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X-ray absorption near-edge structure calculations beyond the muffin-tin approximation
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A new scheme for calculating the x-ray absorption near edge structure~XANES! based on the finite-
difference method is proposed. It allows completely free potential shape and, in particular, is not constrained
to the muffin-tin approximation. In our approach, the calculation of the final states is performed in real space.
The Schro¨dinger equation is solved in a discrete form on the node points of a three-dimensional grid. The
unknowns are the values of the wave functions at the grid points. The validity of the method is shown on two
different systems the metallic copper and the carbon monoxide molecule; then, the differences resulting from
muffin-tin and non-muffin-tin calculations are shown on different typical molecules.
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I. INTRODUCTION

A number of spectroscopies are related to the transi
process of a core electron to some upper empty level.
success of such spectroscopies is due to the fact tha
photoelectron is an efficient localized probe around a spe
atom. Due to the final state selection rules, these sp
troscopies selectively probe the empty valence states al
ing analysis of electronic as well as crystallographic str
ture. When calculating these spectra, the main difficulty
the evaluation of the final state. The initial state is a c
state and so is easy to calculate. The transition operator
necting the initial and final states can also be well appro
mated.

Among, these techniques, the most used is extended x
absorption spectroscopy~EXAFS!. Over 50 eV above the
rising edge an important approximation can be made.
region around the excited atom is spherically averaged so
photoelectron wave function can be constructed as a sim
superposition between an outgoing spherical wave an
wave backscattered by the neighboring shells of atoms.
fortunately at lower energy, this single scattering approxim
tion is not valid and many processes contribute in a n
negligible way: many body effect, multiple scattering~MS!
effect, polarization effect, and so on. These calculations
then a formidable task, nevertheless they are important
cause it is at these energies that the signal is very sensitiv
the three-dimensional~3D! crystallographic, electronic an
magnetic structures.

The x-ray absorption near edge structures~XANES!, is
the domain of XAS extending up to around 50 eV above
threshold. Different approaches are used to calculate th
final states. A first group of them turns around the work
De Groot1 using the framework of atomic multiplets for th
absorbing atom in crystal field. The second approach u
the local density approximation to calculate the final sta
This is done considering infinite crystals2 ~a band structure
approach! or clusters using the multiple scattering theory3,4

Typically, MS theories employ an important approximatio
the muffin-tin averaging of the potential needed for the
pansion of the wave functions. In this latter approximatio
the potential is spherically averaged in the atomic and ou
0163-1829/2001/63~12!/125120~10!/$15.00 63 1251
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sphere regions and volume averaged in the interatomic
gion. The use of a constant interstitial potential is certainl
serious approximation, specially when the photoelectron
netic energy is close to the value of the approximation do
on the potential. Moreover, it makes the results depend
the size of the interstitial region itself. As shown in Ref.
the restrictions imposed by the muffin-tin approximation c
be lifted through a generalization of the multiple-scatteri
theory. Some works, which can be applied to XANES, ha
already tried to go beyond the muffin-tin approximation f
energy band problems. In particular, the discrete variatio
method6 uses a discretization of the potential to calcula
matrix elements but keeps the usual expansion in pl
waves in its Koringa-Kohn-Rostoker version. Ebert a
co-workers7 using also the Koringa–Kohn–Rostoker forma
ism in a full potential approach have successfully applied
formalism to XANES.8–10 The full linear augmented plan
wave ~FLAPW! approach11 is also extensively used to ca
culate band structure without the muffin-tin approximatio
but all of these methods are restricted to periodic potent

The finite-difference method~FDM! is another way to
solve the Schro¨dinger equation using the local density a
proximation which avoids the muffin-tin approximation. Th
first formulation of FDM to solve the Schro¨dinger equation
was given in the 1930s.12 The FDM requires significant com
puting power and its progress has followed the impro
ments of computer-capabilities. One of its first satisfacto
application in the field of solid state physics concerns
binding energy states by Puska and Nieminen in 19813

Very recently the first FDM band structure calculation w
reported.14 In two letters, the technique was extended to lo
energy electron diffraction15 and low-energy positron
diffraction.16 The sensitivity of low energy particles on ele
tronic parameters and consequently on the muffin-tin
proximation was illustrated in Ref. 17. The purpose of t
present article is first to describe the extension of this co
puting technique to XANES and related spectroscopies
to show in typical examples the potentiality of the meth
and second to analyze the improvements to XANES calc
tions due to the better description of the potential.

