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X-ray absorption near-edge structure calculations beyond the muffin-tin approximation
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A new scheme for calculating the x-ray absorption near edge stru@ABIES) based on the finite-
difference method is proposed. It allows completely free potential shape and, in particular, is not constrained
to the muffin-tin approximation. In our approach, the calculation of the final states is performed in real space.
The Schrdinger equation is solved in a discrete form on the node points of a three-dimensional grid. The
unknowns are the values of the wave functions at the grid points. The validity of the method is shown on two
different systems the metallic copper and the carbon monoxide molecule; then, the differences resulting from
muffin-tin and non-muffin-tin calculations are shown on different typical molecules.
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[. INTRODUCTION sphere regions and volume averaged in the interatomic re-

gion. The use of a constant interstitial potential is certainly a

A number of spectroscopies are related to the transitiogerious approximation, specially when the photoelectron ki-
process of a core electron to some upper empty level. ThBetiC energy is close to the value of the approximation done

success of such spectroscopies is due to the fact that tfff! the potential. Moreover, it makes the results depend on
photoelectron is an efficient localized probe around a specifigle size of the interstitial region itself. As shown in Ref. 5,
atom. Due to the final state selection rules, these specb—e restrictions imposed by the muffin-tin approximation can

. . e lifted through a generalization of the multiple-scattering
troscopies selectively probe the empty valence states allo"\fheory. Some works, which can be applied to XANES, have

ing analysis of electronic as well as crystallographic strucy|ready tried to go beyond the muffin-tin approximation for
ture. When calculating these spectra, the main difficulty isenergy band problems. In particular, the discrete variational
the evaluation of the final state. The initial state is a coremethod uses a discretization of the potential to calculate
state and so is easy to calculate. The transition operator comatrix elements but keeps the usual expansion in plane
necting the initial and final states can also be well approxiwaves in _its Koringa-Kohn-Rostoker version. Ebert and
mated. co-workerg using also the Koringa—Kohn—Rostoker formal-
Among, these techniques, the most used is extended x-rd§m in a full potential approach have successfully applied the

absorption spectroscopfEXAFS). Over 50 eV above the formalism to XANES?~10 The full linear augmented plane

- - o ave (FLAPW) approacft is also extensively used to cal-
rising edge an important approximation can be made. Th%vulate band structure without the muffin-tin approximation,

region around the exmted_atom is spherically averaged S0 ﬂ}?ut all of these methods are restricted to periodic potential.
photoelectron wave function can be constructed as a simple” 1.4 finite-difference methodFDM) is another way to

superposition between an ou.tgomg_ spherical wave and g,ve the Schidinger equation using the local density ap-
wave backscattered by the neighboring shells of atoms. Unsoyimation which avoids the muffin-tin approximation. The
fortunately at lower energy, this single scattering approximasirst formulation of FDM to solve the Schdinger equation
tion is not valid and many processes contribute in a NONyas given in the 1930§The EDM requires Signiﬁcant com-
negligible way: many body effect, multiple scatterifdS)  puting power and its progress has followed the improve-
effect, polarization effect, and so on. These calculations arghents of computer-capabilities. One of its first satisfactory
then a formidable task, nevertheless they are important beapplication in the field of solid state physics concerns the
cause it is at these energies that the signal is very sensitive tinding energy states by Puska and Nieminen in 1§83.
the three-dimensional3D) crystallographic, electronic and Very recently the first FDM band structure calculation was
magnetic structures. reported* In two letters, the technique was extended to low-
The x-ray absorption near edge structu(¥#ANES), is  energy electron diffractidd and low-energy positron
the domain of XAS extending up to around 50 eV above thefliffraction*® The sensitivity of low energy particles on elec-
threshold. Different approaches are used to calculate thedtonic parameters and consequently on the muffin-tin ap-
final states. A first group of them turns around the work ofProximation was illustrated in Ref. 17. The purpose of the
De Groot using the framework of atomic multiplets for the Present article is first to describe the extension of this com-

absorbing atom in crystal field. The second approach usgdting technique to XANES and related spectroscopies and

the local density approximation to calculate the final states© ShOW in typical examples the potentiality of the method

This is done considering infinite crystalg band structure and second to analyze the improvements to XANES calcula-

approach or clusters using the multiple scattering thedfy. tions due to the better description of the potential.
Typically, MS theories employ an important approximation:
the muffin-tin averaging of the potential needed for the ex-
pansion of the wave functions. In this latter approximation, In the one-electron quadrupolar approximation, and ne-
the potential is spherically averaged in the atomic and outerglecting spin for simplicity, the transition amplitudes be-

Il. XANES AND RELATED SPECTROSCOPIES
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tween an initial core statg, and a final statey; are given by ~ where j and ¢5° with e= — or +, are the values of the
wave function on the first and second neighboring points on
i the grid in the directiongj. h is the distance between the
Mgf=<(//f er|l 1+ Ek-r (//g>, points.

