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Global structure of ground-state phase diagrams in the one-dimensional anisotropic extende
Hubbard model
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We discuss global structures of ground-state phase diagrams in a one-dimensional half-filled electron system
with on-site and spin-dependent nearest-neighbor-site Coulomb interactions. We compare our numerical cal-
culation data for phase boundary lines with their analytical expressions in three limiting regions of interaction
parameters and find good agreement between them. In the intermediate-coupling region, however, we observe
nontrivial structures of phase diagrams: For systems with weak easy-plain anisotropy, both the bond-located
spin- and charge-density-wave phases are realized. The latter contacts with the ferromagnetic phase stabilized
in the strong-coupling region. On the other hand, when anisotropy becomes large, the intermediate phase
disappears and consequently a direct transition between the former and ferromagnetic phase is observed.
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I. INTRODUCTION
So far, interacting electron systems have attracted g

interest in the research of electric and magnetic propertie
materials.1 Especially, since the discovery of the high-Tc su-
perconductor, two-dimensional~2D! electron systems hav
been intensively studied and a large number of investigat
have been devoted to the understanding of many-body
fects caused by electron correlations. But in general, s
precise descriptions on the low-energy and long-distance
haviors of systems should be required as a first step,
quite difficult to understand them. In investigating on
dimensional ~1D! quantum systems, however, th
Tomonaga-Luttinger liquid~TLL ! picture was established o
the basis of conformal field theory~CFT!, which now per-
mits us to describe low-energy physics more accurately t
before.2–4 In this situation, it is naturally expected that pr
cise understandings on 1D interacting electron syste
should throw some light upon problematic researches of
systems.5

The 1D extended Hubbard model~EHM! including the
nearest-neighbor Coulomb interaction has been recogn
as the simplest but relevant model to 1D materials;
Hamiltonian isHEHM5HHM1HE with

HHM5 (
j ,s56

2t~cj ,s
† cj 11,s1H.c.!1

U

2
nj ,1nj ,2 , ~1!

HE5(
j

Vnjnj 11 , ~2!

wherecj ,s annihilates an electron with spins on j th site and
nj ,s[cj ,s

† cj ,s (HHM is the Hubbard Hamiltonian!. Using cj
†

[(cj ,1
† ,cj ,2

† ), a charge onj th site is nj[cj
†
•cj . For ex-

ample, the half-filled EHM was recently used to descr
low-energy features of Sr2CuO3 observed in the electron
energy-loss spectroscopy~EELS! measurement; the mode
parameters were determined ast50.55 eV,U54.2 eV, and
V51.3 eV.6

On the other side, investigations on ground-state prop
ties have been intensively performed: At half filling, Fou
0163-1829/2001/63~12!/125111~9!/$15.00 63 1251
at
of

s
f-
e
e-
is
-

n

s
D

ed
s

e

r-

cade and Spronken7 found a continuous transition betwee
the spin-density-wave~SDW! and charge-density-wav
~CDW! states near the 2V5U.0 line by use of real-space
renormalization-group~RG! and exact diagonalization meth
ods. While continuum field theory8 ~perturbative
approaches9! predicts SDW-CDW transition to take place o
2V5U line in the weak-coupling~strong-coupling! limit,
Hirsch,10 employing a quantum Monte Carlo simulatio
method, clarified that it occurs at a certain value 2V* larger
thanU, which is in accord with the above-mentioned calc
lation results, and further he found a crossover from a c
tinuous to first-order transition at a point 2V.U.3 ~with
taking t as energy unit!. Following these, many numerica
investigations11–14 as well as analytical ones15,16 have been
performed to obtain quantitatively reliable phase diagram
but mainly due to limitations in usable approaches, prec
understanding on this model was not obtained.

