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Ground state of a chemically modulated Hubbard chain at half filling
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We have studied the Hubbard chain with a periodic variation of the site potential for the half-filled band by
using a real space renormalization group~RG! method complemented by a mean-field analysis. The ground
state phase diagram shows a transition between a charge density wave~CDW! and a spin density wave~SDW!.
The energy gap and the local moment, as obtained from the RG, clearly identify the phase transition in
agreement with the RG flow pattern. Within the mean-field approximation~MFA! the charge and spin order
parameters are calculated to trace out the transition. The phase diagram obtained by the RG calculation shows
excellent agreement with that obtained by the MFA especially in the weak- to intermediate-coupling region.
We have also calculated the Drude weight~within the MFA! to analyze the conductivity of such a chain of
finite length. The Drude weight also captures some interesting features of the competition between the SDW
and the CDW.
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I. INTRODUCTION

The problem of electronic correlation in one dimension
~1D! and two dimensional systems has been of interest
some time. The Hubbard model with nearest-neighbor h
ping and on-site electronic correlation has been considere
be the generic model in this context. This model is known
support antiferromagnetic spin density wave~SDW! order at
half filling for large values of the on-site correlation. How
ever, the effect of chemical modulation in the site poten
on the SDW phase is yet to be clearly understood. An
treme example of such an effect can be found in the Hubb
model with random disorder in the site potential, a probl
that already has created some interest.1 In the present work
we shall focus our attention on a case where the site ene
in a Hubbard chain vary alternately due to a modulation
the chemical environment. This is a case that has some
evance to thep-bonded chains on reconstructed~111! sur-
faces of Si.2 Very recently, such a model has been analyz
by Capraraet al.3 by using the mean-field level of approx
mation. We have studied the half-filled Hubbard chain w
alternating modulation in the site energy by using a r
space renormalization group~RG! technique4 which is ex-
pected to capture the effects of fluctuations in a lo
dimensional system to a reasonable extent. Our RG res
are then compared with the results of the mean-field appr
mation~MFA!. We trace out the SDW/CDW~charge density
wave! transition in the ground state of this system and o
serve that the variation of the site potential may result i
CDW phase even in the presence of a reasonably large v
of the on-site Hubbard interaction. The local moment,
obtained from the RG, and the spin and charge order par
eters, obtained from the MFA, show an interesting interp
of the two types of instability. Calculation of the Drud
weight for chains of finite length also gives some insight
this respect. In Sec. II we define the Hamiltonian and exp
the RG scheme. Section III describes the results obtaine
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the RG, pointing out the possible limitations of the prese
scheme. In Sec. IV we indicate the essential steps in
calculations of the MFA and present the results obtain
from it. A comparison of the RG results with the MFA re
sults is also indicated. In Sec. V we explain the calculation
the Drude weight for chains of finite length and show t
competition between the SDW and the CDW as reflected
these results. Section VI summarizes the present work.

II. THE MODEL AND THE RG CALCULATIONS

We consider the one band Hubbard model with an al
nating modulation in the site potential given by the Ham
tonian

H5eA(
i PA

ni1eB(
i PB

ni1t (
^ i j &,s

cis
† cj s1UA(

i PA
ni↑ni↓

1UB(
i PB

ni↑ni↓ , ~1!

where the bipartite 1D lattice is divided into two sublattic
A andB consisting of the odd and even sites, respective
cis

† (cis) is the creation~annihilation! operator for an elec-
tron of spins (5↑,↓) in the Wannier orbital at the sitei.
The number operatornis5cis

† cis andni5ni↑1ni↓ . t is the
hopping integral between nearest-neighbor sites denote
^ i j & and UA (UB) is the on-site Coulomb correlation for
site belonging to the sublatticeA (B). eA andeB are the site
energies on the two sublatticesA andB, respectively.