At the end, denoting;; the Laplacian operator, one gets

for photons with wave vectdk polarized in thee direction. for the Schrdinger equation on pointi:

For XANES, the photoabsorption cross section is then given neighbors
by (=li+Vi—E) i+ Ej) —lijg;=0 N
0:4W2aﬁw2 IM g 28(hw—E+Ey) expressed in Rydbergs and atomic units. Finally, a large sys-
g ¢ 9 tem of linear equations connects the values of the wave func-

tion on all points ‘i.” With a smaller interpoint distance, the
wherea is the fine structure constariiw the photon energy, computation is more accurate.
and E; and E4 the final and initial state energies, respec-

tively. For circularly polarized photons, the expression re- IV. APPLICATION TO XANES CALCULATION
mains the same, but the polarization is complex. For diffrac- _
tion anomalous fine structuréDAFS), the transition is A. The areas of calculations

virtual and one has to make the distinction between the inci- The wave function must be calculated in all the area cen-
dent and scattered polarization and wave vector and corrgered around the absorbing atom extending sufficiently far
sponding transition amplituded, andM{; . The amplitude  from it where the backscattered wave function do not give
emitted by one atom is then more contribution to the scattered wave field on the absorb-
ing atom. Thus the area of calculation is limited by an outer
M‘*f S sphere where the potential is assumed constant or at least
SAR LS . with a spherical symmetry. There, an expansion in spherical
1~ Egmho+i(T'12) waves is performed.
) . ) i Inside this sphere the classical FDM equation is used.
The total amplitude is obtained through the summation oveNevertheless, close to the ion core, the kinetic energy of the
the atoms at positioR, , as in XANES, but weighted by the g|ectron is very high, whereas in the region between two ion
phase factog'(ti~*JFa, cores, it is much lower. Consequently, it can appear as nec-
In the ab initio calculation the dlfflCU'ty resides in the essary to use a non uniform gnd points to solve the Schro
evaluation of the final states. The initial state can be repredinger equation as was proposed in an other p]asper[ess
sented by an atomic core orbital which is easy to calculatepu consuming solution is now preferred. It consists in per-
and the evaluation of the matrict, followed by the sum-  forming an expansion in spherical waves in very little sphere
mation over the final states to get absorption cross section @fround the atomic cores, providing the fact that the potential
diffracted intensities is straightforward. It is the evaluation ofjs quite spherically symmetric in these areas. Note that these
these final states which is performed through the finite dif-spheres are much smaller sphe(ne's to 0.5-0.7 A1 depend-
ference method. ing of the atomgthan the spheres in a muffin-tin formula-
tion. A second advantage of this framework is that the ex-
pansion in spherical harmonics, particularly in the excited
atom, is specially convenient for calculating the matrix tran-
The FDM is a general way to solve differential equationssition amplitudes. These areas, as the outer sphere, are
by discretizing them over a grid of points in the whole vol- coupled to the interatomic FDM grid through equations
ume where the calculation is made. In XANES, we are in-given further on.
terested in the Schdinger equation in a spherical volume

_ 2
A=(fhw) % =

Ill. THE FINITE DIFFERENCE METHOD

centered on the absorbing atom and extending over a suffi- B. The atomic core
ciently large cluster. ) )

In the “discretized” version of the equation, the un- In the atomic core, the potential can be represented as a
knowns become the values of the wave function on each grig'ultipole expansion around the center:
point “i": ;= (r;). The way to calculate the potential on
the nodg pomts_/i:V(ri) will be_seen further on. The Lg— V(r)=z VL(NYL(Q), )
placian is obtained by approximating the wave function T

around the point by a polynomial of fourth order. The

fourth order calculation is more economical than the seconéj P€ing the radial distance to the center of the atom(@rke
order one. Then the Laplacian is given by angu_lar positionL stapds for(I,m). The real spherical har-
monicsY, (Q) are defined following Condon and Shortf&y.
The general solutions(r) in the atomic sphere can be
Az//:i ‘_12 e — iz oo — El/,_ expressed_‘as a linear combination of independent solutions
hrl3 T 12 2T of the Schrdinger equation:
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Y(r)= g a o (r). (3) o . Absorbing atom

