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Continuous quantum measurement of two coupled quantum dots using a point contact:
A quantum trajectory approach
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We obtain the finite-temperature unconditional master equation of the density matrix for two coupled
quantum dots~CQD’s! when one dot is subjected to a measurement of its electron occupation number using a
point contact~PC!. To determine how the CQD system state depends on the actual current through the PC
device, we use the so-called quantum trajectory method to derive the zero-temperature conditional master
equation. We first treat the electron tunneling through the PC barrier as a classical stochastic point process~a
quantum-jump model!. Then we show explicitly that our results can be extended to the quantum-diffusive limit
when the average electron tunneling rate is very large compared to the extra change of the tunneling rate due
to the presence of the electron in the dot closer to the PC. We find that in both quantum-jump and quantum-
diffusive cases, the conditional dynamics of the CQD system can be described by the stochastic Schro¨dinger
equations for its conditioned state vector if and only if the information carried away from the CQD system by
the PC reservoirs can be recovered by the perfect detection of the measurements.

DOI: 10.1103/PhysRevB.63.125326 PACS number~s!: 73.63.Kv, 85.35.Be, 03.65.Ta, 03.67.Lx
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I. INTRODUCTION

The origins and mechanisms of decoherence~dephasing!
for quantum systems in condensed-matter physics have
tracted much attention recently due to a number of studie
nanostructure mesoscopic systems1–5 and various proposal
for quantum computers.6–9 One of the issues is the conne
tion between decoherence and quantum measurement10,11

for a quantum system. It was reported in a rec
experiment3 with a ‘‘which-path’’ interferometer that
Aharonov-Bohm interference is suppressed owing to
measurement of which path an electron takes through
double-path interferometer. A biased quantum point con
~QPC! located close to a quantum dot, which is built in o
of the interferometer’s arms, acts as a measurement de
The change of transmission coefficient of the QPC, wh
depends on the electron charge state of the quantum dot
be detected. The decoherence rate due to the measureme
the QPC in this experiment has been calculated in Refs.
16.

A quantum-mechanical two-state system, coupled t
dissipative environment, provides a universal model
many physical systems. The indication of quantum coh
ence can be regarded as the oscillation or the interfere
between the probability amplitudes of finding a particle b
tween the two states. In this paper, we consider the prob
of an electron tunneling between two coupled quantum d
~CQD’s! using a low-transparency point contact~PC! or tun-
nel junction as a detector~environment! measuring the posi
tion of the electron~see Fig. 1!. This problem has been ex
tensively studied in Refs. 16–24. The case of measurem
by a general QPC detector with arbitrary transparency
also been investigated in Refs. 12–15, 25, and 26. In a
tion, a similar system measured by a single electron tran
tor rather than a PC has been studied in Re
27,21,19,22,24,28,29, and 30. The influence of the dete
~environment! on the measured system can be determined
the reduced density matrix obtained by tracing out the en
0163-1829/2001/63~12!/125326~12!/$15.00 63 1253
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ronmental degrees of the freedom in the total, system p
environment, density matrix. The master equation~or rate
equations! for this CQD system have been derived and a
lyzed in Refs. 16 and 14~here we refer to the rate equation
as the first-order differential equations in time for both dia
onal and off-diagonal reduced density matrix elements!. This
~unconditional! master equation is obtained when the resu
of all measurement records~electron current records in thi
case! are completely ignored or averaged over, and descr
only the ensemble average property for the CQD syst
However, if a measurement is made on the system and
results are available, the state or density matrix is a con
tional state conditioned on the measurement results. He
the deterministic, unconditional master equation cannot
scribe the conditional dynamics of the CQD system in
single realization of continuous measurements that refl
the stochastic nature of an electron tunneling through the
barrier. Consequently, the conditional master equat

FIG. 1. Schematic representation of two coupled quantum d
~CQD’s! when one dot is subjected to a measurement of its elec
occupation number using a low-transparency point contact~PC! or
tunnel junction. HeremL andmR stand for the chemical potential
in the left and right reservoirs, respectively.
©2001 The American Physical Society26-1
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should be employed. In condensed-matter physics usu
many identical quantum systems are prepared at the s
time and a measurement is made upon the systems. Fo
ample, in nuclear or electron magnetic resonance exp
ments, generally an ensemble of systems of nuclei and e
trons are probed to obtain the resonance signals. This imp
that the measurement result in this case is an average
sponse of the ensemble systems. On the other hand, for
ous proposed condensed-matter quantum comp
architectures,6–9 how to read out physical properties of
single electronic qubit, such as charge or spin at a sin
electron level, is demanding. This is a nontrivial proble
since it involves an individual quantum particle measured
a practical detector in a realistic environment. It is partic
larly important to take account of the decoherence int
duced by the measurements on the qubit as well as to un
stand how the quantum state of the qubit, conditioned o
particular single realization of measurement, evolves in ti
for the purpose of quantum computing.

Korotkov18,20 has obtained the Langevin rate equatio
for the CQD system. These rate equations describe the
dom evolution of the density matrix that both conditions a
is conditioned by the PC detector output. In his approach,
individual electrons tunneling through the PC barrier we
ignored and the tunneling current was treated as a cont
ous, diffusive variable. More precisely, he considered
change of the output current average over some small timt,
^I &, with respect to the average currentI i , as a Gaussian
white-noise distribution. He then updated^I & in the density-
matrix elements using the new values of^I & after each time
interval t. However, treating the tunneling current as a co
tinuous, diffusive variable is valid only when the avera
electron tunneling rate is very large compared to the e
change of the tunneling rate due to the presence of the e
tron in the dot closer to the PC. The resulting derivation
the stochastic rate equations is semiphenomenological, b
on basic physical reasoning to deduce the properties of
density matrix elements, rather than microscopic.

To make contact with the measurement output, in t
paper we present aquantum trajectory31,35–42,28measure-
ment analysis to the CQD system. We first use the quan
open system approach31–34 to obtain the unconditional Mar
kovian master equation for the CQD system, taking into
count the finite-temperature effect of the PC reservoirs. P
ticularly, we assume that the transparency of the PC dete
is small, in the tunnel-junction limit. Subsequently, we d
rive microscopically the zero-temperature conditional mas
equation by treating the electron tunneling through the PC
a classical stochastic point process~also called aquantum-
jump model!.37,42,28 Generally the evolution of the system
state undergoing quantum jumps~or other stochastic pro
cesses! is known as a quantum trajectory31. Real measure-
ments~for example, the photon number detection! that cor-
respond approximately to the ideal quantum-jump~or point-
process! measurement are made regularly in experimen
quantum optics. For almost all-infinitesimal time interva
the measurement result is null~no photon detected!. The sys-
tem in this case changes infinitesimally, but not unitar
The nonunitary component reflects the changing proba
12532
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ties for future events conditioned on past null events.
randomly determined times~conditionally Poisson distrib-
uted!, there is a detection result. When this occurs, the s
tem undergoes a finite evolution, called aquantum jump. In
reality these point processes are not seen exactly due
finite frequency response of the circuit that averages e
event over some time. Nevertheless, we first take the z
response time limit and consider the electron tunneling c
rent consisting of a sequence of randomd function pulses,
i.e., a series of stochastic point processes. Then we s
explicitly that our results can be extended to the quantu
diffusive limit and reproduce the rate equations obtained
Korotkov.18,20 We refer to the case studied by Korotkov18,20

as quantum diffusion, in contrast to the case of quant
jumps considered here. Hence our quantum trajectory
proach may be considered as a formal derivation43 of the rate
equations in Refs. 18 and 20. We find in both quantum-ju
and quantum-diffusive cases that the conditional dynamic
the CQD system can be described by the stochastic Sc¨-
dinger equations31,35,37,40,42~SSE’s! for the conditioned state
vector, provided that the information carried away from t
CQD system by the PC reservoirs can be recovered by
perfect detection of the measurements.

