t) represents the popula-
rate equations, it is easy to see that the ensemble averatjen difference between the two dots. Especiatlit) =1 and
evolution of our conditional master equatiotD) reproduces  z(t)=—1 indicate that the electron is localized in dot 2 and
the unconditional master equatio25a by simply eliminat-  dot 1, respectively. The valug(t)=0 corresponds to an
ing the white-noise term using E¢39). To show that our equal probability for the electron to be in each dot.
quantum-diffusive, conditional stochastic master equation The master equatior(25a), (40), and(33), can be written
(40) reproduces the nonlinear Langevin rate equations obas a set of coupled stochastic differential equations in terms
tained semiphenomenologically in Refs. 18 and 20, weof the Bloch sphere variables. For simplicity, in this section
evaluate Eq(40) in the same basis as for E4.3) and obtain ~ we assume that the tunneling amplitudes are real, izes,0
and we set7|=7 and X=\27,. By substituting Eq(43a

=20y(t). (45b)

})aa(t)=iQ[pab(t) — ppa(t) 1= V8T gpaa(t) ppp(t) &(1), into Eq. (259, and collecting and equating the coefficients in
(429
_ equation under the assumption of real tunneling amplitudes
Pab(t)=iepap(t) FiQ[paa(t) = ppp(H) ] =T gpan(t) is equivalent to the following equations:
In obtaining Eq.(42), we have made the assumption of real dt
tunneling amplitudesi.e., 0,) as in Refs. 16, 18 and 20 in
set X=/2I'y. Again, the ensemble average of E42) by dz(t)
eliminating the white-noise terms reduces to EtR3). To dt
chastic rate equations of Refs. 18 and 20 into tﬁédt(_nal- equation(40), we obtain
ism and compare them to E@2). This is carried out in the

front of o, oy, o, respectively, the unconditional master
V2L gpan() [ paalt) = pon(t) 16(1). (42b) d X(t)) _( Iy -—e )(X(t)) +< 0 )
y(t) e —Dg/\ly®)) \-20z1))
(453
order to be able to compare the results directly. We have also
further demonstrate the equivalence, we translate the St%imilarly for the quantum-diffusive, conditional master
Appendix. Indeed, Eq42) is equivalent to the Langevin rate dx.(t)

equations in Refs. 18 and 20 for the “ideal detector.” gr — &YelD) = FaXe(t) = V2l gze(Dxc(D (1),
(463
V. ANALYTICAL RESULTS FOR CONDITIONAL
DYNAMICS dyc(t)
gt = £Xe(1) = 207(t) ~Taye(t) = V2T gz (YD (1),
To analyze the dynamics of a two-state system, such as (46h)
the CQD system considered here, one can represent the sys-
tem density-matrix elements in terms of Bloch sphere vari- dz.(1)
ables. The Bloch sphere representation is equivalent to that ———==2Qy()+ 2T [ 1—Z2(1) ] £(1). (460

of the rate equations. However, some physical insights into dt

the dynamics of the system can sometimes be more easilgain the c subscript is to emphasize that these variables
visualized in this representation. Denoting the averages afefer to the conditional state. It is trivial to see that F4p)

the operators, , o, o, by X, Y, z respectively, the density- averaged over the white noise reduces to @§), provided
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that E[ x.(t) ]=x(t) as well as similar replacements are per—averagezg over many quantum trajectories with this initial
formed fory(t) andz.(t). The analogous calculation can be condition then we find from Eq48) that for short timesgby
carried out for the quantum-jump, conditional master equasettingzc(t),zg(t)~0]

tion (33). We obtain

D'—D)? _
(D'-D) E[Zi(ﬁt)h;&:y{gc’“m. (49)
dxc(t)=dt(—syc(t)—Tzc(t)xc(t)>—dmc(t) 2(D'+D)

That is to say, the system tends toward a definite sttt
z.=+1 soz?=1) at an initial rate of

ump_ (P'=D)? _ (YD'+\D)?
¢ oD'+D)  (D'+D)

!

