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We discuss global structures of ground-state phase diagrams in a one-dimensional half-filled electron system
with on-site and spin-dependent nearest-neighbor-site Coulomb interactions. We compare our nhumerical cal-
culation data for phase boundary lines with their analytical expressions in three limiting regions of interaction
parameters and find good agreement between them. In the intermediate-coupling region, however, we observe
nontrivial structures of phase diagrams: For systems with weak easy-plain anisotropy, both the bond-located
spin- and charge-density-wave phases are realized. The latter contacts with the ferromagnetic phase stabilized
in the strong-coupling region. On the other hand, when anisotropy becomes large, the intermediate phase
disappears and consequently a direct transition between the former and ferromagnetic phase is observed.
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[. INTRODUCTION cade and Spronkérfound a continuous transition between
So far, interacting electron systems have attracted greahe spin-density-wave(SDW) and charge-density-wave
interest in the research of electric and magnetic properties giCDW) states near the\?=U>0 line by use of real-space
materials: Especially, since the discovery of the hihsu-  renormalization-grougRG) and exact diagonalization meth-
perconductor, two-dimension&eD) electron systems have ods. While continuum field theoty (perturbative
been intensively studied and a large number of investigationgpproache’ predicts SDW-CDW transition to take place on
have been devoted to the understanding of many-body eby = Jine in the weak-couplingstrong-coupling limit,
fects caused by electron correlations. But in general, Sincﬁirsch,lo employing a quantum Monte Carlo simulation
precise descriptions on the low-energy and long-distance beqen g clarified that it occurs at a certain valué*2larger

hayiors_o_f systems should be required as a f_irst_step, it i?nan U, which is in accord with the above-mentioned calcu-
quite difficult to understand them. In investigating one- lation results, and further he found a crossover from a con-

dimensional (1D) quantum systems, however, the . : " . . .
Tomonaga-Luttinger liquidTLL ) picture was established on tmgous to first-order t.ransmon. at a poinyz=U=3 (W'th
taking t as energy unjt Following these, many numerical

h is of conformal field th FT), which now per- . o .
the basis of conformal field theofCFT), which now pe erstlgatlonél‘14 as well as analytical on&s'® have been

mits us to describe low-ener hysics more accurately tha . S . X
gy phy y performed to obtain quantitatively reliable phase diagrams,

before?~ In this situation, it is naturally expected that pre- t mainlv due to limitati . bl h .
cise understandings on 1D interacting electron systemgu mainly due to imitations in usablé approaches, precise

. ; nderstanding on this model was not obtained.
;Sgtlélg]éhrow some light upon problematic researches of 20 Quite recently, Nakamut&'® investigated half-filled
The 1D extended Hubbard modétHM) including the EHM by employing the so-called “level-spectroscopy”

: ; : . method® and predicted a remarkable phase diagram, where
nearest-neighbor Coulomb interaction has been recognlzeg]n existence of the intermediate “bond-located” CDW

asar:i]liorigllpilsei::\,,ui l_ﬁj\fﬂi vTi?r? el to 1D materials; Its_phase(to_ be defined beloyis exhibited in the weak- and
intermediate-coupling regions. Further it was conjectured
U that the above-mentioned crossover is realized on a confluent
How= > —t(CstCjﬂs'*‘ He)+5n.n_, (D point of continuous transition lines in charge and spin parts.
js== ’ ' 2 This novel method which was initiated by Jullien and
Haldané® and extensively developed by Nomura and
Okamotd? is based upon CFT, RG, and symmetry properties
He= 2 VN, 2 of excitations observed in TLL. And it is being recognized as
: powerful in investigations of 1D electron systeh¥?223as

wherec;  annihilates an electron with sp#on jth site and ~ Well as quantum spin chaif§?®

nj’SECJT «Cjs (Huw is the Hubbard Hamiltonian Using C]T FoIIo_vving t_hese developments, the present z_iuthor has re-
=(cl, of f For ex- cently investigated many-body effects of spin-dependent
]’ 1

J-’,), a charge onjth site is nj=¢-g. JHVE ; ]
ample, the half-filed EHM was recently used to describeOn-Point-like Coulomb interactions through the 1D half-
low-energy features of SEuUO, observed in the electron filled “anisotropic” extended Hubbard modéAEHM) de-

energy-loss spectroscoffEELS) measurement; the model fined by the Hamiltoniant agr =Hpm+Hag with
parameters were determinedtas0.55 eV,U=4.2 eV, and

