PHYSICAL REVIEW B, VOLUME 63, 125302

Magnetic field effects on quantum ring excitons

Jakyoung Sontf and Sergio E. Ullod®
INational CRI Center for Nano Particle Control, School of Mechanical and Aerospace Engineering, Seoul National University,
Seoul 151-742, Korea
2Department of Physics and Astronomy and Condensed Matter and Surface Sciences Program, Ohio University,
Athens, Ohio 457042979
3Sektion Physik, Ludwig-Maximilians-Univerdit&eschwister-Scholl-Platz 1, 80539, Germany
(Received 10 August 2000; published 1 March 2001

We study the effect of magnetic field and geometric confinement on excitons confined to a quantum ring.
We use analytical matrix elements of the Coulomb interaction and diagonalize numerically the effective-mass
Hamiltonian of the problem. To explore the role of different boundary conditions, we investigate the quantum
ring structure with a parabolic confinement potential, which allows the wave functions to be expressed in terms
of center of mass and relative degrees of freedom of the exciton. On the other hand, wave functions expressed
in terms of Bessel functions for electron and hole are used for a hard-wall confinement potential. The binding
energy and electron—hole separation of the exciton are calculated as function of the width of the ring and the
strength of an external magnetic field. The linear optical susceptibility as a function of magnetic fields is also
discussed. We explore the Coulomb electron—hole correlation and magnetic confinement for several ring width
and size combinations. The Aharanov—Bohm oscillations of exciton characteristics predicted for one-
dimensional rings are found to not be present in these finite-width systems.
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[. INTRODUCTION tronsand holes around the loop, in the presence of a mag-
netic field, is fascinating, and some theoretical works have
The fabrication of nanometer-size semiconductor strucalready begun to explore this regimie? Although beautiful
tures by different techniquegcluding lithography, etching, experiments of optical emission in charge-tunable quantum
direct chemical synthesis, and self-assembly, to name a fewings have been recently presentéd?they study the role of
has allowed a veritable explosion of activity in this atda. multiply charged exciton complexes with no applied mag-
is now well-known that carrier confinement into dimensionsnetic field.
of a few tens of nanometers provides strong blueshift of the The multiply connected geometry of the semiconductor
photoluminescence features from that in the original bulkguantum rings adds an interesting dimension to the strong
material, a clear consequence of quantum confinement i@oulomb effects in magnetic fields which have been ex-
thesequantum dotsCurrently, researchers are investigatingplored in quantum confined systems. Excitons in magnetic
a variety of magnetocapacitance and optical properties dields have been investigated in structures such as quantum
dots? including the role of inelastic light scattering and pho- wells **® quantum wires/ and quantum dot$-22 as ex-
non confinement;? as well as Pauli blocking and other few- amples of multicarrier systems. For the ring geometry, one
and many-particle effects in these systéms. guestion that arises naturally is whether there is sensitivity of
In recent work, however, a new geometry of semiconducthe exciton properties to an applied flux. This “Aharanov—
tor quantumrings has been introduced in experiments of Bohm effect” (ABE) for an exciton is an interesting concept,
magnetocapacitance and infrared excitation for fewsince one would naturally associate the existence of the ABE
electrons>® Although metallicrings have been the subject of with a net chargeas the coupling constant to the vector
considerable attention for a number of yethjs geometry  potentia), and the net charge of this object is clearly zero.
had not been achieved in semiconductors for sizes such thietowever, one could argue that the composite nature of the
the electrons would propagate coherer(ipn-diffusively) excitons would perhaps allow for a non-vanishing effect. In
throughout the ring. However, the self-assembled quanturfact, for the case of particles constrained to move along a
rings now achieved are so sma&With characteristic inner/ one-dimensional ring, rigorous derivations predict a non-zero
outer radius of 20/100 nm and 2—3 nm in hejghhat they  ABE for the exciton, which will show in its various energy
allow the study of a non-simply-connected geometry wherestates and the associated dipole oscillator strength, for small
carriers are coherent all throughout. It is clear that not onlyenough rings®**
the single-particle states are interesting in this geomesy In this work, we present calculations of the excitation
pecially their behavior under magnetic fjubut also the role  spectrum and oscillator strength of excitons in rings pierced
of interactions between particlébe it electrons or holgs by magnetic fields. We explore the role of different confine-
Lorke et al. have shown that multiple-electron states in thisment potentials and calculate binding energies, exciton sizes,
geometry experience phase coherent effects in the presenard their dependence on magnetic fields, as well as oscillator
of magnetic fields,much as predicted by theofyThe ques-  strengths which would be measurable in photoluminescence
tion of the observability of similar coherent effects for elec- experiments, for example. Similar to the case of quantum
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dots, we find strong orbital effects from the magnetic field,effective-mass approximation is a suitable approach, and is
which provides for effectively stronger confinement and ac-given byH=H.+H,+H._,, where the subscripts andh
companying diamagnetic level shifts, as well as splitting ofrepresent electron and hole, and the last term is the electron—
some levels. These changes are found to be monotonic withole interaction. The expression for the Hamiltonian of the
field. Part of our motivation in this study is to explore the electron in magnetic fieldén a parabolic-band approxima-
question of how robust is the ABE predicted in one-tion) is given by
dimensional1D) rings, when one considers finite width and