Quite recently, Nakamura17,18 investigated half-filled
EHM by employing the so-called ‘‘level-spectroscopy
method19 and predicted a remarkable phase diagram, wh
an existence of the intermediate ‘‘bond-located’’ CD
phase~to be defined below! is exhibited in the weak- and
intermediate-coupling regions. Further it was conjectu
that the above-mentioned crossover is realized on a confl
point of continuous transition lines in charge and spin pa
This novel method which was initiated by Jullien an
Haldane20 and extensively developed by Nomura a
Okamoto21 is based upon CFT, RG, and symmetry propert
of excitations observed in TLL. And it is being recognized
powerful in investigations of 1D electron systems17,18,22,23as
well as quantum spin chains.24–26

Following these developments, the present author has
cently investigated many-body effects of spin-depend
non-point-like Coulomb interactions through the 1D ha
filled ‘‘anisotropic’’ extended Hubbard model~AEHM! de-
fined by the Hamiltonian:HAEHM5HHM1HAE with

HAE5 (
j ,s56

~V1nj ,snj 11,s1V2nj ,snj 11,2s! ~3!
©2001 The American Physical Society11-1
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HIROMI OTSUKA PHYSICAL REVIEW B 63 125111
in the repulsive case (U, V1,2.0).27 There we parametrized
spin-dependent Coulomb interactions asV1,25V(17d) ~the
upper sign refers to the former in such expressions!. Then
HAEHM expresses EHM with a U~1!-symmetric exchange
coupling24dVSj

zSj 11
z , so the system acquires easy-plain

easy-axis anisotropy depending on the sign ofd. Here Sj
m

[ 1
2 cj

†
•sm

•cj is the spin operator onj th site (sm is themth
Pauli matrix!. This model was originally introduced as th
simplest one for excitonic insulators28 characterized by the
existence of nonzero local charge or spin currents and
g-ology arguments on this model were performed.29 In the
previous paper, we numerically determined transition po
and constructed ground-state phase diagrams of AEHM w
weak anisotropy (20.1<d<0.2) in the weak- and
intermediate-coupling regions (0<U<5).27 We then ob-
served that while the bosonization prediction accurately
produces our data in the weak-coupling limit, calculat
boundaries considerably deviate from it with the increase
interactions. Especially, in the easy-plain anisotropy regi
we found a crossing of boundary lines which provides a m
ticritical point of four phases. In the easy-axis anisotro
region, the intermediate bond-located CDW phase is
served which is the same as the abovementioned E
case.17,18

While our previous research was restricted to the w
anisotropy systems in the weak- and intermediated-coup
regions, quantitatively reliable phase diagrams in entire
gion of interaction parameters are desired. Therefore, in
paper, we present global structures of the ground-state p
diagrams of AEHM and clarify the spin-dependent no
point-like Coulomb interaction effects on 1D electron sy
tems. The organization of this paper is as follows. In Sec
using effective Hamiltonians in three limiting regions, i.e
the weak-coupling (U, V,1), spin-limit (U@1, V,1), and
strong-coupling (U, V@1) regions, we analytically describ
some possible scenarios of phase transitions. In Sec. III
explain numerical calculation methods by which transiti
lines predicted in Sec. II are accurately determined. In S
IV, we show phase boundaries obtained by numerical ca
lations, which will be closely compared to those given
Sec. II. To serve a reliability of our calculations, we al
perform a consistency check among different types of e
tations. Section V is devoted to discussions and summar
the present investigation; a characterization of phases wi
performed by using order parameters corresponding to e
tron excitations.

II. THREE LIMITING REGIONS

A. Weak-coupling region „U, VË1…

First we summarize scenarios of phase transitions in
weak-coupling region. In studying 1D electron systems,
following bosonization identity30 is quite useful: cj ,s
→( r 56erik Fxc r ,s(x) with

c r ,s~x!5
1

A2pa
ei [ r (fr1sfs)2(ur1sus)]/A2. ~4!
12511
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Here the Fermi wave numberkF[pn/2 taking the lattice
constanta51, an electron densityn[N/L andL (N) is the
number of sites~electrons!. The indexr 51 (2) denotes
the right-going~left-going! branch of the linearized cosine
band anda is a short distance cutoff. The bosonic opera
un (n5r or s) is the dual field offn and satisfies the com
mutation relation@fn(x),]yun8(y)#5 ipd(x2y)dn,n8 . Ac-
cording to the bosonization procedure,8,31 the phase Hamil-
tonian of AEHM is extracted; at half fillingn51, it consists
of the following three parts:H5Hr1Hs1He,

Hn5
vn

2pE dxFKn~]xun!21
1

Kn
~]xfn!2G

1
2gn

~2pa!2E dx cosA8fn , ~5!