X()(C(t) 2T y— (D' —D)z.(t)

2D+(D'—D)[1—zc(t)])’ (479

(D'—D) d- (50

dYC(t)zdt< eXc(t) —2Qz(t) — Tzc(t)YC(t))
Similarly for the case of quantum diffusion, using E¢&70)
2T — (D' —D)zy(t) and(39) and the fact that¢(t)dt]?=[dW(t) ]>=dt, we find
), E[dZ2(t)]=E[ 2T 4[1—Z(t)]?]dt. Applying the same rea-
soning for obtaining Eq(49), we find E[Z2(8t)]=~2T 46t
(47 =y st. This implies that the localization rate in this case is
yen=2T4. This is consistent with the result of localization
(D'-D) ) time, to.~(1/y%M, found in Ref. 18 in the quantum-
dzc(t)=dt(20yc(t)+T[l—zc(t)])—ch(t) diffusive case. As expected, Eq50) in the quantum-
diffusive limit, 7> or (D+D')>(D'—D), reduces to
(D' —D)[1-Z4(1)] ) YUMP_ 2T 4= y3  The rate of localization is a direct indi-

.-
2D+ (D' —D)[1-2z(1)] (479 cation of the quality of measurement. It is necessarily as
¢ large as the decoherence rate since a successful measurement
As expected, by using E¢30), the ensemble average of Eq. distinguishing the location of the electron on the two dots
(47) also reduces to the unconditional equatids). would destroy any coherence between them.

Next we calculate the localization rate, at which the elec- The above localization rates are related to the signal-to-
tron becomes localized in one of the two dots due to thdoise ratio for the measurement and can be obtained intu-
measurement, using Eqgl6) and (47). Obviously, the sto- itively_as _follows. Consider the electron with equal likeli-
chastic, conditional differential equations provide more in-hood in either dot so that,(0)=2z(0)=0. For the case of
formation than the unconditional ones do. In the uncondiuantum diffusion, the electron tunneling current through the
tional case Eq(45), the average population differenczét) PC obeys Gay_ssian stlatis.tics. Recall in Sec. IV that the mean
between the dots is a constant of motifiiz(t)/dt]=0)  ©f the probability distribution of the number of electron de-
whenQ=0. However, if the present model indeed describeg€ctions through the PC is given by Hg7) and its variance
a measurement af,;=clc, (in other words the position of takes the formuy =74t in time é6t. I.f the electron is in dzgt
the electron in the dotsthen in the absence of tunneling 1. then the rate of electrons passing through the PC<is

=0, we would expect to see the conditional state become™ 27 if it is in dot 2, then the rate ig. One may define
localized in one of the two dots, i.e., eithe=1 or z the width of the probability distribution as the distance from

=—1. Indeed, forQ=0, we can see from the conditional the mean when the distribution falls & * of its maximum
equations(460 and (470 that z,(t)=+1 are fixed points. Vvalue. For a Gaussian distribution, the square of the width is
We can take into account both fixed points by consideringWice the variance. The above two probability distributions

ZA(t). Hence it is sensible to take the ensemble averag®lll P€gin to be distinguishable when the difference in the
E[z2(t)] and find the rate at which this deterministic quan-means of the two distributions is of order the square root of

tity approaches one. Applyinglicalculus?*3to the stochas- theTil;Tigfch\r’:gﬁ the varianc¢square of the widthsat time
tic variablez3(t), we haved(z2)=2z.dz,+dzdz,. Letus '

_ch(t)( yc(t) 2D+(D’— D)[l_zc(t)]

first consider the case for the quantum-jump equations. Us- 2 T2 2T % 2725
ing Egs. (479 and (30) and the fact thatiNZ(t) = dN(t), (T*=2T0)7=T*r~V2T*r+2T°r.  (50)
we find that Solving this for 7 gives a characteristic rater 1~ x?
=2T'y. This is just they™ discussed above. For the case of
(D' —D)q1—Z%(1)]? guantum jumps, the statistics of the electron counts through

