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We discuss the effect of dissipation on quantum phase transitions. In particular, we concentrate on the
superconductor to insulator and quantum Hall to insulator transitions. By invoking a phenomenological pa-
rametera to describe the coupling of the system to a continuum of degrees of freedom representing the
dissipative bath, we obtain phase diagrams for the quantum Hall and superconductor-insulator problems. Our
main result is that, in two dimensions, the metallic phases observed in finite magnetic(fieddsbly also
strictly zero field are adiabatically deformable from one to the other. This is plausible, as there is no broken
symmetry that differentiates them.
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[. INTRODUCTION tum phase transitions is certainly dramatically altered, and
“intermediate” metallic phases can appear in the phase dia-
Quantum phase transitions continue to attract intense thegram.
oretical and experimental interest; see, for example, Refs. As a paradigmatic example, consider the magnetic field
1-5. Such transitions—where changing an external parandgriven SIT, for which the commonly accepted phase diagram
eter in the Hamiltonian induces a transition from one quanis shown in Fig. 1a). In the neighborhood of the phase
tum ground state to another, fundamentally different one—boundary, quantum critical scaling with universal exponents
have been invoked to explain data from various experimentss expectedso long asD andH +# 0); in particular, the cor-
Transitions that have been studied include the quantum Hatklation length exponent should be=7/3, as discussed be-
liquid to insulator transitiofQHIT), the quantum Hall liquid  low. With the introduction of dissipation, the phase diagram
to quantum Hall liquid or “plateau” transitiofiQHPT), the  is modified in a manner that is not presently well understood.
metal to insulator transitiofMIT), and the superconductor Here, we postulate that, as originally proposed in Ref. 12, the
to insulator transitiorSIT). Where the transition is continu- result is the phase diagram shown schematically in Rig). 1
ous, quantum critical phenonema are expected to give rise tdere, whena> «a,, a finite resistance metallic state appears
interesting, universal physics, which it is common practice tdbetween the superconducting and insulating phases. More-
analyze using a straightforward scaling theory, inheritecover, to the extent that a crossover from a positive to a nega-
from the classical theory of finite temperature phase transitive coefficient of resistance occurs along the dashed line in
tions. the figure, classical percolation wiih=4/3 will describe the
Effects of dissipation, that is to say, the coupling of thephysics at high temperatures, as is indeed observed
critical modes to a continuum of other “heat-bath” degreesexperimentally:*> However, to reconcile the fact that finite
of freedom, can fundamentally alter the character of thelissipation in general tends to suppress quantum fluctuations
phases and of the transitions between tigfWhile in clas-  and thus pin the superconducting phase, the phase boundary
sical statistical mechanics, the dynamics and thermodynanemerging fromH.. is slightly tilted toward high fields.
ics are independent of each other, in the quantum case they The same considerations have direct implications for
are intimately related. The dynamical relaxation processeguantum Hall systems. Here, classical percolation in the
that permit the system to reach equilibrium can be neglectetimit of slowly varying disordel® and a crossover to quan-
in classical problems, but cannot be ignored in a quantuntum percolation near the transittfr® can be motivated
problem?® from the microscopic theory. It was previously shdfhy
Recently, compelling experimental evidence has accumuiteratively applying the Chern-Simons flux attachment
lated of the existence of “metallic” phases, that is to say,transformationt, that a global phase diagram for quantum
phases with finite dissipation in the zero temperature limitHall systems can be obtained from considerations of the
There is as yet no microscopic understanding of these obsemagnetic field driven SIT. Here, the various QHIT’s and
vations. We conjecture that a metallic phase is stabilized bHPT’s are mapped onto a single SIT. Consequently, if we
strong enough coupling to a dissipative heat bath, which wadopt the phase diagram in Fig(al, the corresponding
characterize by a single phenomenological parametén a  quantum Hall phase diagram is that shown in Fi@) 2with
manner pioneered in early studies of macroscopic quanturdirect quantum transitions between the various quantum Hall
tunneling and coherenc¢&Note that the present phenomeno- phases governed by simple selection rules. However, the ex-
logical approach is impervious to such important issues astence of the intermediate metallic phase in Fifo) Jpro-
whether the dissipation is intrinsic or extrinsic. For largeduces for the quantum Hall system the phase diagram shown
enoughea, quantum coherence can be suppressed even ai Fig. 2(b), where for large enough each direct transition
zero temperatur€: Thus, the conventional picture of quan- point opens up into a metallic regime.
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FIG. 2. Similar to Fig. 1 but for the quantum Hall probleta)
> The global phase diagram of Kivelson, Lee, and Zhérgf. 16
He H with dashed line representing a cut at finite disorder. Full circles

represent the critical points obtained for a particular realization of
FIG. 1. Phase diagram for the field-tuned SITd) The  disorder.(b) H-« (« stands for dissipation strengtdiagram at
H-D (D stands for disordgmplane with the dashed line represent- finite disorder. This figure is obtained by applying flux attachment
ing a plane at finite disorder, arfd) H-« (« stands for dissipation  and the law of corresponding staisee Sec. I D, and it preserves
strength diagram at finite disordeH . marks the SIT critical point,  the correct topology of Fig.(b) (slopes of the phase boundaries at
and a,, marks the critical dissipation above which a metallic phasesmall o are omitted. H, marks the QHIT critical point fromy
is obtained(see text for detaily. =1 to insulator. Other critical points are found in a similar way.