This paper is organized as follows. In Sec. II, we ske
the derivation of the finite-temperature unconditional mas
equation for the QCD system. To determine how the CQ
system state depends on the actual current through the
device, we derive in Sec. III the zero-temperature conditio
master equation and the SSE in the quantum-jump mo
Then in Sec. IV we extend the results to the case of quan
diffusion and obtain the corresponding conditional mas
equation and SSE. The analytical results in terms of Blo
sphere variables for the conditional dynamics are prese
in Sec. V. Specifically, we analyze in this section the loc
ization rate and mixing rate.27,21,22Finally, a short conclusion
is given in Sec. VI. The Appendix is devoted to the demo
stration of the equivalence between the conditional stocha
rate equations in Refs. 18–20 and those derived microsc
cally in the present paper.

II. UNCONDITIONAL MASTER EQUATION
FOR THE CQD AND PC MODEL

The appropriate way to approach quantum measurem
problems is to treat the measured system, the detector~envi-
ronment!, and the coupling between them microscopical
Following from Refs. 16,18 and 20, we describe the wh
system~see Fig. 1! by the following Hamiltonian:

H5HCQD1HPC1Hcoup, ~1!

where

HCQD5\@v1c1
†c11v2c2

†c21V~c1
†c21c2

†c1!#, ~2!

HPC5\(
k

~vk
LaLk

† aLk1vk
RaRk

† aRk!

1(
k,q

~TkqaLk
† aRq1Tqk* aRq

† aLk!, ~3!
6-2
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Hcoup5(
k,q

c1
†c1~xkqaLk

† aRq1xqk* aRq
† aLk!. ~4!

HCQD represents the effective tunneling Hamiltonian for t
measured CQD system. For simplicity, we assume str
inner and interdot Coulomb repulsion, so only one elect
can occupy this CQD system. We label each dot with
index 1,2~see Fig. 1! and letci (ci

†) and\v i represent the
electron annihilation~creation! operator and energy for
single electron state in each dot, respectively. The coup
between these two dots is given by\V. The tunneling
Hamiltonian for the PC detector is represented byHPC

whereaLk , aRk and\vk
L , \vk

R are, respectively, the fermio
~electron! field annihilation operators and energies for t
left and right reservoir states at wave numberk. One should
not be confused by the electron in the CQD with the el
trons in the PC reservoirs. The tunneling matrix element
tween statesk andq in left and right reservoir, respectively
is given byTkq . Equation~4!, Hcoup, describes the interac
tion between the detector and the measured system, dep
ing on which dot is occupied. When the electron in the CQ
system is close to the PC~i.e., dot 1 is occupied!, there is a
change in the PC tunneling barrier. This barrier change
sults in a change of the effective tunneling amplitude fro
Tkq→Tkq1xkq . As a consequence, the current through
PC is also modified. This changed current can be detec
and thus a measurement of the location of the electron in
CQD system is effected.

The total density operatorR(t) for the entire system in the
interaction picture satisfies

ṘI~ t !52
i

\
@HI~ t !,RI~0!#

2
1

\2E0

t

dt8†HI~ t !,@HI~ t8!,RI~ t8!#‡. ~5!

The dynamics of the entire system is determined by the ti
dependent Hamiltonian:44

HI~ t !5(
k,q

~Tkq1xkqc1
†c1!aLk

† aRqe
i (vk

L
2vk

R)t1H.c., ~6!

where we have treated the sum of the tunneling Hamilton
parts inHPC andHcoup as the interaction HamiltonianHI ,
and H.c. stands for Hermitian conjugate of the entire pre
ous term. By tracing both sides of Eq.~5! over the bath
~reservoir! variables and then changing from the interacti
picture to the Schro¨dinger picture, we obtain31–33 the finite-
temperature, Markovian master equation for the CQ
system:

ṙ~ t !52
i

\
@HCQD ,r~ t !#1D@T11X1n1#r~ t !

1D@T2* 1X2* n1#r~ t !, ~7!

wherer(t)5TrBR(t) and TrB indicates a trace over reservo
variables. In arriving at Eq.~7!, we have made the following
assumption and approximations:~a! treating the left and right
12532
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fermion reservoirs in the PC as thermal equilibrium fre
electron baths,~b! weak system-bath coupling,~c! small
transparency of the PC, i.e., in the tunnel-junction limit,~d!
uncorrelated and factorizable system-bath initial conditio
~e! relaxation time scales of the reservoirs being mu
shorter than that of the system state,~f! Markovian approxi-
mation, ~g! ueVu,kBT!mL(R) , and ~h! energy-independen
electron tunneling amplitudes and density of states over
bandwidth of max(ueVu,kBT). HerekB is the Boltzmann con-
stant,T represents the temperature,eV5mL2mR is the ex-
ternal bias applied across the PC, andmL andmR stand for
the chemical potentials in the left and right reservoirs,
spectively. In Eq.~7!, n15c1

†c1 is the occupation numbe
operator for dot 1. The parametersT6 andX6 are given by

uT 6u25D652peuT00u2gLgRV6 /\, ~8a!

uT61X 6u25D68 52peuT001x00u2gLgRV6 /\, ~8b!

whereD6 and D68 are the average electron tunneling rat
through the PC barrier in positive and negative bias dir
tions at finite temperatures, without and with the presence
the electron in dot 1, respectively. Here the effective fini
temperature external bias potentialeV6 is given by the fol-
lowing expression:

eV6[
6eV

12 exp@7eV/~kBT!#
. ~9!

T00 and x00 are energy-independent tunneling amplitud
near the average chemical potential, andgL and gR are the
energy-independent density of states for the left and ri
fermion baths. Note that the average electron curre
through the PC barrier is proportional to the difference b
tween the average electron tunneling rate in opposite di
tions. Hence, the average currentseD5e(D12D2) and
eD85e(D18 2D28 ), following from Eqs. ~8! and ~9!, are
temperature independent45,46 at least for a range of low tem
peratureskBT!mL(R) . In addition, the current-voltage cha
acteristic in the linear response regionueVu!mL(R) is of the
same form as that for an Ohmic resistor, though the natur
charge transport is quite different in both cases.