V=13eV®
On the other side, investigations on ground-state proper- Hao= Var o s r et Vol o0 3
ties have been intensively performed: At half filling, Four- AE j,s§=:i (Valy sy ast Vol sy a.-o) ©
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in the repulsive casel, V112>O).27 There we parametrized Here the Fermi wave numbée= wn/2 taking the lattice
spin-dependent Coulomb interactions\as,=V(1+ ) (the  constanta=1, an electron density=N/L andL (N) is the
upper sign refers to the former in such expressiomben number of sitegelectrong. The indexr=+ (—) denotes
Haenm €xpresses EHM with a (@)-symmetric exchange the right-going(left-going) branch of the linearized cosine-
coupling—46VS'S/, |, so the system acquires easy-plain orband andw is a short distance cutoff. The bosonic operator
easy-axis anisotropy depending on the signsoHereS* 6, (v=p or o) is the dual field of¢, and satisfies the com-
=3¢ o# ¢ is the spin operator ojth site (o* is theuth ~ mutation relation[¢,(x),d,0,,(y)]=i75(x~y)4,,, . Ac-
Pauli matriy. This model was originally introduced as the cording to the bosonization proceddir¥,the phase Hamil-
simplest one for excitonic insulatéfscharacterized by the tonian of AEHM is extracted; at half filling=1, it consists
existence of nonzero local charge or spin currents and thef the following three partsi{="H,+H,+ He,

g-ology arguments on this model were perforniédn the

. . . L . v, 1
previous paper, we numerically determined transition points H,= f dxX| K, (0,8,)2+— (9.,
and constructed ground-state phase diagrams of AEHM with 2m K,
weak anisotropy €0.1=6<0.2) in the weak- and
intermediate-coupling regions €U<5)2?" We then ob- 29,
served that while the bosonization prediction accurately re- + (27 a)? dxcos\8¢,, ®)

produces our data in the weak-coupling limit, calculated
boundaries considerably deviate from it with the increase of 5
interactions. Especially, in the easy-plain anisotropy region, He:ﬂ
we found a crossing of boundary lines which provides a mul- (27a)?

ticritical point of four phases. In the easy-axis anisotropy . . .
region, the intermediate bond-located CDW phase is ob[—lereK,, andwv, are the Gaussian coupling and the velocity

served which is the same as the abovementioned EHI\9ff elementary excitations. Thre_e paramegys g, , andgy .
casel’ 18 stand for the Umklapp scattering, the backward scattering,

|§”d a spin-charge coupling, respectively; they may take sys-
ms out of the TLL universality class. According to the RG
rgument® the energy scale df, is larger than those of the
thers; we thus suppose thaf is irrelevant at least in the
ak-coupling region so that spin-charge separation occurs.
onsequently, each degree of freedom is described by the

j dxcos\/§¢p cos\/§¢>0 . (6)

While our previous research was restricted to the wea
anisotropy systems in the weak- and intermediated-couplin
regions, quantitatively reliable phase diagrams in entire re®
gion of interaction parameters are desired. Therefore, in thig
paper, we present global structures of the ground-state pha

diagrams of AEHM and clarify the spin-dependent non- : Lo
point-like Coulomb interaction effects on 1D electron sys-duantum sine-Gordon modéQSGM Hamiltonian?t, .

tems. The organization of this paper is as follows. In Sec. I, 1he RG equations fo#{, are derived by changing the

; dl.
using effective Hamiltonians in three limiting regions, i.e., short .dls@nce Cl,JtOff constant ag—ae™; th_en the
the weak-couplingy, V<1), spin-limit (U>1, V<1), and Bere_Z|nskuTKpsterIltz-ThouIesiBKT) type equations are
strong-coupling U, V>1) regions, we analytically describe obtained within the one-loop calculatidh:

some possible scenarios of phase transitions. In Sec. Ill, we dy, o) dy, (1)

explain numerical calculation methods by which transition PR 2, 2R oy Dy, (D)