back gate. The critical phenomena associated with the value

This has many further consequences. _ _ a=ay,, at which the metallic phase first appears should be
(1) In quantum Hall systems, in which metallic behavior yery interesting.

is observed below an apparent high temperature QHIT, be- (3) Conversely, by reducing the amount of dissipation in
havior analogous to that observed in the magnetic fieldhe systenifor instance, by studying Josephson junction ar-
driven SIT should be seen. Among other things, this meangays or granular films in a fiejdthe intermediate metallic
that in the high temperature scaling regime an apparent exghase observed at low temperatures in experiments on the
ponentr=4/3 should be observed, and that at fields considfield driven SIT should be narrowed, and ultimately elimi-
erably larger or smaller than the apparent critical field truenated. If this can be achieved, rather than classical percola-
low temperature metal-insulator and metal to quantum Haltion exponents, values af~7/3 are expected.
liguid transitions should be found. Preliminary evidence of (4) The flux attachment transformation to relate states at
the correctness of the first of these predictions is shown izeroH to those at nonzerdl is subtle!® Even if the average
Fig. 3. magnetic flux is canceled in this way, the Hamiltonian at
(2) In quantum Hall systems, in which a direct QHIT is zeroH respects time-reversal symmetry at the microscopic
observed with quantum exponent7/3, a transition to clas- level whereas the finite field system does not. However, if
sical percolation behavior with an intermediate phase can bme-reversal symmetry is spontaneously broken eveH at
induced by increasing the dissipation in the system. This cas-0, as would occur, for instance, in a spin-glass phase, then
in principle be done, using the strategy employed by Rim+the correspondence between zero field and fikitehases
berg et al,” by placing a second two-dimension@DEG  might be reliable. In this way, a correspondence between the
electron gas that is capacitively coupi®do the first and Hall metal and the zero field metallic phase might occur,
tuning the conductivity of the second 2DEG by means of awith many consequencés?
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10 . . trapolates to a finite valuBy asT—0.

- y (4) In Si metal-oxide-semiconductor field-effect transis-
tors (MOSFETS, and other high mobility semiconductor de-
vices that access the strongly interactifegger ) physics of

Yzv=34 7 the two-dimensional electron gas, an unexpected metal-

T insulator transition aH=0 has now been widely and con-
vincingly documented*?*3 The stability of the metallic
phase has also been supported by std¢ié%f the quantum
3 Hall effect at small nonzerbi: Theoretically*”*®a sequence
of transitions resulting from the “floating up” of the ex-
tended states is predicted to occur as the expected insulating

state is approached &— 0, and indeed this is observed in

00l o ol ] 0 smallerr, devices*®*°However, at large , the delocalized

' ' TIK] states(or, more precisely, the critical lines separating differ-
ent integer quantum Hall statedo not move up in energy as

FIG. 3. Data taken from Shahat al. (Ref. 18§ and Balaban H—0, thus allowing for a metallic state &=0.
et al. (Ref. 19. The straight lines with slope &#=3/4 represent (5) A related set of experiments® on the behavior of
the asymptotic trend of the data at “high temperaturésg€e text  high mobility 2DEG’s in the small magnetic field limit show
for details) The straight line with a slope of ¥=3/7 represents behavior that we interpret as indicative of a metallic phase
the expected behavior for a quantum percolation transition. for a range of weak magnetic fields. Note that these experi-

ments were interpreted somewhat differently by their au-

(5) All the metallic phases observed in these systems ahors: The data clearly reveal a failure of the delocalized
nonzeroH (and possibly even & =0 if time-reversal sym- states to “float up” asH—0 and a breakdown of the selec-
metry is spontaneously brokeare adiabatically connected. tion rules® thought theoretically to govern quantum Hall
transitions, including the QHIT. However, the measurements
were originally interpreted in terms of a QHIT in which the
ground state atl smaller than delectron density dependent

The theory of a metallic phase in two dimensions at zerderitical field H was said to be insulating. Indeed, in this field
temperature is a matter of intense current debat&?°In-  range, the resistance increases with decreasing temperature,
deed, such a phase was thought for many years not to Haut only weakly, and it appears to saturate at low tempera-
possib|é0’31 Recent experiments have shown that metallictures. In the foIIowing, we will reinterpret these data in terms
phases are not On|y possib|e, but exceeding|y common Whe[ﬁ).f a quantum Hall ||CIU|d to metal transition, rather than as a
ever interaction effects are stroA@f course, there is always “New universality class of QHIT.”

a question whether the metallic behavior is a finite tempera- (6) Metallic phases were also found, under special cir-

ture artifact, as there is no way to prove that the resistivitycumstances, in high quality devicésspecially in GaAs het-

would not diverge or vanish if the temperature were lowerecerojunctiong in the presence of a quantizing magnetic field
enough. Below we list some of the most clear-cut cases ifi-€., H big enough that the cyclotron energyo. is larger
which an apparently metallic phase has been observed. Singgan the temperature, the disorder potential, and even the
in each case the experiments access temperatures low cofsoulomb strength This “Hall metal” has been observed
pared to all the simple energy scales in the problem, we feednd extensively studiédifor arangeof magnetic fields near

it is reasonable to accept this evidence at face value. filling factor v=1/2 (i.e., two magnetic flux quanta per elec-