He5
2g3i

~2pa!2E dx cosA8fr cosA8fs . ~6!

HereKn andvn are the Gaussian coupling and the veloc
of elementary excitations. Three parametersgr , gs , andg3i
stand for the Umklapp scattering, the backward scatter
and a spin-charge coupling, respectively; they may take s
tems out of the TLL universality class. According to the R
argument,15 the energy scale ofHe is larger than those of the
others; we thus suppose thatHe is irrelevant at least in the
weak-coupling region so that spin-charge separation occ
Consequently, each degree of freedom is described by
quantum sine-Gordon model~QSGM! HamiltonianHn .

The RG equations forHn are derived by changing th
short distance cutoff constant asa→aedl; then the
Berezinskii-Kosterlitz-Thouless~BKT! type equations are
obtained within the one-loop calculation:32

dyn,0~ l !

dl
52yn,1

2 ~ l !,
dyn,1~ l !

dl
52yn,0~ l !yn,1~ l !, ~7!

where yn,052(Kn21) and yn,15gn /pvn . Figure 1 gives
the schematic RG-flow diagram. Since the bosonization p
cedure leads the following relations between these par
eters and those in the original HamiltonianHAEHM , i.e.,
2pvF(Kr,s21).7(U64V112V2) and gr,s.(U22V2)
~notice that to get the latter relation, the origin offr was
appropriately shifted!, we can get types and approxima
points of phase transitions as follows. Let us see the sys
with increasingV, but keepingd andU fixed ~i.e., along the
arrows in Fig. 1!. In the easy-axis anisotropic cased,0, one
finds that both charge and spin parts are massive except
point yn,150 (yn,0,0), i.e.,

2VG* .
U

11d
, ~8!

where the Gaussian-type second-order transition occurs
the easy-plain anisotropic cased.0, the critical point Eq.
~8! and the type of the transition do not change in the cha
part, but the spin part is expected to realize the hidden-SU~2!
BKT transition on the lineys,052ys,1.0, thus
1-2
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2VBKT* .
U

12d
, ~9!

which follows the stable Gaussian fixed point Eq.~8!.

B. Spin-limit region „Uš1, VË1…

Next, we consider the regionU@1 and V,1 where
charge fluctuations are almost suppressed. An effec
model in this limit is theS5 1

2 XXZ chain defined by the
Hamiltonian

HXXZ5J(
j

~Sj
xSj 11

x 1Sj
ySj 11

y 1DSj
zSj 11

z !, ~10!

whereJ.4/U andD.12dVU. Now since the exact solu
tion for this effective Hamiltonian is given by the Beth
ansatz method,33 we can draw phase boundaries of AEHM
this limit. For 21,D<1 the ground state ofHXXZ is in the
spin-liquid phase where the Gaussian couplingKs is given
as34,35

Ks5
2

11~2/p!sin21D
. ~11!

After the BKT transition atD51, the Néel phase is realized
in 1,D. This inequality is always satisfied~unsatisfied! in
the easy-axis~easy-plain! anisotropic case. On the othe
hand, the conditionD521 whereKs diverges to1` is
known to define the first-order phase transition point
tween the liquid and ferromagnetic phases, so it provide
phase boundary for AEHM

VF-SDW* .
2

dU
, ~12!

FIG. 1. Schematic representation of RG-flow diagram of QSG
~we dropped the indexn). Right three arrows show trajectories o
bare couplings in the spin part~with the increase ofV but d andU
fixed!. Double circle with an arrow corresponds to the charge p
12511
e

-
a

which separates the ferromagnetic phase from a SDW-t
one in the easy-plain anisotropic case.

In addition to the phase transition lines, a conditionD
50 @i.e., theS5 1

2 XY chain (Ks52)] expresses a point on
the stable Gaussian fixed line in this region; for AEHM th
is rewritten as

VXY.
1

dU
. ~13!

We expect that this line behaves as Eq.~8! in the weak-
coupling region. In Sec. IV C we shall perform a consisten
check of numerical calculation data on this line.

