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Higher harmonic generation in a mesoscopic conductor
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Harmonic generation is analyzed in the weakly ac nonlinear response by using scattering matrix theory. An
explicit formulation of frequency-dependent conductances for harmonic generation has been developed. The
theory includes contributions from the displacement current due to the internal interactions caused by the
charge redistribution inside the conductor. There are several components that are oscillating at the harmonic
frequencies in the nonlinear current. The frequency-dependent terms of real and imaginary parts in nonlinear
conductances can be separated explicitly. The application of the formalism is demonstrated for a double-barrier
nanostructure.
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The study of quantum transport in an electronic syst
has been treated as a scattering problem since Landa
original work1 over 20 years ago. A typical point of intere
is the frequency-dependent current in response to an osc
ing voltage. The ac linear and nonlinear responses in a m
tiprobe mesoscopic conductor have been studied2–8 exten-
sively in recent years. Experimentally, Taboryskiet al.9

reported that the nonlinear and asymmetric conductance
cillations have been observed in quantum point contacts w
small bias voltages. Nonlinear phenomena in conducting
terials such as photoinduced absorption, bleaching, and
toluminescence, etc., have received wide attent
experimentally.10 Theoretically, Bu¨ttiker and co-workers
have developed a formalism for the dynamic conductan
by taking into account contributions of the internal se
consistent potential.4,5,11 According to electrodynamics
when a time-dependent external field is applied to a cond
tor, the charge distribution inside the conductor is driv
away from its equilibrium pattern, which induces an intern
potential inside the conductor. This internal potential o
poses the changes of charge distribution and screens th
ternal field. In their theory, another fundamental requirem
is the gauge invariance, i.e., shifting the voltages in all le
by a constant value should not alter the results, thus
current depends only on the voltage differences. In ac tra
port, the current conservation and gauge invariance will
be satisfied unless the induced internal potential is prop
taken into account.4 The ac electric properties become mo
complicated due to the presence of the internal potential

One interesting aspect in ac nonlinear transport is h
monic generation. The analogy with nonlinear optics12 leads
one to pursue harmonic generation in ac nonlinear transp
de Vegvar13 has studied the second-harmonic transport
sponse of multiprobe mesoscopic conductors at low
quency by using a perturbation theory, and he found that
second-harmonic current at low frequency is a non–Fer
surface quantity. Recently, Pedersen and Bu¨ttiker14 have
pointed out that the ac nonlinear transport process, theo
cally, should involve a dc component and the component
the frequencies of oscillation and its higher harmonics. Ho
ever, these approaches only involved the frequen
independent part of nonlinear conductances; frequen
dependent conductances have not been included. Re
0163-1829/2001/63~12!/125310~5!/$15.00 63 1253
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studies have shown the importance of contributions from
internal potential in higher-order nonlinear conductances.15,16

Consequently, it motivates us to develop a formalism
which both the dc and the ac features of harmonic genera
are treated self-consistently. The study of the ac nonlin
feature of harmonic generation in nanostructures might b
technological interest. In nonlinear optics, the developm
of lasers has brought about an increased interest in the
ciency of harmonic generation. Modern technology mig
also provide useful applications with harmonic generatio
in nanodevices.

The aim of this paper is to formulate harmonic generat
in weakly ac nonlinear response using the scattering ma
method. There was an earlier attempt at studying harmo
generation by perturbation theory.16 We found that the scat
tering matrix theory is much simpler and physical for stud
ing ac nonlinear transport. We were able to arrive at the sa
results as obtained from the perturbation theory.16 The gen-
eralized formulas of dynamic conductances are derived u
third-harmonic generation. The process exactly traces
contributions from the frequency-dependent internal pot
tial. It is shown how the ac nonlinear feature of harmon
generation arises in electronic transport. It is found that th
are several components oscillating at the harmonic frequ
cies in the nonlinear current. In the regime of nonlinear
sponse, the self-consistent potential contributes not only
the ac components of the current but also to its dc com
nents. The developed formalism contains both the dc fea
and the frequency-dependent feature of conductance for
component of harmonic generation. The current conserva
and gauge invariance are satisfied by all components of
monic generation. The nonlinearity shows that, in addition
the major component oscillating at the input frequencyV,
the electric current contains significant components oscil
ing at higher harmonic frequencies 2V, 3V, . . . , aswell as
the dc component at zero frequency. This is analogous to
well-known harmonic distortion of signals in an electric
circuit, where the response is also nonlinear. In the regim
nonlinear response it is found that there are two parts in
frequency-dependent conductances, i.e.,v ReGac and
iv Im Gac. The real part ReGac changes the total current i
the regime of nonlinear response. The application of ac n
linear response will be illustrated for a two-terminal nan
©2001 The American Physical Society10-1
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structure. The frequency-dependent quantum effect
v ReGac is calculated in a geometrically symmetric doub
barrier system. The formalism developed here will ena
one to perform more realistic numerical simulations to stu
the properties of quantum transport in nanostructure devi