E[dZ(t)]=E 4D+2(D'—D)[1—2(1)] t. (48 the PC can be approximated by Poisson statistics. For a Pois-

son process at rafe, the probability forN events to occur in
If the system starts in a state which has an equal probabilitfime t is
for the electron to be in each dot theg(0)=2z(0)=0. In N
this case, the ensemble average variaft¢ would remain p(N:t)= (RY) o Rt (52)
to be zero sincgdz(t)/dt]=0 whenQ=0. However if we ' N!
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The mean and variance of this distribution are equal and= (1) represents the mixing rate. For finifg, the rate at

given by E[N]=Var(N)=7Rt. In the quantum-jump case
from Eq. (30), if the electron is in dot 1 then the rate of
electrons passing through the PCDS. If the electron is in
dot 2, then the rate is judd. Requiring the difference in
means of the two probability distributiong(N, 7), being of

which the variablex(t) andy(t) relax can be found from
the real part of the eigenvalues of the matrix in the first term
on the right hand side of Eq459. This gives the decay
(decoherengeratel’ 4 for the off-diagonal variables(t) and
y(t). The variablez(t)=0 represents an equal probability

the order of the square root of the sum of twice the variancefor the electron in the CQD’s to be in each dot. Hence the

at time 7 yields

ID'r—D7|~+2D'7+2D7. (53

Solving this for=~* yields a characteristic rate which is the
same asylg." defined in Eq{(50).

rate at which the variablg(t) relaxes to zero corresponds to
the mixing raté?? y,. Under the assumption df s> v

for effective measurements, the variable§) and y(t)
therefore relax at a rate much faster than that of the variable
z(t). As a result, it is valid to substitute the steady-state

A similar conclusion is reached in Refs. 27,21, and 22value ofy(t) obtained from Eq(4539 into z(t), Eq. (45b), to
The measurement time,,s, in Refs. 27,21, and 22 is find the mixing rate. Consequently, we obtain
roughly the inverse of the localization rate given here. How-
ever, there the condition for being able to distinguish the two
probability distributions is slightly different from the condi-
tion discussed here. The measurement 4lrie?%is denoted
as the time at which the separation in the means of the two
distributions is larger than the sum of the widths, i.e., the
sum of the square roots of twice the individual variance

dZ(t)_ 4erd _
dt F§+822(t)_ YminZ(1)-

(57)

It is easy to see that the mixing rate E&7) vanishes as

rather than the square root of the sum of twice the variance.?

If this condition is applied here, instead of E¢§1) and
(53), we have

|(T2— 2TX) t s TPtmd = V2Tt et V2T %t s (54)
for the quantum-diffusive case and
|D"tms— Dtnd = V2D "t et V2Dt g (55

for the quantum-jump case. We find from E¢s4) and(55)
that the inverse of the measurement tithgis the same for
both quantum-diffusive and quantum-jump cases, and i
equal to the decoherence rate:

1A _(B7=\D)?

=" 5 (56)

.1
=ly=74",

where74=(1/T"y) is the decoherence time. This is in agree-
ment with the result in Refs. 21 and 22. Our condition

shows, on the other hand, the different localization rates fof , o X ) ;
nfor its conditional state vector provided that the information

the quantum-jump and quantum-diffusive cases. This is co

sistent with the initial rates obtained from the ensemble av

erage of Bloch variableE[ Z2(8t)].
There is another time scale denoted as mixing titpg,,
discussed in Refs. 27,21, and 22. It is the time after whic

the information about the initial quantum state of the CQD’s

is lost due to the measurement-induced transition. This tra
sition arises because of the nonzero couplihgerm in the

CQD Hamiltonian, which does not commute with the occu-

pation number operator of dot(lhe measured quantjtyand
thus mixes the two possible states of the CQD system. Belo

n

—0. Finally, the self-consistent requirement for the as-
sumptionI"y> ymix Vields, from Eq.(57), the conditionQ)
<(\/Fd2+82/2). The mixing rate Eq(57) is in agreement
with the result found in Ref. 22 under a similar required
condition>*

VI. CONCLUSION

We have obtained the unconditional master equation for
the CQD system, taking into account the effect of finite tem-
erature of the PC reservoirs under the weak system-
nvironment coupling and Markovian approximations. We
have also presentedgmantum trajectonapproach to derive,
for both quantum-jump and quantum-diffusive cases, the
zero-temperature conditional master equations. These condi-
tional master equations describe the evolution of the mea-
sured CQD system, conditioned on a particular realization of
the measured current. We have found in both cases that the
ynamics of the CQD system can be described by the SSE'’s

carried away from the system by the PC reservoirs can be
recovered by perfect measurement detection. Furthermore,
we have analyzed for both cases the localization rates at