(1) An apparently metallic phase occurs in superconducttron) and related even fractions. Preciselyvat 1/2 there is
ing films in a magnetic field for intermediate magnetic field Some indication of an upturn in the resistance at the lowest
strength®*2-*® and in arrays of Josephson junctiocidn  temperature83°® which might indicate that the true ground
particular, this behavior is observed at low temperatures igtate is insulating, but overall in this range of fields, the
the magnetic field range at which, at higher temperatureroponderance of experimental evidence supports the exis-
scaling behavior is observed that was formerlytence of a true metallic phase.
interpreted®®>*8as indicative of a SIT. (7) In weakly disordered metallic film@vith large values

(2) Analogous behavior has been observed in semiconof kgl) the phase coherence length, which according to
ductor heterojunctions for magnetic fields in the neighbortheory controls the low temperature behavior of weakly lo-
hood of a putative QHIT3° Specifically, metallic behavior calized systems, appeafdo saturate at low temperatures
is observed at low temperatures in the neighborhood of théthe determination of , was done using magnetoresistance
critical magnetic field at which higher temperature data aréneasurementsather than diverging as required by thedty.
indicative of a QHIT.

(3) In quench-condensed films of Ga, Pb, and InHat
=0, an anomalous metallic phase is s€eff below the lo-
cal superconducting transition temperature, in which the re- In this section we summarize our theoretical understand-
sistance decreases stron@by as much as five decadesith ing of the relevant zero temperature electronic phases in two
decreasing temperature, roughlyRs Ry exd T/Ty], but ex-  spatial dimensions in the absence of dissipatiar=Q).

Balaban et al.

l3logR/9H]

0.1}

II. INTERMEDIATE “METALLIC” PHASES

Ill. EXTREMAL ZERO TEMPERATURE PHASES
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This discussion is not meant to be exhaustive as there atbe ferromagnetism would survive up to a critical disorder
numerous other phases, for example, phases that spontarstrength. At higher densities, but still in the Wigner crystal-
ously break time-reversal symmef§>° which may be im- line state, antiferromagnetic exchange processes begin to

portant under some circumstances. dominate, so a frustrated antiferromagnet, possibly with
some form of spin pairing and a spin gap, may oc¢r.®
A. The superconducting state Such an insulating state with a spin gap could also occur as

the result of a localization transition of a system of Cooper
airs, as would be expected, for instance, in the Coulomb
lockade limit of a granular superconduct3rif so, some
orm of spin pseudogap is likely to survive the introduction
of weak disorder. At large disorder, a zero temperature spin-

ed b fuid density. b brok Ctjlass phase is also conceivable. At nonzero Zeeman coupling
terized by a nonzero superfiuid density, but no Droken symy, o, ‘external magnetic field, most or all of the magnetic

metry, although_m the zero temperature limit a true brOI(erhis;tinctions between various possible insulating phases are
symmetry state is expected. The zero temperature SUPercofs,oved

ducting state persists in the presence of a nonzero magnetic A distinction between insulating states in a magnetic field

ﬁ?lg.H S(;) Ionglas_ it(;s smallhenough{|<|_HC.. In tr;ehab?_e?dcg has also been discussed bd8eah the asymptotic behavior
of disorder, this Is due to the crystallization of the field In- o the Hall resistance,, as T—0. A Wigner crystal, and
ducgd vortices and pinning at the .bgunda(mste t_hat with resumably also an Anderson insulatbhave a Hall resis-
no pinning at the boundaries any finite current will cause th ance that diverges in this limit. Conversely, it has been

vortex Iattlceltzbs_llLde anfl t_hus_resll%llt n _dlSSlpa):o?hl_s proposed that a “Hall insulator” phase exists that has a
vor;cte_zx ctrysta( t” osov. attt;]qe) |I'tS?t persists dto f_‘ _t'”'te vanishing conductivity tensor, but a Hall resistance that ap-
meiting temperature, so n this imit superconductivity Sur'é:%roaches a finite value, presumably of ordenec asT
vives at low, but nonzero temperatures. In the presence

! ; —0. A still more exotic “quantized Hall insulator” phase
guenched disorder, the vortex crystal at snihik certainly has also been propos@dn which, despite the vanishing of
disrupted®® but atT=0 the dilute vortices are localized by ’

; . X S the conductivity tensor, the Hall resistance approaches a
the disorder. However, in this case superconductivity is de y bp

t d at i t due 1o th f t.E:]uantized value, for instandge, asT—0. It is likely, al-
stroyed at any nonzzero emperature due 1o thermally ac lthough not proven, that a Hall insulator is a distinct state of
vated vortex motiofi2 Thus, in systems of interest, for which

disorder i . tant feat £ the phvsics The0 t matter, and must be separated by a phase transition from an
ISorder IS an important ieature of the physics, o) tran- ordinary insulator. This is certainly the case for a quantized
sition to the superconducting state is expected; in this pha

= : ) S8all insulator'® as there must be a first magnetic field at
th_e conqluctl\_/lty diverges contmu_ously das-0, _to_gether . which the Hall resistance ceases to be quantized.
with a diverging length that describes the proximity to this In the present paper, we will always assume that the ef-
zero temperature vortex glass phase. Consequently-the (oo of disorder are important, so we will not explicitly dis-

characteristics of the system will e>_<h|b|t noqlmear behaworCuss the Wigner crystal or Abrikosov lattice. For simplicity,
above some threshold current that itself vanishes as the te

q £ e will also neglect the various magnetic and transport dis-
perature tends to zefg. tinctions between insulating phases, as well.