Each of these independent solutions is expanded in the same
way as the potential:

L= @ (YL (Q).
L/

They are defined by their regular component near the origin:

| FIG. 1. General view of the meshing in the whole region of

eLL(r)=rdp. calculation around the absorbing atom. Symmetry planes are used
to reduce the area of calculation. This one is divided in three zones:
d(l) around the atomic core€2) between the atoms where the stan-
dard FDM calculation is used3) the outer sphere region.i™ is

the index of a point where formulél) matching this point to its
neighbors can be directly applied. White points are at the boundary
of the ion core. It is on these points that is used the fornfbildo

Inserting these expansions into the Sclinger equation and
using the orthogonality of the spherical harmonics, we fin
that the functionse,/ (r) satisfy the following set of
coupled differential equations:

i i rzi +E— "a'+1) oL (1) embed the atom in the FDM grid. Gray points are at the boundary
redrl dr r? L't of the outer sphere. Formu(d) is applied on these points to match
the FDM grid to the continuum.
LI
= 2 CL”L" ’VL" /(r)QDL//(r). (4)
LNLH ’ dQ :477- dvl
! Eidvi ’

The C'[L are the real Gaunt coefficient:

wheredv; is the volume occupied by the pointFor a point

in a general position this volume 5>, h being the inter-

point distance. When a symmetry plane crosses this point, its

_ volume is divided by 2. This would be a Fourier transform if

Now, as stated above, the atomic spheres are not the usugk interpoint distance was infinitely small. This kind of em-

muffin-tin sphere, but smaller sphere. Most often, as is dempedding is close to the one proposed by Thijssen and

onstrated further in the paper, the potential can there be takgfglesfield**

. ; . g

as completely spherical and the multipolar expansion of the

potential (2) is reduced to the first term. In such cases, the

nonzeroe, , » are the diagonal components£€L"). o
The unknowns are the amplituda$ of these harmonics. In the outer sphere, the potential is constant and the solu-

They are evaluated together with the value of the wave funclions are the Neumann and Bessel Hanke) functions

tion on all the node points of the FDM grid using the conti- (note that one could use in this area the functions resulting

nuity of the wave function between the different zones androm Coulomb potential So the general solution in this re-

an “approached” Fourier transform. The continuity is used 910N is given by

in Eg. (1) for the points at the boundary of the atomic

spheres. For these points, one or several neighboring points S(r)=3 (N+iY, 7HD(T), (6)

are entirely within the inner spher@ig. 1). Thus one re- f L

I th k . by th ion3) with it .
places the unknown); by the expansion3) with its new whereJ, and H,(_l) are the generalized Bessel and Hankel

unknownsa! . Of course one needs new equations to findf i These funci lated to the classical Hankel
these new unknowns. To this end, we use again(Bgap- unctions. These functions are related to the classical Hankel,

plied over the points at the sphere boundaviite in Fig. 1. hi*), and Bessel functions through, for instance, for the Han-
Having the continuity in two crowns of points inside and just K€l One:
outside the sphere one gets the continuity of the derivative.

Ct,,L,,,=f Y Q)Y Q)Y (Q)dO.

C. Connection with the continuum

In order to get the same number of equations as unknowns, VE—V,,

one proceeds in the same way as for a Fourier transform. HY (N ="\ ———h"(N Y. (Q),

That is, for each spherical harmonic, one integrates(Bqg. ™

after multiplication by theY , over the sphere: V., is the averaged potential in the outer spherand() are

the radial and angular positions, the origin being placed at
. the center of the sphere defining the area of calculation. Note
Ei YL,i‘/’iin:Z a. EI Yiido idQif. () that this center is not necessarily the center of the absorbing
- atom. The unknowns are the amplitudf:{s It is important
The d(); are weights related to the solid angles occupied byto note the normalization of the Hankel functions which
the points. In practice one chooses comes from the density of state in the vacuum. This normal-

