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Electronic ladders with SO(5) symmetry: Phase diagrams and correlations at half filling
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We construct a family of electronic-ladder models with(Symmetry that have exact ground states in the
form of finitely correlated wave functions. Extensions for these models preserving this symmetry are studied
using these states in a variational approach. Within this approach, the zero-temperature phase diagram of these
electronic ladders at half filling is obtained, reproducing the known results in the weak co(pding insu-
lator) and strong-coupling regime, first studied by Scalapino, Zhang, and Hanke. Finally, the compact form of
the variational wave functions allows us to compute various correlation functions for these systems.
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I. INTRODUCTION relative weight of the six different SG) multiplets on a
rung is controlled by free parameters that are used to perform

The use of symmetries is an important tool to understang variational study of the zero-temperature phase diagram of
the effects of strong correlation in electronic systems. Rethe ladder at half filling. At strong coupling, the results
cently, the S@) symmetry of the antiferromagneti@FM) known from Ref. 2 are reproduced within our approach. Fur-
order parameter has been combined with that-afave su- thermore, at weak coupling and sufficiently large interchain
perconductivity to form a five-component-vector orderhopping amplitudet, the matrix-product state correctly de-
parameter. It has been argued that the low-energy sector ofscribes the gapped ground state of a band insulator corre-
the resulting theory exhibits an approximate(Symmetry ~ sponding to a filled Fermi sea of electrons with one parity.
that allows us to explain certain features such as the vicinity-or intermediate coupling we find a phase with finite ampli-
AFM order and superconductivity in the phase diagram oftude of the S@b)-spinor quartets that are essential for the
the highT, materials. Numerical diagonalization studies Presence of a metallic phase of the ladder. The compact form
have been performed and the Spectrum of |ow-|ying excitaOf the variational states allows us to StUdy various correlation
tions could in fact be classified according to this symmetry.functions of interest.

A Comp|ementary approach has been the attempt to con- In the foIIowing section we present the classification of
struct microscopic electronic systems with manifest(®0O the electronic states of a two-leg ladder system according to
invariance and studies of such models to extract théhe SQ5) symmetry and discuss all possible GP
|0w-energy behavior. Sca|apin0, Zhang, and Hanke Sucsymmetric single rung interactions. In Sec. Il we review the
ceeded in constructing a two-chain ladder Hamiltonian ofSZH model and consider tensor products of rung states to
this type and studied the strong-coupling phase diagram dpclude couplings of neighboring rungs. Section IV deals
this system where they were able to identify several distincwith various S@5)-symmetric extensions of this model and
phases(Ref. 2, referred to as SZH in the followingThe & general construction routine for systems with exact finitely
properties of these systems at weak coupling in the metalligorrelated ground states is given. Section V contains a de-
regime have been studied by means of bosonizatfduch  tailed analysis of the ground-state phase diagram of the sys-
ladder systems, particularly for magnetic insulators, have attem in the case of weak and intermediate coupling within a
tracted much attention recently due to the existence of varivariational approach based on such wave functions. Further-
ous experimental realizations in materials closely related ténore, we calculate the corresponding correlation functions
the highT, substance$ An interesting observation of Ref. 2 Within this approach. A summary of our results is given in
is the existence of an 36) superspin phase that has beenSec. VI.
studied in a variational approach based on finitely correlated
matrix-product states similar to the ones used &t 1
Haldane magnets2 Finitely correlated states have also been
considered in electronic systems to describe aspects of the
phase diagram of extended Hubbard mot¥lsaand other We consider a two-chain electronic ladder model with
one-dimensional electronic modéfs!? canonical creation and annihilation operatafgx),c,(x)