. . . R dl yv,l ’ dl yv,O yv,l ’

lines predicted in Sec. Il are accurately determined. In Sec.
IV, we show phase boundaries obtained by numerical calcuynpere y,0=2(K,—1) andy,,=g,/mv,. Figure 1 gives

lations, which will be closely compared to those given inthe schematic RG-flow diagram. Since the bosonization pro-
Sec. Il. To serve a reliability of our calculations, we also cedure leads the following relations between these param-
perform a consistency check among different types of exCiaters and those in the original Hamiltonidigyy,, i.e.,
tations. Secpon V.IS dpvoted to dlscu.ssu_)ns and summary ¢, ) KK, ,—1)=F(U=4V,+2V,) and g, ,=(U—2V,)

the present investigation; a characterization of phases will b?notice that to get the latter relation, the origin ¢f, was
performgd _by using order parameters corresponding to e|e%1'ppropriately shifted we can get types and approximate
tron excitations. points of phase transitions as follows. Let us see the system
with increasingV, but keepings andU fixed (i.e., along the
arrows in Fig. 1. In the easy-axis anisotropic ca8& 0, one
finds that both charge and spin parts are massive except for a

Il. THREE LIMITING REGIONS

A. Weak-coupling region (U, V<1) pointy, ;=0 (y,0<0), i.e.,
First we summarize scenarios of phase transitions in the
weak-coupling region. In studying 1D electron systems, the 2VE= ——, (8
following bosonization identit§ is quite useful: Cis 1+6
— 3-8 Py, (X) with where the Gaussian-type second-order transition occurs. In

the easy-plain anisotropic cage>0, the critical point Eq.

(8) and the type of the transition do not change in the charge
eilr (@ 1564) = (0,+50,)11\2 (4) part, but the spin part is expected to realize the hidde(25U
27« BKT transition on the liney, o= -y, >0, thus

‘/’r,s(x):
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)’1 which separates the ferromagnetic phase from a SDW-type

BKT-=line one in the easy-plain anisotropic case.

In addition to the phase transition lines, a condititn
=0 [i.e., theS=3 XY chain (K,=2)] expresses a point on
the stable Gaussian fixed line in this region; for AEHM this
is rewritten as

1

Critical -
VXY 5U .

(13

= )’o We expect that this line behaves as E§) in the weak-
coupling region. In Sec. IV C we shall perform a consistency
check of numerical calculation data on this line.

C. Strong-coupling region (U, V1)

Last we consider the strong-coupling region where the
kinetic energy of electrons is negligible compared to the

Coulomb potential energy, so the effective Hamiltonian is
Gapful ' given by

FIG. 1. Schematic representation of RG-flow diagram of QSGM
(we dropped the index). Right three arrows show trajectories of He = E (Unj on; +VnJ-n]-+1—45V§ZSJ-ZJr ). (19
bare couplings in the spin pavith the increase o¥ but § andU !

fixed). Double circle with an arrow corresponds to the charge part,__ . . . . .
9 P g9e b This model is diagonal in the configuration space of elec-

trons. For6=0 two types of ground states are realized, i.e.,

2V = ——= (9) the twofold degenerate CDW statenergy Ecow=3LU)
1_ 5’ . . . .
and a 2-fold degenerate spin-state with all sites singly oc-
which follows the stable Gaussian fixed point E§). cupied Espin=LV). These two types of states are separated
by the first-order transition line \2=U. When & takes a
B. Spin-limit region (U1, V<1) nonzero positivgnegative value, the ferromagnetitNeel)

) ) state fully gains the energy through thélJsymmetric ex-

Next, we co_nS|der the regio>1 and V<1 where ~ change coupling a&r (Enee) =LV(1—]|4]), and thus the

charge fluctuations are almost suppressed. An effectivgegeneracy of spin-state is lifted, althou@lapy is un-
model in this limit is theS=3 XXZ chain defined by the changed. Consequently we can estimate a phase boundary