Numerous two-dimensional systems in zero magneti
field exhibit a superconducting or superfluid phase below
nonzero  transition  temperature. The theoreticalf
understanding of this state is not in question, as far as we

B. The insulating phase o
o i ) C. The quantum Hall liquid
In the limit of large disorder, largél, or strong interac-

tions between particles, all the particles are localized and an '€ quantum Hall liquid has a vanishing '0”9'tgd'”a| con-
insulating ground state occurs. This is independent ofluctivity and a quantized Hall conductanog,=(e/h)s,,
whether the constituent particles are taken to be bosons JfN€res,y is an integer or one of a particular set of rational
fermions(or anyons, for that mattgrin the absence of dis- fractlons for t_he integer and fractional Hall effects, respec-
order, this insulating state has Wigner crystalline long rangdively. There is no true broken symmetry, and so no finite
order, and correspondingly a finite temperature phase trani€mperature phase transition to this state. Quantum Hall lig-
tion. However, disorder should couple to the charge order oflid states are partially characterized by the quantized value
the Wigner crystal as a random field. Thus, from theof the Hall resistance. A quantum Hall state is typ|cally most
Imry-Ma random field arguments, no true finite temperatureStable at a “magic” value of the magnetic fielth yagic
phase transition to the insulating state occurs. The insulatinge s;yld)op, where¢go=hcle is the quantum of flux angd is
state is then characterized by a resistivity that diverges corthe mean electron density. However, like the superconduct-
tinuously asT—0. ing state, the quantum Hall stateTat 0 is stable for a finite

In the absence of a magnetic field, a further distinctionrange of disorder and magnetic field.
may, in principle, distinguish various insulating phases based Quasiparticles are generated in the ground state when the
on their spin(magneti¢ structure®*%° Electrons in the ex- magnetic field differs from the magic value, or can be nucle-
treme low density limit in the absence of disorder form aated by disorder. They play a role analogous to that of vor-
Wigner crystalline state in which the electron spins are fertices in a superconductof,and when they are not localized
romagnetically ordere®f Although even weak disorder they destroy the quantum Hall state. In the absence of disor-
eliminates long ranged Wigner crystalline order, presumablyer, a low density of quasiparticles will crystallize, produc-
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ing a quantum Hall state which is analqgous to the Abriko- Jiua': €,y (5)
sov lattice. In the presence of disorder, the dilute

quasiparticles are localized. However, Whgreag the Yorticeﬁ/here 6 is the Levi-Cevitasymbol. The remarkable fea-

in a superconductor are bosofiicthe quasiparticles in a e of this transformation in 21 dimensions is that the
quantum Hall state have statistics, fermionic in the integeg.ion has the same form in terms of the original and trans-
case and anyonic in the fractional case, that are related {,mqq variables but the statistical angle is transformed ac-
Sy - cording to

D. Flux attachment and the law of corresponding states
poneing 6= — 19, ®)

There is a formal transformatidn,often called flux at-

tachment, that maps a system of interacting particles in a Moreover. when considering the counling to an external
magnetic field with Bose or Fermi statistics to another prob- ’ 9 piing

lem of transformedChern-Simons particles with the same electromagnetic gauge field the particle chaggeansforms

mass, same interactions, but modified statistics, and whicﬁCCordIng to

interact with a fluctuating statistical gauge fielg, whose

dynamics are governed by a Chern-Simons term, rather than qial=—q/6 )
the usual Maxwell action. The Chern-Simons action has the

effect of attachingd (related to the Chern-Simons coupling and the conductivity tensaicomputed from the Kubo for-
constankt quanta of statistical flux to each particle. Conse-mula) for the original variables is related to that computed in
quently, thenet magnetic flux experienced by the trans- the dual theory according to

formed particles is modified according to

Heff:H_aqsO; (1) O'ij:O'idjual‘i‘(qzlh)(lle)fi’j. (8)
and the phasgstatistical angle associated with the inter- (This expression appears to differ from, but is actually con-
change of two particles is transformed according to sistent with, a more familiar relation that involves the one-
_ gauge-field irreducible response functions of the Chern-
$exchange™ (N = 0) 7, 2 Simons patrticles, i.e., the particle response to the combined

where, depending on whether the original particles arexternal and statistical gauge fields. In terms of these irre-
bosons or fermiong)=0 or n=1, respectively. Manifestly, ducible response functions, the conductivity of the original
for # an odd integer, this transformation maps bosons int@articles is related to the resistivity of the dual partigles.
fermions and vice versa, while, far even, it maps bosons ~ Comparing the expressions in E@) and Eq.(8), it is

into transformed bosons, and fermions into transformed ferclear that if a set of Chern-Simons bosons are condensed in a
mions. superconducting state the dual bosons must be localized, and

The effect of this transformation is a formal relation be-conversely. In the context of the SIT, this allows one to view
tween seemingly different states of matter. For instance, ithe insulating state as a condensed state of vorticesthe
for some choice of) the resulting Chern-Simons bosons arecase of the integer quantum Hall effect wish, =1 (and
condensed into a superconducting state, the original particld®nceq=e and #=1), the quantum Hall liquid state can be
are necessarily in a quantum Hall liquid state, with conducviewed as a condensed state of chagdgm®sons, with vortex
tivity tensor excitations(quasiholes with chargeq?¥3'= —e and fermi-

onic statistics ¢9'®'=—1), while the proximate insulating
oxy=(9%)(1/6) and o,,=0, (3)  state can be viewed as a vortex condensate, and the original
electrons become the vortices in the dual theory.