The model considered here is a conductor attached
number of probes that are extended as ideal leads to infi
The voltageVa(t)5Vah(t) at probea is constant in space
and varies with time ash(t)5cosVt. The voltage relates to
the chemical potential of the reservoir throughma5eVa .
The voltage at contact is only a well-defined quantity if t
local electric fields vanish deep inside the contact. The ef
of the magnetic part of the electromagnetic waves on
electrons is much weaker7 and we neglect it in our discus
sion. The current operator has been derived by Bu¨ttiker,3

I a(t)5(e/\)(m*dE dE8@C̃am
(in)1(E)C̃am

(in)(E8)2C̃am
(out)1(E)

C̃am
(out)(E8)#exp@i(E2E8)t/\#, whereC̃am

(out)(E) is the operator
that annihilates a carrier in the outgoing channelm in probe
a. The annihilation operator in the outgoing channel,C̃am

(out) ,
is related to the annihilation operator in the incoming ch
nel C̃(in) via the scattering matrixSabmn , i.e., C̃am

(out)(E)

5(b,nSabmn(E)C̃an
(in)(E).3,4 This formula is exact up to lin-

ear order ofv and for large frequency it is an approximatio
to a space-dependent expression of the current opera8

Then the current incident on the probea is expressed3 in the
form

I a~ t !5
e

h (
b,mn

E dE dE8C̃bn
1 ~E!Abb,nn~a,m,E,E8!

3C̃bn~E8!exp@ i ~E2E8!t/\#, ~1!

where Abb,nn(a,m,E,E8)5dabdmn2Sabmn
1 (E)Sabmn(E8)

is the current matrix. In Eq.~1!, the upper index~in! has been
suppressed for simplicity. The scattering matrixSab,mn has
been used to describe the relationship between the incom
electron in channeln on the probeb and the outgoing elec
tron in channelm on the probea. The scattering matrix is a
functional of energy and of internal self-consistent poten
U„r ,$Va(t)%…. This internal potential is created by the vari
tion of the density of electrons. The variation is induced
the time-dependent voltage on the probe. As a consequ
of the time dependence of voltage, the redistribution of
charge, due to the variation of the density of electrons in
conductor, is also a function of time. It has Fourier comp
nents at the driving frequency of the external voltage and
frequencies of its harmonics. So the induced internal po
tial inside the conductor will oscillate at the frequencies
all harmonics. The induced internal potentialU is determined
by the Poisson equation,2U(r ,t)524pedn(r ,t), where
dn5(adna is the variation of the density of electrons.edna
is the variation of the density of charge injected into t
volume of the conductor by the perturbation on the pro
a.4,11 There are two contributions inedna : the injected
charge density due to the variation of chemical poten
dma5eVa on the probea, and the density of induced charg
ednind,a due to the internal potential. We havedna(r ,t)
5( j (1/j !) @djna(r ,t)/dEj #@eVa(t)# j1dnind,a(r ,t), where
12531
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dna /dE is the injectivity anddjna /dEj ( j .1) is the energy
derivative of the injectivity. The density of the induce
chargeednind,a is a functional of external voltages and th
internal self-consistent potential. In the regime of weak
nonlinear response, the internal potential can be expande
a series of the variation of chemical potentialdma ,4,8 i.e.,
U(r ,t) 5 e(aua (r ) Va (t) 1 (e2/2)(abuab (r )Va (t)Vb (t)
1•••, whereeua is the characteristic potential, ande2uab
~which is symmetric ina and b) is the second-order char
acteristic potential tensor. There are several sum rules
these characteristic potential tensors. If the electrochem
potentials on all probes are changed by the same cons
amount, i.e.,dma5dm for the arbitrary indexa, and the
system ends at equilibrium, it corresponds to an overall s
of the electrostatic potentialedU2dm.4 It implies that
(aua(r )51 and (bu$bg•••%(r )50, where (b is the sum
taken over any index among the indices$bg•••%. With the
help of the relationsdna andU, we classify the terms oscil
lating at the same frequency in accordance with harmon
generation in both sides of the Poisson equation. The eq
tions of characteristic potential tensors are obtained as

2,2u$bg•••%~r !14pe
dn

dE
u$bg•••%54pe(

a
Fa$bg•••%~r !.