white.pt white.pt.
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ization implies by continuity, all the normalization in the solving the Poisson equation and the energy dependant
different regions of calculation. In practice, if there is no exchange-correlation potential is obtain following the Hedin
damping, that is when the self-energy is real, it is less CPuand Lundqvist® approach.
and memory consuming to work with a real base, that is The FDM formulation allows no approximation of the
using the Bessel-Neuman normalization instead of thé&hape of the potential, thus avoiding the problem related to
Bessel—Hankel on& the classical muffin-tin approximation. So starting from the
potential calculated as described above and as in other pro-
‘ ; grams, no other approximation, contrary to most of the other
Ppessel-neumd ) = I (1) + > 7N formalisms, is superimposed. The object of the present studly,
- apart of describing the formalism and proving its validity, is
N, being the generalized Neuman function. Then the renorto make comparisons of calculations with and without the
malization is given by muffin-tin approximation. So in that work, the simple super-
position scheme of atomic densities is kept and special atten-
tion is given on the effect of the muffin-tinisation of the
’ﬂbessel—hanke?m Ypessel-neuman resulting potential.
At this stage, one can immediately remark than a lot of

The matching between the interatomic area and the outéitudies already done on the choice of the exchange correla-
sphere is performed exactly in the same way as between tHion Ppotential would have to be done again without the

inter-atomic area and the atomic core spheres. From this, Wwguffin-tin approximation because this approximation could
artificially improve one model over the others. That point is

can derive nevertheless beyond the scope of this paper.
gray.pt gray.pt.
2 YL,i¢iin:i2 th E YL,in_l/),iin) E. General matrix
! L’ : From the preceding steps, one gets the general matrix,
gray.pt which includes then, Schralinger equationgl) on then,
+ 2 Y, id, dQ, . 7 points of the FDM grid and the “approached” Fourier trans-
i Cob form around the ion cord$ormulas(5)] and the outer sphere
L . . [formula (7)]:
The summation is over the gray poiritee Fig. 1that are at
the boundary of the outer sphere. It must be noticed that [ A; B; 7
because the radius of this sphere is larger than the atomic C, H N 0
core ones, we need here far more spherical harmonics. For
. . . N H N
typical calculation(up to 6, 7, or 8 A we need a maximum
second quantum number vallg,, Of at least 20 or 30. N H C
B, Ay B
D. Potential C, H N

Having written the Schidinger equation on all points of
the grid, the potential must be introduced in the general ma-
trix. As usual in standard XANES calculations, the local den- .
sity approximation is used to calculate the potential. When 0 N H C
neglecting the core hole effect, the electronic density can be 0
calculated in a self consistent way in a periodical system &
using a band structure program, as the LAPW metHod. B ale' " 0 7
When structures are too complicated to be confidently calcu- o 0
lated self-consistently, or when we are interested in the in-
vestigation of specific phenomena as orbital ordering, charge
ordering, core hole screening, etc. ..., an independent way of ‘
constructing the electronic density is more useful. In that a2

. ) . . . . f_
way, the first step is making a simple superposition of atomic x{ ¢ |=| O
densities with a controlled occupancy of each orbital of each :
atom?%2! |t is then possible to improve further the calcula-
tion by considering bonds or any kind of electronic . .
rearrangementt. This has already be done in our formalism ) M
to study orbital ordering in manganifésand in V,05.% ¢ G
Nevertheless, it can be already noted that the electronic den- - TLd ok -
sity depends on the choice of the occupied atomic orbitalsThe (N, H, N) submatrices contain the coefficients of FDM
Several choice are offered as the use of the Clementi anelquation(1). The N submatrix is substituted by th€ sub-
Roetti baseé* Note that in most XANES calculations, the matrix when a missing neighbor is encountered using in that
atoms are taken as neutral with orbital bases correspondingpase formulag4) or (6). The “approached” Fourier trans-
to neutral atoms. The Coulomb potential is then calculatedorms correspond to the submatrickgandB,, a being the

Bo Ao
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FIG. 2. K edge XANES spectra of copper for a 13 atoms cluster. 0.00 prrreT

MS (dotted ling and FDM(full line) calculation gives quite similar
results.