confinement potentials. The models we use are designed to H :L %A
mimic the situation in real semiconductor quantum rings ¢ 2m, c °

ach|eveq to date. Much tc_> our chagrin, we f|_nd no tra(_:e O(/vith a similar expression for the Hamiltonian of the hole.
the predicted ABE for realistic values of the rings and fleldsHere V, (or V;) is the ring confinement potential for elec-
1 Ve

in the problem. Although this negative result would suggest,, (hole), and naturallyg.= — |e| andq,= +|e|. For para-

that it is difficult that experiments would measure this effect,;,jic confinement potential across the width of the ring, we
it is still open to see to what extent highly sensitive experi-;;ge

ments might be able to yield a positive result.

The remainder of this paper is organized as follows. In Vi=3mw?(r;—rg)?, (2
Sec. Il, we present the model for the system and solution ) o o
method. As a first approximation, the quantum ring structurévhere the mean radius of the ringrig and the characteristic
is modeled by a parabolic confinement potential, in whichconfinement energy isiw;, giving a characteristic ring
the wave functions expressed in terms of the center of mas¥idth ~2VA/m;w; for each particle. Here,=e,h represents
and relative coordinates are used as a basis set. This confirf@€ different particles. We choose the fully symmetric gauge

ment potential has been experimentally confirmed by the re?€Ctor potentials Ac=3BX(re—ry,) and Ap=3BX(ry
cent experiments of Lorket al® In order to explore the role _'e). for électron and hole, respectively, following Refs. 18

of different potentials, we also model the ring system with aand 21. The Coulomb interaction term between carriers is

hard-wall confinement, using wave functions expressed igiven byHe = —e?/er,, screened by the background di-
terms of Bessel functions for electron and hole as a basis Se%!ectnc constant.

In Sec. lll, we discuss the main effects of the magnetic field
effects on the exciton characteristics, including the binding
energy, electron—hole separation, and the linear optical sus- For the parabolic confinement potential it is convenient to
ceptibility. Finally, we summarize our results in Sec. IV. The separate the problem into center of mass and relative coor-
Appendix contains an outline of the derivation of the Cou-dinates, described as usual byr.—r,, and R=(mgr,
lomb matrix element with these basis functions. The analyti-+ myr,)/M, where the total and reduced masses Hre

cal expressions presented there greatly simplify our calcula= Mg+ My, and u=mem;,/M. The total Hamiltonian can

2

Pet +Ve, (1)

