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Magnetic field effects on quantum ring excitons
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We study the effect of magnetic field and geometric confinement on excitons confined to a quantum ring.
We use analytical matrix elements of the Coulomb interaction and diagonalize numerically the effective-mass
Hamiltonian of the problem. To explore the role of different boundary conditions, we investigate the quantum
ring structure with a parabolic confinement potential, which allows the wave functions to be expressed in terms
of center of mass and relative degrees of freedom of the exciton. On the other hand, wave functions expressed
in terms of Bessel functions for electron and hole are used for a hard-wall confinement potential. The binding
energy and electron–hole separation of the exciton are calculated as function of the width of the ring and the
strength of an external magnetic field. The linear optical susceptibility as a function of magnetic fields is also
discussed. We explore the Coulomb electron–hole correlation and magnetic confinement for several ring width
and size combinations. The Aharanov–Bohm oscillations of exciton characteristics predicted for one-
dimensional rings are found to not be present in these finite-width systems.
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I. INTRODUCTION

The fabrication of nanometer-size semiconductor str
tures by different techniques~including lithography, etching
direct chemical synthesis, and self-assembly, to name a!
has allowed a veritable explosion of activity in this area.1 It
is now well-known that carrier confinement into dimensio
of a few tens of nanometers provides strong blueshift of
photoluminescence features from that in the original b
material, a clear consequence of quantum confinemen
thesequantum dots. Currently, researchers are investigati
a variety of magnetocapacitance and optical properties
dots,1 including the role of inelastic light scattering and ph
non confinement,2,3 as well as Pauli blocking and other few
and many-particle effects in these systems.4

In recent work, however, a new geometry of semicond
tor quantumrings has been introduced in experiments
magnetocapacitance and infrared excitation for f
electrons.5,6 Althoughmetallic rings have been the subject o
considerable attention for a number of years,7 this geometry
had not been achieved in semiconductors for sizes such
the electrons would propagate coherently~non-diffusively!
throughout the ring. However, the self-assembled quan
rings now achieved are so small~with characteristic inner/
outer radius of 20/100 nm and 2–3 nm in height!, that they
allow the study of a non-simply-connected geometry wh
carriers are coherent all throughout. It is clear that not o
the single-particle states are interesting in this geometry~es-
pecially their behavior under magnetic flux!, but also the role
of interactions between particles~be it electrons or holes!.
Lorke et al. have shown that multiple-electron states in th
geometry experience phase coherent effects in the pres
of magnetic fields,5 much as predicted by theory.8 The ques-
tion of the observability of similar coherent effects for ele
0163-1829/2001/63~12!/125302~9!/$15.00 63 1253
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trons and holes around the loop, in the presence of a m
netic field, is fascinating, and some theoretical works ha
already begun to explore this regime.9–12 Although beautiful
experiments of optical emission in charge-tunable quan
rings have been recently presented,13,14they study the role of
multiply charged exciton complexes with no applied ma
netic field.

The multiply connected geometry of the semiconduc
quantum rings adds an interesting dimension to the str
Coulomb effects in magnetic fields which have been
plored in quantum confined systems. Excitons in magn
fields have been investigated in structures such as quan
wells,15,16 quantum wires,17 and quantum dots,18–22 as ex-
amples of multicarrier systems. For the ring geometry, o
question that arises naturally is whether there is sensitivity
the exciton properties to an applied flux. This ‘‘Aharanov
Bohm effect’’ ~ABE! for an exciton is an interesting concep
since one would naturally associate the existence of the A
with a net charge~as the coupling constant to the vect
potential!, and the net charge of this object is clearly ze
However, one could argue that the composite nature of
excitons would perhaps allow for a non-vanishing effect.
fact, for the case of particles constrained to move alon
one-dimensional ring, rigorous derivations predict a non-z
ABE for the exciton, which will show in its various energ
states and the associated dipole oscillator strength, for s
enough rings.10,11