II. XANES AND RELATED SPECTROSCOPIES

In the one-electron quadrupolar approximation, and
glecting spin for simplicity, the transition amplitudes b
©2001 The American Physical Society20-1
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tween an initial core statecg and a final statec f are given by

Mg f5 K c fU«"r S 11
i

2
k"r DcgL ,

for photons with wave vectork polarized in thee direction.
For XANES, the photoabsorption cross section is then gi
by

s54p2a\v(
f ,g

uMg fu2d~\v2Ef1Eg!,

wherea is the fine structure constant,\v the photon energy
and Ef and Eg the final and initial state energies, respe
tively. For circularly polarized photons, the expression
mains the same, but the polarization is complex. For diffr
tion anomalous fine structure~DAFS!, the transition is
virtual and one has to make the distinction between the i
dent and scattered polarization and wave vector and co
sponding transition amplitudesM f g

i andM f g
s . The amplitude

emitted by one atom is then

A5~\v!2(
f ,g

Mg f
i* Mg f

s

Ef2Eg2\v1 i ~G/2!
.

The total amplitude is obtained through the summation o
the atoms at positionRa , as in XANES, but weighted by the
phase factorei (ki2ks)Ra.

In the ab initio calculation the difficulty resides in th
evaluation of the final states. The initial state can be rep
sented by an atomic core orbital which is easy to calcu
and the evaluation of the matricesMg f followed by the sum-
mation over the final states to get absorption cross sectio
diffracted intensities is straightforward. It is the evaluation
these final states which is performed through the finite
ference method.

III. THE FINITE DIFFERENCE METHOD

The FDM is a general way to solve differential equatio
by discretizing them over a grid of points in the whole vo
ume where the calculation is made. In XANES, we are
terested in the Schro¨dinger equation in a spherical volum
centered on the absorbing atom and extending over a s
ciently large cluster.

In the ‘‘discretized’’ version of the equation, the un
knowns become the values of the wave function on each
point ‘‘ i’’: c i5c(r i). The way to calculate the potential o
the node pointsVi5V(r i) will be seen further on. The La
placian is obtained by approximating the wave functi
around the pointi by a polynomial of fourth order. The
fourth order calculation is more economical than the sec
order one. Then the Laplacian is given by

Dc i5
1

h2 S 4

3 (
j ,«

c j
«2

1

12(
j ,«

c j
««2

15

2
c i D ,
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wherecJ
« and cJ

«« with «5 2 or 1, are the values of the
wave function on the first and second neighboring points
the grid in the directions« j . h is the distance between th
points.

At the end, denotingl i j the Laplacian operator, one ge
for the Schro¨dinger equation on point ‘‘i:’’

~2 l i i 1Vi2E!c i1 (
j

neighbors

2 l i j c j50 ~1!

expressed in Rydbergs and atomic units. Finally, a large
tem of linear equations connects the values of the wave fu
tion on all points ‘‘i.’’ With a smaller interpoint distance, the
computation is more accurate.

IV. APPLICATION TO XANES CALCULATION

A. The areas of calculations

The wave function must be calculated in all the area c
tered around the absorbing atom extending sufficiently
from it where the backscattered wave function do not g
more contribution to the scattered wave field on the abso
ing atom. Thus the area of calculation is limited by an ou
sphere where the potential is assumed constant or at
with a spherical symmetry. There, an expansion in spher
waves is performed.

Inside this sphere the classical FDM equation is us
Nevertheless, close to the ion core, the kinetic energy of
electron is very high, whereas in the region between two
cores, it is much lower. Consequently, it can appear as n
essary to use a non uniform grid points to solve the Sch¨-
dinger equation as was proposed in an other paper.15 A less
CPU consuming solution is now preferred. It consists in p
forming an expansion in spherical waves in very little sph
around the atomic cores, providing the fact that the poten
is quite spherically symmetric in these areas. Note that th
spheres are much smaller spheres~up to 0.5–0.7 Å, depend
ing of the atoms! than the spheres in a muffin-tin formula
tion. A second advantage of this framework is that the
pansion in spherical harmonics, particularly in the excit
atom, is specially convenient for calculating the matrix tra
sition amplitudes. These areas, as the outer sphere,
coupled to the interatomic FDM grid through equatio
given further on.