These two transformations form the basis for a law of
corresponding staté§,”” which relates seemingly different
states of matter. However, it should be recalled that, because
Ehe fluctuations of the statistical gauge field induce additional
Interactions between particles, at a microscopic level the cor-
respondence may be quite complicated. However, if only the
0Hg)pology of the phase diagram and the nature of the phases
are of principal interest, the law of corresponding states can
be adopted without caveat.

Within the context of the dirty boson model, it is thought
hat there are only two zero temperature ph4sesthe pres-
ence of disorder, a superconducting phase and an insulating

J =€ . g gdual @) phase, as shown in Fig(d. Assuming that this is the case
poEHATVEN for the Chern-Simons bosons in the quantum Hall effect, a
and, conversely, a dual particfeortex) current to the origi- global phase diagram for the quantum Hall systems can be
nal gauge fielda,, constructed® The result is summarized in Fig(&.

whereq is the particle chargé.e., the coupling to the exter-
nal electromagnetic gauge figldConversely, if the Chern-
Simons bosons are localized in an insulating siafes 0. In
similar ways, it is possible to relate fermions in an integer
guantum Hall state to electrons in a fractional quantum Hal
state!*"° etc.

There is another transformation, which is a versiaf a
standard duality transformation, that relates the physics
different phases, and which can be implemetftétstraight-
forwardly in the bosonic Chern-Simons field theory. For-
mally, this transformation relates the particle three—curren%

14 dual
J,, to a dual gauge field},"*,
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IV. CRITICAL PHENOMENA =1 or, when spin splittings are not resolvesj,=2) or a
fractional Hall state(typically s,,=1/3). (2) Transitions
(plateau transitionsbetween two distinct quantum Hall lig-
Itis clear that an understanding of the phases is a necegiq states, which again might be integer or fractional. For
sary precursor to an understanding of the quantum criticahoninteracting electrons, the critical exponents associated
phenomena associated with the transitions between themyjith the QHIT are known to be~7/3, and an argument due
However, unlike the analogous classical problem, it is postg | ee and Warlt} shows that at least short range interac-
sible for the universality class of a quantum transition tOtjons do not alter this result. Under conditions of particle-
depend on the nature of the dynamics as well as on the chafple symmetry, it can be prov&lquite generally that the
acter of the two phases. critical Hall conductance at thg,,=1 quantum Hall liquid

The 'S|mple.st possibility, about which the most is kngwnto insulator transition isoS, = (e?/h)(1/2); if the critical
theoretically, is that some or all of the observed transitions g Xy ; .
are equivalent to a SIT in a system of disordered, interactin@ondUCtance 1S indeed universal t_hen th's.mUSt pe the critical
fundamental bosons, the so-called dirty boson problem. Be_alue, even in the absence (mecroscqplc) partlcle—holle .
cause the electrons form Cooper pairs in the superconductirgy MMetry. An argument based on particle-vortex duality in
state, and because it is ultimately fluctuations in the phase df€ Chern-Simons formulation of t?gggoblem leddmong

the order parameter that are expected to destroy superfluidi§fhers to the relation(also C"’?”‘?a_' ““the “semi-circle

(so that the electrons can plausibly be viewed as paired eveAW") that px=(h/€?) in the vicinity of thes, =1 ors,,

on the disordered side of the transitipit is an appealing = 1/3 to insulator transition. Together, these two results lead
view that the dirty boson problem captures the universal feato the conclusion that, = a§y=(e2/h)(1/2) at thes,,=1
tures of the SIT in actual superconducting films. One of theto insulator critical point, a conclusion that has also been
most striking predictions that has been made on the basis supported by numerical studies of noninteracting
this modef® is that the conductivity tensor at the critical electron$®>®

point takes on a universal value in units @ (?/h (where At least superficially, there is less reason to necessarily
e* =2e for Cooper pairs ante* =e for electrons in the expect additional dissipation in quantum Hall systems than
quantum Hall effedt To the best of our knowledge, there are in superconducting films. However, in addition to the many
no convincing calculations, either numerical or analytic, forpossible extrinsic sources of dissipation, there are certainly
the value of the critical conductance or the critical exponentsvays such dissipation could arise intrinsically, even here.
at this transition. An argument can be made on the basis dfor instance, there could #&’ compressible regions of
particle-hole symmetry that the Hall conductance at the tranelectronic structure associated with the Hall metallicrvor

A. Quantum phase transitions

sition is 0. Independent arguments, based on thdatin of  =1/2 state. These might arise naturally, especially in sys-
the Coulomb interaction, lead to the expectation that the dytems with a smoothly varying disorder potential, in the form
namic exponengz=1. of “fat” edge states.