In this work, we present calculations of the excitatio
spectrum and oscillator strength of excitons in rings pierc
by magnetic fields. We explore the role of different confin
ment potentials and calculate binding energies, exciton si
and their dependence on magnetic fields, as well as oscill
strengths which would be measurable in photoluminesce
experiments, for example. Similar to the case of quant
©2001 The American Physical Society02-1
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JAKYOUNG SONG AND SERGIO E. ULLOA PHYSICAL REVIEW B63 125302
dots, we find strong orbital effects from the magnetic fie
which provides for effectively stronger confinement and
companying diamagnetic level shifts, as well as splitting
some levels. These changes are found to be monotonic
field. Part of our motivation in this study is to explore th
question of how robust is the ABE predicted in on
dimensional~1D! rings, when one considers finite width an
confinement potentials. The models we use are designe
mimic the situation in real semiconductor quantum rin
achieved to date. Much to our chagrin, we find no trace
the predicted ABE for realistic values of the rings and fie
in the problem. Although this negative result would sugg
that it is difficult that experiments would measure this effe
it is still open to see to what extent highly sensitive expe
ments might be able to yield a positive result.

The remainder of this paper is organized as follows.
Sec. II, we present the model for the system and solu
method. As a first approximation, the quantum ring struct
is modeled by a parabolic confinement potential, in wh
the wave functions expressed in terms of the center of m
and relative coordinates are used as a basis set. This con
ment potential has been experimentally confirmed by the
cent experiments of Lorkeet al.5 In order to explore the role
of different potentials, we also model the ring system with
hard-wall confinement, using wave functions expressed
terms of Bessel functions for electron and hole as a basis
In Sec. III, we discuss the main effects of the magnetic fi
effects on the exciton characteristics, including the bind
energy, electron–hole separation, and the linear optical
ceptibility. Finally, we summarize our results in Sec. IV. T
Appendix contains an outline of the derivation of the Co
lomb matrix element with these basis functions. The anal
cal expressions presented there greatly simplify our calc
tions.

II. THEORETICAL MODEL

Our model is a two-dimensional~2D! exciton in a quan-
tum ring and in a static magnetic field, simulating rece
experimental quantum ring structures. The presence of m
netic fields oriented along thez axis, perpendicular to the
plane of the ring, induces the electron and hole to perfo
classical orbits along the circumference, which of cou
yield quantization of the angular momentum in th
direction.10,11 The ring structures are well approximated
using parabolic potentials, giving soft confinement barrie
appropriate to samples produced by self-assembly.5 For nar-
row rings ~with steep confinement!, however, the parabolic
confinement and associated wave functions fail in a real
tem, as the increased confinement may push the levels
the anharmonic part of the potential, and even produce
confinement of one carrier~typically the electron!, as found
in some calculations in quantum dots.23 We also consider the
case of hard-wall confinement and analyze the different
sults.

As the quantum rings and excitonic states under con
eration are much larger than the unit cell of the material,
12530
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effective-mass approximation is a suitable approach, an
given by H5He1Hh1He–h , where the subscriptse and h
represent electron and hole, and the last term is the electr
hole interaction. The expression for the Hamiltonian of t
electron in magnetic fields~in a parabolic-band approxima
tion! is given by

He5
1

2me
Fpe1

qe

c
AeG2

1Ve , ~1!

with a similar expression for the Hamiltonian of the hol
Here,Ve ~or Vh) is the ring confinement potential for elec
tron ~hole!, and naturallyqe52ueu andqh51ueu. For para-
bolic confinement potential across the width of the ring,
use

Vi5
1
2 miv i

2~r i2r 0!2, ~2!

where the mean radius of the ring isr 0, and the characteristic
confinement energy is\v i , giving a characteristic ring
width '2A\/miv i for each particle. Here,i 5e,h represents
the different particles. We choose the fully symmetric gau
vector potentials Ae5 1

2 B3(re2rh) and Ah5 1
2 B3(rh

2re), for electron and hole, respectively, following Refs. 1
and 21. The Coulomb interaction term between carriers
given byHe–h52e2/er e–h , screened by the background d
electric constante.

A. Parabolic confinement potential

For the parabolic confinement potential it is convenient
separate the problem into center of mass and relative c
dinates, described as usual byr5re2rh , and R5(mere
1mhrh)/M , where the total and reduced masses areM
5me1mh , and m5memh /M . The total Hamiltonian can
then be re-expressed asH5HCM1Hrel1Hmix , with indi-
vidual terms

HCM5
1

2M
P21

1

2
Mv0

2~R2r o!2, ~3!