~2!

u$bg•••% and Fa$bg•••% are invariant under the permutatio
of indices $bg•••%. The first two of the F’s are
Fab5(dnab /dE) and Fabg5dbg(dFab /dE)
1ubug(r(dFar /dE)2@ug(dFab /dE)1(Fab2ub(rFar)
3(dug /dE)#2(b↔g).

The electron Hamiltonian in the leads is given by t
single-particle terms H5(am@Eam1eVa(t)#Cam

1 Cam ,
whereCam(Eam ,t) is the annihilation operator for an elec
tron in the incoming channelm on the probea andeVa(t) is
the shift of chemical potentialma away from meq in the
equilibrium state.Eam can be determined if the shape of th
a lead is given. The internal interaction induces a fluctuat
at the average value ofVa . By considering a series expan
sion of energy in powers of the potential landscapeU, the
external potential is replaced by the self-consistent poten
Eam1eVa(t)→Eam1eṼa(t), whereṼa is the global volt-
age on the probea. Different from the external voltage, th
internal potential comes from the charge accumulation in
region outside the leads. The response of charge to the t
dependent voltage causes the internal potential to con
high harmonic components. Thus, harmonic generation
only appears in the current-voltage characteristics but als
the induced internal potential-voltage characteristics. The
distribution of the charge in the system produces the inte
potential, which modifies the voltage acting on the syste
Therefore, the total perturbation to which the electron syst
responds is the sum of the applied perturbation and the
duced internal potential due to the redistribution of char
In the following, the channel subscriptm is dropped for sim-
plicity. The Fourier transform of global voltage is given b
Ṽb(n)5( j gVg

( j )(b)hj (n), where the frequency-depende
0-2
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factors hj (n) are the Fourier transformations ofhj (t).
Vg

(1)(b)5Vg$dgb1*dr ug(r )@dEb(U)/dU(r )#% and

Vg
( j )(b) 5 (1/j !)Vg1

•••Vg j
*dr ug1•••g j

(r )@dEb(U) /dU(r )#

are the first- andj th-order (j 52,3, . . . ,)global voltages on
the probea, respectively. TheC operator in Eq.~1! is deter-
mined through the dynamic equation by the lead Ham
tonianH given above. The operatorCam(Eam ,t) satisfies the
g

io
tio

o

s
y

a
d
q
al
s
in
e

n
ra
or

is

12531
-

equation of motion i\] tCam(Eam ,t)5@Cam(Eam ,t),H#,
which can be integrated because the time dependence ofH is
simple. It is found that Cam(Eam ,t)5Cam(Ea,m)

3exp$2i@Eamt1e*dtṼa(t)#/\%,4,8 where Ṽa(t) includes both
the external voltage and internal potential. The solution c
then be expressed in a series in powers of the voltage
Fourier transformation is given by
C̃a~E!5
1

2pE2`

`

dt Ca~Ea ,t !eiEt/\

5Ca~Ẽ!2
1

2\V
eVa

(1)Ca
(2)~Ẽ,\V!2

1

23\V
eVa

(2)Ca
(2)~Ẽ,2\V!1

1

23~\V!2 ~eVa
(1)!2@Ca

(1)~Ẽ,2\V!22Ca~Ẽ!#

2
1

3!22\V
eVa

(3)@Ca
(2)~Ẽ,3\V!19Ca

(2)~Ẽ,\V!#1
1

24~\V!2 eVa
(1)eVa

(2)@Ca
(1)~Ẽ,3\V!2Ca

(1)~Ẽ,\V!#

2
1

3!23~\V!3 ~eVa
(1)!3@Ca

(2)~Ẽ,3\V!23Ca
(2)~Ẽ,\V!#, ~3!
nd
ing
ic
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where we have suppressed the indexm so thatCa is the