B. The atomic core

In the atomic core, the potential can be represented
multipole expansion around the center:

V~r !5(
L

VL~r !YL~V!, ~2!

r being the radial distance to the center of the atom andV the
angular position.L stands for~l,m!. The real spherical har
monicsYL(V) are defined following Condon and Shortley.18

The general solutionc(r ) in the atomic sphere can b
expressed as a linear combination of independent solut
of the Schro¨dinger equation:
0-2
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c~r !5(
L

aLfL~r !. ~3!

Each of these independent solutions is expanded in the s
way as the potential:

fL~r !5(
L8

wL8L~r !YL8~V!.

They are defined by their regular component near the ori

wLL8~r !>r ldLL8 .

Inserting these expansions into the Schro¨dinger equation and
using the orthogonality of the spherical harmonics, we fi
that the functionswL8L(r ) satisfy the following set of
coupled differential equations:

F 1

r 2

d

dr S r 2
d

dr D1E2
l 8~ l 811!

r 2 GwL8L~r !

5 (
L9L9 8

CL9L9 8
L8 VL9 8~r !wL9~r !. ~4!

The CL9L9 8
L8 are the real Gaunt coefficient:

CL9L9 8
L8 5E YL9~V!YL8~V!YL9 ~V!dV.

Now, as stated above, the atomic spheres are not the u
muffin-tin sphere, but smaller sphere. Most often, as is de
onstrated further in the paper, the potential can there be ta
as completely spherical and the multipolar expansion of
potential ~2! is reduced to the first term. In such cases,
nonzerowLL8 are the diagonal components (L5L8).

The unknowns are the amplitudesaL
f of these harmonics

They are evaluated together with the value of the wave fu
tion on all the node points of the FDM grid using the con
nuity of the wave function between the different zones a
an ‘‘approached’’ Fourier transform. The continuity is us
in Eq. ~1! for the points at the boundary of the atom
spheres. For these points, one or several neighboring p
are entirely within the inner sphere~Fig. 1!. Thus one re-
places the unknownc j by the expansion~3! with its new
unknownsaL

f . Of course one needs new equations to fi
these new unknowns. To this end, we use again Eq.~3! ap-
plied over the points at the sphere boundary~white in Fig. 1!.
Having the continuity in two crowns of points inside and ju
outside the sphere one gets the continuity of the derivat
In order to get the same number of equations as unknow
one proceeds in the same way as for a Fourier transfo
That is, for each spherical harmonic, one integrates Eq.~3!
after multiplication by theYL , over the sphere:

(
i

white.pt

YL,ic idV i5(
L8

aL8
f S (

i

white.pt.

YL,ifL8,idV i D . ~5!

The dV i are weights related to the solid angles occupied
the points. In practice one chooses
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wheredv i is the volume occupied by the pointi. For a point
in a general position this volume ish3, h being the inter-
point distance. When a symmetry plane crosses this poin
volume is divided by 2. This would be a Fourier transform
the interpoint distance was infinitely small. This kind of em
bedding is close to the one proposed by Thijssen
Inglesfield.14

C. Connection with the continuum

In the outer sphere, the potential is constant and the s
tions are the Neumann and Bessel~or Hankel! functions
~note that one could use in this area the functions resul
from Coulomb potential!. So the general solution in this re
gion is given by

c f~r !5JL f
~r !1 i(

L
tL

f HL
~1!~r !, ~6!

where JL and HL
(1) are the generalized Bessel and Hank

functions. These functions are related to the classical Han
hl

(1) , and Bessel functions through, for instance, for the H
kel one:

HL
~1!~r !5AAE2Vm

p
hl

~1!~r !YL~V!,

Vm is the averaged potential in the outer sphere.r andV are
the radial and angular positions, the origin being placed
the center of the sphere defining the area of calculation. N
that this center is not necessarily the center of the absor
atom. The unknowns are the amplitudestL

f . It is important
to note the normalization of the Hankel functions whi
comes from the density of state in the vacuum. This norm