Hrel
o 5

1

2m
p21

1

2
mv2r 2, ~4!

andHrel5Hrel
o 1Hrel8 , where

Hrel8 52vcgLz2
e2

er
, ~5!

and

Hmix52
e

Mc
~B3r !•P2mev0

2r 0

3RS 11
2mh

MR2
R•r1

mh
2

M2

r 2

R2D 1/2

2mhv0
2r 0

3RS 12
2me

MR2
R•r1

me
2

M2

r 2

R2D 1/2

, ~6!
2-2
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MAGNETIC FIELD EFFECTS ON QUANTUM RING EXCITONS PHYSICAL REVIEW B63 125302
where g5(mh2me)/M depends on the mass asymme
of the carriers, and we have setve5vh5v0. We have also
denoted the relative angular momentum in thez direction
as Lz5(r3p)z , and the effective confinement frequen
as v25v0

21vc
2 , with vc5eB/(2mc), resulting from the

combined confinement of the potential and the magn
field.

The main purpose in the change of the above-mentio
variables is to use the solutions ofHCM andHrel

o as a basis
for the solution of the full Hamiltonian. The center of ma
basis is essentially a harmonic oscillator, with wave funct
cN,l CM

centered aboutr 0,

cN,l CM
~R!5aA 2N!

~N1u l CMu!!
1

A2p
eil CMue2a2(R2r 0)2/2

3@a~R2r 0!# u l CMuLN
u l CMu

@a2~R2r 0!2#, ~7!

with a5AMv0 /\, and eigenvalues ECM
0 5(2N11

1u l CMu)\v0. Here,N and l CM are quantum numbers of th
radial and angular momentum part, respectively, for the c
ter of mass coordinates, andLN

u l CMu is the associated Laguerr
polynomial.24 Similarly, the eigenvalues and eigenfunctio
for the non-interacting relative Hamiltonian are given by
wave functionfn,l and energyErel

0 , where

fn,l~r !5bA 2n!

~n1u l u!!
1

A2p
eil we2b2r 2/2~br ! u l uLn

u l u~b2r 2!,

~8!

Erel
0 5~2n111u l u!\v,

with b5Amv/\. Here,n and l are quantum numbers of th
radial and angular momentum parts, respectively, for
relative coordinates. With this harmonic basis set, matrix
ements for the Coulomb interaction, magnetic field dep
dent and mixing terms can be calculated analytically.20,21

These expressions are collected in the Appendix.
The total Hamiltonian given previously is then diagon

ized numerically, leading to the eigenvalues and eigenfu
tions. All the physical properties of the exciton in the rin
can in principle be extracted from these eigenvalues
eigenfunctions. Here, we present the binding ener
electron–hole separation, and the linear optical susceptib
of the quantum ring. These quantities are readily access
in optical experiments of photoluminescence~PL! and pho-
toluminescence excitation~PLE!. Denoting the wave func-
tions of the exciton asuC&5(NlCMnlaNlCMnluN,l CM ,n,l ,&
with coefficientsaNlCMnl obtained from the diagonalization
one can write for example an expression for the electro
hole separation,
12530
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25^Cur 2uC&

5dN8,Nd l
CM8 ,l CM

d l 8,l (
NlCMnlN8 l CM8 n8 l 8

aN8 l
CM8 n8 l 8

* aNlCMnl

3A n!n8!

~n1u l u!! ~n81u l 8u!!
(
k50

n

(
j 50

n8 ~n1u l u!! ~n81u l 8u!!

~k1u l u!! ~ j 1u l 8u!!

3~21!k1 j
1

k! ~n2k!! j ! ~n82 j !!

1

b2
~ u l u1k1 j 11!!.

~9!

Similarly, the linear optical susceptibility is given byx(v)
5( j u^0uPu1& j u2(\v2Ej2 i\G)21, where ^0uPu1& j is the
dipole matrix element between one electron–hole pairj state
and the vacuum state. These are proportional to the b
interband matrix elements,pcv , and can be written in terms
of the envelope function as,25

u^0uPu1&u25upcvu2U E C~re ,rh5re!dreU2

5upcvu2H d l ,0(
n

anAmv

p\ J 2

3H d l CM,0A2pA 2N!