We divide the 1D chain into cells of three sites each
implementation of the RG.4 There are two types of cell, e.g
ABA and BAB. The ABA type cell contains terminal site
belonging to the sublatticeA while the central site belongs t
B. For the BAB cell A and B are interchanged. The ce
Hamiltonian is then diagonalized for both types of cell. O
the 64 states of the cell Hamiltonian only four low-lyin
©2001 The American Physical Society13-1
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states are retained for constructing the RG recursion. The
Hamiltonian has several conserved quantities, e.g., the
spin (S), thez component of the total spin (Sz), and the total
number of particles (n) in the cell. The Hamiltonian also
possesses spin-reversal symmetry. However, the modula
in the site potential excludes the particle-hole symmetry.
obtain the half-filled ground states we retain the lowe
energy states in the subspaces with$n52,S5Sz50%, $n
53,S51/2,Sz561/2%, and $n54,S5Sz50%. These four
states are identified with the renormalized on-site statesu0&,
u↑&, u↓&, andu↑↓&, respectively. By this process we identi
an ABA(BAB) type cell as a renormalized site belonging
theA (B) sublattice on the renormalized lattice. The para
eters of the Hamiltonian are then renormalized within t
truncated basis set.

To renormalize the hopping matrix elementt one evalu-
ates the matrix element ofcs

b between the renormalized ‘‘on
site states’’ wherecs

b is the annihilation operator for spins
at the boundary siteb of the cell. Here we have to conside
matrix elements ofcs

b(A) (cs
b for the ABA type cell! and

cs
b(B) (cs

b for theBAB type cell! separately. It turns out tha

ABA^n52,S5Sz50uc↑
b~A!un53,S5Sz5

1
2 &ABA5l1~A!,

ABA^n53,S52Sz5 1
2 uc↑

b~A!un54,S5Sz50&ABA5l2~A!,
~2!

BAB^n52,S5Sz50uc↑
b~B!un53,S5Sz5

1
2 &BAB5l1~B!,

BAB^n53,S52Sz5 1
2 uc↑

b~B!un54,S5Sz50&BAB5l2~B!,

where the subscriptABA(BAB) refers to states of the
ABA (BAB) type cell. Herel1(A)5” l2(A) and l1(A)
Þl2(A) due to the lack of particle-hole symmetry. How
ever, the matrix element for thec↓

b’s will have the same
magnitude as those for thec↑

b’s due to the spin-reversal sym
metry. We therefore make an approximation by defin
l(A)5Aul1(A)l2(A)u and l(B)5Aul1(B)l2(B)u so that
we can identify

cs
b~G!5l~G!cs8 ~G!, G5A,B. ~3!

This leads to the effective renormalized hopping

t85l~A!l~B!t. ~4!

Such approximations for finding the renormalized hopp
have already been used.5,6 The present approximation seem
reasonable because different approximations for thel ’s
@e.g., l(G)5Aul1(G)l2(G)u or l(G)5 1

2 $ul1(G)u
1ul1(G)u% with G5A,B# do not alter the final results
appreciably. Moreover, if we allow the different values
l1(A)@l1(B)# andl2(A)@l2(B)# we are left with four dis-
tinct hopping amplitudes corresponding to four density
pendent hopping processes. One could use the genera
Hubbard model with four hopping processes and, as we h
checked, such a generalization does not markedly alter
results at the cost of enlarging the parameter space.

Renormalization of the on-site quantities
straightforward:4
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UG85E4~G!1E2~G!22E3~G!,
~5!

eG85E3~G!2E2~G! where G5A,B.

Here, the primed quantities refer to the renormalized valu
E4 , E3, andE2 refer to the lowest energies in the subspac
corresponding ton54,3, and 2, respectively. We start wit
UA5UB5U and observe thatUA85UB8 at all subsequent it-
erations.

Hence one can calculate the ground state energy per
(E0) by computing the sum

E05
1

2 (
n51

`
@E2

(n)~A!1E2
(n)~B!#

3n
,

wheren denotes thenth stage of iteration in the summation
We can also calculate the local momentL0 defined by

L05
3

4
~n↑2n↓!2.