C. Strong-coupling region „U, Vš1…

Last we consider the strong-coupling region where
kinetic energy of electrons is negligible compared to t
Coulomb potential energy, so the effective Hamiltonian
given by

Hcl.5(
j

~Unj ,1nj ,21Vnjnj 1124dVSj
zSj 11

z !. ~14!

This model is diagonal in the configuration space of el
trons. Ford50 two types of ground states are realized, i.
the twofold degenerate CDW state~energy ECDW5 1

2 LU)
and a 2L-fold degenerate spin-state with all sites singly o
cupied (Espin5LV). These two types of states are separa
by the first-order transition line 2V5U. When d takes a
nonzero positive~negative! value, the ferromagnetic~Néel!
state fully gains the energy through the U~1!-symmetric ex-
change coupling asEF (ENéel)5LV(12udu), and thus the
degeneracy of spin-state is lifted, althoughECDW is un-
changed. Consequently we can estimate a phase boun
between the ferromagnetic~Néel! and CDW states as

2VF-CDW,N-CDW* .
U

17d
~15!

up to leading order inU andV ~although more accurate es
timations are possible using perturbation calculations,
employ this expression in the following sections!. In the
easy-plain anisotropic case, the ferromagnetic phase bo
ary given by Eq.~15! is expected to behave as Eq.~12! in
that limit. This can be directly confirmed through a compa
son between numerical calculation data and limiting beh
iors; we shall check this in Sec. IV B.

III. NUMERICAL CALCULATION METHODS

A. Continuous phase transitions

We have seen qualitative descriptions on phase transit
in AEHM, but for the aim of quantitative discussions o
global structures of phase diagrams, numerical calculati
are unavoidable. We employed the level-spectrosc
method to treat continuous phase transitions, i.e., Gaus
and hidden-SU~2! BKT ones. Therefore, in this subsectio
we briefly summarize some relevant points of this method

t.
1-3
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our calculations. A criterion to determine ferromagnetic tra
sition points will be discussed in the next subsection.

Let us start with considering the following operators:

On,1[A2 cosA2fn , ~16!

On,2[A2sinA2fn , ~17!

On,3[exp~1 iA2un!, ~18!

where On,1 and On,2 denoten-channel current excitation
while On,3 expresses those accompanied by the change o
total amount ofn. Here CFT says that in finite-size system
the excitation energy corresponding to these operators
expressed by their scaling dimensionsxn,i as

DEn,i.
2pvn

L
xn,i ~19!

( i 51, 2, and 3!, and further their behaviors are predicted
the basis of the operator product expansion technique.36,37 In
order to determine hidden-SU~2! BKT transition points, we
should treat a finite-size system whose spin part is loca
near the lineys,052ys,1>0. The renormalized scaling di
mensions are then given as

xs,1.
1

2
2

1

4
ys,0~ l !~112t !, ~20!

xs,2.
1

2
1

1

4
ys,0~ l !~312t !, ~21!

xs,3.
1

2
2

1

4
ys,0~ l !, ~22!

where a small parametert[uys,1u/ys,021.19,21,38 Therefore
the level crossing ofDEs,1 andDEs,3 excitations may serve
a good estimator for this transition. On the other hand, fo
system near the Gaussian fixed line~i.e., for a smalluyn,1u
value!,

xn,1.
1

2
1

1

4
yn,0~ l !1

1

2
yn,1~ l !, ~23!

xn,2.
1

2
1

1

4
yn,0~ l !2

1

2
yn,1~ l !, ~24!

xn,3.
1

2
2

1

4
yn,0~ l !. ~25!

We can thus obtain points on the Gaussian fixed lines fr
the level crossing ofDEn,1 andDEn,2 excitations.