vector form of the operatorsCam . In Eq. ~3!, Ca(Ẽ)
5Ca@E2(1/2)e2Va

(2)#, which rises from the shift of vari-

able, Ca
(6)(Ẽ, j \V)5Ca(Ẽ1 j \V)6Ca(Ẽ2 j \V). From

this solution, it is found that the time-dependent volta
leads to a multiplication. The physics in Eq.~3! is transpar-
ent: Ca(E6\v) is just the one-photon sideband andCa(E
62\v) corresponds to the second-harmonic generat
Generally, in the energy representation the wave func
becomes dispersed over all energiesE6 j \V with an integer
j. One of its signatures in the nonlinearity is the generation
current harmonics with frequencies higher thanV. This
means that the dependence of current on the ac bias is o
lating with harmonic frequencies of the driving frequenc
This is caused by the quantum-mechanical interference
different components of the wave function, which is spre
over a set of energiesE6 j \V. The current can be calculate
in a straightforward way by substituting the solution in E
~3! into Eq. ~1!. In the evaluation of a quantum-statistic
average, we assume that the modulation imposed on the
tem is so slow that the contacts can still be regarded as
dynamic equilibrium state. Hence we hav
^Ca

1(E)Cb(E8)&5dabd(E2E8) f a(E), where f a(E) is the
Fermi function of reservoira. The Fourier-transformed form
of Eq. ~1! is I a(v)5(1/2p)*2`

` dt eivtI a(t). In order to
show the nonlinear characteristics of the current in respo
to the external oscillating potential in the harmonic gene
tion, we take the perturbation calculation up to the third
der in the external voltage. Substituting the solution~3! into
Eq. ~1!, the Fourier-transformed form of electric current
obtained,
e
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n
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I a~v!5@d~v1V!1d~v2V!#

3(
b

Gab
(V)~v!Vb1d~v!(

bg
Gabg

(0) VbVg

1@d~v12V!1d~v22V!#(
bg

Gabg
(2V)~v!VbVg

1@d~v1V!1d~v2V!#(
bgd

Gabgr
(V) ~v!VbVgVr

1@d~v13V!1d~v23V!#(
bgd

Gabgr
(3V) ~v!VbVgVr

1•••. ~4!

The coefficients describing the total current flowing in a
out of the conductor are a function of the unitary scatter
matrix, which is influenced by the geometrical and intrins
parameters of the system. From this relation it is found t
in addition to the response atV, there are two components i
the current for the lowest-order nonlinear response: one
static term and another presents the oscillation at twice
driving frequency. The static component produces a dc e
tric current in the conductor, which corresponds to an opti
rectification effect. The component oscillating at twice t
driving frequency gives rise to second-harmonic generat
Third-harmonic generation occurs when an incident field
frequenciesv56V induces a response at frequenciesv
563V. Gab

(V)(v) is a linear conductance that was first o
tained by Bu¨ttiker and co-workers.3–5 The quadratic conduc
tance contains two contributions: a dc partGabg

(0) 5Gabg
dc and

a part of the second-order harmonic generationGabg
(2V)(v)
0-3
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5Gabg
dc 1v(ReGabg

ac 1 i Im Gabg
ac ), where

Gabg
dc 5

e3

22hE dE„2 f 8~E!…H dbg]EAbb~a,E,E!

1E dr F S ug]U2
dug

dE DAbb~a,E,E!1~b↔g!G J ,

ReGabg
ac 5

e3

25pE dE„2 f 8~E!…

3E dr F S dug

dE
]U2

d2ug

dE2 D
3Abb~a,E,E!1~b↔g!G , ~5!

Im Gabg
ac 5

e3

23E dE„2 f 8~E!…E dr ~ubgFa2Fabg!.

The third-order conductance is given byGabgr
(3V) (v)

5 1
3 Gabgr

(V) (v)5Gabgr
dc 1v(ReGabgr

ac 1 i Im Gabgr
ac ) with

Gabgr
dc 52

e4

3!23hE dE„2 f 8~E!…S dbgdbr]E
2Abb~a,E,E!

1E dr H Fugr]U1dbgur]E]U1ugur]U
2

2dbg

d2ur

dE2 1
d2

dE2 ~ugur!2
dugr

dE
12dbg

dur

dE
]U

22
d

dE
~ugur!]UGAbb~a,E,E!J

c
D ,

ReGabgr
ac 5

e4

3!25pE dE„2 f 8~E!…E dr S H d2ugr

dE2
2

dugr

dE
]U

1dbgS d3ur

dE3 22
d2ur

dE2 ]U2
dur

dE
]U]ED

2FugS d3ur

dE3 22
d2ur

dE2 ]U1
dur

dE
]U

2 D1~g↔r!G
2S 4

dug

dE

d2ur

dE2 22
dug

dE

dur

dE
1

dug

dE
urD

1~g↔r!J Abb~a,E,E!D
c

, ~6!