A. Parabolic confinement potential

tions. then be re-expressed &b=Hcy+H, e+ Hpmix, With indi-
vidual terms
Il. THEORETICAL MODEL 1 2 1 2 2
: HCMZWP +§Mwo(R—ro) , 3)
Our model is a two-dimension&2D) exciton in a quan-
tum ring and in a static magnetic field, simulating recent 1 1
. . o __— 2. = 2.2
experimental quantum ring structures. The presence of mag- 1=, pe+ e re, (4)

netic fields oriented along the axis, perpendicular to the

plane of the ring, induces the electron and hole to peffomandHrm:H?elJrH;e', where
classical orbits along the circumference, which of course

yield quantization of the angular momentum in that e?
direction!®!! The ring structures are well approximated by Hie= —wcyl,— pr ©)
using parabolic potentials, giving soft confinement barriers,

appropriate to samples produced by self-assembBlyr nar-  and

row rings (with steep confinemepthowever, the parabolic

confinement and associated wave functions fail in a real sys- 5
tem, as the increased confinement may push the levels into Hmix=— W(er)'P_ Mewolo
the anharmonic part of the potential, and even produce de-

confinement of one carridtypically the electrop as found 2m;, mﬁ r2 12
in some calculations in quantum ddéfsWe also consider the XRl 1+ —R-r+ — —| - MhaoT o
case of hard-wall confinement and analyze the different re- MR MR
sults. om m2 2\ 42

As the quantum rings and excitonic states under consid- XR| 1- —SR-r4+ — _> , (6)
eration are much larger than the unit cell of the material, the MR? M? R?

125302-2



MAGNETIC FIELD EFFECTS ON QUANTUM RING EXCITONS PHYSICAL REVIEW B3 125302

where y=(m,—m,)/M depends on the mass asymmetryr§:<\p|r2|qf>
of the carriers, and we have set= w,= wy. We have also

denoted the relative angular momentum in thdirection — S S S 2 a* a
as L,=(rxp),, and the effective confinement frequency N“NZcy lem "*'NICMHIN,I, o ONTgyntrENlewn!
as w’= w3+ w?, with w.=eB/(2uc), resulting from the o
;:_olrgbined confinement of the potential and the magnetic \/ nin’l i nE (]I’ +[11])!
leld. i ’
The main purpose in the change of the above-mentioned (n+ DL +[17)1RE0 =0 (k+ |11+ 17])!
variables is to use the solutions df-\y andH},, as a basis 1 1
for the solution of the full Hamiltonian. The center of mass X (— 1)kt —— —2(|I |+k+j+1)!.
basis is essentially a harmonic oscillator, with wave function Ki(n=k)!ji(n"=))! B
NIy centered aboutg, (9)
5NI 1 Similarly, the linear optical susceptibility is given by )
I (R=a/ — ellcmlg—a?(R-rg)%/2 =3,(0|P|1)|%(hw—E;—iA) ", where(0|P|1); is the
e (N+[lem))! V21 dipole matrix element between one electron—hole psiate

and the vacuum state. These are proportional to the bulk
interband matrix elementg,, , and can be written in terms
of the envelope function &s,

X[a(R=ro)]'ew LM a2(R-1)?],  (7)

with  a=Mwy/f, and eigenvalues E,,=(2N+1

+|leml) A wgy. Here,N andlcy are quantum numbers of the

radial and angular momentum part, respectively, for the cen- [(0|P|1)|?=|pc,|?

ter of mass coordinates, ah(ﬂlc“"' is the associated Laguerre

polynomial?* Similarly, the eigenvalues and eigenfunctions 5 Ho 2
:|ch| 5I,O; a h

for the non-interactingrelative Hamiltonian are given by
wave functiong, | and energyE’,,, where = 2
E—a Y\
X{‘S'CM"”ZW NN+t Y J |
[ 2n! 1 22
_ il oa—B2r2i2 I Ny p2,2 (10
¢n,|(r) :3 (n+|||)|\/ze € (Br) Ln(IBr)y

)

2

J W(re,rp=re)dre

B. A hard-wall confinement potential

EXi=(2n+1+[I)ho, Given that the two-dimensional free exciton siaffec-
tive Bohr radiug in InAs is a3°~16 nm(6 nm for GaAs$,