~N1u l CMu!! ~
21!N

1

aJ 2

.

~10!

B. A hard-wall confinement potential

Given that the two-dimensional free exciton size~effec-
tive Bohr radius! in InAs is aB

2D'16 nm ~6 nm for GaAs!,
the quantum rings with widths larger than 2aB

2D would tend
to yield highly symmetric~nearly circular! ground states of
the exciton, with the confinement potential being a sm
perturbation. For narrower quantum rings, however, the sy
metry of the exciton in the ring would be strongly affecte
and become increasingly one dimensional. This would
favorable for the appearance of the ABE, as predicted
theory.10,11 To allow for this different case, and so as to te
the possible bias of the numerical calculations in the pa
bolic potential, we have also implemented solutions of
problem in a hard-wall confinement potential basis.

In that situation, the basis set for the exciton problem
given by products of the radial and angular parts of elect
and hole,C5Ce(r e ,fe)Ch(r h ,fh), where the individual
wave functions are given by~in the absence of magneti
field!

C~r i ,f i !5c i~r i !
1

A2p
eil if i, ~11!
2-3
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JAKYOUNG SONG AND SERGIO E. ULLOA PHYSICAL REVIEW B63 125302
wherei 5e,h, andl i is an integer. The wave functions of th
radial part must satisfy the hard-wall boundary conditio
and vanish at both the inner~a! and outer radius (a12L) of
the ring structure. As such, they are given by linear com
nations of Bessel functions,c i(r i)5AJl i

(kir i)1BNl i
(kir i),

for a<r i<a12L. Here,A andB are normalized constants
andJl i

andNl i
are thel i th-order Bessel function of the firs

and second kind, respectively, withki5A2miEi /\2. The ei-
genvalue conditions are obtained from the secular equa
Jl e

(kea)Nl e
@ke(a12L)#5Nl e

(kea)Jl e
@ke(a12L)#, with a

similar expression for the hole states. These express
yield the basis for the electron–hole pair problem witho
Coulomb interaction or magnetic field, with eigenvaluesE0

5\2ke
2/2me1\2kh

2/2mh . One can conveniently write th
Coulomb interaction potential matrix elements using t
noninteracting pair basis via Fourier transform integrals,
done in Ref. 8~see the Appendix!.

Similarly, one can obtain the matrix elements of t
Hamiltonian which depend on magnetic fields,

HB52
e

2mec
pe•B3re1

e2B2

8mec
2

r e
21

e

2mhc
ph•B3rh

1
e2B2

8mhc2
r h

2 , ~12!

by using straightforward finite domain integrals of th
above-given basis set. The energies and eigenfunctions
the exciton are calculated by numerical diagonalizat
of the total Hamiltonianwith magnetic fields obtained
from the summation of all the above-mentioned term
The wave functions are then represented asuC&
5(nenhl el h

anenhl el h
une ,nh ,l e ,l h&, whereanenhl el h

are the co-
efficients calculated from the diagonalization. In turn, t
mean electron–hole separationr s and the linear optical sus
ceptibility can be calculated.

III. RESULTS

We present here characteristic results of our calculatio
As mentioned before, they are scalable for different mat
als, in terms of the Bohr radius of the exciton and its relat
to the size~specially the width! of the ring. The parameter
employed here describe GaAs, yielding an effective 2D B
radius of 6 nm. Figure 1 compares the exciton binding en
gies obtained for parabolic confinement~triangles! with
those for a hard-wall confinement~diamonds!, as function of
the quantum ring width. Notice thatEb5Ee–h

0 2Egrnd
exciton,

where the first term is only the confinement ground state
the electron and hole, ignoring the Coulomb interaction.
relatively narrow rings, the exciton binding energy for t
parabolic confinement model is much larger than for
hard-wall confinement, as expected. This difference is a
flection of the relative strength of the kinetic energy to Co
lomb attraction increasing for the hard-wall case over
parabolic potential. In other words, even though we u
nominally the same width (52A\/mv for the parabolic po-
12530
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tential and 2L for the hard wall!, the parabolic potential so
lutions are effectively less confined due to the finite amp
tude ‘‘leaking’’ out of the ring. It is also interesting to
emphasize that for smaller ring widths, the resulting wa
functions are increasingly elongatedalong the ring, and this
is more the case for the hard-wall confinement. In contr
the exciton binding energy appears larger for the hard-w
confinement, for widths larger thanaB

2D , due to the known
poor convergence of the parabolic basis used~e.g., see a
detailed discussion of this problem in Ref. 20!. In the range
of widths shown, both approaches have converged num
cally to within a few percent everywhere, and at least
order of magnitude better for the lower two-thirds of th
range!.