Cross section (Mbarn)

index of the atomp standing for the outer sphere. They are

implemented in order to get a matrix band width as small as 0.10
possible. The second member of the linear system of equa- 0.35
tions is given by the connection to the outer sphere through 0.30
the formulas(6) and (7) giving MJ" and GJ". The system 025 -
can then be solved and the amplitudes of the final states 0:20
extracted to calculate the photoabsorption cross section. Note
that this is a non hermitian band matrix and that only the 0.00 L
second member depends on the final state. 210 0 10 20 30 40 50 60

Energy (eV)
V. TESTING THE METHOD

Having given the general framework, one has to prove its te'?-Gc'Jiﬁ{ dsi;‘t":r)l’cgf ;hoe C&Z"gﬁigfg Sthtgfe ?:Lc-qflgo;o\f::ds the
practical use in some typical examples. For this purpose, thgerp ) - 1op, P - WS .
method was applied to three very different classes of mate= " 9c1c€ 1S reachedat-0.30 A. Bottom,r.=0.65 A and con-
. PP y . “vergence is reached at=0.25 A. |, is limited to 5. The occupied
rial: dense metals, molecules and oxides. Works on oxid

€S
. . tates are not subtracted.
being already publishe®;?*?%we refer to these papers to

check the quality of the experimental-theory agreemenpf .25 A is sufficient to reach such agreement. Few minutes
which can be reached in this class of compound. Results wihn a PC are sufficient in this highly symmetrical case to
be given in the next section on tiieedges of copper in its calculate the spectra.

fcc pure structure and carbon in the CO molecule. Calcula-

tions on copper are also used to check the different technical B. Convergence

arameters necessary in the FDM formalism. . )
P y Now to check convergence, different calculations for

. going from 0.20 to 0.40 A were performed both in second-
A. Validity of the method and fourth-order approximations. These calculations are also

To prove that the FDM approach is able to calculateperformed at different values of the ion core sphere radius
XANES, one may compare with the multiple scattering ap-r, where the expansion in spherical wave is done. The spec-
proach in a situation where the muffin-tin approximation istra are shown in Fig. 3. The occupied states are not sub-
presumably valid. The building of the potential can betracted. It can be checked that fay=0.80 A and at fourth
slightly different between the different XANES programs al- order, residual differences are very small wiik-0.35A.
ready available. So, to get confident comparison between M8onvergence is completely reached at 0.30 A in all the en-
and FDM calculations, both approaches are included in thergy range up to 60 eV. With,=0.65A, a 0.25 A interpoint
same code, the only difference in the potential being itdistance is needed. This is due to the fact that the potential at
“muffin-tinisation.” this distance from the center of the atomic core is greater.

As atest case, a cluster of 13 copper atoms is chosen, thhibte that at high value of the interpoint distance, the number
is the central absorbing atom plus its first surrounding shelbf points around the atom necessary for the connection to the
embedded in the fcc crystal. Figure 2 shows the comparisoexpansion in spherical waves in the atoms must remain sub-
of the FDM and MS calculations. The curves are quite simi-stantially greater than the number of spherical harmonics
lar. The equivalence of the results shows together with thetherwise numerical instabilities can appear. For this reason,
validity of the FDM method that non-muffin-tin calculations |, in this calculation is limited to 5.
are really not necessary in highly symmetrical dense metal! Thus we assess that convergence in the typical XANES
The maybe surprising element is that an interpoint distéince energy range is reached with interpoint distance values close
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FIG. 4. K edge XANES spectra of copper for a 141 atoms clus- FIG. 5. K edge XANES spectra of carbon in CO FDM calcula-

ter. Experimen{dotted ling and FDM calculatior(full line). tion: full line, MS calculation: dotted line. Boundeg* and not
bounded states* are reproduced. Rydberg series are also present

to 0.25 A at order four. That gives around 16 000 points forin the FDM calculation.
a 3.9 A radius cluster, and 32000 points for a 4.9 A radius o , -
cluster. Using symmetries to reduce the area of calculatioP©Und: that is a little organic molecule exhibiting molecular
these numbers are divided by 2, 4, 8, or 16. Such symmetr Ocalized antibonding orbitals, Rydberg series, and orbitals in
cal calculations which needs typically 250 Mo of memory he continuum(Fig. 5).

space can be done in some hours on conventional PC a Calculations were done, as above, with electronic density
P r}‘gsulting from the simple superposition of atomic orbitals but

this up to the conventional useful_cluster radius in XAN'.ESwith the atomic charges provided by a Mulliken analysis in
that is 8 A. In more general situation when few symmetrieSha Gaussian packaffe(+ and —0.29 on the carbon and
are present the needed space memory grows up {0 sevegdlygen. At this stage, the increase of population between
gigaoctet. In these situations calculations are tractable ofhe atoms due to the covalence was not taken into account

vectorial computers. but this can be done as it was shown using the same ftame.
Convergence versus the number of shells where checked Mmultiple scattering and finite-difference method calcula-

in bOth appl’oaChes, mufﬁn-tin MS and non-mufﬁn-tin FDM. tions are shown in the ﬁgure_ The antibondiﬁg and O'*