Hamiltonian between the ferromagnetidleel) and CDW states as
Hyxz=32 (S{S/41+5/5/1+ASS ), (10 o\ Y 15)
] F-CDW,N-CDW 176 (

whereJ=4/U andA=1-6VU. Now since the exact solu-

tion for this effective Hamiltonian is given by the Bethe- Up to leading order ity andV (although more accurate es-
ansatz methotf we can draw phase boundaries of AEHM in timations are possible using perturbation calculations, we
this limit. For —1<A<1 the ground state dfyy is inthe ~ €mploy this expression in the following sectionsn the
spi?:-glsiquid phase where the Gaussian coupligis given  €asy-plain anisotropic case, the ferromagnetic phase bound-

a ary given by Eq.(15) is expected to behave as Ed2) in
that limit. This can be directly confirmed through a compari-
2 son between numerical calculation data and limiting behav-
. (11 iors; we shall check this in Sec. IV B.
1+ (2/m7)sin” A

After the BKT transition atA =1, the Nel phase is realized 1. NUMERICAL CALCULATION METHODS
in 1<A. This inequality is always satisfie@insatisfiedl in . »
the easy-axis(easy-plaifl anisotropic case. On the other A. Continuous phase transitions
hand, the conditiomM=—1 whereK, diverges to+« is We have seen qualitative descriptions on phase transitions

known to define the first-order phase transition point bein AEHM, but for the aim of quantitative discussions on
tween the liquid and ferromagnetic phases, so it provides global structures of phase diagrams, numerical calculations

phase boundary for AEHM are unavoidable. We employed the level-spectroscopy
method to treat continuous phase transitions, i.e., Gaussian
* _ i (12) and hidden-S(2) BKT ones. Therefore, in this subsection,
F-SDW™ sU° we briefly summarize some relevant points of this method to
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our calculations. A criterion to determine ferromagnetic tran-fore, by employing it, we can directly extract elementary-

sition points will be discussed in the next subsection. excitation levelsAE, ; through exact diagonalization calcu-
Let us start with considering the following operators: lations of AEHM under a properly taken boundary condition.
O,1= ‘/E COS‘/§¢V’ (16) B. First-order phase transition to complete ferromagnetic
. tat
0,,=12sin\24,, 17 sae
We in this subsection explain the numerical method to
O, =exp(+i \/Egy), (18 determine the first-order transition line to the complete fer-

o romagnetic phase which is expected to occur in easy-plain
where O,,, and O, , denotev-channel current excitations apjsotropic systems. As we have seen in Sec. Il B, this tran-

while O, ; expresses those accompanied by the change of thgtion is characterized by the divergence of the Gaussian cou-

total amount ofv. Here CFT says t_hat in finite-size SYstems pling K,—o in the spin-limit. Actually for the phase-
the excitation energy corresponding to these operators akgparation transition observed in the &D model which is a
expressed by their scaling dimensions as well-known example as the same kind of transitia, (
—oo in that casg Ogataet al. evaluated the boundary line
AE, = —2"x, (190  Via the divergent behavior of the charge compressibility in
’ L ' exact diagonalization calculation dataThis approach is
(i=1, 2, and 3, and further their behaviors are predicted onValid for the SDW-ferromagnetic phasg transition, but for 'ghe
the basis of the operator product expansion techrifjgln ~ CDW-ferromagnetic phase transition in the strong-coupling
order to determine hidden-$2) BKT transition points, we €gion, ?'”‘?EK& cannot be defined, we should employ some
should treat a finite-size system whose spin part is locate@ther criterior.” _ )
near the liney, o= —Y, ;=0. The renormalized scaling di- Recently, Hirata and Nomufta studied theS=3 frus-
mensions are then given as tratedX XZ chain in the ground state, where transitions from
the dimer andXY phases to the ferromagnet were success-
1 fully treated, and further, same approach was applied to de-
Xo1= 5~ 7¥eo)(1+21), (200 termine the first-order transition lines observed in an ex-
tended Hubbard modé&** with site-off-diagonal

27v,

1 1 interactions’® Their way of determining the boundary is
Xy 2= §+ Zymo(l)(3+2t), (21 quite simple; namely, the condition that the ground-state en-
ergy in the subspace of thecomponent of total spirs;
1 1 =0 [Eo(S3=0)] equals the fully magnetized state enéfgy
Xod= 5~ Zyo,o(l ), (220  provides a good estimation on the ferromagnetic phase tran-

sition point. In our AEHM case, since the complete ferro-
where a small parametee|y,, 4|/y,, o—1.2%%1% Therefore magnetic state is an eigenstate and its energy was given as
the level crossing oAE,, ; andAE, ; excitations may serve Er in Sec. I C, this condition is expressed as
a good estimator for this transition. On the other hand, for a