To proceed, we should connect the above discussio
numerically accessible quantities; this was accomplished
Nakamuraet al.17,18,22There, discrete symmetries of a lattic
Hamiltonian,~e.g., translation, space inversion and spin
verse! are utilized to characterize a state generated by
operation ofOn,i on the ground state. Classification of o
erators with respect to the symmetries was then perform
and the result was summarized in Table I of Ref. 17. The
12511
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fore, by employing it, we can directly extract elementar
excitation levelsDEn,i through exact diagonalization calcu
lations of AEHM under a properly taken boundary conditio

B. First-order phase transition to complete ferromagnetic
state

We in this subsection explain the numerical method
determine the first-order transition line to the complete f
romagnetic phase which is expected to occur in easy-p
anisotropic systems. As we have seen in Sec. II B, this tr
sition is characterized by the divergence of the Gaussian c
pling Ks→` in the spin-limit. Actually for the phase
separation transition observed in the 1Dt-J model which is a
well-known example as the same kind of transition (Kr

→` in that case!, Ogataet al. evaluated the boundary lin
via the divergent behavior of the charge compressibility
exact diagonalization calculation data.39 This approach is
valid for the SDW-ferromagnetic phase transition, but for t
CDW-ferromagnetic phase transition in the strong-coupl
region, sinceKs cannot be defined, we should employ som
other criterion.40

Recently, Hirata and Nomura41 studied theS5 1
2 frus-

tratedXXZ chain in the ground state, where transitions fro
the dimer andXY phases to the ferromagnet were succe
fully treated, and further, same approach was applied to
termine the first-order transition lines observed in an
tended Hubbard model18,42 with site-off-diagonal
interactions.43 Their way of determining the boundary i
quite simple; namely, the condition that the ground-state
ergy in the subspace of thez component of total spinST

z

50 @E0(ST
z50)# equals the fully magnetized state energy44

provides a good estimation on the ferromagnetic phase t
sition point. In our AEHM case, since the complete ferr
magnetic state is an eigenstate and its energy was give
EF in Sec. II C, this condition is expressed as

dEF[E0~ST
z50!2EF50. ~26!

In the following numerical calculations, we shall employ th
criterion and determine the ferromagnetic phase bound
which is closely compared to analytical expressions in li
iting regions.

IV. RESULTS

A. Level structures

In this research we treat up to 16 sites systems, where
Lanczos algorithm was used to obtain eigenvalues of
Hamiltonian in each specified subspace. Then by extrapo
ing crossing points to the thermodynamic limit by use of t
least square fitting procedure, various phase boundaries
evaluated. So we first demonstrate the Coulomb interac
parameter dependence of level structures.

In Figs. 2 and 3, we exhibit relevant excitation spectra.
expected, for systems whose charge part is near the uns
Gaussian fixed line,DEr,1 and DEr,2 possess a crossin
point ~Fig. 2!, which is close toVG* ~vertical dotted lines! in
the weak coupling, but, with the increase ofU, the difference
1-4
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becomes prominent. Figure 3 plotsDEs,i near the stable
Gaussian and hidden-SU~2! BKT transition lines. As clearly
exhibited, with the increase ofV, DEs,1 andDEs,2 first pro-
vide a crossing point indicating the stable Gaussian fi
line. ThereDEs,3 is smaller than the others. After that, th
level crossing betweenDEs,1 andDEs,3 occurs and gives an
approximate estimation on the BKT transition point. As
result, what we have observed in these figures is in acc

FIG. 2. V dependence of excitation levelsDEr,1 ~squares! and
DEr,2 ~triangles! observed in the systems whose charge part is n
the unstable Gaussian fixed line (L514 andd50.2). Vertical dot-
ted lines denote values ofVG* .

FIG. 3. V dependence of excitation levelsDEs,1 ~triangles!,
DEs,2 ~squares!, and DEs,3 ~diamonds! observed in the system
whose spin part is near the stable Gaussian and hidden-SU~2! BKT
lines (L514 andd50.2). Vertical dotted lines denote values ofVG*
andVBKT* .
12511
d

rd

with the scenario in Sec. II A and expressions on the ren
malized scaling dimensions Eqs.~20!–~25!. In Fig. 4, we
plot dEF the energy difference between the ground state
the complete ferromagnet in the spin-limit and stron
coupling regions (d50.5, U56, and up toL514). From
this figure, roughly speaking, the system withU56 and
within 0.7&V&5.7 is in the ferromagnetic state at this a
isotropy parameter value.