FIG. 1. General view of the meshing in the whole region
calculation around the absorbing atom. Symmetry planes are
to reduce the area of calculation. This one is divided in three zo
~1! around the atomic cores,~2! between the atoms where the sta
dard FDM calculation is used,~3! the outer sphere region. ‘‘i’’ is
the index of a point where formula~1! matching this point to its
neighbors can be directly applied. White points are at the bound
of the ion core. It is on these points that is used the formula~5! to
embed the atom in the FDM grid. Gray points are at the bound
of the outer sphere. Formula~7! is applied on these points to matc
the FDM grid to the continuum.
0-3
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Y. JOLY PHYSICAL REVIEW B 63 125120
ization implies by continuity, all the normalization in th
different regions of calculation. In practice, if there is n
damping, that is when the self-energy is real, it is less C
and memory consuming to work with a real base, tha
using the Bessel–Neuman normalization instead of
Bessel–Hankel one:19

cbessel–neuman
f ~r !5JL f

~r !1(
L

hL
f NL~r !

NL , being the generalized Neuman function. Then the ren
malization is given by

cbessel–hankel5
1

11 ih
cbessel–neuman.

The matching between the interatomic area and the o
sphere is performed exactly in the same way as between
inter-atomic area and the atomic core spheres. From this
can derive

(
i

gray.pt

YL,ic idV i5 i(
L8

t
L8

L f S (
i

gray.pt.

YL,iHL8,i
~1! dV i D

1 (
i

gray.pt

YL,iJL f ,idV i . ~7!

The summation is over the gray points~see Fig. 1! that are at
the boundary of the outer sphere. It must be noticed
because the radius of this sphere is larger than the ato
core ones, we need here far more spherical harmonics.
typical calculation~up to 6, 7, or 8 Å! we need a maximum
second quantum number value,l max of at least 20 or 30.

D. Potential

Having written the Schro¨dinger equation on all points o
the grid, the potential must be introduced in the general m
trix. As usual in standard XANES calculations, the local de
sity approximation is used to calculate the potential. Wh
neglecting the core hole effect, the electronic density can
calculated in a self consistent way in a periodical syst
using a band structure program, as the LAPW metho11

When structures are too complicated to be confidently ca
lated self-consistently, or when we are interested in the
vestigation of specific phenomena as orbital ordering, cha
ordering, core hole screening, etc. ..., an independent wa
constructing the electronic density is more useful. In t
way, the first step is making a simple superposition of atom
densities with a controlled occupancy of each orbital of e
atom.20,21 It is then possible to improve further the calcul
tion by considering bonds or any kind of electron
rearrangement.17 This has already be done in our formalis
to study orbital ordering in manganites22 and in V2O3 .23

Nevertheless, it can be already noted that the electronic
sity depends on the choice of the occupied atomic orbit
Several choice are offered as the use of the Clementi
Roetti bases.24 Note that in most XANES calculations, th
atoms are taken as neutral with orbital bases correspon
to neutral atoms. The Coulomb potential is then calcula
12512
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solving the Poisson equation and the energy depen
exchange-correlation potential is obtain following the Hed
and Lundqvist25 approach.

The FDM formulation allows no approximation of th
shape of the potential, thus avoiding the problem related
the classical muffin-tin approximation. So starting from t
potential calculated as described above and as in other
grams, no other approximation, contrary to most of the ot
formalisms, is superimposed. The object of the present stu
apart of describing the formalism and proving its validity,
to make comparisons of calculations with and without t
muffin-tin approximation. So in that work, the simple supe
position scheme of atomic densities is kept and special at
tion is given on the effect of the muffin-tinisation of th
resulting potential.

At this stage, one can immediately remark than a lot
studies already done on the choice of the exchange cor
tion potential would have to be done again without t
muffin-tin approximation because this approximation cou
artificially improve one model over the others. That point
nevertheless beyond the scope of this paper.

E. General matrix

From the preceding steps, one gets the general ma
which includes thenp Schrödinger equations~1! on thenp
points of the FDM grid and the ‘‘approached’’ Fourier tran
form around the ion cores@formulas~5!# and the outer sphere
@formula ~7!#:

3
A1 B1

C1 H N 0

N H N

N H C2

B2 A2 B2

C2 H N

•

•

•

0 N H C0

B0 A0

4
33

aL1
f

c f

•

•

aL2
f

c f

•

•

•

•

tL
f

4 53
0
0
•

•

0
0
•

•

•

MJf

GJf

4 .