system near the Gaussian fixed liie., for a smallly, 4] SEg=E((St=0)—Eg=0. (26)
value), , . . .
9 In the following numerical calculations, we shall employ this
1 1 1 criterion and determine the ferromagnetic phase boundary,
Xp1=5 F 7o+ 5Yua(l), (23 which is closely compared to analytical expressions in lim-
iting regions.
1 1 1
XV,Z: E + ZyV'O(I ) - Eyv,l(l )l (24) V. RESULTS
11 A. Level structures
xyy3:§ — Zyv,O(I)' (25 In this research we treat up to 16 sites systems, where the

Lanczos algorithm was used to obtain eigenvalues of the

We can thus obtain points on the Gaussian fixed lines frontdamiltonian in each specified subspace. Then by extrapolat-
the level crossing oAE, ; andAE, , excitations. ing crossing points to the thermodynamic limit by use of the

To proceed, we should connect the above discussion tteast square fitting procedure, various phase boundaries are
numerically accessible quantities; this was accomplished bgvaluated. So we first demonstrate the Coulomb interaction
Nakamuraet al.”*®%2There, discrete symmetries of a lattice parameter dependence of level structures.
Hamiltonian, (e.g., translation, space inversion and spin re- In Figs. 2 and 3, we exhibit relevant excitation spectra. As
verse are utilized to characterize a state generated by amxpected, for systems whose charge part is near the unstable
operation ofO, ; on the ground state. Classification of op- Gaussian fixed lineAE,; and AE,, possess a crossing
erators with respect to the symmetries was then performegoint (Fig. 2), which is close tovg (vertical dotted linesin
and the result was summarized in Table | of Ref. 17. Therethe weak coupling, but, with the increaseléfthe difference
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0.6

U=2.0

U=1.0

FIG. 2. V dependence of excitation levelesE ,; (squarep and

0.5
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; 5
: | —— L=8
- U=6.0 | 1
= ' L —— 11
0
— -5+
i | EV;-SDW i Vi-cow
H 1 1
0.6 VvV 08 s 6 7

FIG. 4.V dependence of the energy differenife: (6=0.5 and
U=6). The correspondence between marks and system sizes is
given in the figure. Vertical dotted lines showi g,y andVE cow -

AE, , (triangle$ observed in the systems whose charge part is neawith the scenario in Sec. Il A and expressions on the renor-
malized scaling dimensions Eq&0)—(25). In Fig. 4, we

the unstable Gaussian fixed line< 14 and5=0.2). Vertical dot-

ted lines denote values &ff .

becomes prominent. Figure 3 plotsE
Gaussian and hidden-$2) BKT transition lines. As clearly
exhibited, with the increase of, AE, ; andAE,, , first pro-

line. ThereAE, 5 is smaller than the others. After that, the

a,i

near the stable

o5l U=0.1

0.45

0.4

U=2.0:

PRI
. 0 .
0.5 =1. AE;
/ AEq3 :
o,i
>< 0.4 _M
045 . AEg, Vixr
S . \\ 02 .
Vo Vekr Ve
) 1 I 1 I 1 | L
0.2 0.4 06 7 08 1 1.5

FIG. 3. V dependence of excitation levelSE, ; (triangles,
AE, , (squares and AE, 3 (diamond$ observed in the systems
whose spin part is near the stable Gaussian and hiddé2) BKT
lines (L=14 andé=0.2). Vertical dotted lines denote values\

*
and Vg -

plot SE( the energy difference between the ground state and
the complete ferromagnet in the spin-limit and strong-
coupling regions §=0.5, U=6, and up toL=14). From
this figure, roughly speaking, the system with=6 and
within 0.7=V=<5.7 is in the ferromagnetic state at this an-
vide a crossing point indicating the stable Gaussian fixedsotropy parameter value.
Next we shall exhibit extrapolations of crossing points
level crossing betweeAE,, ; andAE,, 5 occurs and gives an  V*(L) to the thermodynamic limit. Figures 5 and 6 show
approximate estimation on the BKT transition point. As acases of the Gaussian and hiddentBUBKT transitions in

result, what we have observed in these figures is in accor@harge and spin parts, respectively. While an important
finite-size correction may stem from irrelevant fields with the