With a 8.3 A radius cluster and 141 atoms, convergenceyre present at the good energies. To get the cross section to

becomes satisfying. It can be seen in Fig. 4 that both apta|l to zero between them, the radius of the outer sphere must

proaches gives again very close results. be sufficient3 A). The addition of an outer sphere with a 1/
potential is necessary to get the Rydberg series. The MS

C. Testing the multipolar expansion in the ion core sphere calculation could be improved to also get the Rydberg series.

Calculations using different radii for the ion core sphereWith this result, we prove that the FDM is able to calculate
were performed using multipolar or monopolar expansiond? @ same run XANES spectra in molecules presenting unoc-
of the potential in the spheres. At the end, all of these calcu¢UPied bounded states together with the continuum states.
lations give very similar results. This is not surprising for
copper where the validity of the muffin-tin approximation is
well established and verified just above. That means that a
monopolar expansion is sufficient up to the muffin-tin radius, A. About the muffin-tin calculations
that is 1.28 A(without overlaping. A monopolar expansion
is obligatory sufficient for our low ¢ value.

The CO case is more interesting because, due to his low
symmetry, anl=1 term in the multipolar expansion is al-
ready nonzerdfor copper, after the spherical component, the
first non zero term is fot=4). In that case multipolar and
monopolar calculations were performed with=0.5A (to

VI. STUDY OF THE VALIDITY OF THE MUFFIN-TIN
APPROXIMATION

The muffin-tin approximation corresponds to a monopolar
representation of the potential. The potential in the interstitial
%gion is constant. Very often, overlapping muffin-tin
spheres are used to take into account a part of the scattering
power of the interstitial area. The use of overlapping spheres
is mathematically wrong but up to reasonable values of the
: ) - B . overlap that is 10% or 15%, the benefit remains greater than
compare with the inter atomic distance 1.13 Again, re- the error. It must be noticed that relatively good artificial

sults are very similar. agreement can even be reached in some cases playing with

| So,tW(-i.pIrove that in ?ch cI;_s;est(if ”;ate“?t'; trt]ﬁ mon?tpothe interstitial potential and the muffin-tin radius. These false
ar potential component 1S sutficient to describe the sca er|'mprovements can hide structural or electronic informations.

ing by the ion core Sphefe providirjg i_ts radius remains nota- As seen before, in a highly symmetrical system, the first
bly smaller than the half-interatomic distance. The only caseg -0 term in th’e multipolar expansion of the poyter(tial

where this concluspn would have to be verified concerr‘bart the spherical oneorresponds to the azimuthal quantum
heavy, low symmetrical atoms. numberl=4 (as in the copper fcc structyreThis fact also
concerns the interstitial area in case of overlap. The number
of spherical harmonics necessary to describe the wave scat-
A very simple molecule is chosen to check the validity of tering by an atom of radiuR is given by the maximum value
the FDM mode of calculation in an another class of com-of I: | ,,,,=KR, typically 3—6. The spherical expansion of the

D. Checking bonding states and Rydberg series
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Schralinger equatior(4) shows that the coupling terms be- N
tween the different harmonics are related to the multipolar
expansion of the potential. With few multipolar terms in the
| range of the wave expansion, it is not surprising that the
muffin-tin approximation be very good. The monopolar ex-
pansion of the potential is sufficient even in the overlapping
part of the muffin-tin spheres and so the interstitial region is
rather well described. Naturally, this is specially true when
the system is dense, because the interstitial region is there 0.00 —
anyway sufficiently small to be described by a constant po- 0 20 40 60 80 100
tential. Energy (eV)

To have the best possible MS muffin-tin calculation, a
specific attention is given on the choice of the muffin-tin  FIG. 6. FeK edge in the perfect Fe(ctahedron. Interatomic
radius and on the value of the interstitial potential. Over thedistance is 2 A. Full line: FDM dotted line: MS.

conventional assessment where it is stated that this last is “beerestimates the effect of this contraction and thus a fit on
average of the potential in the interstitial region, this inter-y,.c parameter would give an error of around 20%.