We have also introduced, in Eq.~7!, an elegant
superoperator37,28,47–49 D, widely used in measuremen
theory in quantum optics. Physically the ‘‘irreversible’’ pa
caused by the influence of the environment in the uncon
tional master equation is represented by theD superoperator.
Generally superoperators transform one operator into ano
operator. Mathematically, the expressionD@B#r means that
superoperatorD takes its operator argumentB, acting onr.
Its precise definition is in terms of another two superope
tors J andA:

D@B#r5J@B#r2A@B#r, ~10!

where

J@B#r5BrB†, ~11!

A@B#r5~B†Br1rB†B!/2. ~12!
6-3
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The form of the master equation~7!, defined through the
superoperatorD@B#r(t), preserves the positivity of the den
sity matrix operatorr(t). Such a Markovian master equatio
is called a Lindblad50 form.

To demonstrate the equivalence between the master e
tion ~7! and the rate equations derived in Ref. 16, we eva
ate the density matrix operator in the same basis as in Re
and obtain

ṙaa~ t !5 iV@rab~ t !2rba~ t !#, ~13a!

ṙab~ t !5 i«rab~ t !1 iV@raa~ t !2rbb~ t !#

2~ uX Tu2/2!rab~ t !1 i Im~T1* X1

2T2* X2!rab~ t !. ~13b!

Here \«5\(v22v1) is the energy mismatch between th
two dots,r i j (t)5^ i ur(t)u j &, and raa(t) and rbb(t) are the
probabilities of finding the electron in dot 1 and dot 2, r
spectively. The rate equations for the other two density m
trix elements can be easily obtained from the relatio
rbb(t)512raa(t) andrba(t)5rab* (t). Compared to an iso
lated CQD system, the presence of the PC detector in
duces two effects to the CQD system. First, the imagin
part of the product ofT1* X12T2* X2 @the last term in Eq.
~13b!# causes an effective temperature-independent shif
the energy mismatch between the two dots. Here (T1* X1

2T2* X15T2* X2)5T* X is a temperature-independent qua
tity whereT5T1(0), i.e.,T1 andX1 evaluated at zero tem
perature, respectively. Second, it generates a decoher
~dephasing! rate

Gd5uX Tu2/2 ~14!

for the off-diagonal density matrix elements, whereuXTu2
5uX1u21uX2u2 . We note that the decoherence rate com
entirely from the effect of the measurement revealing wh
the electron in the CQD’s is located. If the PC detector d
not distinguish which of the dots the electron occupies, i
X650, thenGd50. The rate equations in Eq.~13! are ex-
actly the same as the zero-temperature rate equations in
16 if we assume that the tunneling amplitudes are real,T00

5T00* andx005x00* . In that case, the last term in Eq.~13b!
vanishes andGd5X 2/25(AD82AD)2/2. Actually, the rela-
tive phase between the two complex tunneling amplitu
may produce additional effects on conditional dynamics
the CQD system as well. This will be shown later when
discuss conditional dynamics. Physically, the presence of
electron in dot 1 raises the effective tunneling barrier of
PC due to electrostatic repulsion. As a consequence, th
fective tunneling amplitude becomes lower, i.e.,D85uT
1Xu2,D5uT u2. This sets a condition on the relative pha
u betweenX andT: cosu,2uXu/(2uT u).

The dynamics of the unconditional rate equations at z
temperature was analyzed in Ref. 16. Here, following fro
Eqs. ~14!, ~8!, and ~9!, we find that the temperature
dependent decoherence rate due to the PC thermal rese
has the following expression:
12532
ua-
-
16

-
-
:

o-
y

in

-

nce

s
e
s
.,

ef.

s
f

e
e
ef-

o

oirs

Gd~T!

Gd~0!
5

e~V11V2!

eV
5cothS eV

2kBTD . ~15!

As expected,Gd(T) increases with increasing temperatur
although the average tunneling current through the PC
temperature independent45,46 for the same range of low tem
peratureskBT!mL(R) . This temperature dependence of t
decoherence rate is in fact just the temperature depend
of the zero-frequency noise power spectrum of the curr
fluctuation in a low-transparency PC or tunnel junction51

The CQD system weakly coupled to another finit
temperature environment beside the PC detector was
cussed in Ref. 20. However, the influence of the fini
temperature PC reservoirs on the CQD system, prese
here, was not taken into account. The finite-temperature
coherence rate of a one-electron state in a quantum dot
to charge fluctuation of a general QPC has been calculate
Ref. 13. In Ref. 26, the temperature-dependent decoher
rate for a two-state system caused by a QPC detector
been discussed specifically in the context of the meas
ment problem.

III. QUANTUM-JUMP, CONDITIONAL
MASTER EQUATION

So far we have considered the evolution of the redu
density matrix when all the measurement results are igno
or averaged over. To make contact with a single realizat
of the measurement records and study the stochastic ev
tion of the quantum state, conditioned on a particular m
surement realization, we derive in this section the quantu
jump, conditional master equation at zero temperature.

The nature of the measurable quantities, such as accu
lated number of electrons tunneling through the PC barr
is stochastic. On average, of course, the same current fl
in both reservoirs. However, the current is actually made
of contributions from random pulses in each reservoir, wh
do not necessarily occur at the same time. They are ind
separated in time by the times at which the electrons tun
through the PC. In this section, we treat the electron tunn
ing current consisting of a sequence of randomd-function
pulses. In other words, the measured current is regarded
series of point processes~a quantum-jump model!.37,42,28The
case of quantum diffusion will be analyzed in Sec. IV.

Before going directly to the derivation, we discuss som
general ideas concerning quantum measurements. If the
tem under observation is in a pure quantum state at the
ginning of the measurement, then it will still be in a pu
conditional state after the measurement, conditioned on
result, provided no information is lost. For example, if th
initial normalized state isuc(t)&, the unnormalized final state
given the resulta at the end of the time interval@ t,t1dt) of
the measurement becomes

uc̃a~ t1dt!&5Ma~dt!uc~ t !&, ~16!

where$Ma(t)% represents a set of operators that define
measurements and satisfies the completeness condition

(
a

Ma
†~ t !Ma~ t !51. ~17!
6-4
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Equation~17! is simply a statement of conservation of pro
ability. The corresponding unnormalized density matrix, f
lowing from Eq.~16!, is given by

r̃a~ t1dt!5uc̃a~ t1dt!&^c̃a~ t1dt!u5J @Ma~dt!#r~ t !,
~18!

wherer(t)5uc(t)&^c(t)u and the superoperatorJ is defined
in Eq. ~11!. Of course, if the measurement is made but
result is ignored, the final state will not be pure but a mixtu
of the possible outcome weighted by their probabilities. C
sequently, the unconditional density matrix can be written

r~ t1dt!5(
a

r̃a~ t1dt!5(
a

Pr@a#ra~ t1dt!, ~19!

where Pr@a#5Tr@ r̃a(t1dt)# stands for the probability for
the system to be observed in the statea, and ra(t1dt)
5 r̃a(t1dt)/Pr@a# is the normalized density matrix at tim
t1dt.