Im Gabgr
ac 5

e4

3!23E dE„2 f 8~E!…E dr ~ubgrFa2Fabgr!,

where the subscriptc stands for the cyclic permutation o
indices~excepta). From Eqs.~5! and~6!, it is found that in
addition to the imaginary termiv Im Gac there exists the rea
termv ReGac, which changes the total current in the nonli
ear response. Measurement of this effect would be an in
12531
r-

esting subject for experimental studies. We also find that
internal interaction contributes to both the dc and the ac n
linear conductances. Thus, the displacement current con
utes to the total current. Employing the equations of char
teristic tensors in Eq.~2! and those sum rules, a
components of harmonic generation satisfy the current c
servation and the gauge invariance.

As an example, we demonstrate the application of t
formalism to a double-barrier tunneling diode. This syste
has been considered previously using the perturba
theory.16 Consider a one-dimensional double-barrier tunn
ing system in which the two barriers ared functions located
at positionsx52a andx5a. The scattering matrix close to
the resonance is given by the Breit-Wigner formulaSab(E)

FIG. 1. The dc~solid line! and the ac~dashed line! quadratic
conductances as the functions of 2(E2Er)/G in units of
e3G1G2(G12G2)/p. SetG51 and\51.

FIG. 2. G1111
dc ~solid line! in units ofe4/3323p\G2 andG1111

ac as
the functions of 2(E2Er)/G in units of e4/23pG3. The dashed
~dotted! line is the real~imaginary! part of G1111

ac .
0-4
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5@dab2iAGaGb/n#ei (fa1fb) with n5E2Er1 i (G/2),
whereGa (a51,2) are the partial widths of the resonanc
proportional to the tunneling probability through the barrie
a andG5(aGa is the total width of the resonance.fa is the
phase acquired in the reflection or the transmission proc
This allows simple expressions for the characteristic pot
tial u15G1 /G and u11522(G1G2 /G2)@(E2Er)/unu2#.
From Eq. ~4!, we obtain G111

dc 5(e3/2h)@(G12G2)/G#
3(G1G2 /unu2)@(E2Er)/unu2#, ReG111

ac 50 and
Im G111

ac (E) 5 2 (e3 / 23p) @ (G1 2 G2) / G2 # ( G1G2 / unu2)
3@(unu22G2)/unu2#@(E2Er)/unu2#. The reason that
ReG111

ac vanishes in this example is the simple form of t
Breit-Wigner approximation as it gives a space-independ
and constant characteristic potential. ReG111

ac would be non-
zero in a space-dependent problem. In Fig. 1,G111

dc ~solid
line! and ImG111

ac ~dashed line! are plotted as functions o
2(E2Er)/G. It is found thatG111

dc/ac changes sign across th
resonant point and hence can be negative.

For a geometrically symmetric double barrier, i.
G15G25G/2, there is no quadratic conductance, i.
G111

dc/ac50. The first nonzero nonlinear conductance is
third-order one. From Eq. ~5!, it is obtained
G1111

dc (E) 5 (e4/3!25h) @G2 /(unu2)2# @(3unu22G2)/unu2# ,
ReG1111

ac (E) 5 2(e4/210p) @G2/(unu2)4#(4unu2 2 3G2) (n

1n* ), and ImG1111
ac (E)5(e4/210p)@G/(unu2)4#@8(unu2)2
12531
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,
,
e

26unu2G21G4#. G1111
dc ~solid line!, ReG1111

ac ~dashed line!,
and ImG1111

ac ~dotted line! are plotted in Fig. 2 as a function
of 2(E2Er)/G. Because ReG1111

ac changes sign across th
resonant point, it enhances or reduces the electric curr
This effect would be small in the weakly nonlinear respon

In summary, harmonic generation in the ac nonlinear
sponse has been formulated in the scattering matrix the
The formalism takes into account the oscillating internal p
tential due to the charge redistribution. This allows us
obtain the response functions and the corresponding
monic generation in a self-consistent way. Harmonic gene
tion has been illustrated by obtaining the lowest-order a
second-order nonlinear conductances. The internal inte
tion contributes to both the dc and the ac conductances in
regime of nonlinear response. The current conservation
gauge invariance are satisfied by all Fourier component
harmonic generation. It has been found that there e
frequency-dependent terms ReGac in the nonlinear conduc-
tances. As an example, the nonlinear conductances fo
double-barrier nanostructure have been calculated. ReG1111

ac

has been calculated for a geometrically symmetric syst
The quantum effect ofv ReGnonlinear

ac might be experimen-
tally observable in realistic structures.
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