The ~N, H, N! submatrices contain the coefficients of FD
equation~1!. The N submatrix is substituted by theC sub-
matrix when a missing neighbor is encountered using in t
case formulas~4! or ~6!. The ‘‘approached’’ Fourier trans
forms correspond to the submatricesAa andBa , a being the
0-4
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index of the atom,o standing for the outer sphere. They a
implemented in order to get a matrix band width as smal
possible. The second member of the linear system of eq
tions is given by the connection to the outer sphere thro
the formulas~6! and ~7! giving MJf and GJf . The system
can then be solved and the amplitudes of the final st
extracted to calculate the photoabsorption cross section. N
that this is a non hermitian band matrix and that only
second member depends on the final state.

V. TESTING THE METHOD

Having given the general framework, one has to prove
practical use in some typical examples. For this purpose,
method was applied to three very different classes of m
rial: dense metals, molecules and oxides. Works on ox
being already published,20,21,26 we refer to these papers t
check the quality of the experimental-theory agreem
which can be reached in this class of compound. Results
be given in the next section on theK edges of copper in its
fcc pure structure and carbon in the CO molecule. Calcu
tions on copper are also used to check the different techn
parameters necessary in the FDM formalism.

A. Validity of the method

To prove that the FDM approach is able to calcula
XANES, one may compare with the multiple scattering a
proach in a situation where the muffin-tin approximation
presumably valid. The building of the potential can
slightly different between the different XANES programs a
ready available. So, to get confident comparison between
and FDM calculations, both approaches are included in
same code, the only difference in the potential being
‘‘muffin-tinisation.’’

As a test case, a cluster of 13 copper atoms is chosen,
is the central absorbing atom plus its first surrounding s
embedded in the fcc crystal. Figure 2 shows the compar
of the FDM and MS calculations. The curves are quite sim
lar. The equivalence of the results shows together with
validity of the FDM method that non-muffin-tin calculation
are really not necessary in highly symmetrical dense me
The maybe surprising element is that an interpoint distanch

FIG. 2. K edge XANES spectra of copper for a 13 atoms clus
MS ~dotted line! and FDM~full line! calculation gives quite similar
results.
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of 0.25 Å is sufficient to reach such agreement. Few minu
on a PC are sufficient in this highly symmetrical case
calculate the spectra.

B. Convergence

Now to check convergence, different calculations forh
going from 0.20 to 0.40 Å were performed both in secon
and fourth-order approximations. These calculations are
performed at different values of the ion core sphere rad
r s , where the expansion in spherical wave is done. The sp
tra are shown in Fig. 3. The occupied states are not s
tracted. It can be checked that forr s50.80 Å and at fourth
order, residual differences are very small withh50.35 Å.
Convergence is completely reached at 0.30 Å in all the
ergy range up to 60 eV. Withr s50.65 Å, a 0.25 Å interpoint
distance is needed. This is due to the fact that the potenti
this distance from the center of the atomic core is grea
Note that at high value of the interpoint distance, the num
of points around the atom necessary for the connection to
expansion in spherical waves in the atoms must remain s
stantially greater than the number of spherical harmon
otherwise numerical instabilities can appear. For this reas
l max in this calculation is limited to 5.

Thus we assess that convergence in the typical XAN
energy range is reached with interpoint distance values c

.

FIG. 3. Study of the convergence of the calculation versus
inter-point distance. Top, the ion core sphere radiusr s is 0.80 Å and
convergence is reached ath50.30 Å. Bottom,r s50.65 Å and con-
vergence is reached ath50.25 Å. l max is limited to 5. The occupied
states are not subtracted.
0-5
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Y. JOLY PHYSICAL REVIEW B 63 125120
to 0.25 Å at order four. That gives around 16 000 points
a 3.9 Å radius cluster, and 32 000 points for a 4.9 Å rad
cluster. Using symmetries to reduce the area of calculat
these numbers are divided by 2, 4, 8, or 16. Such symm
cal calculations which needs typically 250 Mo of memo
space can be done in some hours on conventional PC
this up to the conventional useful cluster radius in XANE
that is 8 Å. In more general situation when few symmetr
are present the needed space memory grows up to se
gigaoctet. In these situations calculations are tractable
vectorial computers.

Convergence versus the number of shells where chec
in both approaches, muffin-tin MS and non-muffin-tin FDM
With a 8.3 Å radius cluster and 141 atoms, converge
becomes satisfying. It can be seen in Fig. 4 that both
proaches gives again very close results.