The most obvious, potentially dangerous piece of physics A quantum model for dissipation consists of coupling the
that is omitted in this approach is the effect of low energysystem variables to a continuum of Ohmic heat-bath degrees
quasiparticle excitations in such systems. Presumably, in af freedom; dissipation is then merely a flow of energy from
granular superconductor, where a relatively clean, large gafhe system to the heat bathThe integration of the heat-bath
in the quasiparticle spectrum is expected and, indeedjegrees of freedom results in an action containing induced
observed?®the neglect of quasiparticles is a safe bet. How-temporal long range interactions. The analysis of such long
ever, to date, nothing resembling the expected SIT has beeange interactions brings in a new control parameter signify-
observed in granular films—what is observed is best deing the coupling to the dissipative heat badh, proportional
scribed as a crossovéan actual transition point is difficult to h/e’R, whereR is the shunt resistance characteristic of
to identify in the datafrom a superconductor to a strange the dissipative heat bath. In addition the action will depend
metal to an insulator. In disordered films, even in the absencen the dimensionality of the space, the symmetry of the order
of a magnetic field, one would expect on theoretical groundparameter, etc., common in a conventional description of a
that in the neighborhood of the critical film thickness thequantum phase transitidrf.
superconducting gap would be filled in with a large density A quantum phase transition often involves two related
of gapless quasiparticle excitations, and this expectation iphenomena: the formation of a condensate and the associated
apparently borne out in experiment. In the presence of anetastability. For a superconductor or a superfluid, this is
magnetic field, where gapless quasiparticle excitations areidely appreciated. In order to stabilize the superconducting
expected in the cores of vortices, this expectation is evestate the phase slip processes must be suppressed and the
stronger, especially when the spacing between vortices is nebrtices must be localized. In an incompressible quantum
large compared to their radius. In both cases dissipation dudall state there is no true broken symmetry, but its metasta-
to gapless quasiparticle excitations can potentially alter théility hinges upon localizing the quasiparticles over a finite
critical phenomena. range of disorder and magnetic fidltie fermionic quasipar-

In quantum Hall systems a variety of zero temperaturdicles playing the role of vortices in a supercondugtdhus,
continuous phase transitions are expected and, in one form or the limit of large dissipation, a quantum phase transition
other, observedl) The QHIT, both for the case in which the can acquire a very special character because dissipation can
quantum Hall liquid is an integer Hall statéypically, s,,  efficiently reduce quantum fluctuations of the system. As a
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result, the competition between the kinetic and potential en- 4
ergies is altered, resulting in a state that is characteristically H
classical. In other words, the formation of the condensate is
tuned by dissipation. Similarly, the metastability of the state
can be altered by suppressing quantum tunneling and mo-
tions of vortices and quasiparticles, typically by the orthogo- Quantum critical _ - ~
nality overlap of the continuum degrees of freedom of the
heat bath. Such a dissipation tuned transition is well docu-
mented in the case of a single Josephson junction, in which,
as a function ok, the system undergoes a transition from a HC
guantum state atv<<a., where quantum diffusion of the
phase destroys the superconducting state, to a “classical”
state ata>a., where quantum tunneling is suppressed and
the junction is truly superconducting @t—0. Such a tran-
sition can occur in higher dimensional systems, as well, as
has indeed been indicated in recent experiments on Joseph-
son junction arrays.

Because the first effect of dissipation is to suppress fluc-
tuation, and hence to stabilize the superconducting phase, we
have drawn the superconducting to insulating phase bound-
ary H.(«) in Fig. 1(b) with a positive slope. However, in the >
limit of large o> «,,, we have indicated a metallic phase, as -3/4
is suggested, for instance, by the recent work in Ref. 24. The f(p
reason for the existence of the metallic phase is that with the
suppression of quantum fluctuations the motion of the exci- FIG. 4. H-T diagram near the SIT quantum critical point. Here
tations responding to the external field is diffusive and claswe assume that the classical and quantum critical points coincide.
sical, with characteristics inherited from the heat bath. It isinside the dashed lines and in the lightly shaded area dissipation is
likely that particle exchange with the heat bath, in addition toimportant and the system is classical. However, outside the range of
the usual capacitive coupling, will play an important role in influence of the classical point and between the two solid lines the
this physics. The existence and the stability of a metallicsystem(dark shaded argas quantum critical. Also, ak, diverges

phase at large are the central postulates of the present work(€-g-» atlow enough temperatureand with a diminishing influence
whose theoretical basis is presently uncertain. of dissipation, the system becomes quantum critical as (gek
text.)

~
~

o4 = ~
Quantum critical =~

F—-
|

B. Classical percolation localization theory, there exists some sort of quantum phase

There is another limiting view of any transition between acoherence length ,(T) that diverges as the temperature
conducting(or superconductingand an insulating phase pro- tends to zero, then the classical theory will be valid so long
vided by classical percolation; as the conducting regions ofS éperc>1,,, With the true quantum behavior apparent only
the system percolate, the system goes from being globall§t such low temperatures thgfe,.<I,. In the QHIT, this
insulating to globally conducting. In two dimensions, manycrossover from classical to quantum percolation has been
of the critical properties are well understood theoretically,studied explicitly>*
including the correlation length exponene,=4/3. The n Fig. 4, we iIIust_rate this_crossover sphematically for the
correlation lengthé,e, is, roughly speaking, the radius of simplest case in which classical percolgtlon e_md the quantum
gyration of the largest typical clusters of the minority Phase transition occur at the same critical fielgl. (In the
phasé® In the case in which the length scale of the disordercase of thes,,=1 QHIT, particle-hole symmetry in the low-
is very long, so that quantum tunneling, and more particu€st Landau level ensures that this is the gakmder the
larly quantum coherence between distinct tunneling event@ssumption that, diverges a§ —0, thex axis is essentially
can be ignored, both the QHIT and the SIT would be exthe temperature[Specifically, if | ,(T)~T ", then x
pected to be well approximated as percolation transitions=~T**.] The dashed line in the figure denotés(T)

The earliest theories of the QHIT were based on percolatiorF perc, While the solid line denotek,(T)=¢(H). In the

of puddles of Hall quuidl_3 Likewise, the phenomenologi- lightly shaded regime labeled “classical percolation,” where
cally successful puddle theory of Shimshoni, Auerbach, andi,> &perc, the system can be viewed as a collection of effec-
Kapitulnik?® is based on the assumption that the measuretively macroscopic droplets of the two phases, and hence
transport is dominated by tunneling of vorticés the case some sort of quasiclassical puddle theory applies. In the
of the SIT) or quantum Hall quasiparticledor the QHIT)  darker shaded regime, between the dashed line and the solid
across a characteristic, isolated weak link between puddledine, the system is in the quantum critical regime, where