The inset in Fig. 1 compares the ring results with those
a quantum dot~with parabolic confinement20! with equal
confinementarea ~solid line!. For wider ring systems all en
ergies are basically equal, as the confinement potential
weak perturbation to the Coulomb interaction between ca
ers, as one would expect, be it ring or dot. On the other ha
the exciton binding energies in the narrower rings are lar
than in the dot case with the same area, a reflection of
anisotropic confinement in the ring: For the narrow rings,
circular symmetry of the 2D free exciton~either free or in the
dot! is strongly affected, and the exciton elongates along
ring, as described previously. We should mention that
curvatureof the ring has not much effect on the ground sta
or binding energies for the dimensions considered here, s
lar to the experimental values.

To indicate the role of the Coulomb potential on the e
citon characteristics, Fig. 2 shows the ground state energ
the electron–hole pair in the parabolic-confinement ring w
~triangles! and without~diamond! Coulomb interaction. For
a smaller ring width, the Coulomb contribution clearly in
creases, but not as fast as the confinement energy itself.
inset shows the electron–hole separation versus the
width. For small width, the confinement energy is clea

FIG. 1. Quantum ring heavy-hole exciton binding energies
parabolic~triangles! and hard-wall~diamonds! confinement poten-
tial, as function of the ring width. Inset: Same exciton binding e
ergies as a function of the area for quantum rings~triangles and
diamonds traces!, and quantum dot~solid line! with the same area
2-4
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MAGNETIC FIELD EFFECTS ON QUANTUM RING EXCITONS PHYSICAL REVIEW B63 125302
dominant in determining the electron–hole separation, ra
than the Coulomb interaction term. For widths larger th
'4 nm, however, the electron–hole separation depe
mostly on the Coulomb interaction term. Notice, howev
that the rapid vanishing ofr s for thin rings is somewhat of a
biasing artifact produced by the basis functions we use in
parabolic ring. The necessary truncation of the basis app
to favor a circularly symmetric exciton, clearly not the ca
in very thin rings.

Figure 3 shows the exciton binding energy and electro
hole separation versus the external magnetic field, for sev
ring widths, for a ring with middle radiusr 0520 nm. One
can see that for larger values of the confinement energy~i.e.,
smaller widths!, the effect of the magnetic fields is weake
yielding the slowly changing curves at the top. However,
the larger widths, the dependence of the exciton binding
ergy on magnetic fields increases, resulting in the strong
hancement of the binding energies and decreasing exc
sizes with field. Notice that for larger values of the field, t
exciton binding energy changes little as function of the r
width, showing that the confinement provided by the ma
netic field is dominant. This is to be expected, given that
magnetic length,l c5A\/mvc overtakes the exciton radius a
about 18 T.

For the radius of the ring in this figure,r 0520 nm, one
expects ABE oscillations with a periodicity given by mu
tiples of Bpr 0

2/f0 ~wheref05hc/e54.1431027 G cm2 is
the flux quantum!, or a periodDB'3.3 T. We find no ap-
preciable evidence of ABE oscillations in either the bindi
energy or the exciton effective size,r s . This result suggests
that it is likely that ABE exciton oscillations will not be see
in measurements of the ground state properties of the e
ton.