Now we proceed to derive the quantum-jump, conditio
master equation in the following. Only two measurement
eratorsMa(dt) for a50,1 are needed for a measureme
record that is a point process. For most of the infinitesim
time intervals, the measurement result isa50, regarded as a
null result. On the other hand, at randomly determined tim
there is a resulta51, referred as adetectionof an electron
tunneling through the PC barrier. Formally, we can write
current through the PC as

i ~ t !5edN~ t !/dt, ~20!

where e is the electronic charge anddN(t) is a classical
point process that represents the number~either zero or one!
of tunneling events seen in an infinitesimal timedt. We can
think of dN(t) as the increment in the number of electro
N(t) in the drain in timedt. It is this variable, the accumu
lated electron number transmitted through the PC, whic
used in Refs. 16, 27, and 22. The point process is form
defined by the conditions on the classical random varia
dNc(t):

@dNc~ t !#25dNc~ t !, ~21!

E@dNc~ t !#5Tr@ r̃1c~ t1dt!#

5Tr$J@M1~dt!#rc~ t !%5P1c~ t !dt. ~22!

Here we explicitly use the subscriptc to indicate that the
quantity to which it is attached is conditioned on previo
measurement results, the occurrences~detection records! of
the electrons tunneling through the PC barrier in the p
E@Y# denotes an ensemble average of a classical stoch
processY. Equation~21! simply states thatdNc(t) equals
either zero or one, which is why it is called a point proce
Equation~22! indicates that the ensemble average ofdNc(t)
equals the probability~quantum average! of detecting elec-
trons tunneling through the PC barrier in timedt. In addi-
tion, dNc(t) is of orderdt and obviously all moments~pow-
ers! of dNc(t) are of the same order asdt. Note here that the
12532
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density matrixrc(t) is not the solution of the unconditiona
reduced master equation, Eq.~25a!. It is actually conditioned
by dNc(t8) for t8,t.

The stochastic conditional density matrix at a later tim
t1dt can be written as

rc~ t1dt!5dNc~ t !
r̃1c~ t1dt!

Tr@ r̃1c~ t1dt!#

1@12dNc~ t !#
r̃0c~ t1dt!

Tr@ r̃0c~ t1dt!#
. ~23!

Equation~23! states that whendNc(t)50 ~a null result!, the
system changes infinitesimally via the operatorM0(dt)
and hencerc(t1dt)5r0c(t1dt). Conversely, if dNc(t)
51 ~a detection!, the system goes through a finite evolutio
induced by the operatorM1(dt), called aquantum jump. The
corresponding normalized conditional density matrix th
becomesr1c(t1dt). One can see, with the help of Eq.~20!,
that in this approach the instantaneous system state co
tions the measured current@see Eq.~22!#, while the measured
current itself conditions the future evolution of the measu
system @see Eq. ~23!# in a self-consistent manner. It i
straightforward to show that the ensemble average of
conditional density matrix equals the unconditional on
E@rc(t)#5r(t). Tracing over both sides of Eq.~19! for a
50,1, we obtain

Tr@ r̃0c~ t1dt!#512Tr@ r̃1c~ t1dt!#. ~24!

Then taking the ensemble average over the stochastic
ablesdNc(t) on both sides of Eq.~23!, replacingE@dNc(t)#
by using Eq.~22!, and comparing the resultant equation wi
Eq. ~19! completes the verification.

Next we find the specific expression ofr̃1c(t1dt) and
r̃0c(t1dt) and derive the conditional master equation for t
CQD system measured by the PC. If a perfect PC dete
~or efficient measurement! is assumed, then whenever a
electron tunnels through the barrier, there is a measurem
record corresponding to the occurrence of that event; th
are no ‘‘misses’’ in the count of the electron number. As
result, the information lost from the system to the reservo
can be recovered using a perfect detector. Here we assu
zero-temperature case for the efficient measurement. At fi
temperatures, the electrons can, in principle, tunnel thro
the PC barrier in both directions. But experimentally the d
tector might not be able to detect these electron tunne
processes on both sides of the PC barrier. This may resu
information loss at finite temperatures. Hence, at zero te
perature the unconditional master equation~7! reduces to

ṙ~ t !52
i

\
@HCQD ,r~ t !#1D@T1Xn1#r~ t ! ~25a!

52
i

\
@HCQD2 i\~F* X2FX* !n1/2,r~ t !#

1D@Xn11T1F#r~ t !, ~25b!
6-5
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[Lr~ t !, ~25c!

whereD is defined in Eq.~10!. HereF is an arbitrary com-
plex number,48,49 while we are usingT and X to represent,
respectively, the quantitiesT1 andX1 in Eq. ~8! evaluated at
zero temperature.

Requiring that the ensemble average of the conditio
density matrixE@rc(t1dt)#5r(t1dt) satisfies the uncon
ditional master equation~25! leads to

r̃0c~ t1dt!1 r̃1c~ t1dt!5~11dtL!rc~ t !. ~26!

Here we have explicitly used the stochastic Itoˆ calculus52,53

for the definition of time derivatives asṙ(t)5 lim
dt→0

@r(t

1dt)2r(t)#/dt. This is in contrast to the definitionṙ(t)
5 lim

dt→0
@r(t1dt/2)2r(t2dt/2)#/dt, used in another sto

chastic calculus, the Stratonovich calculus.52,53 Recall that
Eq. ~22! indicates thatE@dNc(t)#/dt equals the average elec
tron tunneling rate through the PC barrier. From Eq.~8!, the
electron tunneling rates areD5uT u2 when n150 and D8
5uT1Xu2 when n151. From Eq.~22! we thus have the
correspondence

Tr@M1~dt!rc~ t !M1
†~dt!#

5Tr$rc~ t !@T* 1n1x* #@T1n1x#%dt. ~27!

Also, for Eq.~26! to reproduce the master equation~25b! we
must have48,49

M1~dt!5Adt~Xn11T1F! ~28!

for some arbitrary complex numberF. By inspection of Eq.
~27! we must haveF50, so that

r̃1c~ t1dt!5J @T1Xn1#rc~ t !dt. ~29!

Substituting Eq.~29! into ~22! yields

E@dNc~ t !#5Tr@ r̃1c~ t1dt!#5@D1~D82D !^n1&c~ t !#dt,
~30!

where ^n1&c(t)5Tr@n1rc(t)#. The remaining part, excep
the jump of Eq.~29!, on the right hand side of Eq.~26! in
time dt, corresponds to the effect of a measurement givin
null result onrc(t):

r̃0c~ t1dt!5rc~ t !2dt

3HA@T1Xn1#rc~ t !2
i

\
@HCQD ,rc~ t !#J ,

~31!

whereA is defined in Eq.~12!. The corresponding measure
ment operator is

M0~dt!512dt@~ i /\!HCQD

1~1/2!~T* 1X* n1!~T1Xn1!#. ~32!