In the absence of particle-hole symmetry this leads to
recursion relation

L05a1bL081cP8,

where P5(n↑1n↓)(n↑1n↓21) obeys a recursion relatio
of the form

P5d1eL081 f P8

with a, b, c, d, e, and f quantities obtained from the matri
elements ofL0 and P between the truncated basis states
the cell Hamiltonian. The operatorsL0 andP are considered
for the central site of the cell to minimize the bounda
effects.4 In spite of having two types of cell (ABA andBAB)
we obtain the same value forL0 for both cells.

III. THE RESULTS OF THE RG CALCULATIONS

We start our iteration witheA50, eB5e>0, and UA
5UB5U>0. As we mentioned earlier, in this particula
problem we obtainUA85UB8 at all stages of iteration;eA8 and
eB8 , however, go on changing with each iteration. The ph
transition from the CDW to the SDW phase can be identifi
by plotting the RG flow patterns in the ‘‘effective’’ param
eter space$U/t,(eB2eA)/t%. The line of repulsion of the
flow lines indicates the phase boundary~Fig. 1!. Starting
from any point above this line the RG flow tends to go to t
fixed point$0,̀ %, indicating a CDW phase, while any poin
below the boundary flows to$`,0%, which is the SDW fixed
point. There is, however, a noticeable difference in the fl
patterns in these two regimes. In the CDW regime the fl
lines approach the$0,̀ % fixed point in a monotonic fashion
while in the SDW sector the flow lines appear to devia
away from theU/t axis before finally bending toward th
$`,0% fixed point. This perhaps is a signature of the resid
CDW fluctuations competing with the SDW ordering in th
sector. Such a behavior is also observed in our analysi
the order parameters in the MFA. This effect was also no
in Ref. 3. The flow diagram also shows that the meta
3-2
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fixed point$0,0% is a singular one and, therefore, the pres
model is always insulating for the half-filled band in a 1
system.

The phase boundary~Fig. 2! identified from the plot of
the flow lines can further be verified to be the line alo
which the energy gap vanishes. The energy gapD between
the first excited state and the ground state is plotted aga
U/t for different values ofeB2eA ~Fig. 3!. For a given value
of eB2eA the energy gap decreases first with inreasingU/t
and vanishes for a critical value (U/t)c of U/t. For U/t50
the system becomes a CDW insulator with a tendency
predominantly occupy the sites with lower site potential~i.e.,
A sites sinceeA,eB) while avoiding the others. AsU in-
creases it becomes energetically favorable to break up
double occupancies and, therefore, the CDW energy ga
reduced. This scenario persists up to (U/t)c where the criti-
cal competition between the electronic correlation and
modulation of the site potential makes the spectrum gapl

FIG. 1. RG flow diagram for the half-filled band Hubbard mod
with alternating site potentials in one dimension. For the sake
simplicity an ‘‘effective’’ parameter space$(eB2eA)/t,U/t% is cho-
sen. We always start witheA50 with eB5eB2eA . The arrows
show that the$0,0% point is a singular one. The tendency for th
flow lines in the SDW sector to go over to$`,0% is not clearly seen
from the present diagram because the turning off takes plac
much higher values ofU/t than those shown on the plot.

FIG. 2. The phase diagram of the half-filled band Hubba
model with alternating site potentials in one dimension. The ph
boundary obtained in the RG scheme is compared with that
tained by the MFA. To draw this phase diagram in the$eB

2eA ,U% space we always started fromeA50 with eB5eB2eA and
t51.0. The phase boundary for the atomic limitt50 is also shown.
12511
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However, the gap opens up again with increasing value
U/t as the antiferromagnetic SDW phase sets in. A plot
the (U/t)c’s againsteB2eA generates the same phase boun
ary as obtained from the RG flow. It is interesting to no
that the exact value of the energy gap (5eB2eA) for the
CDW insulating phase forU/t50 is reproduced in the RG
scheme.

The local momentL0 plotted againstU/t ~Fig. 4! for a
fixed value ofeB2eA also captures the transition betwee
the CDW and SDW states. In the CDW phase the tende
to form pairs is more pronounced for the half-filled ban
therefore,L0 assumes a low value. However,L0 goes on
increasing as the pairs tend to break up with the increas
U/t. In the SDW sector the rise ofL0 is faster compared to
that in the CDW regime, as one should expect on phys
grounds. The discontinuity in the slope of the local mome
~clearly visible in the plot ofL0 for higher values ofeB
2eA) marks the CDW/SDW transition.