_ the quantum rings with widths larger thaaé’? would tend
with = Vuw/h. Here,n andl are quantum numbers of the 4 yie|d highly symmetrionearly circulay ground states of
radial and angular momentum parts, respectively, for thgne exciton, with the confinement potential being a small
relative coordinates. With this harmonic basis set, matrix e"perturbation. For narrower quantum rings, however, the sym-
ements for the Coulomb interaction, magnetic field depenmetry of the exciton in the ring would be strongly affected,
dent and mixing terms can be calculated analytic®. and become increasingly one dimensional. This would be
These expressions are collected in the Appendix. favorable for the appearance of the ABE, as predicted by

The total Hamiltonian given previously is then diagonal- theory!®!! To allow for this different case, and so as to test
ized numerically, leading to the eigenvalues and eigenfuncthe possible bias of the numerical calculations in the para-
tions. All the physical properties of the exciton in the ring bolic potential, we have also implemented solutions of the
can in principle be extracted from these eigenvalues angroblem in a hard-wall confinement potential basis.
eigenfunctions. Here, we present the binding energy, In that situation, the basis set for the exciton problem is
electron—hole separation, and the linear optical susceptibilitgiven by products of the radial and angular parts of electron
of the quantum ring. These quantities are readily accessibl@nd hole, W =W(r,¢e) Vi(ry, ¢yn), where the individual
in optical experiments of photoluminescen@.) and pho- Wave functions are given byin the absence of magnetic
toluminescence excitatiofPLE). Denoting the wave func- field)
tions of the exciton as*,\lf)=EN,CMn,aN|CMn,|N,ICM,n,I,)
with coefficientsay,_, n; obtained from the diagonalization,

one can write for example an expression for the electron— W(ri, )= l/,i(ri)ieilnbi, (1)
hole separation, N2

125302-3



JAKYOUNG SONG AND SERGIO E. ULLOA PHYSICAL REVIEW B53 125302

wherei =e,h, andl; is an integer. The wave functions of the 100 o

radial part must satisfy the hard-wall boundary conditions 4

and vanish at both the innéa) and outer radiusg+2L) of Conl

the ring structure. As such, they are given by linear combi- 80

nations of Bessel functiongj;(r;)=AJ, (kir;) + BN (kir;), .

for a<rij<a+2L. Here,A andB are normalized constants, NI

andJ|i and Ny, are thel;th-order Bessel function of the first g N

and second kin_o!, respectively_, wikh= \2m,E; /2. The ei- _ ~ 40 A O oo ]
genvalue conditions are obtained from the secular equation :q" °, 4, Ring//Dot area (nm')

Ji (ke)Nj [Ke(a+2L)]=N; (kea)J; [ke(a+2L)], with a °°°°°36

similar expression for the hole states. These expressions 20r “‘“XXXXXZMN
yield the basis for the electron—hole pair problem without ha)
Coulomb interaction or magnetic field, with eigenvallgs 0 .

=#2k2/2m,+%%kZ/2m,. One can conveniently write the ' '
e e : . . . . 0 5 10 15 20
Coulomb interaction potential matrix elements using this Ri idth
noninteracting pair basis via Fourier transform integrals, as tng wi (nm)
done in Ref. 8see the Appendix

Similarly, one can obtain the matrix elements of the
Hamiltonian which depend on magnetic fields,

FIG. 1. Quantum ring heavy-hole exciton binding energies for
parabolic(triangles and hard-wall(diamond$ confinement poten-
tial, as function of the ring width. Inset: Same exciton binding en-

- ergies as a function of the area for quantum rifggangles and
e“B

€ diamonds tracgsand quantum dofsolid line) with the same area.
HB=—mpe~ere+—2rg+mph‘erh 05 q ots )
e 8mec h tential and 2. for the hard wall, the parabolic potential so-
02B2 lutions are effectively less confined due to the finite ampli-