C. Testing the multipolar expansion in the ion core sphere

Calculations using different radii for the ion core sphe
were performed using multipolar or monopolar expansio
of the potential in the spheres. At the end, all of these ca
lations give very similar results. This is not surprising f
copper where the validity of the muffin-tin approximation
well established and verified just above. That means th
monopolar expansion is sufficient up to the muffin-tin radi
that is 1.28 Å~without overlaping!. A monopolar expansion
is obligatory sufficient for our lowr s value.

The CO case is more interesting because, due to his lo
symmetry, anl 51 term in the multipolar expansion is a
ready nonzero~for copper, after the spherical component, t
first non zero term is forl 54!. In that case multipolar and
monopolar calculations were performed withr s50.5 Å ~to
compare with the inter atomic distance 1.13 Å!. Again, re-
sults are very similar.

So, we prove that in both classes of material, the mono
lar potential component is sufficient to describe the scat
ing by the ion core sphere providing its radius remains no
bly smaller than the half-interatomic distance. The only ca
where this conclusion would have to be verified conc
heavy, low symmetrical atoms.

D. Checking bonding states and Rydberg series

A very simple molecule is chosen to check the validity
the FDM mode of calculation in an another class of co

FIG. 4. K edge XANES spectra of copper for a 141 atoms cl
ter. Experiment~dotted line! and FDM calculation~full line!.
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pound, that is a little organic molecule exhibiting molecu
localized antibonding orbitals, Rydberg series, and orbital
the continuum~Fig. 5!.

Calculations were done, as above, with electronic den
resulting from the simple superposition of atomic orbitals b
with the atomic charges provided by a Mulliken analysis
the Gaussian package27 ~1 and 20.29 on the carbon and
oxygen!. At this stage, the increase of population betwe
the atoms due to the covalence was not taken into acc
but this can be done as it was shown using the same fram16

Multiple scattering and finite-difference method calcu
tions are shown in the figure. The antibondingp* and s*
are present at the good energies. To get the cross sectio
fall to zero between them, the radius of the outer sphere m
be sufficient~3 Å!. The addition of an outer sphere with a 1r
potential is necessary to get the Rydberg series. The
calculation could be improved to also get the Rydberg ser
With this result, we prove that the FDM is able to calcula
in a same run XANES spectra in molecules presenting un
cupied bounded states together with the continuum state

VI. STUDY OF THE VALIDITY OF THE MUFFIN-TIN
APPROXIMATION

A. About the muffin-tin calculations

The muffin-tin approximation corresponds to a monopo
representation of the potential. The potential in the intersti
region is constant. Very often, overlapping muffin-t
spheres are used to take into account a part of the scatte
power of the interstitial area. The use of overlapping sphe
is mathematically wrong but up to reasonable values of
overlap that is 10% or 15%, the benefit remains greater t
the error. It must be noticed that relatively good artific
agreement can even be reached in some cases playing
the interstitial potential and the muffin-tin radius. These fa
improvements can hide structural or electronic informatio

As seen before, in a highly symmetrical system, the fi
nonzero term in the multipolar expansion of the potential~a
part the spherical one! corresponds to the azimuthal quantu
numberl 54 ~as in the copper fcc structure!. This fact also
concerns the interstitial area in case of overlap. The num
of spherical harmonics necessary to describe the wave s
tering by an atom of radiusR is given by the maximum value
of l: l max5kR, typically 3–6. The spherical expansion of th

- FIG. 5. K edge XANES spectra of carbon in CO FDM calcul
tion: full line, MS calculation: dotted line. Boundedp* and not
bounded statess* are reproduced. Rydberg series are also pres
in the FDM calculation.
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Schrödinger equation~4! shows that the coupling terms be
tween the different harmonics are related to the multipo
expansion of the potential. With few multipolar terms in t
l range of the wave expansion, it is not surprising that
muffin-tin approximation be very good. The monopolar e
pansion of the potential is sufficient even in the overlapp
part of the muffin-tin spheres and so the interstitial region
rather well described. Naturally, this is specially true wh
the system is dense, because the interstitial region is t
anyway sufficiently small to be described by a constant
tential.