The ground state energy per siteE0 varies smoothly with
U/t across the CDW/SDW transition~Fig. 5!. E0 calculated
from the RG, however, gives an upper bound4 to the exact

l
f

at

e
b-

FIG. 3. The energy gapD scaled by the hopping integralt is
plotted againstU/t for different values ofeB5eB2eA with eA

50. For eB50, D is always nonzero except forU/t50. For eB

Þ0 the gap vanishes at a certain value ofU/t which marks the
CDW/SDW transition.

FIG. 4. The local momentL0 is plotted againstU/t for different
values of eB5eB2eA with eA50. For eB50, L0 increases
monotonically while foreB5” 0 there appears a discontinuity in th
slope ofL0 at the point of transition. This becomes evident if Fig.
is compared with the present figure. The magnitude of the disc
tinuity in the slope increases with the increase ofeB and, therefore,
it is very hard to detect this effect for smaller values ofeB .
3-3
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GUPTA, SIL, AND BHATTACHARYYA PHYSICAL REVIEW B 63 125113
energy and converges to the exact value@(eB1eA)/2# as
U/t→`.

It should be noted that the approximations introduced
the truncation of the basis set of the cell Hamiltonian m
give rise to some trouble in the strong-coupling regime of
parameter space of the present model. The effect of tru
tion of the basis set and the approximation introduced by
small size of the cells are well known for the present R
scheme4,7,8 although these effects do not mask the essen
physical properties of a system of correlated electrons.4,9–11

In the present model, however, the competition between
modulation of the site potential and the Hubbard correlat
makes the situation a difficult one. Since we are conside
two types of cell ABAandBAB, the lowest-lying states re
tained in two neighboring cells may have considerably d
ferent energies in the strong-coupling regime$(eB2eA)/t
@1,U/t@1%. As a result of this, the energy scale chosen
the retained states in one type of cell may be such that s
of the discarded states in the other type of cell may h
energies falling within this range; this, of course, may res
in some inaccuracies in the results. In our case we fin
signature of this feature in the strong-coupling regime of
phase diagram. For very large values ofU/t the phase
boundary is expected to merge with the lineU5eB2eA ~ob-
tained in the atomic limit!. However, the convergence of th
phase boundary obtained in the RG with that of the ato
limit is much slower~almost undetectable in Fig. 2! than that
of the phase boundary obtained in the MFA. This inadequ
of the present RG calculation may be overcome by usin
scheme12 where more levels can be retained at each iterat
A density matrix RG scheme7 may also lead to a better re
sult.

IV. THE MEAN-FIELD CALCULATIONS

We now attempt a mean-field analysis13 of the present
model. We define the following parameters in terms of
expectation values of the number operators at sites belon
to different sublattices:

n5nA↑1nA↓1nB↑1nB↓ ,

m5~nA↑2nA↓!2~nB↑2nB↓!, ~6!

FIG. 5. Plot of the ground state energy per siteE0 ~obtained
from the RG! scaled by the hopping integralt againstU/t for dif-
ferent values ofeB5eB2eA with eA50.
12511
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c5~nA↑1nA↓!2~nB↑1nB↓!.

HerenAs andnBs ~with s5↑,↓) are the expectation value
of nis for i PA and i PB, respectively.

Now the Hubbard interaction term is decoupled in ter
of the parameters defined above. This leads to the mean-
decoupled Hamiltonian,

H5S eA1
U

4
~c2m! D (

i PA
ni↑1S eB2

U

4
~c2m! D (

i PB
ni↑

1S eA1
U

4
~c1m! D (

i PA
ni↓1S eB2

U

4
~c1m! D (

i PB
ni↓

1t (
^ i j &,s

cis
† cj s1

UN

16
~n22c21m2!, ~7!

whereN is the number of sites in the chain.H can be readily
diagonalized by a canonical transformation13 to yield the
ground state energy per site for the half-filled band,

E05
1

2 S eA1eB1
U

2 D1
1

16
U~11m22c2!2

1

2N (
j 50

N/221

3FAS eA2eB1
U

2
~c2m! D 2

18t2~11cos 2kj !