It is generally believed that at low enough temperature$(H)~|H—H.|~". In ordering these two crossovers, we
any classical percolation approach must break downhave assumed that>v,..=4/3, which is certainly satisfied
Roughly speaking, if we imagine that, as in weak-if, as discussedy~7/3. For very largd ,, asT approaches

125322-7



KAPITULNIK, MASON, KIVELSON, AND CHAKRAVARTY PHYSICAL REVIEW B 63 125322

zero, we allow for classical percolation to cease being rel- The critical exponentg and z should be the same at all
evant; hence the darker shaded area covers all the regiguantum Hall transitions, including the QHIT and the plateau
between the solid lines ne&t.. Below the solid line the transitions, irrespective of whether the transitions involve in-
properties are dominated by dilute thermal excitations abovéeger or fractional quantum Hall states. Assuming that the
the appropriate ground state phase, a regime that in otheritical conductivity tensor is indeed universal, one can com-
context$* is called “renormalized classical.” pute the critical conductance at any given transition from its
Note that Fig. 4 describes a situation in which there isvalue at thes,,=1 to insulator transition, as discussed in
only one critical field for both classical and quantum perco-Ref. 16.
lation. For self-dual systems in two dimensions the percola- The same correspondence implies that the magnetic field
tion threshold has to be 50% for either case. However, fodriven SIT should have the same critical exponents and a
general systems the two critical fields will be different. In- related value of the critical conductance. In particular, if we
deed, where the puddles of the two competing phases are natcept that at thes,,=1 to insulator transitiom§y= o

macroscopidi.e., when the correlation length for the disor- =e?/2h, then at the SIT we would expeotﬁy=0 and Uéz

der potential is finitg the notion of classical percolation is —=2g2/h.
not completely well defined, as there is an intrinsic “quan-

tum blurriness” to the edges of the puddles, so there is no
precise point at which two puddles can be said to touch.

However, if for some reason, perhaps due to strong while the classical theory of phase transitions has been
enough coupling to a heat bath, does not diverg€ at low  extraordinarily successful, there are several reasons to exer-
temperatures, then near enough to the percolation thresholdegse caution when applying this approach to zero tempera-
sort of “metallic” phase, in which the dissipation occits  ture, quantum phase transitiori&) Experiments are always
predominantly at weak links between nearly percolatingcarried out at finite temperature, so that the proper identifi-
puddles of the minority phase, will be valid to arbitrarily low cation of the relevant phases requires an extrapolation to zero
temperatures. Moreover, in this case, a true phase transitiqBmperature. In all the cases cited above, the question has
separates the metallic state in the neighborhootiefH.  arisen whether a transition between two distinct zero tem-
and the extremal quantum states at large value§hbf perature phases has actually been observed, or whether a
—H¢[. At present, we know of no theoretically well under- finite temperature crossover behavior is being misinterpreted
stood prototypical systems in which this sort of behavioras a quantum phase transitidi2) In most experimentally
occurs. Some very promising starts along this line, especiallihteresting cases, quenched disorder is known to play a cen-
related to the behavior of superconducting grains in a metakral role in the critical physics, and there are increasingly
lic host, are enumerated in the final section. Nonetheless, it isompelling theoretical reasofido believe that Griffiths sin-
important to realize that analogous behavior is established igularities, which are typically only of academic interest for
certain well understood zero dimensional systéhtsere, as  classical critical phenomena, can fundamentally complicate
a function of the strength of coupling to a heat bath, varioushe scaling analysis at quantum critical points. In particular
quantum systems with more than one classical ground statfey can, under some circumstances, lead to divergent sus-
are observed to make a transition from the expected quantuggptibilities and relaxation times over a finite range of pa-
behavior, in which tunneling renders the ground state uniquerameters about the quantum critical point, and apparent cor-
to zero temperature classical behavior, in which the system igelation length exponents that depend on the averaging
trapped in a singldarbitrary) one of the classical ground procedure(3) Effects of dissipation, that is to say, the cou-
states. pling of the critical modes to a continuum of other “heat-

bath” degrees of freedom, can fundamentally alter the char-
_ _ acter of the phases and of the transitions between frlem.
C. “Superuniversality” The SIT On the basis of the dirty boson model, the zero

The Chern-Simons mapping suggédfé that there temperature phase diagram of superconducting films is ex-
should be a correspondence not only between the variougected to be of the form shown in Fig(al; all along the
stable electronic phases in two dimensions, but also betwedihase boundary, the SIT is in a single universality class,
the quantum phase transitions between them. This idea ®xcept at the zertl end point.
referred to as “superuniversality?® Superuniversality as an ~ How well are these expectations met experimentally?
approximate stateméfitfollows from treating the fluctua- Certainly, at not too low temperatures, a field driven SIT has
tions of the statistical gauge field at linear respofsee- been apparently observed in a number of superconducting
loop) level. Nonperturbative proofs of superuniversality havethin-film systems. Moreover, the resistivitynore precisely
been constructed for certain simplified models, withouttheI-V curve) as a function o4, T, andl can be success-
disorder’® Whether it is truly an exact relation asymptoti- fully collapsed onto a scaling curve, suggestive of quantum
cally deep in the critical regime, or whether the effects ofcritical scaling. However, while the value af=1 extracted
higher order fluctuations of the statistical gauge field ulti-from the data is consistent with theoretical expectation, it is
mate destroy superuniversality, is still being debdfeflwe  always found thav~4/3, suggestive more of classical than
assume that the correspondences implied by superuniversaf quantum percolation. Moreover, the critical resistivity is
ity hold to a sufficient level of approximation, we can derive not found to be universal, and is often as much as a factor of
a large number of additional results. 10 smaller than the valueS, = 2e?/h predicted on the basis