-2
4234 122 -
L U=0.1 U=2.0
097 -
4232 —
423 - 0.965 =
4228 - 0.96 -
[ T T T TN N T WO N | _I 1 | RO
226
42 0 0.01 0.02 0 0.01 0.02
U=1.0 - U=3.0
1.48 -
147
[T T T T A T T T T | 146 (L | I B R |
0 0 0.01 0.02

FIG.
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-2
611 22
U=0.1 L U=2.0 1
101 i
6.105 — L
1+~ -
6.1
i - 05
6095|||||l|||||0'99|||||l||||| i
’ 0 0.01 0.02 0 0.01 0.02 =
| U=L0 U=3.0 i
V 1.48 - i
0+
0535 -
| | 1 1 1 1 | 1 I 1 1 |
' T o
1.46
053 |- ?-\l_l_\ i CDW
’ | IR T TN N NN N MO T B | [ TR T T A SO OO0 M | ; B
0 0.01 1/L2 0.02 0 0.01 0.02 § L V;-CDWI 7/
A
FIG. 6. System-size dependences of crossing paifitevalu- 3
ating the hidden-S(2) BKT transition points in the spin partd( 05 ﬁ FERRO
=0.2). Curves show fitting lines. F F-SDW
scaling dimensiorx=4 2% and in fact, a linearity of the |
size dependence is visible in these figures, there must be
some other complicated correctiong,g., In(InL), (InL)?, I
etc]. In this research, we assume a foitt(»)+al 2 0r
+bL~* for extrapolations; this may be evaluated through T
. . . > . 0 0.5 1
comparisons with analytical results in limiting regions. In the U/(U+4)

case of ferromagnetic transitions, a size dependence is al-

most absent except for the intermediate-coupling region FIG. 7. Ground-state phase diagrams of the 1D AEHM at half
where, as we shall see in the following, influences from othefilling: The easy-plain anisotropic casé® 6=0.2 and(b) 5=0.5.
phases exist. Therefore we shall perform the numerical diSolid curves denote analytically evaluated phase boundaries in Sec.

agonalization calculations also for the 16-site system in thidl (we also draw/yy). Triangles, squares, and circles with broken
area. lines show the numerical results for the first-order transition to the

ferromagnet, the Gaussian transition in the charge part, and the
hidden-SU2) BKT transition in the spin part, respectively. Stable
Gaussian fixed line in the spin part is also exhibited by circles with
In Fig. 7, we show global structures of ground-state phaséotted line.
diagrams of AEHM with the anisotropy parameter valides
=0.2 and 0.5. The triangles, squares, and circles with broke@ther hand, for the strongly anisotropic cages 0.5, we
lines indicate the positions of the first-order transition to theneéwly find that the crossing point of Gaussian and hidden-
ferromagnet, the Gaussian transition in the charge part angU(2) BKT transition lines which is observed in weak easy-
the hidden-S(R) BKT transition in the spin part, respec- Plain anisotropic cases disappears. This means that the fer-
tively. Adding these, we also show the stable Gaussian fixefomagnetic region contacts with a phase different from that
lines in the spin part by circles with dotted line. Magnifica- in the §=0.1 and 0.2 cases aroun®& 2 U line (see Fig. §
tions of phase diagrams around th&=2U line are also We shall discuss this point in Sec. V.
given in Fig. 8. Next we exhibit the data in the easy-axis anisotropic case
In the previous research, we calculated phase boundarié9= —0.1), where the Gaussian transition is expected in
in weak- and intermediate-coupling regions and found thaboth charge and spin parts. Figure 9 plots phase boundaries,
our data agree well with Eq$8) and (9).2” Now from this ~ where squares and circles represent the data for the charge
figure we find that, independently to the valuessphumeri- ~ and spin parts, respectively. We find théf .p,y also shows
cal calculation data excellently agree with the analytical ex-an excellent agreement with the data in the strong-coupling
pressions Eq912), (13), and(15) also in the other two lim-  limit as well asV§ presenting good estimation on the bound-
iting regions. Consequently these observations may show thery lines in the weak-coupling limft. As we can see, with/
validity of our numerical approach given in Sec. Ill as well taking a nonzero value, the phase boundary splits into two
as discussions using effective Hamiltonians in Sec. Il. On th&aussian-type transition lines. Then these lines appear to be