Next we shall exhibit extrapolations of crossing poin
V* (L) to the thermodynamic limit. Figures 5 and 6 sho
cases of the Gaussian and hidden-SU~2! BKT transitions in
charge and spin parts, respectively. While an import
finite-size correction may stem from irrelevant fields with t

ar

FIG. 4. V dependence of the energy differencedEF (d50.5 and
U56). The correspondence between marks and system size
given in the figure. Vertical dotted lines showVF-SDW* andVF-CDW* .

FIG. 5. System-size dependences of crossing pointsV* evalu-
ating the Gaussian transition points in the charge part (d50.2).
Curves show fitting lines.
1-5
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HIROMI OTSUKA PHYSICAL REVIEW B 63 125111
scaling dimensionx54,21,36 and in fact, a linearity of the
size dependence is visible in these figures, there mus
some other complicated corrections,@e.g., ln(lnL), (ln L)2,
etc.#. In this research, we assume a formV* (`)1aL22

1bL24 for extrapolations; this may be evaluated throu
comparisons with analytical results in limiting regions. In t
case of ferromagnetic transitions, a size dependence is
most absent except for the intermediate-coupling reg
where, as we shall see in the following, influences from ot
phases exist. Therefore we shall perform the numerical
agonalization calculations also for the 16-site system in
area.

B. Phase boundary lines

In Fig. 7, we show global structures of ground-state ph
diagrams of AEHM with the anisotropy parameter valuesd
50.2 and 0.5. The triangles, squares, and circles with bro
lines indicate the positions of the first-order transition to
ferromagnet, the Gaussian transition in the charge part
the hidden-SU~2! BKT transition in the spin part, respec
tively. Adding these, we also show the stable Gaussian fi
lines in the spin part by circles with dotted line. Magnific
tions of phase diagrams around the 2V5U line are also
given in Fig. 8.

In the previous research, we calculated phase bounda
in weak- and intermediate-coupling regions and found t
our data agree well with Eqs.~8! and ~9!.27 Now from this
figure we find that, independently to the values ofd, numeri-
cal calculation data excellently agree with the analytical
pressions Eqs.~12!, ~13!, and~15! also in the other two lim-
iting regions. Consequently these observations may show
validity of our numerical approach given in Sec. III as we
as discussions using effective Hamiltonians in Sec. II. On

FIG. 6. System-size dependences of crossing pointsV* evalu-
ating the hidden-SU~2! BKT transition points in the spin part (d
50.2). Curves show fitting lines.
12511
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other hand, for the strongly anisotropic case,d50.5, we
newly find that the crossing point of Gaussian and hidd
SU~2! BKT transition lines which is observed in weak eas
plain anisotropic cases disappears. This means that the
romagnetic region contacts with a phase different from t
in the d50.1 and 0.2 cases around 2V5U line ~see Fig. 8!;
we shall discuss this point in Sec. V.

Next we exhibit the data in the easy-axis anisotropic c
(d520.1), where the Gaussian transition is expected
both charge and spin parts. Figure 9 plots phase bounda
where squares and circles represent the data for the ch
and spin parts, respectively. We find thatVN-CDW* also shows
an excellent agreement with the data in the strong-coup
limit as well asVG* presenting good estimation on the boun
ary lines in the weak-coupling limit.27 As we can see, withU
taking a nonzero value, the phase boundary splits into
Gaussian-type transition lines. Then these lines appear t

FIG. 7. Ground-state phase diagrams of the 1D AEHM at h
filling: The easy-plain anisotropic cases~a! d50.2 and~b! d50.5.
Solid curves denote analytically evaluated phase boundaries in
II ~we also drawVXY). Triangles, squares, and circles with broken
lines show the numerical results for the first-order transition to
ferromagnet, the Gaussian transition in the charge part, and
hidden-SU~2! BKT transition in the spin part, respectively. Stab
Gaussian fixed line in the spin part is also exhibited by circles w
dotted line.
1-6
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confluent to a single line aroundU.10. This behavior is
qualitatively same as the EHM case17,18; an implication of
this confluence is referred to in Sec. V.