1AS eA2eB1
U

2
~c1m! D 2

18t2~11cos 2kj ! G ,
~8!

as a function ofc andm for given values ofU, t, eB , andeA
for even values of the chain lengthN. Thekj ’s are given by

kj5
2p j

N
with j 50,1, . . . ,N/221.

However, the choice of even values ofN does not matter as
we let N approach the thermodynamic limit, i.e.,N→`,
keeping the filling constant.

Now, minimization of the ground state energy with r
spect to the spin and charge order parameters,m and c, re-
spectively, determines the unique values ofc andm and the
energy per site in the ground state. This amounts to solv

]E0

]c
50 and

]E0

]m
50.

This leads to the two coupled equations

c5
2

N (
j 50

N/221
~eB2eA!2~U/2!~c2m!

A@eA2eB1~U/2!~c2m!#218t2~11cos 2kj !

1
2

N (
j 50

N/221
~eB2eA!2~U/2!~c1m!

A@eA2eB1~U/2!~c1m!#218t2~11cos 2kj !
,

~9!
3-4
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m5
2

N (
j 50

N/221
~eB2eA!2~U/2!~c2m!

A@eA2eB1~U/2!~c2m!#218t2~11cos 2kj !

2
2

N (
j 50

N/221
~eB2eA!2~U/2!~c1m!

A@eA2eB1~U/2!~c1m!#218t2~11cos 2kj !
,

~10!

where these two equations are solved self-consistently to
c, m, and henceE0.

The charge order parameterc assumes a high value in th
CDW sector and gradually decreases with increasingU/t
~Fig. 6!. It suddenly jumps down across the CDW/SDW tra
sition point at a value (U/t)c of U/t. Then it slowly goes on
decreasing with increasingU/t. On the other hand, the spi
order parameter is perfectly zero in the CDW phase and s
denly jumps up to a finite value across the transition po
(U/t)c . In the SDW phasem gradually increases to th
maximum possible value@according to our definitions~6! c
andm can vary between 0 and 2#. Plots ofc andm show that
an increase ineB2eA enhancesc and suppresses the value
m as it favors charge ordering over antiferromagnetic ins
bility. The values of (U/t)c for different eB2eA thus ob-
tained give rise to the phase diagram within the MFA~Fig.
2!. It is interesting to note that the phase boundary obtai
in the MFA scheme agrees nicely with that obtained in
RG especially in the regime of weak to intermediate co
pling. It seems, therefore, that the agreement between
results obtained in two widely different schemes occurs
cause the approximations involved in these calculations
not seriously affect the results~as far as the CDW/SDW

FIG. 6. Plots of~a! the spin order parameterm and ~b! the
charge order parameterc againstU/t for different values ofeB

5eB2eA with eA50. Across the transition point the order param
eters show discontinuities, the magnitudes of which increase
increasing values ofeB .
12511
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transition is concerned! for the present model in the weak- t
intermediate-coupling regime of the parameter space. H
ever, we find a departure of the phase boundary obtaine
the RG from that obtained in the MFA in the strong-coupli
region of the parameter space~Fig. 2!. Here we find a
gradual bending of the mean-field phase boundary tow
the transition line (eB2eA5U) obtained in the atomic limit
(t50, for which a transition occurs from a CDW to a sing
occupied paramagnetic phase!. This feature must show up a
(eB2eA)/t→0 andU/t→0 and its absence in the RG resu
points out some limitation of the present RG scheme in
strong-coupling region as noted in Sec. III.

One interesting feature showing up in Fig. 6 is that t
spin order parameterm vanishes in the entire CDW regio
while in contrast to this the charge order parameterc does
not vanish identically in the SDW region. ForU/t values
very close to (U/t)cc has an appreciable value~although
much smaller than that ofm) and goes on gradually decrea
ing with increasingU/t. This shows that there exists a cru
cial competition between the charge and spin ordering in
bilities near the transition line inside the SDW region and n
within the CDW sector. The signature of this effect has
ready been noted in our previous discussion of the RG fl
diagram. This effect was previously observed in Ref. 3.
the next section we shall again address this issue in the
text of calculation of the Drude weight for finite chains.