Finally, substituting Eqs.~29!, ~31!, ~24!, and ~30! into
Eq. ~23!, expanding, and keeping the terms of first order
12532
d

a

dt, we obtain the stochastic master equation, conditioned
the observed event in timedt:

drc~ t !5dNc~ t !FJ@T1Xn1#

P1c~ t !
21Grc~ t !

1dtH 2A@T1Xn1#rc~ t !1P1c~ t !rc~ t !

1
i

\
@HCQD ,rc~ t !#J , ~33!

where

P1c~ t !5D1~D82D !^n1&c~ t !. ~34!

Note thatdNc(t), from Eq.~30!, is of orderdt. Hence terms
proportional todNc(t)dt are ignored in Eq.~33!. Again av-
eraging this equation over the observed stochastic proces
settingE@dNc(t)# equal to its expected value, Eq.~30!, gives
the unconditional, deterministic master equation~25a!. Equa-
tion ~33! is one of the main results in this paper.

So far we have assumed perfect detection or effici
measurement. In this case, the stochastic master equatio
the conditioned density-matrix operator~33! is equivalent to
the following stochastic Scho¨dinger equation~SSE! for the
conditioned state vector:

ducc~ t !&5FdNc~ t !S T1Xn1

AP1c~ t !
21D 2dtS i

\
HCQD

1
~T* 1X* n1!~T1Xn1!

2
2

P1c~ t !

2 D G ucc~ t !&.

~35!

This equivalence can be easily verified using the stocha
Itô calculus52,53

drc~ t !5d~ ucc~ t !&^cc~ t !u!

5@ducc~ t !&] ^cc~ t !u1ucc~ t !&d^cc~ t !u

1@ducc~ t !&#@d^cc~ t !u#, ~36!

and keeping terms up to orderdt. Since the evolution of the
system can be described by a ket state vector, it is obv
that an efficient measurement or perfect detection prese
state purity if the initial state is a pure state. In this descr
tion of the SSE, the quantum average is now defined,
example, aŝ n1&c(t)5^cc(t)un1ucc(t)&. The unconditional
density-matrix operator is equivalent to the ensemble av
age of quantum trajectoriesgenerated by the SSE,r(t)
5E@ ucc(t)&^cc(t)u#, provided that the initial density opera
tor can be written asr(0)5ucc(0)&^cc(0)u.

The interpretation37 for the measured system state con
tioned on the measurement, in terms of gain and loss
information, can be summarized and understood as follo
In order for the system to be continuously described b
state vector~rather than a general density matrix!, it is nec-
6-6
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CONTINUOUS QUANTUM MEASUREMENT OF TWO . . . PHYSICAL REVIEW B63 125326
essary~and sufficient! to have maximal knowledge of it
change of state. This requires perfect detection or effic
measurement, which recovers and contains all the infor
tion lost from the system to the reservoirs. If the detection
not perfect and some information about the system isun-
traceable, the evolution of the system can no longer be d
scribed by a pure state vector. For the extreme case of
efficiency detection, the information~measurement results a
the detector! carried away from the system to the reservo
is ~are! completely ignored, so that the stochastic mas
equation~33! after being averaged over all possible measu
ment records reduces to the unconditional, determini
master equation~25a!, leading to decoherence for the sy
tem. This interpretation highlights the fact that a densi
matrix operator description of a quantum state is only nec
sary when information is lost irretrievably. The purity
preserving, conditional state evolution for a pure initial st
and gradual purification for a nonpure initial state have b
discussed in Refs. 18–20 and 23 in the quantum-diffus
limit.

IV. QUANTUM-DIFFUSIVE, CONDITIONAL
MASTER EQUATION

In this section, we extend the results obtained in the p
vious section and derive the conditional master equa
when the average electron tunneling current is very la
compared to the extra change of the tunneling current du
the presence of the electron in the dot closer to the PC. T
limit is studied and called a ‘‘weakly coupling or respondin
detector’’ limit in Refs. 18 and 20. Here, on the other han
we will refer to this case as quantum diffusion in contrast
the case of quantum jumps. In the quantum-diffusive lim
many electrons, (N.@(D81D)/(D82D)#2@1), pass
through the PC before one can distinguish which dot is
cupied. In addition, individual electrons tunneling throu
the PC are ignored and time averaging of the current
performed. This allows electron counts, or the accumula
electron number, to be considered as a continuous vari
satisfying a Gaussian white-noise distribution. In Refs.
and 20 a set of Langevin equations for the random evolu
of the CQD system density-matrix elements conditioned
the detector output was presented, based only on basic p
cal reasoning. In this section, we show explicitly, under
quantum-diffusive limit, that our microscopic approa
reproduces43 the rate equations in Refs. 18 and 20.

In quantum optics, a measurement scheme known as
modyne detection31,47,48 is closely related to the measur
ment of the CQD system by a weakly responding PC de
tor. In both cases, there is a large parameter to allow
photocurrent or electron current to be approximated b
continuous function of time. We will follow closely the der
vation of a smooth master equation for homodyne detec
given in Ref. 48~sketched first by Carmichael31! for the
CQD system.

There are two ideal parametersT and X for the CQD
system. In the quantum-diffusive limit, we assumeuTu
@uXu, which is consistent with the assumption, (D1D8)
@(D82D), made in Refs. 18 and 20 for the weakly co
12532
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pling or weakly responding PC detector. Consider the evo
tion of the system over the short-time interval@ t,t1dt). We
relate the three parameters,X, T, anddt in our problem as
uXu2dt;e3/2, wheree5(uX u/uT u)!1. This scaling is cho-
sen so that in timedt, the number of detections~electron
counts! with dot 1 being unoccupied scales asdN;uT u2dt
;e21/2@1. However, the extra change in electron numb
detections due to the presence of the electron in dot 1 sc
as uX u2dt;e3/2!1. To be more specific, the average num
ber of detections, following Eq.~30!, up to order ofe1/2 is

E@dN~ t !#5uT u2dt@112e cosu^n1&c~ t !#, ~37!

whereu is the relative phase betweenX andT. The variance
in dN will be dominated by the Poisson statistics of t
currenteD5euT u2 in time dt. Since the number of counts i
time dt is very large, the statistics will be approximate
Gaussian. Indeed, it has been shown47 that the statistics of
dN are consistent with that of a Gaussian random variable
mean given by Eq.~37! and the variance up to order ofe21/2

is sN
2 5uT u2dt. The fluctuationsN

2 is necessarily as large a
expressed here in order for the statistics ofdN to be consis-
tent with Gaussian statistics. Thus,dN can be approximately
written as a continuous Gaussian random variable:52,53

dN~ t !5$uT u2@112e cosu^n1&c~ t !#1uT uj~ t !%dt,
~38!

wherej(t) is a Gaussian white noise characterized by

E@j~ t !#50, E@j~ t !j~ t8!#5d~ t2t8!. ~39!