To have the best possible MS muffin-tin calculation,
specific attention is given on the choice of the muffin-
radius and on the value of the interstitial potential. Over
conventional assessment where it is stated that this last i
average of the potential in the interstitial region, this int
stitial region is not easy to define in the case of nonperio
material. For the muffin-tin radius, very often the Norm
procedure is chosen. The radius is then related to the ex
sion of the atomic electronic density.28 A better choice is to
work directly on the potential. The best radius is the o
which minimizes the potential jump between the sphere
the interstitial area. It is what we choose here. The sec
point is around the muffin-tin overlap. A quite standard p
cedure is to work with a 10% to 15% overlap, because it
empirically been observed that it is with such overlap t
the agreement with experiment is often the best. For the
lowing we verified that the 10% overlap best agrees~or is the
less different! with the non-muffin-tin calculations. So th
MS calculations presented in the next sections use this o
lap. The comparisons are there between FDM and MS
culations. Thus they show the difference between n
muffin-tin ~or full! potential and an improved~because
overlapping! muffin-tin potential.

B. Decreasing the symmetry

From the considerations above, it can be suspected
decreasing the symmetry, non muffin-tin effect must incre
ingly influence the signal. To check this assumption, num
cal tests on small artificial iron–oxide molecules are realiz
No special attention is given to the atomic charges or in
atomic distances because the purpose is not to compare
experiment but only to evaluate the difference betwe
muffin-tin and non muffin-tin calculations.

FeO6 octahedra

Calculations on ordered and distorted FeO6 octahedra are
performed. In Fig. 6, the calculations for the perfect octa
dron are shown. The Fe–O distance is 2 Å and the O–Fe
angles are 90°. The symmetry is cubic and the agreem
between MS and FDM is very good.

Then the octahedron is contracted along thez axis by
10%. There is a loss of 2 fourfold axes, the iron remain
center of symmetry. Figure 7 shows the linear dichroi
between the polarization parallel and perpendicular to
contraction. The difference between MS and FDM is noti
able in the 0–50 eV range. Comparing with the nondistor
octahedron spectra in Fig. 6, it can be checked that MS
12512
r

e
-
g
s

re
-

e
he
-
ic

n-

e
d
d

-
s
t
l-

r-
l-
-

at
s-
i-
.

r-
an
n

-
O
nt

a

e
-
d
n-

derestimates the effect of this contraction and thus a fit
this parameter would give an error of around 20%.

The loss of center of symmetry is very important f
many physical phenomena. The use of XANES to analyz
can be fruitful if its calculation is sufficiently precise. S
calculations are now performed for a FeO6 molecule, keep-
ing the perfect oxygen octahedron, but the iron being d
placed by 0.1 Å toward the apical~along Oz! oxygen. The
linear dichroism is stronger~Fig. 8!. The large first peak for
polarization alongz, due to this loss of symmetry, is prese
in both MS and FDM calculations. The differences are mo
located in the edge region. When the polarization is perp
dicular to the iron displacement, the FDM calculation give
sensitivity to this displacement. On the contrary, the MS c
culation is quite similar with the displaced or not displac
iron ~Fig. 6!.

Asymmetrical oxides

More asymmetrical situations occurs when the fi
atomic shell is not complete around the absorbing atom.
instance at a surface, the atoms of the first atomic plane h
no neighbor in the vacuum direction. It is what we rough
illustrate with calculations on a FeO5 molecule, where from

FIG. 6. FeK edge in the perfect FeO6 octahedron. Interatomic
distance is 2 Å. Full line: FDM dotted line: MS.

FIG. 7. FeK edge in the contracted FeO6 octahedron. The con-
traction is 10% along Oz. Full line: FDM, dotted line: MS.
0-7
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the previous perfect octahedron, the apical oxygen is eli
nated. The differences between FDM and MS~Fig. 9! are
mainly for the polarization along Oz. The structures are th
ner and the pre-edge is notably higher in the FDM calcu
tion. The analyses of the pre-edge is a lot of used in XAN
because it accompanies very often a loss of center of s
metry and because it is close to the Fermi level. A prec
and quantitative evaluation of it is important and we see t
it needs a full potential approach.