r2 (12) tude “leaking” out of the ring. It is also interesting to
h emphasize that for smaller ring widths, the resulting wave
functions are increasingly elongatatbng the ring, and this
by using straightforward finite domain integrals of theis more the case for the hard-wall confinement. In contrast,
above-given basis set. The energies and eigenfunctions fdne exciton binding energy appears larger for the hard-wall
the exciton are calculated by numerical diagonalizationconfinement, for widths larger thaag®, due to the known
of the total Hamiltonianwith magnetic fields obtained poor convergence of the parabolic basis used., see a
from the summation of all the above-mentioned termsdetailed discussion of this problem in Ref.)20h the range
The wave functions are then represented R¥) of widths shown, both approaches have converged numeri-
:2nenh|elhanenh|elh|ne’nh’Ie’|h>’ Whereanenhlelh are the co- cally to within a few percent everywhere, and _at least an
efficients calculated from the diagonalization. In turn, the@rder of magnitude better for the lower two-thirds of the
mean electron—hole separationand the linear optical sus- rangs. . - . .
ceptibility can be calculated. The inset in F|g. 1 compares the ring results Wlth those of
a quantum dot(with parabolic confinemeff) with equal
confinementrea (solid line). For wider ring systems all en-
ergies are basically equal, as the confinement potential is a
weak perturbation to the Coulomb interaction between carri-
We present here characteristic results of our calculationsrs, as one would expect, be it ring or dot. On the other hand,
As mentioned before, they are scalable for different materithe exciton binding energies in the narrower rings are larger
als, in terms of the Bohr radius of the exciton and its relationthan in the dot case with the same area, a reflection of the
to the size(specially the width of the ring. The parameters anisotropic confinement in the ring: For the narrow rings, the
employed here describe GaAs, yielding an effective 2D Bohgijrcular symmetry of the 2D free excitdrither free or in the
radius of 6 nm. Figure 1 compares the exciton binding enerdoy) is strongly affected, and the exciton elongates along the
gies obtained for parabolic confinemeftriangles with  ring, as described previously. We should mention that the
those for a hard-wall confinemefdiamonds, as function of  curvatureof the ring has not much effect on the ground state
the quantum ring width. Notice thaE,=EJ ,—Egna  or binding energies for the dimensions considered here, simi-
where the first term is only the confinement ground state ofar to the experimental values.
the electron and hole, ignoring the Coulomb interaction. For To indicate the role of the Coulomb potential on the ex-
relatively narrow rings, the exciton binding energy for the citon characteristics, Fig. 2 shows the ground state energy of
parabolic confinement model is much larger than for thethe electron—hole pair in the parabolic-confinement ring with
hard-wall confinement, as expected. This difference is a reftriangles and without(diamond Coulomb interaction. For
flection of the relative strength of the kinetic energy to Cou-a smaller ring width, the Coulomb contribution clearly in-
lomb attraction increasing for the hard-wall case over thecreases, but not as fast as the confinement energy itself. The
parabolic potential. In other words, even though we usénset shows the electron—hole separation versus the ring
nominally the same width€2JA/uw for the parabolic po- width. For small width, the confinement energy is clearly

8mj,c?

Ill. RESULTS
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FIG. 2. Heavy-hole exciton ground state energy for parabolic
confinement, as a function of the ring width. Inset: Electron—hole
separation vs ring width. Triangle and diamond points are results
for both with and without electron—hole Coulomb interaction, re-
spectively.

5 L_AAAAAAAAAAAAAAAAAAAAAAAAAAAAA—

. . L . (0] L N L L N
dominant in determining the electron—hole separation, rather o) 5 10 15 20 25 30

than the Coulomb interaction term. For widths larger than B(T)
~4 nm, however, the electron—hole separation depends
mostly on the Coulomb interaction term. Notice, however

that the rapid vanishin for thin rings i mewhat of
at the rapid vanishing af; fo gs 1S somewhat ol a Electron—hole separation as a function of magnetic field for the

biasing artifact produced by the basis functions we use in th . : L -
P . - same rings. Different symbols, as shown, indicate parabolic ring
parabolic ring. The necessary truncation of the basis appears

. ’ - width for heavy hole in nm.
to favor a circularly symmetric exciton, clearly not the case
in very thin rings. of a quantum ring. Figure 4 shows a typical result for differ-

Figure 3 s_hows the exciton binding energy _and electron—e t values of the magnetic field. This curve represents all the
hole separation versus the external magnetic field, for sever