HereE denotes an ensemble average andd(t2t8) is a delta
function. In stochastic calculus,52,53j(t)dt5dW(t) is known
as the infinitesimal Wiener increment. In Eq.~38!, the accu-
racy in each term is only as great as the highest-order
pression ine1/2. But it is sufficient for the discussions below

Although the conditional master equation~33! requires
dNc(t) to be a point process, it is possible, in the quantu
diffusive limit, to simply replacedNc(t) by the continuous
random variabledNc(t), Eq.~38!. This is because each jum
is infinitesimal, so the effect of many jumps is approximate
equal to the effect of one jump scaled by the number
jumps. This can be justified more rigorously as in Ref. 4
Finally, expanding Eq.~33! in power of e, substituting
dNc(t)→dNc(t), keeping only the terms up to the orde
e3/2, and lettingdt→dt, we obtain the conditional maste
equation

ṙc~ t !52
i

\
@HCQD ,rc~ t !#1D@T1Xn1#rc~ t !

1j~ t !
1

uT u @T* Xn1rc~ t !1X* Trc~ t !n122 Re~T* X!

3^n1&c~ t !rc~ t !#. ~40!

Thus the quantum-jump evolution of Eq.~33! has been re-
placed by quantum-diffusive evolution, Eq.~40!. Following
the same reasoning in obtaining the SSE, Eq.~35!, for the
6-7
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GOAN, MILBURN, WISEMAN, AND SUN PHYSICAL REVIEW B63 125326
case of quantum-jump process, we find the quantu
diffusive, conditional master equation~40! is equivalent to
the following diffusive SSE:

ducc~ t !&5FdtS 2
i

\
HCQD2

uXu2

2
@n122n1^n1&c~ t !

1^n1&c
2~ t !#2 i Im~T* X!n1G D

1j~ t !dt
1

uT u $T* Xn12X* T^n1&c~ t !%ucc~ t !&.

~41!

This equivalence can be verified using Eq.~36! and keeping
terms up to orderdt. Note, however, in this case52,53 that
terms of orderj(t)dt are to be regarded as the same orde
dt, but @j(t)dt#25@dW(t)#25dt.

Our conditional master equation by its derivation is fo
mulated in terms of Itoˆ calculus, while the stochastic rat
equations in Refs. 18 and 20 are written in a Stratonov
calculus form.52,53In contrast to the Stratonovich form of th
rate equations, it is easy to see that the ensemble ave
evolution of our conditional master equation~40! reproduces
the unconditional master equation~25a! by simply eliminat-
ing the white-noise term using Eq.~39!. To show that our
quantum-diffusive, conditional stochastic master equat
~40! reproduces the nonlinear Langevin rate equations
tained semiphenomenologically in Refs. 18 and 20,
evaluate Eq.~40! in the same basis as for Eq.~13! and obtain

ṙaa~ t !5 iV@rab~ t !2rba~ t !#2A8Gdraa~ t !rbb~ t !j~ t !,
~42a!

ṙab~ t !5 i«rab~ t !1 iV@raa~ t !2rbb~ t !#2Gdrab~ t !

1A2Gdrab~ t !@raa~ t !2rbb~ t !#j~ t !. ~42b!

In obtaining Eq.~42!, we have made the assumption of re
tunneling amplitudes~i.e., 0p) as in Refs. 16, 18 and 20 i
order to be able to compare the results directly. We have
set X5A2Gd. Again, the ensemble average of Eq.~42! by
eliminating the white-noise terms reduces to Eq.~13!. To
further demonstrate the equivalence, we translate the
chastic rate equations of Refs. 18 and 20 into the Itoˆ formal-
ism and compare them to Eq.~42!. This is carried out in the
Appendix. Indeed, Eq.~42! is equivalent to the Langevin rat
equations in Refs. 18 and 20 for the ‘‘ideal detector.’’

V. ANALYTICAL RESULTS FOR CONDITIONAL
DYNAMICS

To analyze the dynamics of a two-state system, such
the CQD system considered here, one can represent the
tem density-matrix elements in terms of Bloch sphere v
ables. The Bloch sphere representation is equivalent to
of the rate equations. However, some physical insights
the dynamics of the system can sometimes be more e
visualized in this representation. Denoting the averages
the operatorssx , sy , sz by x, y, z, respectively, the density
12532
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matrix operator for the CQD system can be expressed
terms of the Bloch sphere vector (x,y,z) as

r~ t !5@ I 1x~ t !sx1y~ t !sy1z~ t !sz#/2 ~43a!

5
1

2 S 11z~ t ! x~ t !2 iy~ t !

x~ t !1 iy~ t ! 12z~ t !
D ,

~43b!

where the operatorsI and s i are defined using the fermio
operators for the two dots:

I 5c2
†c21c1

†c1 , ~44a!

sx5c2
†c11c1

†c2 , ~44b!

sy52 ic2
†c11 ic1

†c2 , ~44c!

sz5c2
†c22c1

†c1 . ~44d!

It is easy to see that Trr(t)51, I is a unit operator, ands i
defined above satisfies the properties of Pauli matrices
this representation, the variablez(t) represents the popula
tion difference between the two dots. Especially,z(t)51 and
z(t)521 indicate that the electron is localized in dot 2 a
dot 1, respectively. The valuez(t)50 corresponds to an
equal probability for the electron to be in each dot.

The master equations~25a!, ~40!, and~33!, can be written
as a set of coupled stochastic differential equations in te
of the Bloch sphere variables. For simplicity, in this secti
we assume that the tunneling amplitudes are real, i.e., 05p,
and we setuT u5T andX5A2Td. By substituting Eq.~43a!
into Eq.~25a!, and collecting and equating the coefficients
front of sx , sy , sz respectively, the unconditional maste
equation under the assumption of real tunneling amplitu
is equivalent to the following equations:

d

dt S x~ t !

y~ t !
D 5S 2Gd 2«

« 2Gd
D S x~ t !

y~ t !
D 1S 0

22Vz~ t !
D ,

~45a!

dz~ t !

dt
52Vy~ t !. ~45b!

Similarly for the quantum-diffusive, conditional maste
equation~40!, we obtain

dxc~ t !

dt
52«yc~ t !2Gdxc~ t !2A2Gdzc~ t !xc~ t !j~ t !,

~46a!

dyc~ t !

dt
5«xc~ t !22Vzc~ t !2Gdyc~ t !2A2Gdzc~ t !yc~ t !j~ t !,

~46b!

dzc~ t !

dt
52Vyc~ t !1A2Gd@12zc

2~ t !#j~ t !. ~46c!

Again the c subscript is to emphasize that these variab
refer to the conditional state. It is trivial to see that Eq.~46!
averaged over the white noise reduces to Eq.~45!, provided
6-8
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CONTINUOUS QUANTUM MEASUREMENT OF TWO . . . PHYSICAL REVIEW B63 125326
that E@xc(t)#5x(t) as well as similar replacements are pe
formed foryc(t) andzc(t). The analogous calculation can b
carried out for the quantum-jump, conditional master eq
tion ~33!. We obtain

dxc~ t !5dtS 2«yc~ t !2
~D82D !

2
zc~ t !xc~ t ! D2dNc~ t !

3S xc~ t !
2Gd2~D82D !zc~ t !