V. DISCUSSION
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of superuniversality. Finally, and most dramatically, it hasgood approximation(Ambiguities due to the exact geometry
been emphasized in the recent work of Mason and Kapitef the current paths make a precise test of this prediction
ulnik (although it is a highly neglected fact that is lurking in difficult.) Some features of the shape of the global phase
many previous data, as welthat at low temperatures the diagram in Fig. 2a) were also confirmed in these experi-
resistivity saturates to a strongly field dependent but temments, including the existence of a reentrant insulator to
perature independent valu&hus, in fact no SIT actually quantum Hall liquid to insulator transition as a function of
takes place in this field rangevanifestly, there is physics increasingH (also known as the phenomenon of “floating”
here that is beyond the scope of the dirty boson model. of _the delocalized st_atés 8, HOV\_/ever, other experiments
This observation does not contradict the theoreticallyP0int to the phase diagram of Fig(t by showing devia-

solid expectation that superconductivity will occur for a non-t0ns from scaling on both sides of the transitignit is im-
zero range oH. Indeed, Mason and Kapitulrﬁ‘f( have re- Portant to note that deviations from scaling can occur even
cently found evidence’ of a low temperature metal-to-WithOUt noticeable resistance saturation, and it is therefore

superconductor transition in disordered amorphous films ilifficult to determine the conductance states in experiments

which a field-tuned superconductor-insulator transition igVhere scaling is not measured. ,
disrupted™? This transition is characterized by hysteretic /A arge number of more recent experiments on the QHIT,

magnetoresistance and discontinuities inlthé curves. The ~ carried out on high mobility heterojunctions, exhibit behav-
metallic phase just above the transition is different from thd©" that is more like that observed in superconducting films:
Fermi metal before superconductivity sets in, as is evidenf\n @Pparent transition is observed at high temperatures,
from the temperature dependence of the resistance and t}&Ch appears to satisfy scaling. However, as pointed out by
|-V characteristics obtained for this phase. Of course, expert¥1ason and Kapitulnik, the apparent valueiaf~4/3, rather
ments at much higheid to look for the metal to insulator than 7/3. Moreover, at I.OV.V temperatures, the resistivity ap-
transition predicted by Fig.(1) are the next step. parently saturates to a finitenetallic) value, rather than di-
The QHIT and the QHPTThe law of corresponding verging on the putative insulating side of the transition or

states applied to the simple phase diagram in Fig leads vanishing on the putative quantum Hall side. The one strik-

to the complex phase diagram in FigaR and superuniver- ing difference between these results and the results for su-
sality would imply that all the phase transitions are in theper_conductlng films is that the apparent critical resistance at
same universality class. which the QHIT occurs appears to be, to good approxima-

How well are these expectations met experimentally? Th&lon: universal(sample independenand in agreement with

answer is mixed. There is a subset of experiments that are fhe predictions of t_heory. N
striking agreement with these expectations. Early experi- Clobal phase diagramMason and Kapitulnik proposed

ments on the plateau transitions between various integdrd- 1(b), wherea is a measure of dissipation. While there
quantum quantum Hall states and from the=2/5 to s are many speculative ideas concerning how this sort of phase
Xy . . . .
=1/3 quantum Hall state exhibited good scaling propertie§j_'agradm com:}ld arise, lat _th|s| stage .th'ls propo;saldmust b?
characteristic of a quantum phase transition, and apparentlff€Wed as phenomenological. In particular, our fundamenta
universal values of the critical exponent~7/3. Measure- ostulate that Iarga stabilizes a ”.‘eta”'c phase Is supported
ments at finite frequency showed remarkabte/ksT scal- by recent theoretical work, especially that in Ref. 24, but has
ing, again strongly indicative of quantum critical behavior. not been clearly established. However, once this postulate is

No sign of saturation of the critical behavior was detected td’:lccepted, it rationalizes in a simple way the observations on

the lowest temperatures. However, no clear results concerfuPereonducting films. Moreover, on the basis of this idea, as

ing the critical conductance were obtained in these eXperi(_)utlined in the introduction, a number of interesting further

ments. predictions can be made.

Somewhat later, experiments were carried*otfton the
QHIT, of which some of the clearest made use of purposely
low mobility heterojunctions. Transitions fros}, =2 to in- We thank Assa Auerbach, Seb Doniach, Eduardo Fradkin,
sulator(the factor of 2 is due to the fact that the spin splitting Dung-Hai Lee, and Boris Spivak for many useful discus-
is not resolved in these sampleand s,, = 1/3 to insulator  sions. Work at Stanford University was supported by NSF
were studied. Quantum critical scaling is observed on som&rant No. DMR-9800663 and at UCLA by NSF Grant Nos.
samples® with vz~7/3. Moreover, the theoretically pre- DMR-98-14289(S.K.A) and DMR-99-71138S.C). N.M.
dicted universal values of the critical resistance are found téhanks Lucent CRFP for support.
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