stitial region is not easy to define in the case of nonperiodic The |0ss of center of symmetry is very important for
procedure is chosen. The radius is then related to the expagan be fruitful if its calculation is sufficiently precise. So
sion of the atomic electronic densf§/A better choice is to  calculations are now performed for a ReMolecule, keep-
work directly on the potential. The best radius is the oneing the perfect oxygen octahedron, but the iron being dis-
which minimizes the potential Jump between the Sphere an(maced by 0.1 A toward the apic@bng 02 oxygen. The
the interstitial area. It is what we choose here. The seconfinear dichroism is strongefFig. 8). The large first peak for
point is around the muffin-tin overlap. A quite standard pro-polarization along, due to this loss of symmetry, is present
cedure is to work with a 10% to 15% overlap, because it hag both MS and FDM calculations. The differences are more
empirically been observed that it is with such overlap thafgcated in the edge region. When the polarization is perpen-
the agreement with experiment is often the best. For the folgicular to the iron displacement, the FDM calculation gives a
lowing we verified that the 10% overlap best agrémss the  sensitivity to this displacement. On the contrary, the MS cal-

less different with the non-muffin-tin calculations. So the culation is quite similar with the displaced or not displaced
MS calculations presented in the next sections use this ovefron (Fig. 6).

lap. The comparisons are there between FDM and MS cal-

0.04 [

0.02 [

Cross section (Mbarn)

P N WU (NS T S S NN SO ST S B

culations. Thus they show the difference between non- Asymmetrical oxides
muffin-tin (or full) potential and an improvedbecause More asymmetrical situations occurs when the first
overlapping muffin-tin potential. atomic shell is not complete around the absorbing atom. For
instance at a surface, the atoms of the first atomic plane have
B. Decreasing the symmetry no neighbor in the vacuum direction. It is what we roughly

. . . illustrate with calculations on a Fg®nolecule, where from
From the considerations above, it can be suspected thak &

decreasing the symmetry, non muffin-tin effect must increas- RSO
ingly influence the signal. To check this assumption, numeri- 0.04 . 7 \i e=(001) |
cal tests on small artificial iron—oxide molecules are realized. ’ Y
No special attention is given to the atomic charges or inter- :
atomic distances because the purpose is not to compare to an
experiment but only to evaluate the difference between
muffin-tin and non muffin-tin calculations.

0.02

0.00 P+
004 F

FeO; octahedra

Calculations on ordered and distorted e@tahedra are
performed. In Fig. 6, the calculations for the perfect octahe-
dron are shown. The Fe—O distance is 2 A and the O—Fe—-0O L
angles are 90°. The symmetry is cubic and the agreement 0.02 v FeO
between MS and FDM is very good. L & ]

Then the octahedron is contracted along thexis by Oz 10% contracted
10%. There is a loss of 2 fourfold axes, the iron remains a 0.00 Mt
center of symmetry. Figure 7 shows the linear dichroism 0 20 40 60 80 100
between the polarization parallel and perpendicular to the
contraction. The difference between MS and FDM is notice-
able in the 0-50 eV range. Comparing with the nondistorted FIG. 7. FeK edge in the contracted Fg@ctahedron. The con-
octahedron spectra in Fig. 6, it can be checked that MS unraction is 10% along Oz. Full line: FDM, dotted line: MS.

Cross section (Mbarn)

T
1

Energy (eV)
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0.04 [ =001 . 0.04 [ 1
0.02
/g 0.02 -
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: = 0.00 :
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B y y 0.02
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E v
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FIG. 10. FeK edge in the Fe@planar molecule. Full line:
FIG. 8. FeK edge in the Fe@octahedron. The iron is displaced EDM. dotted line: MSg ep

by 0.1 A toward the apical oxygen. Full line: FDM, dotted line: MS.
gen. From the previous perfect octahedron the two oxygen

the previous perfect octahedron, the apical oxygen is elimjatoms along Oz are eliminated. The very interesting fact is

nated. The differences between FDM and WMSg. 9) are that the main difference between MS and FDM is for the

