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Higher harmonic generation in a mesoscopic conductor
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Harmonic generation is analyzed in the weakly ac nonlinear response by using scattering matrix theory. An
explicit formulation of frequency-dependent conductances for harmonic generation has been developed. The
theory includes contributions from the displacement current due to the internal interactions caused by the
charge redistribution inside the conductor. There are several components that are oscillating at the harmonic
frequencies in the nonlinear current. The frequency-dependent terms of real and imaginary parts in nonlinear
conductances can be separated explicitly. The application of the formalism is demonstrated for a double-barrier
nanostructure.
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The study of quantum transport in an electronic systenstudies have shown the importance of contributions from the
has been treated as a scattering problem since Landaueitgernal potential in higher-order nonlinear conductarices.
original work! over 20 years ago. A typical point of interest Consequently, it motivates us to develop a formalism in
is the frequency-dependent current in response to an oscillatvhich both the dc and the ac features of harmonic generation
ing voltage. The ac linear and nonlinear responses in a mubre treated self-consistently. The study of the ac nonlinear
tiprobe mesoscopic conductor have been stifdfedxten-  feature of harmonic generation in nanostructures might be of
sively in recent years. Experimentally, Taboryskial® technological interest. In nonlinear optics, the development
reported that the nonlinear and asymmetric conductance o¢f lasers has brought about an increased interest in the effi-
cillations have been observed in quantum point contacts witisiency of harmonic generation. Modern technology might
small bias voltages. Nonlinear phenomena in conducting maalso provide useful applications with harmonic generations
terials such as photoinduced absorption, bleaching, and ph#n nanodevices.
toluminescence, etc., have received wide attention The aim of this paper is to formulate harmonic generation
experimentally'® Theoretically, Bitiker and co-workers in weakly ac nonlinear response using the scattering matrix
have developed a formalism for the dynamic conductancegethod. There was an earlier attempt at studying harmonic
by taking into account contributions of the internal self- generation by perturbation theotyWe found that the scat-
consistent potentid®>!! According to electrodynamics, tering matrix theory is much simpler and physical for study-
when a time-dependent external field is applied to a condudhg ac nonlinear transport. We were able to arrive at the same
tor, the charge distribution inside the conductor is drivenresults as obtained from the perturbation thelSryhe gen-
away from its equilibrium pattern, which induces an internaleralized formulas of dynamic conductances are derived up to
potential inside the conductor. This internal potential op-third-harmonic generation. The process exactly traces the
poses the changes of charge distribution and screens the esentributions from the frequency-dependent internal poten-
ternal field. In their theory, another fundamental requiremential. It is shown how the ac nonlinear feature of harmonic
is the gauge invariance, i.e., shifting the voltages in all leadgeneration arises in electronic transport. It is found that there
by a constant value should not alter the results, thus thare several components oscillating at the harmonic frequen-
current depends only on the voltage differences. In ac transies in the nonlinear current. In the regime of nonlinear re-
port, the current conservation and gauge invariance will nosponse, the self-consistent potential contributes not only to
be satisfied unless the induced internal potential is properl{he ac components of the current but also to its dc compo-
taken into accourft.The ac electric properties become more nents. The developed formalism contains both the dc feature
complicated due to the presence of the internal potential. and the frequency-dependent feature of conductance for each

One interesting aspect in ac nonlinear transport is harcomponent of harmonic generation. The current conservation
monic generation. The analogy with nonlinear odﬁdsads and gauge invariance are satisfied by all components of har-
one to pursue harmonic generation in ac nonlinear transporonic generation. The nonlinearity shows that, in addition to
de Vegvat® has studied the second-harmonic transport rethe major component oscillating at the input frequety
sponse of multiprobe mesoscopic conductors at low frethe electric current contains significant components oscillat-
guency by using a perturbation theory, and he found that thing at higher harmonic frequencie$)? 3(1, . .., aswell as
second-harmonic current at low frequency is a non—Fermithe dc component at zero frequency. This is analogous to the
surface quantity. Recently, Pedersen andtiBer'® have  well-known harmonic distortion of signals in an electrical
pointed out that the ac nonlinear transport process, theoretéircuit, where the response is also nonlinear. In the regime of
cally, should involve a dc component and the components atonlinear response it is found that there are two parts in the
the frequencies of oscillation and its higher harmonics. How{requency-dependent conductances, i.e,ReG* and
ever, these approaches only involved the frequencyio ImG2. The real part R&2° changes the total current in
independent part of nonlinear conductances; frequencythe regime of nonlinear response. The application of ac non-
dependent conductances have not been included. Recdittear response will be illustrated for a two-terminal nano-
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structure. The frequency-dependent quantum effect ofin,/dE is the injectivity anddin,/dE!(j>1) is the energy