Planar situations frequently occurs, for instance in
new supra-conducting YBaCuO family with its CuO2 planes.
This situation is illustrated with calculations on the Fe4
molecule where the iron is surrounded by a square of o

FIG. 8. FeK edge in the FeO6 octahedron. The iron is displace
by 0.1 Å toward the apical oxygen. Full line: FDM, dotted line: M

FIG. 9. FeK edge in the FeO5 molecule. The apical oxygen i
missing. Interatomic distance is 2 Å. Full line: FDM, dotted lin
MS.
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gen. From the previous perfect octahedron the two oxy
atoms along Oz are eliminated. The very interesting fac
that the main difference between MS and FDM is for t
polarization along Oz. The peak at 10 eV is totally absen
the MS calculation~Fig. 10!. The linear dichroism is used to
study the CuO2 plane in cuprate. Errors in a muffin-tin ca
culation can affect strongly the interpretation of the cor
sponding experiments.

To illustrate a more general situation, some calculatio
on a FeO2 molecule are also performed. This hypothetic
molecule is taken as planar, the O–Fe–O angle being 1
The plane is perpendicular to Oz. Figure 11 shows the lin
dichroism. MS and FDM calculation are very different in a
directions in the first 30 eV, especially for the polarizatio
perpendicular to the plane of the molecule where agai
peak at 8 eV is absent in the muffin-tin calculation. T
actual conclusion is than in case of low symmetry, t
muffin-tin MS approach is not able to calculate confiden
XANES in the lower energy range.

A typical low symmetrical example: the MbCO protein

To give a real example of distorted octahedron around
iron site, the carbonmonoxy-myoglobin~MbCO! protein is
chosen. Protein is an important class of material wh
XANES can play an important role in the determination
the local geometry around a central metallic atom. In
case of MbCO, the molecule is formed by a central ir
surrounded by four pyrrole ligands that surround the he
Fe in a nearly perfect square planar symmetry.29 Another
pyrrole ligand stands beneath the plane and a CO is bon
on the other side to the central iron. Thus, the iron is s
rounded by a distorted octahedra composed of six nitro
and one carbon. An approximation of the structure where
CO is along theZ axis gives aC2 symmetry.

Figure 12 presents the first step of the study of this co
pound with only one distorted octahedron around the ir
The difference between multiple scattering calculation a
finite difference method is very strong. The FDM calculati
is clearly closer to the experiment in both polarizations. F

FIG. 10. FeK edge in the FeO4 planar molecule. Full line:
FDM, dotted line: MS.
0-8
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the polarization alongz, the double structure typical of a
octahedra is transformed in a unique round structure clos
the experiment.30

C. Discussion

From these figures it can be clearly seen that by decr
ing the symmetry the discrepancy between muffin-tin a
non-muffin-tin calculations become stronger. The errors
muffin-tin calculations can thus result in false interpretat
of data, and thus the fit of electronic or structural parame
can converge to imprecise values. It must be also noted
the differences are mainly due to the interstitial area. Inde
in the non-muffin-tin calculation when increasing the radii
the inner spheres using a monopolar~that is spherical! ex-
pansion of the potential, the results are only weakly affec
That means that attempts to use a multipolar expansio
the potential inside muffin-tin sphere and a constant poten
between them in the MS formalism cannot be successfu

FIG. 11. FeK edge in the FeO2 molecule. The O–Fe–O bond
ing angle is 120°. Interatomic distances are 2 Full line: FDM, dot
line: MS.
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VII. CONCLUSION

The main result is that the FDM is a valuable tool
calculate the XANES. The second main result is the eval
tion of the accuracy of the muffin-tin approximation in th
threshold area. In case of low symmetry, the muffin-tin a
proximation is not sufficient in the edge energy range. T
can be even more crucial for anomalous diffraction spectr
copy where the signal is connected to differences betw
atomic form factors and so to detailed part of the atom
signal. A non-muffin-tin FDM calculation is substantiall
longer than a muffin-tin MS one, so the multiple scatteri
method should be used whenever possible and even, in
case, as a starting point. Then, in a second step, in cas
low symmetry, and when the discrepancy with experim
remains too important the FDM should be used. The n
step of the present work concerns the inclusion of spin
fects in order to analyze the magnetic dichroism. Then, a
assessing one body effect been safely realized, one sh
consider the many body effects.
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FIG. 12. FeK edge in the MbCO protein. Full line:FDM, dotte
line:MS, dashed line: experiment from Della Longaet al.30 The
molecule is in the inset. The calculation is limited to the surroun
ing octahedron.
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