. . ) . ) : 3ossible transitions of this excitonic state which would be
ring widths, for a ring with middle rad|us_0:20 nm. _One measurable via photoluminescence excitation measurements
can see that for larger values of the conf_lne_ment_energ.y (PLE; while the first peak gives the PL responséhe higher
s_mal_ler widths, the effect_ of the magnetic fields is weaker, peaks, starting from the one at lowest energy, correspond to
yielding the slowly changing curves at the top. However, for

; . L electron—hole excitations involving the heavy-hole exciton
the larger widths, the dependence of the exciton binding e g y

> ! L ground state and various center-of-mass repligas, in-
ergy on magnetic fields increases, resulting in the strong € reasing excitations of the center-of-mass degree of freedom,

QRlithout altering the ground state of the relative coordipate
sizes with field. Notice that for larger values of the field, the 9 9 n

exciton binding energy changes little as function of the ring

FIG. 3. Upper panel: Heavy-hole exciton binding energy as a
'function of magnetic field for rings with,=20 nm. Bottom panel:

width, showing that the confinement provided by the mag- —_
netic field is dominant. This is to be expected, given that the é’ [ B=25
magnetic lengthl,.= \/ﬁ/,uwc overtakes the exciton radius at ® oczo
about 18 T. Sl

For the radius of the ring in this figureg=20 nm, one Sle=15 | A Ao AT
expects ABE oscillations with a periodicity given by mul- 3 [ B=10 A\ A A A
tiples of B7rr3/ ¢y (Wheregpo=hc/e=4.14<10"7 Gent is E et A A A
the flux quantuny or a periodAB~3.3 T. We find no ap- = o
preciable evidence of ABE oscillations in either the binding T O T TV

energy or the exciton effective size,. This result suggests
that it is likely that ABE exciton oscillations will not be seen
in measurements of the ground state properties of the exci- FiG. 4. Linear optical susceptibility for parabolic quantum
ton. ring with confinement energytwq=10.8 meV (exciton width

Since there is a prediction that the ABE oscillations are to=21 nm) for magnetic fields ranging from 0 to 25 T. Radius of the
be found much more easily in the case of excited stdte®  ring is 24 nm. Energy blueshift includes both in-plane arakis
have also looked for them in the linear optical susceptibilityconfinement ¢-axis well width=3 nm).

Energy Shift (meV)
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On the other hand, the smaller amplitude peé&ks shift  the rings and ring radii larger than the exciton $jzee have
~310, 330 meV forB=0), correspond tanternal excited  not been able to detect any oscillation “remnant,” in any of
states of the excitofits relative coordinafe These peaks are the features we analyzed.
strongly upshifted with magnetic field, as the diamagnetic This negative result is due to either of two reasons, we
effect for each charge carrier pushes all relative energies ugurmise: one, the result of exponentially small ABE ampli-
wards as well, and clearly these excited states shift evetudes(given the somewhat larger ring radit More likely,
faster. This behavior is qualitatively similar to the excitons inperhaps, this is the result of destructive interference of rela-
a quantum dot! We should also point out that in addition to tively many transverse eigenstat@sixed by the Coulomb
the overall upward shift due to the diamagnetic effect, ¢he interaction, each with its own different phase and amplitude.
traces show no discernible superimposed ABE oscillation®Notice that this is quite different for multiple-electron states
with magnetic field in any of the excited states. It wouldin the ring, as predicted by theory, and recently seen in
appear that the finite width of the system suppresses the ABExperiment. The difference in result from the case of only
predicted for the 1D ring. electrons in the ring to that of an exciton, indicates the pre-
We should also mention that higher excited states arelicted fragility of the effect, since in this system the net
likely to exhibit the ABE effect, as per earlier wotkHow-  charge(and then coupling to the magnetic vector potepiil
ever, the parabolic or hard-wall confinement models used izero. In fact, the delicate nature of the ABE suggests that
this calculation lose validity, since non-parabolic correctionssmaller ancharrower rings are needed in experiment, which
to the effective mass Hamiltonian, as well as finite confine-may make for more one-dimensional-like excitons. Follow-
ment potential effects would become more important. Coning our above-given discussion, one could also expect ABE
sequently, a quantitative estimate of the anticipated ABE efescillations to be more important for higher-excited states,
fects for high-lying states is less reliable, and more subject teven if more challenging in experiments. Perhaps one could
specific values of parameters. A weaker confinement mighalso think of a technique that explordsgferencesand there-
also enhance ABE, although experiments in that regimdore is able to couple only to a modulation of the hole popu-