o ReG*is calculated in a geometrically symmetric double-

derivative of the injectivity. The density of the induced

barrier system. The formalism developed here will enablechargeedn;,y , is a functional of external voltages and the
one to perform more realistic numerical simulations to studyinternal self-consistent potential. In the regime of weakly
the properties of quantum transport in nanostructure devicesionlinear response, the internal potential can be expanded in

The model considered here is a conductor attached to

a series of the variation of chemical potentifk,,*® i.e.,

number of probes that are extended as ideal leads to infinityJ (r ,t) = eX u, (r) V, (t) + (e2/2)2aﬁua,3(r)va (V1)

The voltageV ,(t) =V, h(t) at probea is constant in space
and varies with time ab(t) =cosQt. The voltage relates to
the chemical potential of the reservoir through=eV,.

+---, whereeu, is the characteristic potential, a®du,,z
(which is symmetric ine and B) is the second-order char-
acteristic potential tensor. There are several sum rules on

The voltage at contact is only a well-defined quantity if thethese characteristic potential tensors. If the electrochemical
local electric fields vanish deep inside the contact. The effegbotentials on all probes are changed by the same constant
of the magnetic part of the electromagnetic waves on thamount, i.e.,du,=du for the arbitrary indexa, and the

electrons is much weakeand we neglect it in our dISCUS-
sion. The current operator has been derived bytiker

1) = (e/h) 2 dE dE'[CLR ™ (E)CLm(E") — Tl (E)
ClUE")lexdi(E—E)t/#], whereC%(E) is the operator
that annihilates a carrier in the outgoing chanmeh probe

a. The annihilation operator in the outgoing chan@Pu,
is related to the annihilation operator in the incoming chan-

nel C™ via the scattering matrixS,gmn, i.€., C/uY(E)
=3 4 nSapmn(E)CUP(E).2* This formula is exact up to lin-
ear order ofw and for large frequency it is an approximation

to a space-dependent expression of the current opérator.

Then the current incident on the probds expressetin the
form

f dE dE T4, (E)Aggnn(@,M,E,E")

D

where A,B,B,nn(armrEuEl):5a55mn_52ﬁmn(E)Saﬁmn(E,)

is the current matrix. In Eq1), the upper indexin) has been
suppressed for simplicity. The scattering mat8ix; , has
been used to describe the relationship between the incomi
electron in channeh on the probes and the outgoing elec-
tron in channelm on the probex. The scattering matrix is a

xEBH(E')exqi(E—E')t/h],

functional of energy and of internal self-consistent potentia

U(r,{V.(1)}). This internal potential is created by the varia-

tion of the density of electrons. The variation is induced by
the time-dependent voltage on the probe. As a consequen

g

system ends at equilibrium, it corresponds to an overall shift
of the electrostatic potentiatdU—dw.* It implies that
2Ua(r)=1 and =2 gugg,..1(r)=0, whereX; is the sum
taken over any index among the indicgdy- - - }. With the

help of the relationg$n, andU, we classify the terms oscil-
lating at the same frequency in accordance with harmonics
generation in both sides of the Poisson equation. The equa-
tions of characteristic potential tensors are obtained as

dn
-v?2 Uigy.. }(r)+477e

dEu{M }(r)'

2

4’7782 Jfa{ﬁyu.

Uggy...} and Fog,..., are invariant under the permutation
of indices {By---}. The first two of the Fs are
Fap=(dn,g/dE) and Fopy=0p,(dF,5/dE)
+ugu, 2, (dF,,/dE) —[u(dF, g /dE) + (Fop—UpZ . Fup)
X(du,/dE) ]~ (B 7).