B. Phase boundary lines
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V-U/2 _For the systems on the _h_idden-&l)J BKT line (i.e., the
T spin part of AEHM with positived), due to the renormaliza-
0.05 B (@) 9 tion effect of the marginally irrelevant backward scattering
’ . CDW i process §,), the excitation levels logarithmically split keep-
FoeT N, v ; ioRL:37.38
oL € oW S : ing the relatio
17 o 4
S 'ED_.W o :; FERRO 5 , 1
005 e ! Xy 2T 3(Xy1 OF Xy 3
‘ SDW, om0 =_. (27
[ A Lo 0 i . 4 2
0.4 ®) 5 On the other hand, there is a following-type duality relation
CDW ¢ among the elementary excitations on the Gaussian fixed lines
g L
Ob& o SDWy b
é”m% "4 FERRO (Xy,1 07 X, 2) XX, 3= 7. (28)
SDW, 1} | To calculatex,,; we should normaliz&\E, ; by v, . This is
-0.4 (') : ; ——= 4'1 e done by evaluating an appropriate descendant level with the
U total momentunk=2/L in each part:

FIG. 8. Magnifications of ground-state phase diagrams close to
the 2V/=U line: Easy-plain anisotropic caséa) §=0.2 and(b) T
v,=lim ,
86=0.5. L 2m/L

(29

whereE, is a lower excitation level witt82=0 andN=L.

Here note that, in the S@)-symmetric case{=0), E, and
primary states with the conformal spis,=1 (i.e.,
e*1\2%5e1\205) form a triplet in thek=2=/L sector, while
C. Consistency checks E, is a singlet. When the system becomed)Usymmetric

In this subsection we present consistency-check resultd<,# 1), the degeneracy is lifted so that the descendant level
among various types of excitations indexed by the symmeE  provides a lower-energy excitation. Thus we shall check
tries of states. This procedure is, as we see below, baseHis § dependence of the level structure, when calculating
upon the finite-size corrections in the TLL universality class,g
thus if a systentor its part of degrees of freedorbelongs o "\we in our previous paper presented the data to check Egs.
the class, we can expect the relations to be satisfied even '@7) and (28) in weak- and intermediate-coupling regions,
strong couplings. and observed reasonable consistencies in both charge and
spin excitationgsee Fig. 2 in Ref. 27 In this subsection, we
thus perform the check for the spin part on the stable Gauss-
ian fixed line in whole interaction parameter range. Results
are shown in Fig. 10. Note that while we used the averaged
scaling dimensionx, ,,=(X, 1t X, 2)/2, same accuracy is
visible for the use ok, ; or x,,. As a result, we find that
Eq. (28) holds accuratelywithin 0.4% accuracy which may
serve a reliability of our calculation results also in the strong
couplings. Further, the exponery, 5, converges to 1i.e.,
K,=2) for U= 10, which shows the system to be reduced to
the S=3 XY chain.

confluent to a single line around=10. This behavior is
qualitatively same as the EHM ca$é® an implication of
this confluence is referred to in Sec. V.

6=-0.1

CDW

VI(V+2)

S
W
I

. V. DISCUSSIONS AND SUMMARY
- ---o--- Gauss(p)

zrte Cmis(o) As we have observed in the above, the phases realized in

U+4) !

the strong couplings, i.e., CDW, ferromagnetic, andeNe
phases are classical and well characterized. However, in the

0.5 U
/( weak- and intermediate-coupling regions, we have only dis-
FIG. 9. Ground-state phase diagrams of the 1D AEHM at halfcussed lower-energy excitations in both charge and spin

filing: An easy-axis anisotropic cask=—0.1. Solid curves denote Parts, although the properties of electron systems are de-
the analytically evaluated phase boundaries in the weak- ang&cribed as their composite. So we finally discuss the charac-

strong-coupling regions Eqé8) and (15). Squares and circles with  ters of phases by introducing relevant order parameters. The
broken lines exhibit calculated data for the Gaussian transitior2ke CDW and SDW are described by order parameters de-

points in the charge and spin parts, respectively. fined on site:
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- 9=0.2 Xoay

05

0 | 1 1 1 1 ]

0 0.5 IUI/(U+4) 1

FIG. 10. Consistency check among scaling dimensignson
the stable Gaussian fixed liné£€0.2). The averaged scaling di-
mension is defined as, ,,=(X,1tX,2)/2. Equation(28) holds
within an accuracy of 0.4%.