would be harder to identify and characterize uniquely. lation, for example, as a sensitive way to access these coher-
ent ABE oscillations for low-lying states.
IV. CONCLUSIONS Note addedSince submission, we have become aware of

a preprint where calculations for rings suggest a positive re-
We have shown that magnetic field has strong effects okt for the appearance of ABE oscillatiofsl. Hu, J.-L.
excitons in a quantum ring, for both parabolic and hard-wallzhy D.-J. Li, and J.-J. Xiong, cond-mat/00103(whpub-
confinement potentials. Using direct matrix diagonalizationjished]. Our results here are not in contradiction with those,
techniques, we have shown that at least for rings currentlye pelieve, since their somewhat unrealistically narrow rings
realizable, the excitons behave to a great extent as those #hhance the ABE oscillations, as we discuss. Those results in

quantum dots of similar dimensions: There are strong diafact validate our suspicion that narrower rings, if possible,
magnetic shifts and restructuring of the overall excitationgre needed for these effects to be seen.

manifold, large shifts of internal excitations, and reduction of
the effective exciton size. On the other hand, the predicted
ABE oscillations in the various physical characteristics
cluding binding energy and oscillator strength of transitjons We would like to thank T. Shahbazyan, M. Cobb, A.
of 1D excitons, are not found in this more realistic calcula-Lorke, and C. Trallero for helpful discussions. This work has
tion. Although we anticipated that the predicted ABE effectsbeen supported in part by the US Department of Energy
would be much weakefdue to the finite transverse size of Grant No. DE—-FG02-91ER45334.
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!

The matrix elements dfl |, including the Coulomb interaction term, can be calculated by using the parabolic ring basis,

nin'l M) 1))
N/ 1oy’ VR NIy = — 8y NS1r 1 610 \/ X
(NTounV HieNleunh == dw ndig, e "'{ (n+IHLn +]1"])! kZOjZO (k[ +]17])
X (— 1)kt ! xezﬁl“ |I|+k+'+1 +eBh|5 (A1)
kKl(n—K)!j1(n'—j)! € 2T e

The matrix elements of the mixing terms between the center of mass and relative coordinates, in theMRatre of the
form
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\/ nin’t 2\/ NIN'I
N'ILyn/ U [Ho [NTeynl) = 2a
(N'lepn’l" [Hiix|Nlemnt) (1)1 (0 +[17])!

(N+[leuDHN"+[TEuD!

"N (I ) " 1
E‘ — 1)k
k=0 j=0 (k+HDWJ+H|M(
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Kl(n=K)!'j'(n"—j)!
% NE (N+[leuD N+ [1gy))!
=03=0 (K+|[lemD!'(3+[Igu!

(_1)K+J 1
KI(N=K)!JI(N" = J)!

eBh [ 2j+2k+|1|+|I"|+3 1. 23+ 2K+ [l +|leml+3

Mcps 2 4o 2

1 20+ 2K+ |leml +Hlleml +1) rg [23+2K+|lepml +|1eml +2
+ 4 (2K+[leu))T 5 2 5

r.0
+Z(2K+|ICM|)><F

2J+2K+|ICM|+|I(’:M|>
2

LS +101c 0L, -1~ O =101,

,(’:M+1]
lem [ 23+ 2K+ |lepl +[1epl +1
Lo 18y it -1t dr-1digy, a1l 5
R °°5 By ar, (N+k+)14 T[] |+K+J+}
402 L1 Oloy Il J cMm 2
1
» (IICM|+K+J—§)! L
_e*azréz (a2r(2))\ICM\+K+J+§+jj (A2)
hee (|ICM|+K+J—|—§+jj !
Coulomb interaction in hard-wall confineméfi!is given by
e? o[ Lren iy, e’1
Hooa(@)=— S (2m? | e otendr = —2m »3)
and
We(re)= 2 )Zf pe(a)e™' "edg. (A4)
The Coulomb interaction matrix elements,
<ne| nhlthe—h|ne|enh|h>:f qjé(re)q,r,](rh)He—h(re—h)q,e(re)q’h(rh)dr dl’h, (AS)
are then rewritten as
(gl enplp[He p[nelenply) = —)sf be(9e) d1(An)Hen(Q) de(ge— a) dn(an+q)daedagndg, (AB)

where the Fourier transform integrals used for electron and hole wave functions, respectively, are