The electron Hamiltonian in the leads is given by the
single-particle  terms H=3 ,,[E,m+eV,(1)]IC}.Cam>
whereC,(E.m,t) is the annihilation operator for an elec-
n in the incoming channeh on the probex andeV,(t) is
shift of chemical potentialt, away from 9 in the
equilibrium stateE ,,, can be determined if the shape of the
| lead is given. The internal interaction induces a fluctuation
at the average value of,,. By considering a series expan-
sion of energy in powers of the potential landscapethe
gxternal potential is replaced by the self-consistent potential:

of the time dependence of voltage, the redistribution of theEam+ €Va(t)—Em+eV,(t), whereV, is the global volt-
charge, due to the variation of the density of electrons in th&ge on the probe:. Different from the external voltage, the

conductor, is also a function of time. It has Fourier compo-internal potential comes from the charge accumulation in the
nents at the driving frequency of the external voltage and th&egion outside the leads. The response of charge to the time-
frequencies of its harmonics. So the induced internal potendependent voltage causes the internal potential to contain
tial inside the conductor will oscillate at the frequencies ofhigh harmonic components. Thus, harmonic generation not

all harmonics. The induced internal potentihis determined
by the Poisson equatioR2U(r,t)=—4medn(r,t), where
én=73,6n, is the variation of the density of electroresin,

only appears in the current-voltage characteristics but also in
the induced internal potential-voltage characteristics. The re-
distribution of the charge in the system produces the internal

is the variation of the density of charge injected into thepotential, which modifies the voltage acting on the system.
volume of the conductor by the perturbation on the probelherefore, the total perturbation to which the electron system
a*! There are two contributions iedn,: the injected responds is the sum of the applied perturbation and the in-
charge density due to the variation of chemical potentiaduced internal potential due to the redistribution of charge.
du,=eV, on the prober, and the density of induced charge In the following, the channel subscriptis dropped for sim-
edn;g, due to the internal potential. We hawén (r,t) plicity. The Fourier transform of global voltage is given by
=3, (14N [N (r,)/dE[ V() ]+ SNing o(r.t),  where  Vy(v)=2;, VI (B)h;(v), where the frequency-dependent
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factors h;(v) are the Fourier transformations afi(t). equation of motioni7%d;C,m(Eam t) =[Com(Eam.t).H]1,
Vﬂf)(ﬁ)=vy{57,3+fdr u, (N[ SEzU)/8U(r) ]} and WhiCh can be ?ntegrated because the time dependertdasof
v(B)=(1iHV, - 'V, fdru, ., (N[SERU)/6U(r)]  simple. | It is found tfla; Cam(liam.t)f Cam(Ea,m)

are the first- andth-order (=2,3,...,)global voltages on  Xexpg{—i[E,t+efdtV, ())/A},*° whereV (t) includes both

the probea, respectively. TheC operator in Eq(1) is deter-  the external voltage and internal potential. The solution can
mined through the dynamic equation by the lead Hamil-then be expressed in a series in powers of the voltage. Its
tonianH given above. The operat@,,(E.m,t) satisfies the Fourier transformation is given by

- 1 (= _
Ca(E)zﬁﬁ dtC,(E, t)e'EV%

=C,(E)- %e\/;)cg‘)(ﬁ,m) - eVIC{(E,210) + %(e\/yﬁ[cgﬂ(ﬁ,%m —2C,(B)]

2310

1 - - 1 - -
- me\/f)[cg’)(E,SﬁQ)Jr9Cf[)(E,hQ)]+ Q) eVe VI c()(E,3.0)-C{P(E.AQ)]
1 - -
3 Ve ) TC (B 310) - 3COEAD)], (3

where we have suppressed the indexso thatC, is the | (w)=[8(w+Q)+ 8 w—Q)]

vector form of the operator€,,. In Eq. (3), C.(E)

=Ca[E—(1£2)e2VElz)], Wh~iCh rises from~the shift of vari- x> G (w)Vy+ S(w) >, GO Vv,

able, CU(E,j7Q)=C(E+j#nQ)=C(E—jhQ). From p Fr

this solution, it is found that the time-dependent voltage (20)

leads to a multiplication. The physics in E@) is transpar- to(o+20)+ 5(“’_29)]; Gapy(@)VpV,

ent: C(E*fw) is just the one-photon sideband a@¢g(E 7

+2hw) corresponds to the second-harmonic generation.