The ground state energy per siteE0 calculated from the
MFA scheme~Fig. 7! becomes exact fort50 and for U
50. It turns out that the value ofE0 obtained in the MFA
calculation is significantly lower than that obtained in the R
scheme in the weak- to intermediate-coupling region. Ho
ever, in the strong-coupling regime the MFA result~for E0)
quickly approaches the RG result.

V. THE DRUDE WEIGHT AND THE CONDUCTIVITY

In order to study the conductivity of the present model
a finite chain one can study the response to a small s
electric field in terms of the Drude weight.14,15 We take a
finite chain ofN sites~with evenN) in the form of a ring that
is threaded by a fluxF ~in units of the basic flux quantum
f05\c/e). This modifies the hopping term in the Hami
tonian ~1! by a phase factor involving the vector potenti

th

FIG. 7. Plot of the ground state energy per siteE0 ~obtained
from the MFA! scaled by the hopping integralt againstU/t for
different values ofeB5eB2eA with eA50.
3-5
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GUPTA, SIL, AND BHATTACHARYYA PHYSICAL REVIEW B 63 125113
f5F/N. The hopping term appears as

t (
s,i 51

N

~cis
† ci 11seif1ci 11s

† cise2 if!,

where the lattice spacing is set equal to unity. As origina
noted by Kohn,16 the Drude weightD can be calculated from

D5
1

N F ]2E~f!

]f2 G
f50

, ~11!

where E(f) is the ground state energy of theN-site ring
threaded by the fluxF5Nf.

The ground state energyE(f) has been calculated withi
the MFA scheme as discussed in Sec. IV.E0(f)
5E(f)/N, the energy per site in the presence of the thre
ing flux F, can be calculated from the expression~8! for E0
together with Eqs.~9! and~10! ~arising from minimization of
the energy with respect toc andm) with kj replaced bykj
1f.

The plot of the Drude weight as a function ofU/t for
different values of the system sizeN ~Fig. 8! shows that the
conductivity goes down to zero for the thermodynamic lim
this indicates that the system is insulating in this limit. Ho
ever, for small enough system size there is a possibility
having a finite~maybe small! value ofD. Figure 8~a! shows
that the SDW phase~for eB2eA50) supports a finite value
of D for small system sizes for smaller values ofU/t where
the SDW fluctuation is weak. For large values ofU/t the
conductivity goes to zero owing to an insulating antiferr
magnetic order.D suddenly drops down to zero at a defin
value ofU/t, which shifts towardU/t50 with increasingN.
For eB2eA5” 0, D is almost zero inside the CDW regio
owing to the insulating charge order. This points out t
basic difference between the SDW and CDW fluctuations
regard to the conduction properties. This competing natur
these two types of instability is revealed in Figs. 8~b! and
8~c!. D suddenly jumps up across the transition point (U/t)c
in going from the CDW to the SDW phase and then gra
ally falls down to zero. The sudden increase inD is triggered
by the onset of the SDW instabilities; however, the nonz
value of D is less sustained due to the residual CDW flu
tuations inside the SDW sector. AseB2eA increases the
value of D around (U/t)c decreases, because with the e
hancement of the chemical modulation the value of (U/t)c
also increases and consequently both the spin- and cha
ordering fluctuations are strengthened enough to suppres
conductivity. It is also interesting to note that for a fixe
value ofeB2eA the value of (U/t)c decreases with increas
ing N, as evident from the plots of the Drude weight. This
because the enhanced hopping effect smears out the effe
modulation in the site potential with a tendency to disfav
the charge order.