2D1~D82D !@12zc~ t !#
D , ~47a!

dyc~ t !5dtS «xc~ t !22Vzc~ t !2
~D82D !

2
zc~ t !yc~ t ! D

2dNc~ t !S yc~ t !
2Gd2~D82D !zc~ t !

2D1~D82D !@12zc~ t !#
D ,

~47b!

dzc~ t !5dtS 2Vyc~ t !1
~D82D !

2
@12zc

2~ t !# D2dNc~ t !

3S ~D82D !@12zc
2~ t !#

2D1~D82D !@12zc~ t !#
D . ~47c!

As expected, by using Eq.~30!, the ensemble average of E
~47! also reduces to the unconditional equation~45!.

Next we calculate the localization rate, at which the el
tron becomes localized in one of the two dots due to
measurement, using Eqs.~46! and ~47!. Obviously, the sto-
chastic, conditional differential equations provide more
formation than the unconditional ones do. In the uncon
tional case Eq.~45!, the average population differencez(t)
between the dots is a constant of motion„@dz(t)/dt#50…
whenV50. However, if the present model indeed describ
a measurement ofn15c1

†c1 ~in other words the position o
the electron in the dots!, then in the absence of tunnelin
V50, we would expect to see the conditional state beco
localized in one of the two dots, i.e., eitherz51 or z
521. Indeed, forV50, we can see from the conditiona
equations~46c! and ~47c! that zc(t)561 are fixed points.
We can take into account both fixed points by consider
zc

2(t). Hence it is sensible to take the ensemble aver
E@zc

2(t)# and find the rate at which this deterministic qua
tity approaches one. Applying Itoˆ calculus52,53to the stochas-
tic variablezc

2(t), we haved(zc
2)52zcdzc1dzcdzc . Let us

first consider the case for the quantum-jump equations.
ing Eqs.~47c! and ~30! and the fact thatdNc

2(t)5dNc(t),
we find that

E@dzc
2~ t !#5EF ~D82D !2@12zc

2~ t !#2

4D12~D82D !@12zc~ t !#
Gdt. ~48!

If the system starts in a state which has an equal probab
for the electron to be in each dot thenzc(0)5z(0)50. In
this case, the ensemble average variablez(t) would remain
to be zero since@dz(t)/dt#50 whenV50. However if we
12532
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2 over many quantum trajectories with this initia

condition then we find from Eq.~48! that for short times@by
settingzc(t),zc

2(t)'0]

E@zc
2~dt !#'

~D82D !2

2~D81D !
dt5g loc

jumpdt. ~49!

That is to say, the system tends toward a definite state~with
zc561 sozc

251) at an initial rate of

g loc
jump5

~D82D !2

2~D81D !
5

~AD81AD !2

~D81D !
Gd . ~50!

Similarly for the case of quantum diffusion, using Eqs.~47c!
and~39! and the fact that@j(t)dt#25@dW(t)#25dt, we find
E@dzc

2(t)#5E@2Gd@12zc
2(t)#2#dt. Applying the same rea-

soning for obtaining Eq.~49!, we find E@zc
2(dt)#'2Gddt

5g loc
diffdt. This implies that the localization rate in this case

g loc
diff52Gd . This is consistent with the result of localizatio

time, t loc;(1/g loc
diff), found in Ref. 18 in the quantum

diffusive case. As expected, Eq.~50! in the quantum-
diffusive limit, T@X or (D1D8)@(D82D), reduces to
g loc

jump→2Gd5g loc
diff . The rate of localization is a direct indi

cation of the quality of measurement. It is necessarily
large as the decoherence rate since a successful measur
distinguishing the location of the electron on the two do
would destroy any coherence between them.

The above localization rates are related to the signal
noise ratio for the measurement and can be obtained i
itively as follows. Consider the electron with equal likel
hood in either dot so thatzc(0)5z(0)50. For the case of
quantum diffusion, the electron tunneling current through
PC obeys Gaussian statistics. Recall in Sec. IV that the m
of the probability distribution of the number of electron d
tections through the PC is given by Eq.~37! and its variance
takes the formsN

2 5T 2dt in time dt. If the electron is in dot
1, then the rate of electrons passing through the PC isT 2

22TX; if it is in dot 2, then the rate isT 2. One may define
the width of the probability distribution as the distance fro
the mean when the distribution falls toe21 of its maximum
value. For a Gaussian distribution, the square of the widt
twice the variance. The above two probability distributio
will begin to be distinguishable when the difference in t
means of the two distributions is of order the square roo
the sum of twice the variances~square of the widths! at time
t. That is, when

u~T 222TX!t2T 2tu;A2T 2t12T 2t. ~51!

Solving this for t gives a characteristic rate:t21;X 2

52Gd . This is just theg loc
diff discussed above. For the case

quantum jumps, the statistics of the electron counts thro
the PC can be approximated by Poisson statistics. For a P
son process at rateR, the probability forN events to occur in
time t is

p~N;t !5
~Rt !N

N!
e2Rt. ~52!
6-9
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GOAN, MILBURN, WISEMAN, AND SUN PHYSICAL REVIEW B63 125326
The mean and variance of this distribution are equal
given by E@N#5Var(N)5Rt. In the quantum-jump cas
from Eq. ~30!, if the electron is in dot 1 then the rate o
electrons passing through the PC isD8. If the electron is in
dot 2, then the rate is justD. Requiring the difference in
means of the two probability distributions,p(N,t), being of
the order of the square root of the sum of twice the varian
at timet yields

uD8t2Dtu;A2D8t12Dt. ~53!

Solving this fort21 yields a characteristic rate which is th
same asg loc

jump defined in Eq.~50!.
A similar conclusion is reached in Refs. 27,21, and

The measurement time,tms, in Refs. 27,21, and 22 is
roughly the inverse of the localization rate given here. Ho
ever, there the condition for being able to distinguish the t
probability distributions is slightly different from the cond
tion discussed here. The measurement time27,21,22is denoted
as the time at which the separation in the means of the
distributions is larger than the sum of the widths, i.e.,
sum of the square roots of twice the individual varian
rather than the square root of the sum of twice the varian
If this condition is applied here, instead of Eqs.~51! and
~53!, we have

u~T 222TX!tms2T 2tmsu>A2T 2tms1A2T 2tms ~54!

for the quantum-diffusive case and

uD8tms2Dtmsu>A2D8tms1A2Dtms ~55!

for the quantum-jump case. We find from Eqs.~54! and~55!
that the inverse of the measurement timetms is the same for
both quantum-diffusive and quantum-jump cases, and
equal to the decoherence rate:

tms
215

X 2

2
5

~AD82AD !2

2
5Gd5td

21 , ~56!

wheretd5(1/Gd) is the decoherence time. This is in agre
ment with the result in Refs. 21 and 22. Our conditi
shows, on the other hand, the different localization rates
the quantum-jump and quantum-diffusive cases. This is c
sistent with the initial rates obtained from the ensemble
erage of Bloch variable,E@zc