C. Consistency checks

In this subsection we present consistency-check res
among various types of excitations indexed by the symm
tries of states. This procedure is, as we see below, ba
upon the finite-size corrections in the TLL universality cla
thus if a system~or its part of degrees of freedom! belongs to
the class, we can expect the relations to be satisfied eve
strong couplings.

FIG. 8. Magnifications of ground-state phase diagrams clos
the 2V5U line: Easy-plain anisotropic cases~a! d50.2 and~b!
d50.5.

FIG. 9. Ground-state phase diagrams of the 1D AEHM at h
filling: An easy-axis anisotropic cased520.1. Solid curves denote
the analytically evaluated phase boundaries in the weak-
strong-coupling regions Eqs.~8! and~15!. Squares and circles with
broken lines exhibit calculated data for the Gaussian transi
points in the charge and spin parts, respectively.
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For the systems on the hidden-SU~2! BKT line ~i.e., the
spin part of AEHM with positived), due to the renormaliza
tion effect of the marginally irrelevant backward scatteri
process (gs), the excitation levels logarithmically split keep
ing the relation21,37,38

xs,213~xs,1 or xs,3!

4
5

1

2
. ~27!

On the other hand, there is a following-type duality relati
among the elementary excitations on the Gaussian fixed l

~xn,1 or xn,2!3xn,35
1

4
. ~28!

To calculatexn,i we should normalizeDEn,i by vn . This is
done by evaluating an appropriate descendant level with
total momentumk52p/L in each part:

vn5 lim
L→`

Ẽn2E0

2p/L
, ~29!

whereẼn is a lower excitation level withST
z50 andN5L.

Here note that, in the SU~2!-symmetric case (d50), Ẽs and
primary states with the conformal spinss51 ~i.e.,
e6 iA2fse6 iA2us) form a triplet in thek52p/L sector, while
Ẽr is a singlet. When the system becomes U~1! symmetric
(KsÞ1), the degeneracy is lifted so that the descendant le
Ẽs provides a lower-energy excitation. Thus we shall che
this d dependence of the level structure, when calculat
Ẽn .

We in our previous paper presented the data to check E
~27! and ~28! in weak- and intermediate-coupling region
and observed reasonable consistencies in both charge
spin excitations~see Fig. 2 in Ref. 27!. In this subsection, we
thus perform the check for the spin part on the stable Ga
ian fixed line in whole interaction parameter range. Resu
are shown in Fig. 10. Note that while we used the avera
scaling dimensionxs,av[(xs,11xs,2)/2, same accuracy is
visible for the use ofxs,1 or xs,2 . As a result, we find that
Eq. ~28! holds accurately~within 0.4% accuracy!, which may
serve a reliability of our calculation results also in the stro
couplings. Further, the exponentxs,av converges to 1~i.e.,
Ks52) for U*10, which shows the system to be reduced
the S5 1

2 XY chain.

V. DISCUSSIONS AND SUMMARY

As we have observed in the above, the phases realize
the strong couplings, i.e., CDW, ferromagnetic, and N´el
phases are classical and well characterized. However, in
weak- and intermediate-coupling regions, we have only d
cussed lower-energy excitations in both charge and s
parts, although the properties of electron systems are
scribed as their composite. So we finally discuss the cha
ters of phases by introducing relevant order parameters.
2kF CDW and SDW are described by order parameters
fined on site:

to

lf

d

n

1-7
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OCDW[ei2kFxnj}cosA2frcosA2fs , ~30!

O SDW
i [ei2kFxSj

z}sinA2frsinA2fs , ~31!

O SDW
' [ei2kFxSj

1}sinA2frexp~ iA2us!, ~32!

wherei (') indicates a longitudinal~transverse! component
of SDW and the right-hand sides show their bosonized
pressions. While the order parameter correlation function
cays as a power law in the SDW' phase, there exists a long
range-order~LRO! of Eq. ~30! in the CDW phase@and Eq.
~31! in the SDWi phase#. Adding these, we shall introduc
the following:29,43,45

OCDW [ei2kFxn̄j}sinA2frcosA2fs , ~33!

O SDW
i

[ei2kFxS̄j
z}cosA2frsinA2fs , ~34!