Generally, in the energy representation the wave function

becomes dispersed over all enerdies j7 Q) with an integer

j- One of its signatures in the nonlinearity is the generation of _ (3Q)

current harmonics with frequencies higher th@n This Tlolw+3)+ v 39)]5275 Gapml@VVoV,

means that the dependence of current on the ac bias is oscil-

lating with harmonic frequencies of the driving frequency. )

girf]fIZr(lasntC?:rii)%nbgnttgifqtlaznwg/en}ﬁizﬁg:'::,a\l/vlr:;:;rfiirig(rfag{-he coefficients describing the Fotal current _ﬂowing in a_nd
: . out of the conductor are a function of the unitary scattering

over a set of energigs= j# (). The current can be calculated

) traiahtf d b bstituting th lution in E matrix, which is influenced by the geometrical and intrinsic
In a straightiorward way by SUbsUuting the solution in £g. parameters of the system. From this relation it is found that
(3) into Eqg. (1). In the evaluation of a quantum-statistical

A" in addition to the response &, there are two components in
average, we assume that the modulation imposed on the Syge cyrrent for the lowest-order nonlinear response: one is a

tem is so slow that the contacts can still be regarded as in &atic term and another presents the oscillation at twice the
dynamic  equilibrium  state. ~Hence we  have grjying frequency. The static component produces a dc elec-
(CL(E)Cp(E"))=6,50(E—E")f(E), wheref,(E) is the tric current in the conductor, which corresponds to an optical
Fermi function of reservoite. The Fourier-transformed form rectification effect. The component oscillating at twice the
of Eq. (1) is | (w)=(1/2m) " dte“! (t). In order to driving frequency gives rise to second-harmonic generation.
show the nonlinear characteristics of the current in responsghird-harmonic generation occurs when an incident field at
to the external oscillating potential in the harmonic generafrequenciesw==( induces a response at frequencies
tion, we take the perturbation calculation up to the third or-= =3€Q. G{}() is a linear conductance that was first ob-
der in the external voltage. Substituting the soluti@hinto  tained by Bittiker and co-workers=® The quadratic conduc-

Eg. (1), the Fourier-transformed form of electric current is tance contains two contributions: a dc p@lffgy: fod) and
(w)
Y

[0+ Q)+ 8(w— Q)]gﬁ GUR,(@)VV,V,

obtained, a part of the second-order harmonic generat®
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Gaﬁy+w(ReGaﬂy+| Im G&5,), where 1.0 . . . - . . . . .
0.8 | 1
d 0.4
o3 0.0
ReGZ, = ZSWde(—f’(E)) o
du, dzuy 0.4 @& (solid line) ;l 1
. f | ge v~ e -0.6 |-Im Gl (dashed line) ! ;
v
08 | 1
XAgg(a,E,E)+(B=7y)|, S
100 -80 -60 -40 20 00 20 40 6.0 80 100
2EEY T
Im Gy = 23f dE(-f (E))J drUgyF e Fapy)- FIG. 1. The dc(solid line) and the acdashed ling quadratic

conductances as the functions of EX(E,)/I" in units of

The third-order conductance is given bB(%) (®)  &,I,(I,~T,)/7. Setl=1 andh=1.
Q .
=3GY} (0)=G,,,+ w(ReG2,, +iIm G2, ) with

4 esting subject for experimental studies. We also find that the
Gde __° dE(—f'(E))| 84.0,,02A EE internal interaction contributes to both the dc and the ac non-
aByp 3|23h ( )) By“BprYE ,3,3((1’ ' ) . . .
linear conductances. Thus, the displacement current contrib-
utes to the total current. Employing the equations of charac-
+ J dr:
d?u, d?

Uy, du+ SgyU,dedy+U,U,d3 teristic tensors in Eq.(2) and those sum rules, all
~9 ez tae W) T g

components of harmonic generation satisfy the current con-
servation and the gauge invariance.

As an example, we demonstrate the application of this
formalism to a double-barrier tunneling diode. This system
has been considered previously using the perturbation