2(dt)#.
There is another time scale denoted as mixing time,tmix ,

discussed in Refs. 27,21, and 22. It is the time after wh
the information about the initial quantum state of the CQD
is lost due to the measurement-induced transition. This t
sition arises because of the nonzero couplingV term in the
CQD Hamiltonian, which does not commute with the occ
pation number operator of dot 1~the measured quantity! and
thus mixes the two possible states of the CQD system. Be
we estimate the mixing time using the differential equatio
for the Bloch variables. It is expected that effective and s
cessful quantum measurements requiretmix@tms;t loc;td .
In other words, the readout should be achieved long be
the information about the measured initial quantum stat
lost. In terms of different characteristic rates, we have, in t
case, the relation Gd;g loc;tms

21@gmix , where gmix
12532
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5(1/tmix) represents the mixing rate. For finiteV, the rate at
which the variablesx(t) and y(t) relax can be found from
the real part of the eigenvalues of the matrix in the first te
on the right hand side of Eq.~45a!. This gives the decay
~decoherence! rateGd for the off-diagonal variables,x(t) and
y(t). The variablez(t)50 represents an equal probabili
for the electron in the CQD’s to be in each dot. Hence
rate at which the variablez(t) relaxes to zero corresponds
the mixing rate,22 gmix . Under the assumption ofGd@gmix
for effective measurements, the variablesx(t) and y(t)
therefore relax at a rate much faster than that of the varia
z(t). As a result, it is valid to substitute the steady-sta
value ofy(t) obtained from Eq.~45a! into ż(t), Eq.~45b!, to
find the mixing rate. Consequently, we obtain

dz~ t !

dt
52

4V2Gd

Gd
21«2

z~ t !52gmixz~ t !. ~57!

It is easy to see that the mixing rate Eq.~57! vanishes as
V→0. Finally, the self-consistent requirement for the a
sumptionGd@gmix yields, from Eq.~57!, the conditionV
!(AGd

21«2/2). The mixing rate Eq.~57! is in agreement
with the result found in Ref. 22 under a similar require
condition.54

VI. CONCLUSION

We have obtained the unconditional master equation
the CQD system, taking into account the effect of finite te
perature of the PC reservoirs under the weak syst
environment coupling and Markovian approximations. W
have also presented aquantum trajectoryapproach to derive,
for both quantum-jump and quantum-diffusive cases,
zero-temperature conditional master equations. These co
tional master equations describe the evolution of the m
sured CQD system, conditioned on a particular realization
the measured current. We have found in both cases tha
dynamics of the CQD system can be described by the SS
for its conditional state vector provided that the informati
carried away from the system by the PC reservoirs can
recovered by perfect measurement detection. Furtherm
we have analyzed for both cases the localization rate
which the electron becomes localized in one of the two d
whenV50. We have shown that the localization time di
cussed here is slightly different from the measurement t
defined in Refs. 27, 21, and 22. The mixing rate at which
two possible states of the CQD’s become mixed whenV
Þ0 has been calculated as well and found in agreement
the result in Ref. 22.
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APPENDIX: EQUIVALENCE OF STOCHASTIC RATE
EQUATIONS IN DIFFERENT CALCULUS FORMS

In this appendix, we translate the stochastic rate equat
of Refs. 18 and 20, written in terms of Stratonovich calcu
into the Itôcalculus formalism.52,53 Although the translation
was sketched and the result was stated in Ref. 18, for c
pleteness, we fill in the calculation steps using our notat
here. Equations~11! and~12! of Ref. 18 in the Stratonovich
calculus formalism are rewritten in terms of our notation
follows:

ṙbb~ t !5 iV@rba~ t !2rab~ t !#14AGd

SI
rbb~ t !raa~ t !

3S 2ASIGd@raa~ t !2rbb~ t !#1ASI

2
j~ t ! D ,

~A1!

ṙba~ t !52 i«rba~ t !1 iV@rbb~ t !2raa~ t !#

12AGd

SI
@raa~ t !2rbb~ t !#

3S 2ASIGd@raa~ t !2rbb~ t !#1ASI

2
j~ t ! D rba~ t !,

~A2!

where we have substituted the notation used in Ref. 18
H/\→V, «/\→«, and expressions forR andDI in terms
of Gd andSI using Eqs.~10! and~2! of Ref. 18. Specifically,
we have setDI 522ASIGd. In addition, the white noisej(t)
in Ref. 18 has spectral densitySj5SI , which implies
E@j(t)j(t8)#5(SI /2)d(t2t8), different from our definition,
Eq. ~39!. Hence, the replacementj(t)→ASI /2j(t) has been
employed. Moreover, since an ideal detector is assumedgd
is set to zero for Eq.~12! of Ref. 18. Note finally that the
electron operator indices in the CQD should be interchang
For example, the electron annihilation operatorc2 in Ref. 18
ky

ev

B.

12532
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should bec1 in our notation. As a result,r11(t) in Ref. 18 is
rewritten asrbb(t), andr12(t) asrba(t) here.

As pointed out in Ref. 18, to translate Eqs.~A1! and~A2!
into the Itô formalism, one needs to add the term52,53 (F/2)
3(dF/dr i j ) for each rate equationṙ i j (t), where F is the
factor beforej(t) in each equation, respectively. Note th
the factorSI /2 appearing in front of the term needed to
added for the translation in Ref. 18 is set to 1 here. This
because of the different definitions of the stochastic wh
noise variablesj(t) in both cases, discussed above. To
more specific,F5A8Gdrbb(t)raa(t) for Eq. ~A1! in our no-
tation. By using the relationraa(t)512rbb(t), it is easy to
find the derivativedF/drbb5A8Gd@raa(t)2rbb(t)#. As a
consequence, the term needed to be added to Eqs.~A1! is

4Gdrbb~ t !raa~ t !@raa~ t !2rbb~ t !#, ~A3!

which exactly cancels the first term inside the large par
thesis in the second term of Eq.~A1!. Hence the resultan
equation for Eq.~A1! in Itô form is just Eq.~42a! with an
overall minus sign in front of it@ ṙbb(t)52 ṙaa(t)#. As
for Eq. ~A2!, it is easy to find thatF5A2Gd@raa(t)
2rbb(t)#rba(t). In order to carry out the derivative
with respect torba(t), one needs the expression of Eq.~8! of
Ref. 18 to relate diagonal elements,rbb(t) and raa(t), to
rba(t). We then obtain

dF~ t !

drba~ t !
5A2GdF2@raa~ t !2rbb~ t !#221

raa~ t !2rbb~ t ! G . ~A4!

Thus the terms needed to be added into Eq.~A2! are

2Gd@raa~ t !2rbb~ t !#2rba~ t !2Gdrba~ t !. ~A5!

The first term in Eq.~A5! exactly cancels the term in th
square brackets inside the large parentheses in the last
of Eq. ~A2!. Therefore the resultant equation for Eq.~A2! in
Itô form is equal to the complex conjugate of Eq.~42b!

@ ṙba(t)5 ṙab* (t)#. This completes our demonstration of th
equivalence.
nd
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