HNhiCh the electron becomes localized in one of the two dots

whenQ=0. We have shown that the localization time dis-
cussed here is slightly different from the measurement time
defined in Refs. 27, 21, and 22. The mixing rate at which the
two possible states of the CQD’s become mixed wlitken

#0 has been calculated as well and found in agreement with

\H]e result in Ref. 22.

we estimate the mixing time using the differential equations

for the Bloch variables. It is expected that effective and suc-

cessful quantum measurements requjg>tmns~tioe™ 74 -
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APPENDIX: EQUIVALENCE OF STOCHASTIC RATE
EQUATIONS IN DIFFERENT CALCULUS FORMS

should bec; in our notation. As a resulp44(t) in Ref. 18 is
rewritten asppp(t), andp,(t) aspya(t) here.

In this appendix, we translate the stochastic rate equationlfc,1 t??hgo;g?g”?:;ing%fhéE;n’égJ;ag Sl:(;z ?ﬁé???gi(ég
of Refs. 18 and 20, written in terms of Stratonovich calculus ' S _
into the Ifocalculus formalisn?53 Although the translation <(dF/dpj;) for each rate equatiop;;(t), whereF is the
was sketched and the result was stated in Ref. 18, for confactor beforeé(t) in each equation, respectively. Note that
pleteness, we fill in the calculation steps using our notatiorth® factorS,/2 appearing in front of the term needed to be
here. Equation§l1) and(12) of Ref. 18 in the Stratonovich @added for the translation in Ref. 18 is set to 1 here. This is
calculus formalism are rewritten in terms of our notation asPecause of the different definitions of the stochastic white-

follows:
. _ Ty
Pob(t) =1 Q[ ppa(t) —pap(t) ] +4 glpbb(t)Paa(t)

X

S
— VST gl paalt) = pou(t) ]+ \Ef(t)) \

(A1)

Poa(t) = —ieppa(t) +1 QL ppp(t) = paa(t)]

\/Fj
+2 g[Paa(t)_Pbb(t)]

S
~ VST dl paa(t) = pos(H 1+ \/ =&(t) | poalt),
2

(A2)

X

where we have substituted the notation used in Ref. 18 to

H/h—Q, e/h—e, and expressions foR and Al in terms
of I'y andS, using Eqs(10) and(2) of Ref. 18. Specifically,
we have sef\| = —2ST'. In addition, the white noisé(t)

in Ref. 18 has spectral densit$,=S,, which implies
E[£(1)E(t')]1=(S/2)8(t—1"), different from our definition,
Eq. (39). Hence, the replacemesitt) — \/S,/24(t) has been
employed. Moreover, since an ideal detector is assumgd,
is set to zero for Eq(12) of Ref. 18. Note finally that the

noise variablest(t) in both cases, discussed above. To be
more specificF = 8T gppu(t) paa(t) for Eq. (A1) in our no-
tation. By using the relatiop,,(t)=1—ppp(t), it is easy to
find the derivatived F/dppp= 8T 4[ paalt) — pop(t)]. As a
consequence, the term needed to be added to(Bd$.is

4T 4ppp(t) paa([ Paalt) — pop(t) ] (A3)

which exactly cancels the first term inside the large paren-
thesis in the second term of EGALl). Hence the resultant
equation for Eq(A1l) in Ito form is just Eq.(42a with an
overall minus sign in front of itf ppp(t) = —paa(t)]. As

for Eq. (A2), it is easy to find thatF= 2T 4 p.a(t)
—ppp(t) 1ppa(t). In order to carry out the derivative
with respect tg,,(t), one needs the expression of E8). of

Ref. 18 to relate diagonal elemenjs,(t) and p,4(t), to
Ppa(t). We then obtain

dF(t) _ Z[Paa(t)_Pbb(t)]z_l

dppa(t) Vary Paalt) = ppp(t) A4
Thus the terms needed to be added into BQ) are

2T 4l paa(t) = pob(t) 12pbalt) = Tappa(t). (A5)

The first term in Eq.(A5) exactly cancels the term in the
square brackets inside the large parentheses in the last term
of Eq. (A2). Therefore the resultant equation for E42) in
Ito form is equal to the complex conjugate of E@2b)

electron operator indices in the CQD should be interchange(ﬂ,bba(t)=b§b(t)]. This completes our demonstration of the

For example, the electron annihilation operatgin Ref. 18

equivalence.
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