—2——=(u,u,)dy |Ags(a,E,E ] theory® Consider a one-dimensional double-barrier tunnel-
dE ing system in which the two barriers adefunctions located
at positionsx=—a andx=a. The scattering matrix close to
e’ d?u o duw the resonance is given by the Breit-Wigner form8jg;(E)
ReGi‘fﬁw 3'2—577[ dE(—f’ (E))f dl’({ 4E? dE —= Jdu
1.0 T T T T T T T T T
5 du,, 2d2up du, 0 L ‘ |
0\ g ~2qEr 0T gE W ' |
06 l -
d*u, _d%, u, , /
dE3 2dE2 aU_i_EaU +(7<_)p) 0.4 | T
02 | ! 1
duy d?u, _du,du +du ) ;
YUE dE dE dE ' dE * 0.0 I
0.2 t ,l .
+(y—p) Aﬁﬁ(a,E,E)) , (6) .0.4 | G (solid line) Al |
c Re G'(dashed line) i "
-0.6 | Im Ghy,, (dotted line) ll 1
et . 08 | p 1
Im Gaﬁ'yp 3|23f dE(_f (E))J dr(uﬂ’ypj:a_]:aﬁ‘yp)v

.0 1 1 1 1 1 1 1 1
-100 -80 -60 -40 -20 00 20 4.0 6.0 8.0 100

where the subscript stands for the cyclic permutation of 2EE) T
indices(excepta). From Eqgs.(5) and(6), it is found that in
addition to the imaginary teriiw Im G* there exists the real FIG. 2. G5, (solid line) in units ofe*/3x 2374 T'? andG35,; as

term w ReG?°, which changes the total current in the nonlin- the functions of 2E—E,)/T" in units of e*/2°#T'3. The dashed
ear response. Measurement of this effect would be an intefeotted line is the realimaginary part of G5{,;.

125310-4



HIGHER HARMONIC GENERATION IN A MESOSCORT . . . PHYSICAL REVIEW B 63 125310

=[8up—INT L g/ Al e 20 with A=E—E.+i(I'/2), —6|A]2I2+T%]. G5y, (solid line), ReG5,, (dashed ling
whereT', («=1,2) are the partial widths of the resonancesand ImG3S,, (dotted ling are plotted in Fig. 2 as a function
proportional to the tunneling probability through the barriersys (e E )/T'. Because R62%,, changes sign across the

aandl'=2,I, is the total width of the resonancé,, isthe  yo5onant point, it enhances or reduces the electric current.

phase acquired in the reflection or the transmission procesgyis effect would be small in the weakly nonlinear response.
This allows simple expressions for the characteristic poten- |, summary, harmonic generation in the ac nonlinear re-
tial u,=I",/T" and “ll:._z(gchZII;Z)[(E_Er)/|A|2]' sponse has been formulated in the scattering matrix theory.
From Eq. (4), we obtain Gi3;=(e*/2N)[(I'1—T2)/T']  The formalism takes into account the oscillating internal po-
X(L{To/| AP (E-E)/| A7, ReG{{;=0 and  tential due to the charge redistribution. This allows us to
ImG3$,(E) = — (e3/237) [(I'y — I',) /T?](T4 T, /|A]?)  obtain the response functions and the corresponding har-
X[(|A]2=T?)/|A1ZI[(E-E,)/|Al?]. The reason that monic generation in a self-consistent way. Harmonic genera-
ReG$, vanishes in this example is the simple form of thetion has been illustrated by obtaining the lowest-order and
Breit-Wigner approximation as it gives a space-independersecond-order nonlinear conductances. The internal interac-

and constant characteristic potential. &, would be non-  tion contributes to both the dc and the ac conductances in the

zero in a space-dependent problem. In Fig-Gﬁl (solid  regime of nonlinear response. The current conservation and

line) and IMG2S, (dashed ling are plotted as functions of 9auge invariance are satisfied by all Fourier components of

2(E-E,)IT. It is found thatG{$® changes sign across the

resonant point and hence can be negative.

For a geometrically symmetric double barrier, i.e., .
i o, double-barrier nanostructure have been calculatelGRg

I'y=r,=r/2, there is no quadratic conductance,

harmonic generation. It has been found that there exist
frequency-dependent terms B&°in the nonlinear conduc-
tances. As an example, the nonlinear conductances for a

G(licl:/iaczo' The first nonzero nonlinear conductance is theh@s been calculated for a geometrically symmetric system.

third-order one. From Eq. (5), it is obtained
G{511(E) = (€%312%h) [T2 /(| A[32] [(3|A[P=T?)/| A2,
ReGii1(E) = —(e%2'%7) [T%/(| A1H)*1(4| A7 - 3T%) (A
+A*), and ImG3$,(E)=(e*2'%m)[T /(| A|?)*1[8(|A[%)?

The quantum effect ofv ReG3S inear Might be experimen-
tally observable in realistic structures.
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