. : . the MS calculatior(Fig. 10. The linear dichroism is used to
ner and the pre-edge is notably higher in the FDM calcula- tudy the Cu@ plane in cuprate. Errors in a muffin-tin cal-

tion. The analyses of the pre-edge is a lot of used in XANESzulation can affect strongly the interpretation of the corre-

because it accompanies very often a loss of center of Syngponding experiments

metry and because it is close to the Fermi level. A precise” g jjustrate a more general situation, some calculations
and quantitative evaluation of it is important and we see thag, 5 FeQ molecule are also performed. This hypothetical
it needs a full potential approach. . . molecule is taken as planar, the O—Fe—O angle being 120°.
Planar situations frequently occurs, for instance in therhe plane is perpendicular to Oz. Figure 11 shows the linear
new supra-conducting YBaCuO family with its Cyflanes.  dichroism. MS and FDM calculation are very different in all
This situation is illustrated with calculations on the ReO directions in the first 30 eV, especially for the polarization
molecule where the iron is surrounded by a square of oxyperpendicular to the plane of the molecule where again a
peak at 8 eV is absent in the muffin-tin calculation. The
e actual conclusion is than in case of low symmetry, the
e=(001) muffin-tin MS approach is not able to calculate confidently
0.04 1 k. T XANES in the lower energy range.

A typical low symmetrical example: the MbCO protein

0.02 1 To give a real example of distorted octahedron around an
J iron site, the carbonmonoxy-myoglobiiMbCO) protein is
; chosen. Protein is an important class of material where
0.00 [FH e XANES can play an important role in the determination of
| ‘ e=(100) | the local geometry around a central metallic atom. In the
0.04 ] 1 case of MbCO, the molecule is formed by a central iron
- E surrounded by four pyrrole ligands that surround the heme
Fe in a nearly perfect square planar symméinanother
0.02 © A pyrrole ligand stands beneath the plane and a CO is bonded
L FeO_ - on the other side to the central iron. Thus, the iron is sur-
000 st rounded by a distorted octahedra composed of six nitrogen
0 20 40 60 80 100 ?:rgi one carbon. An.apprommanon of the structure where the
is along theZ axis gives aC, symmetry.
Figure 12 presents the first step of the study of this com-
pound with only one distorted octahedron around the iron.
FIG. 9. FeK edge in the FeOmolecule. The apical oxygen is The difference between multiple scattering calculation and
missing. Interatomic distance is 2 A. Full line: FDM, dotted line: finite difference method is very strong. The FDM calculation
MS. is clearly closer to the experiment in both polarizations. For

Cross section (Mbarn)

Energy (eV)
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0.04 - FEO, e=(001)] 0.03
0.02
5
0.02 £ 00l
s .
; §  0.00
0.00 g
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g 0.04 3 L 4 i
=t = 2
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g 0.02 0.01 : ’ :
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Energy (eV)
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FIG. 12. FeK edge in the MbCO protein. Full line:FDM, dotted
line:MS, dashed line: experiment from Della Longaal3® The
0.02 molecule is in the inset. The calculation is limited to the surround-
' ing octahedron.
i , , , VII. CONCLUSION
0.00 =———t—r
0 20 40 60 80 100 The main result is that the FDM is a valuable tool to

Energy (eV) calculate the XANES. The second main result is the evalua-
tion of the accuracy of the muffin-tin approximation in the
FIG. 11. FeK edge in the Fepmolecule. The O—Fe—0O bond- threshold area. In case of low symmetry, the muffin-tin ap-
i_ng angle is 120°. Interatomic distances are 2 Full line: FDM, dOttedproximation is not sufficient in the edge energy range. This
line: MS. can be even more crucial for anomalous diffraction spectros-
. . copy where the signal is connected to differences between
the polarization along, the double structure typical of an atomic form factors and so to detailed part of the atomic
octahedrq is tra})nsformed in a unique round structure close té’ignal. A non-muffin-tin FDM calculation is substantially
the experiment; longer than a muffin-tin MS one, so the multiple scattering
_ _ method should be used whenever possible and even, in any
C. Discussion case, as a starting point. Then, in a second step, in case of

From these figures it can be clearly seen that by decreadow symmetry, and when the discrepancy with experiment
ing the symmetry the discrepancy between muffin-tin and€mains too important the FDM should be used. The next
non-muffin-tin calculations become stronger. The errors irstep of the present work concerns the inclusion of spin ef-
muffin-tin calculations can thus result in false interpretationfects in order to analyze the magnetic dichroism. Then, after
of data, and thus the fit of electronic or structural parametergssessing one body effect been safely realized, one should
can converge to imprecise values. It must be also noted th&ensider the many body effects.
the differences are mainly due to the interstitial area. Indeed,
in th_e non-muffin-tin c_alculation when inc_reasing t_he radii of ACKNOWLEDGMENTS
the inner spheres using a monopoftrat is spherical ex-
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