Ocpw= eiZkFX”j“COS\/E¢pCOS\/§¢a, (30
OLpy=e2¥Stsiny2¢,sin V24, (3D

Osou=e2PS] xsin\2¢,exiN26,), (32

where|| (1) indicates a longitudinaltransversgcomponent

PHYSICAL REVIEW B 63 125111

For example, LRO of Eq(33) exists in theCDW phase.
When we use the terminology of the two-chain spinless fer-
mion model in Ref. 29, a site-off-diagonal operator, e.g., the
y component oSDW represents a type of local current, so it
corresponds to the so-called orbital antiferromagnet.

For the system with the easy-plain anisotropy, depending
on the value of5, there are four or three phases separated by
two transition lines except for the ferromagnetic phésee
Fig. 8. Each can be characterized by the averages of the
phase fields as

(m), SDW,,

(0,0, CDW(LRO),
((VB,).(VBSD=Y (0,),  SBW,.

(m,0), CDW (LRO).

(37)

Here “an asterisk” means the phase to be unlocked. Results
thus show that although the previogsology arguments
were succeeded in a prediction of upper three phases, it
failed to show the existence of the long-range-ordez&iV
phase. Further the phase transition betweenGB&V and
ferromagnetic phases is visible in quite narrow but finite area
close to the ¥=U line in the intermediate-coupling region.
On the other hand, for a system with strong anisotrépy
=0.5, since the multicritical point plunges into the ferromag-
netic domain,SDW, directly contacts with the ferromag-
netic phase, instead. We think that this observation is not due
to an artificial effect in our numerical calculation procedure
but is inherent in AEHM.

In the easy-axis anisotropic case Fig. 9, a strong-coupling

of SDW and the right-hand sides show their bosonized exfixed point with the averages of fieldsr(w) appears where
pressions. While the order parameter correlation function det RO of SDW, is establishedNeel staté¢. The direct transi-

cays as a power law in the SDWphase, there exists a long-

range-ordeLRO) of Eq. (30) in the CDW phasd¢and Eq.
(31) in the SDW phasé. Adding these, we shall introduce

the following2®434°

Ocow =€'*¥n;=sin 26,0824, (33
O'som=62*Sxcos\2¢,siN24,, (34)

Osow =627 =cos\24, expiV26,), (35

where quantities with the overbar are defined “on bonds”

ni=c/-¢+He., 25=c ot ¢i+He  (36)
While Eq. (30) is the CDW order parameter, E(33) de-
scribes the “bond-located” CDWEDW). Similarly, corre-
sponding to Egs.(31) and (32) the bond-located SDW
(SDW,,;) can be defined by Eqg$34) and (35). Qualita-

tion between the LRO-SDWand CDW phases which is a
conclusion ofg-ology arguments is absent in weak and in-
termediate couplings. Alternatively, it is observed that there
exists the intermediat€DW phase between them. Further,
Fig. 9 exhibits that with the increase bfthe area ofCDW
phase becomes narrow and finally disappears ardund
=10. Since the transition in the strong-coupling region is
first order, this confluence may be naturally expected to
stand for a crossover point to the first-order transition. Con-
sequently, we think that the global structure of AEHM with
the weak easy-axis anisotropy is qualitatively same as the
case of EHM,"*8although the spin-gap transition and SDW
in EHM are substituted by the Gaussian-type second-order
transition and LRO-SDW\, respectively.

To summarize, we studied global structures of the
ground-state phase diagrams in the 1D anisotropic extended
Hubbard model at half filling. We accurately determined the
critical points by use of the numerical method, and then con-
structed the ground-state phase diagrams with high resolu-
tion. We closely compared our numerical calculation results
for the phase boundaries with analytical estimations in three
limiting regions of the Coulomb interactions, and then found

tively, the correlation functions of these order parametera good agreement between them. On the other side, in the
behave the same as those of corresponding site-located on@germediate-coupling region, we observed a richness of
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