Since there is a prediction that the ABE oscillations are
be found much more easily in the case of excited states,11 we
have also looked for them in the linear optical susceptibi

FIG. 2. Heavy-hole exciton ground state energy for parab
confinement, as a function of the ring width. Inset: Electron–h
separation vs ring width. Triangle and diamond points are res
for both with and without electron–hole Coulomb interaction,
spectively.
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of a quantum ring. Figure 4 shows a typical result for diffe
ent values of the magnetic field. This curve represents all
possible transitions of this excitonic state which would
measurable via photoluminescence excitation measurem
~PLE; while the first peak gives the PL response!. The higher
peaks, starting from the one at lowest energy, correspon
electron–hole excitations involving the heavy-hole excit
ground state and various center-of-mass replicas~i.e., in-
creasing excitations of the center-of-mass degree of freed
without altering the ground state of the relative coordinat!.

c
e
ts
-

FIG. 3. Upper panel: Heavy-hole exciton binding energy a
function of magnetic field for rings withr 0520 nm. Bottom panel:
Electron–hole separation as a function of magnetic field for
same rings. Different symbols, as shown, indicate parabolic r
width for heavy hole in nm.

FIG. 4. Linear optical susceptibilityx for parabolic quantum
ring with confinement energy\v0510.8 meV ~exciton width
521 nm) for magnetic fields ranging from 0 to 25 T. Radius of t
ring is 24 nm. Energy blueshift includes both in-plane andz-axis
confinement (z-axis well width53 nm).
2-5
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JAKYOUNG SONG AND SERGIO E. ULLOA PHYSICAL REVIEW B63 125302
On the other hand, the smaller amplitude peaks~at shift
'310, 330 meV forB50), correspond tointernal excited
states of the exciton~its relative coordinate!. These peaks are
strongly upshifted with magnetic field, as the diamagne
effect for each charge carrier pushes all relative energies
wards as well, and clearly these excited states shift e
faster. This behavior is qualitatively similar to the excitons
a quantum dot.21 We should also point out that in addition t
the overall upward shift due to the diamagnetic effect, thex
traces show no discernible superimposed ABE oscillati
with magnetic field in any of the excited states. It wou
appear that the finite width of the system suppresses the A
predicted for the 1D ring.

We should also mention that higher excited states
likely to exhibit the ABE effect, as per earlier work.11 How-
ever, the parabolic or hard-wall confinement models use
this calculation lose validity, since non-parabolic correctio
to the effective mass Hamiltonian, as well as finite confin
ment potential effects would become more important. C
sequently, a quantitative estimate of the anticipated ABE
fects for high-lying states is less reliable, and more subjec
specific values of parameters. A weaker confinement m
also enhance ABE, although experiments in that reg
would be harder to identify and characterize uniquely.

IV. CONCLUSIONS

We have shown that magnetic field has strong effects
excitons in a quantum ring, for both parabolic and hard-w
confinement potentials. Using direct matrix diagonalizat
techniques, we have shown that at least for rings curre
realizable, the excitons behave to a great extent as thos
quantum dots of similar dimensions: There are strong d
magnetic shifts and restructuring of the overall excitat
manifold, large shifts of internal excitations, and reduction
the effective exciton size. On the other hand, the predic
ABE oscillations in the various physical characteristics~in-
cluding binding energy and oscillator strength of transitio!
of 1D excitons, are not found in this more realistic calcu
tion. Although we anticipated that the predicted ABE effe
would be much weaker~due to the finite transverse size
12530
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the rings and ring radii larger than the exciton size!, we have
not been able to detect any oscillation ‘‘remnant,’’ in any
the features we analyzed.

This negative result is due to either of two reasons,
surmise: one, the result of exponentially small ABE amp
tudes~given the somewhat larger ring radii!.11 More likely,
perhaps, this is the result of destructive interference of re
tively many transverse eigenstates~mixed by the Coulomb
interaction!, each with its own different phase and amplitud
Notice that this is quite different for multiple-electron stat
in the ring, as predicted by theory, and recently seen
experiment.5 The difference in result from the case of on
electrons in the ring to that of an exciton, indicates the p
dicted fragility of the effect, since in this system the n
charge~and then coupling to the magnetic vector potential! is
zero. In fact, the delicate nature of the ABE suggests t
smaller andnarrower rings are needed in experiment, whic
may make for more one-dimensional-like excitons. Follo
ing our above-given discussion, one could also expect A
oscillations to be more important for higher-excited stat
even if more challenging in experiments. Perhaps one co
also think of a technique that exploresdifferences, and there-
fore is able to couple only to a modulation of the hole pop
lation, for example, as a sensitive way to access these co
ent ABE oscillations for low-lying states.