O SDW
' [ei2kFxS̄j

1}cosA2fr exp~ iA2us!, ~35!

where quantities with the overbar are defined ‘‘on bonds

n̄ j[cj
†
•cj 111H.c., 2S̄j

m[cj
†
•sm

•cj 111H.c. ~36!

While Eq. ~30! is the CDW order parameter, Eq.~33! de-
scribes the ‘‘bond-located’’ CDW (CDW). Similarly, corre-
sponding to Eqs.~31! and ~32! the bond-located SDW
(SDWi ,') can be defined by Eqs.~34! and ~35!. Qualita-
tively, the correlation functions of these order paramet
behave the same as those of corresponding site-located

FIG. 10. Consistency check among scaling dimensionsxs,i on
the stable Gaussian fixed line (d50.2). The averaged scaling d
mension is defined asxs,av[(xs,11xs,2)/2. Equation~28! holds
within an accuracy of 0.4%.
12511
-
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For example, LRO of Eq.~33! exists in theCDW phase.
When we use the terminology of the two-chain spinless f
mion model in Ref. 29, a site-off-diagonal operator, e.g.,
y component ofSDW represents a type of local current, so
corresponds to the so-called orbital antiferromagnet.

For the system with the easy-plain anisotropy, depend
on the value ofd, there are four or three phases separated
two transition lines except for the ferromagnetic phase~see
Fig. 8!. Each can be characterized by the averages of
phase fields as

~^A8fr&,^A8fs&!55
~p,* !, SDW',

~0,0!, CDW~LRO!,

~0,* !, SDW',

~p,0!, CDW ~LRO!.

~37!

Here ‘‘an asterisk’’ means the phase to be unlocked. Res
thus show that although the previousg-ology arguments
were succeeded in a prediction of upper three phase
failed to show the existence of the long-range-orderedCDW
phase. Further the phase transition between theCDW and
ferromagnetic phases is visible in quite narrow but finite a
close to the 2V5U line in the intermediate-coupling region
On the other hand, for a system with strong anisotropyd
50.5, since the multicritical point plunges into the ferroma
netic domain,SDW' directly contacts with the ferromag
netic phase, instead. We think that this observation is not
to an artificial effect in our numerical calculation procedu
but is inherent in AEHM.

In the easy-axis anisotropic case Fig. 9, a strong-coup
fixed point with the averages of fields (p,p) appears where
LRO of SDWi is established~Néel state!. The direct transi-
tion between the LRO-SDWi and CDW phases which is
conclusion ofg-ology arguments is absent in weak and i
termediate couplings. Alternatively, it is observed that th
exists the intermediateCDW phase between them. Furthe
Fig. 9 exhibits that with the increase ofU the area ofCDW
phase becomes narrow and finally disappears aroundU
.10. Since the transition in the strong-coupling region
first order, this confluence may be naturally expected
stand for a crossover point to the first-order transition. C
sequently, we think that the global structure of AEHM wi
the weak easy-axis anisotropy is qualitatively same as
case of EHM,17,18 although the spin-gap transition and SD
in EHM are substituted by the Gaussian-type second-o
transition and LRO-SDWi , respectively.

To summarize, we studied global structures of t
ground-state phase diagrams in the 1D anisotropic exten
Hubbard model at half filling. We accurately determined t
critical points by use of the numerical method, and then c
structed the ground-state phase diagrams with high res
tion. We closely compared our numerical calculation resu
for the phase boundaries with analytical estimations in th
limiting regions of the Coulomb interactions, and then fou
a good agreement between them. On the other side, in
intermediate-coupling region, we observed a richness
1-8
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structures in the phase diagrams: In the easy-plain an
tropic case, the regions where bond-located spin- and cha
density waves become dominant were determined, and
phase transition between the complete ferromagnet and
of these phases was observed~the phase contacting with th
ferromagnetic region depends upon the anisotropy param
value!. In the easy-axis anisotropic case, we found that
structure of the phase diagram is same as that of the isotr
extended Hubbard model. To serve a reliability of our cal
lations, we also checked consistencies among excitation
1251
o-
ge-
the
ne

ter
e

pic
-
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