125302-7



JAKYOUNG SONG AND SERGIO E. ULLOA PHYSICAL REVIEW B53 125302

Q)= J (bé(qe) de(de—0q)dde

a+2L 27 )
=(2m) f Pe(re) e(re)r edre f e'MPeg10re COSq—de)d g,
a 0

+

. a+2L
— (2m)(i) e f WL (1) In(T e ed e, (A7)

wherem=1,—1¢, and the definition of the Bessel function

1 (= .
Jm(q")zﬂf_ e—|m¢+|zsmzf>d¢ (A8)

has been used. A similar expression for the hole wave functions gives the interaction matrix elements

e2 ra+2L
TN _
(nelenplh[Hen[NeleMnl )= =81 w1, 12417 — .

a+2L

Xwé(re)¢e(re)redref wé(rh)wh(rh)rhdrh

a

Xfo Jim(red)Jm(rpa)da. (A9)
In order to evaluate the integrals in H#9), we use
1
. (o T{ml+ 5 2
< . . <
= T(jm|+1)T E)

wherer _(r.) is the largersmalley of r, andr,,, andF is a hypergeometric functioff.Inserting Eq(A10) into Eq.(A9), the
interaction matrix elements can be written as

I +1
e? Im[+ 5

2 [
- X
€

1
I‘(|m|+1)F =
rn\?
re

2
)dre] | (A11)

TN _
(nelengl il He—nlnelennlp)= =8 w1, 1741/
a

a+2L 1 e ‘1
f dzg(re)we(re)mdrefa Ui gn(rr |

N

XF

+11- +1:
Iml+ 5, 5sml+1;

a+2L 1 h i
ary+ | TR () g | arar
a h a

XF

1 1_ 1
|m|+§,§,|m|+ ;

re
Mh

This greatly simplified expression for the interaction matrix elements is easily evaluated numerically. The total Hamiltonian
matrix is diagonalized numerically, providing all the eigenvalues and eigenfunctions. To improve numerical convergence, we
use the transformation of hypergeometric functions given by

[m-3) 13
m — —
11 o ndmi+y S 2112/,
F |m|+§,§,|m|+1,z = ASE nZ:O I
1 1
x[zz/;(n+1)—¢/ |m|+n+§ -l n+ E)—In(l—z)}(l—z)”, (Al12)

where ¢ is the digamma functiof(.
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The matrix elements dependent on magnetic fields are given by

R |h |e heB [a+2L , a+2L ,
(nelenglp[Helnelennln)=6i: 1 817 1, (Hh m, %L‘ lﬂe(re)iﬁe(fe)redfefa Pr(rp) n(rp)radry
e282 a+2L , a+2L , N
+ 2f (/fh(rh)‘//h(rh)rhdrhf he(re)e(re)re dre
8mecJa a
e?B2 ra+2L ) atal 5
+ J lﬂe(fe)lﬂe(fe)fedfef In(rn) n(rp)ry dryg. (A13)
8myc</a a
The size of the exciton is here given by
2 2 , a+2L , a+2L , 3
re=(¥|r?w)= > &y @ngnlaly] 9120010 0, f d/h(rh)‘/’h(rh)rhdrhf be(ro)e(re)rg dreg
NeNplelhnanpl oly e’heh a a

a+2L

a+2L
+f wé(re)l/’e(re)redrej

a

a+2L 5
XL I (rp) n(ro)ry drh]-

a+2L
Yn(rn) ’r/fh(rh)rﬁdrh) - 5'é+'r'w'e+'h5'é+1"efa Ya(re)Pe(re)rs dre

(A14)
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