Note added.Since submission, we have become aware
a preprint where calculations for rings suggest a positive
sult for the appearance of ABE oscillations@H. Hu, J.-L.
Zhu, D.-J. Li, and J.-J. Xiong, cond-mat/0010310~unpub-
lished!#. Our results here are not in contradiction with thos
we believe, since their somewhat unrealistically narrow rin
enhance the ABE oscillations, as we discuss. Those resul
fact validate our suspicion that narrower rings, if possib
are needed for these effects to be seen.
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APPENDIX

The matrix elements ofHrel8 , including the Coulomb interaction term, can be calculated by using the parabolic ring

^N8l CM8 n8l 8uHrel8 uNlCMnl&52dN8,Nd l
CM8 ,l CM

d l 8,lHA n!n8!

~n1u l u!! ~n81u l 8u!!
3 (

k50

n

(
j 50

n8 ~n1u l u!! ~n81u l 8u!!

~k1u l u!! ~ j 1u l 8u!!

3~21!k1 j
1

k! ~n2k!! j ! ~n82 j !!
3

e2

e
bGS u l u1k1 j 1

1

2D1
eB\ l

2m8c
dn8,nJ . ~A1!

The matrix elements of the mixing terms between the center of mass and relative coordinates, in the limitr !R, are of the
form
2-6
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^N8l CM8 n8l 8uHmixuNlCMnl&5A n!n8!

~n1u l u!! ~n81u l 8u!!
2a2A N!N8!

~N1u l CMu!! ~N81u l CM8 u!!

3 (
k50

n

(
j 50

n8 ~n1u l u!! ~n81u l 8u!!

~k1u l u!! ~ j 1u l 8u!!
~21!k1 j

1

k! ~n2k!! j ! ~n82 j !!

3 (
K50

N

(
J50

N8 ~N1u l CMu!! ~N81u l CM8 u!!

~K1u l CMu!! ~J1u l CM8 u!!
~21!K1J

1

K! ~N2K !!J! ~N82J!!

3F eB\

Mcb
GS 2 j 12k1u l u1u l 8u13

2 D H F2
1

4a
GS 2J12K1u l CMu1u l CM8 u13

2 D

1
1

4a
~2K1u l CMu!GS 2J12K1u l CMu1u l CM8 u11

2 D 2
r 0

4
GS 2J12K1u l CMu1u l CM8 u12

2 D
1

r o

4
~2K1u l CMu!3GS 2J12K1u l CMu1u l CM8 u

2 D G @d l ,l 811d l CM ,l
CM8 212d l ,l 821d l CM ,l

CM8 11#

2@d l ,l 811d l CM ,l
CM8 211d l ,l 821d l CM ,l

CM8 11#
l CM

4a
GS 2J12K1u l CMu1u l CM8 u11

2 D J
2

mv0
2r o

4ab2
d l ,l 8d l CM ,l

CM8 ~ u l u1k1 j !!H GS u l CMu1K1J1
1

2D

2e2a2r 0
2

(
j j 50

` S u l CMu1K1J2
1

2D !

S u l CMu1K1J1
1

2
1 j j D !

~a2r o
2! u l CMu1K1J1

1
2 1 j jJ G . ~A2!

Coulomb interaction in hard-wall confinement,18,21 is given by

He–h~q!52
e2

e
~2p!2E 1re–h

e
2 iq•re–hdre–h522p

e2

e

1

q
, ~A3!

and

Ce~re!5
1

~2p!2E fe~q!e2 iq•redq. ~A4!