The competing nature of the SDW and CDW instabiliti
is further shown in the plot of the Drude weight against t
system sizeN for fixed U/t andeB2eA ~Fig. 9!. We find that
D falls sharply with increasingN up to a certain value ofN
and then suddenly jumps to a large value, and then a
decreases withN ~for U/t51.23 andeB50.1,eA50). We
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have already noted from Fig. 8 that (U/t)c increases with
decreasing Nand, therefore, at a fixed value ofU/t we can
enter SDW ordering from the CDW ordering just by increa
ing N. We can find a fixed value ofN ~sayN0) for which this
particularU/t is (U/t)c . For N,N0 we surely find CDW
ordering whileN.N0 gives a SDW sector. This gives rise t
the enhancement ofD at N5N0. Moreover, we note that for
a higher value ofU/t ~for which N0 is much smaller than the
lowest N included in Fig. 9! there is a gradual, monotoni
decrease ofD with N, which is expected in the SDW secto
Now comparing these two graphs~with different U/t) we
find that the Drude weight diminishes with an increase
U/t in the region whereN.N0 (N0 corresponding toU/t
51.23). In this region, both the curves correspond to SD
ordering. Hence a decrease inD is expected with the
strengthening of the antiferromagnetic fluctuations for lar

FIG. 8. Plot of the Drude weightD againstU/t for different N
for eB5eB2eA with eA50: ~a! eB50.0, ~b! eB50.1, and~c! eB

50.2. Across the transition~for eB.0) D jumps up and the tran-
sition point is seen to shift toward lower values ofU/t for increas-
ing system size. The length of the chainN is chosen not to be a
multiple of 4 because in this case there appears a discontinuit
the slope ofE(f) acrossf50 ~Refs. 14,15! which prevents the
application of Eq.~11!.
3-6
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values ofU. As a result of this the curve with the lower valu
of U/t lies above the curve with the higherU/t. However,
the reverse is found belowN0 where the smaller value ofU/t
corresponds to CDW ordering while the curve for higherU/t
still corresponds to the SDW sector. It is interesting to n
how the CDW fluctuationsuppresses the conductivitysuch
that D increases in spite of the increase of the repulsive
teractionU in this region.

VI. CONCLUSION

Summarizing, we have studied a 1D model of electro
interacting via an on-site Hubbard correlation and moving
a chemically modulated lattice of alternating site potentia
We have primarily used a real space RG scheme suit
adapted for the present problem; this technique is know
retain to a great extent the effects of fluctuations of lo
dimensional systems. This is supplemented by a MFA

FIG. 9. Plot of the Drude weightD againstN for different U
~taking t51.0). ForU/t51.23 the curve dips down atN5N0, for
which (U/t)c51.23.N0 for U/t51.24 falls beyond~smallerN) the
graph.
.

12511
e

-

s
n
.
ly
to
-
d

calculation of the conductivity for finite-sized chains. O
study, for the half-filled band, shows a transition from t
CDW to the SDW phase. The phase diagram obtained by
RG calculations agrees nicely with that obtained in the M
for the weak- to intermediate-coupling regions in the pha
diagram. The agreement between the results obtained in
different approximation schemes lends some support to
results obtained in this regime. Moreover, these two te
niques appear to be complementary to each other for
present problem. The local moment calculated from the
marks the transition by a discontinuity in its slope while t
mean-field order parameters jump discontinuously across
transition. The energy gap, as estimated from the RG ca
lations, also vanishes at the phase boundary. However,
MFA captures in a better way the bending of the pha
boundary toward that of the atomic limit of the model. Th
apparent inefficacy of the present RG scheme, however,
already anticipated in terms of the effect of truncation of t
basis in the presence of very strong modulation in the che
cal environment. The Drude weight shows that the pres
model is always insulating in the thermodynamic limit and
is in agreement with the RG flow. For small systems t
conductivity assumes a nonzero value across the trans
from the CDW to the SDW sector; this is due to the onset
weak SDW fluctuations which favor conduction compared
the charge ordering instabilities. On the SDW side of t
transition the interplay between the spin and charge orde
makes the Drude weight less sustained. This feature,
evident from the mean-field order parameters and the tre
in the RG flow lines, is in agreement with a previous res
for this model.3 It seems interesting at this point to inves
gate this model in higher dimensions and also for finite te
peratures. The present study indicates that the MFA sch
may be a reliable tool for such studies for this model. T
effect of the band filling will also be of great interest.
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