The Coulomb interaction matrix elements,

^ne8l e8nh8l h8uHe–hunel enhl h&5E Ce8~re!Ch8~rh!He–h~re–h!Ce~re!Ch~rh!dredrh , ~A5!

are then rewritten as

^ne8l e8nh8l h8uHe–hunel enhl h&5
1

~2p!6E fe8~qe!fh8~qh!He–h~q!fe~qe2q!fh~qh1q!dqedqhdq, ~A6!

where the Fourier transform integrals used for electron and hole wave functions, respectively, are
125302-7
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we~q![E fe8~qe!fe~qe2q!dqe

5~2p!E
a

a12L

ce8~r e!ce~r e!r edreE
0

2p

eimfee2 iqr e cos(fq2fe)due

5~2p!2~ i !2meimfqE
a

a12L

ce8~r e!ce~r e!Jm~r eq!r edre , ~A7!

wherem5 l e2 l e8 , and the definition of the Bessel function

Jm~qr !5
1

2pE2p

p

e2 imf1 iz sin fdf ~A8!

has been used. A similar expression for the hole wave functions gives the interaction matrix elements

^ne8l e8nh8l h8uHe–hunel enhl h&52d l e1 l h ,l
e81 l

h8
e2

e Ea

a12L

3ce8~r e!ce~r e!r edreE
a

a12L

ch8~r h!ch~r h!r hdrh

3E
0

`

Jumu~r eq!Jumu~r hq!dq. ~A9!

In order to evaluate the integrals in Eq.~A9!, we use

E
0

`

Jumu~r eq!Jumu~r hq!dq5
r ,

umu

r .
umu11

GS umu1
1

2D
G~ umu11!GS 1

2D FS mu1
1

2
,
1

2
;umu11;S r ,

r .
D 2D , ~A10!

wherer .(r ,) is the larger~smaller! of r e andr h , andF is a hypergeometric function.26 Inserting Eq.~A10! into Eq.~A9!, the
interaction matrix elements can be written as

^ne8l e8nh8l h8uHe2hunel enhl h&52d l e1 l h ,l
e81 l

h8
e2

e

GS umu1
1

2D
G~ umu11!GS 1

2D 3H E
a

a12L

ce8~r e!ce~r e!
1

r e
umu dreE

a

r e
ch8~r h!ch~r h!r h

umu11

3FS umu1
1

2
,
1

2
;umu11;S r h

r e
D 2Ddrh1E

a

a12L

ch8~r h!ch~r h!
1

r h
umu drhE

a

r h
ce8~r e!ce~r e!r e

umu11

3FS umu1
1

2
,
1

2
;umu11;S r e

r h
D 2DdreJ . ~A11!

This greatly simplified expression for the interaction matrix elements is easily evaluated numerically. The total Ham
matrix is diagonalized numerically, providing all the eigenvalues and eigenfunctions. To improve numerical converge
use the transformation of hypergeometric functions given by

FS umu1
1

2
,
1

2
;umu11;zD5

G~ umu11!

GS umu1
1

2DGS 1

2D (
n50

` S umu1
1

2D
n
S 1

2D
n

n! 2

3H 2c~n11!2cS umu1n1
1

2D2cS n1
1

2D2 ln~12z!J ~12z!n, ~A12!

wherec is the digamma function.27
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The matrix elements dependent on magnetic fields are given by

^ne8l e8nh8l h8uHBunel enhl h&5d l
e8 ,l e

d l
h8 ,l hH S l h

mh
2

l e

me
D \eB

2c E
a

a12L

ce8~r e!ce~r e!r edreE
a

a12L

ch8~r h!ch~r h!r hdrh

1
e2B2

8mec
2Ea

a12L

ch8~r h!ch~r h!r hdrhE
a

a12L

ce8~r e!ce~r e!r e
3 dre

1
e2B2

8mhc2Ea

a12L

ce8~r e!ce~r e!r edreE
a

a12L

ch8~r h!ch~r h!r h
3 drhJ . ~A13!

The size of the exciton is here given by

r s
25^Cur 2uC&5 (

nenhl el hne8nh8 l e8 l h8
an

e8n
h8 l

e8 l
h8

8 anenhl el hH d l
e8 ,l e

d l
h8 ,l hS Ea

a12L

ch8~r h!ch~r h!r hdrhE
a

a12L

ce8~r e!ce~r e!r e
3 dre

1E
a

a12L

ce8~r e!ce~r e!r edreE
a

a12L

ch8~r h!ch~r h!r h
3 drhD 2d l

e81 l
h8 ,l e1 l h

d l
e811,l eEa

a12L

ce8~r e!ce~r e!r e
2 dre

3E
a

a12L

ch8~r h!ch~r h!r h
2 drhJ . ~A14!
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