For SU2) spin systems the variational approach has beeffor electrons(with spin-projectiono=1,]) on sitesx of the
g.enerahzed to lattices with |add.er geome.‘tl‘y and prO\./en tQJpper |eg and ana'ogous Operatdiix),do_(x) for the e|ec-
give access to large parts of their phase diagraf.This is  trons on the lower leg. In order to discuss the(SGymme-
the motivation for the present work where we extend thery of the ladder model and to classify all the 16 possible
matrix-product states originally introduced in Ref. 2 to de-gtates on a rung according to this symmetry, these operators

scribe the strong-coupling physics of the (SDsuperspin  gre combined into four-dimensional g spinoré’
phase. We construct manifestly &pinvariant many-

particle wave functions from matrices containiai§ 16 elec- " T
tronic states on a given rung of the electronic ladder. The W, (x)=(c(x),c (x),d(x),d|(x))" (xeven (2.1)

Il. ELECTRONIC STATES OF SO (5)-SYMMETRIC
LADDER MODELS
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and

W (%)= (d;(x),d,(x),c](x),c](x)T  (xodd. (2.2

Using this definition the ten local generatokg, of the
SQ(5) algebra on a single rungare defined as

1
Lap(X)=— sz(x)rggwﬁ(x), a,b=1,...,5 (2.3

HereI'@" are ten antisymmetric,44 matricegtheir explicit
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=(AN2) (=09 D), W5y = (112)(Nz215)|2) and
| Wy =n,|Q) with the superspin vector

N =

n(x)=sVi0T2¥,x), a=1,..., 5 (2.9
Again, the explicit form of the 44 DiracT" matricesl'? is
given in Appendix A.

Any electronic ladder model with a local $8)-symmetry

on a rung has to preserve the degeneracy of the energy

form is given in Appendix A. A convenient basis of the within the states of each single multiplet. The invariant
Hilbert space on a single rung is diagonal in the quadratiddamiltonian on a single rung can therefore be written as a

Casimir charge

CO0=2 L5, (2.4
a<b
In addition we choose to diagonalize the total chafge
=1(c'c+d'd—2) and thez component of the spirS?
=3(c'o,c+d"o,d). Based on the eigenvalues @fthe Hil-
bert space can be decomposed into siX3B@nultiplets.
(1) Three S@5) singlets C=0), for R see Eq(A2),

dT(TdT” ((m #>)

SR~

(W) =1Q)=

W)= N (2.5

(3) R B
|\I} > \/_\]f aﬁqfﬂ|ﬂ> Tl>

(2) An SQ(5) vector quintet C=4) containing the ferro-
magnetically polarized state at half filling

wgne|| 7)) > e E

a=1,.
(3) Two SQ5) spinor quartets€=5/2) for an odd num-
ber of electrons on a given rung

M)

(2.7

(2.6

W) ~\2w,|0) e [

a=1,...4,

wi-covne 1) 1))

a=1,...4.

We label the statebP&'fL) on a rung by the dimensioa of
the corresponding multiplein(=1, . . ., d) and an additional

sum over projection operators on these states:
2 4

h, )\52 WENPEI+ 2 M Z W)

3
b 3 MOy,

(2.9

where V= (1{"9)* because of the hermiticity df,. All
SQ(5)-symmetric terms on a rung can be expressed using
linear combinations of these projection operators, e.g., the
projection operator on the first singlgb §3) is
Poo= W E(W =~ 3S00Sa00 + §[S0S(0 12,
(2.10

with Pl = ¢4 )(y§),| and S(x) = 3cT(x)ac(x). A com-
plete classification of these terms is given in Appendix B. As
a simple example we choose

7
—5U-3v 2\2t, —2\2t,
U
)\0: E—V 0 s
* U V
2

0 _th U
Na=|, o |’ and )\5:E+V’

which leads to the Hubbard-type Hamiltonfamwith an
SQO(5)-symmetry introduced by SZH

Hrung: Hcoulombt HHopping
zg (U{[ng;(x) = 51[Ne () = 3]+ (c—d)}

+V[Ne(X) = 1][Nng(x) — 1]+ I S(x)S4(x)

—2t,[cl(x)d,(x)+H.cl), (2.11)

indexk. Similarly, we can characterize product states on twovhereJ=4(U + V). This condition on the exchange ampli-

rungs (see Sec.
(2.6) can be constructed from $8 spinors [¥{Y,

). Alternatively, the vector quintet tude guarantees the degeneracy between the states in the

SQ(5) quintet and therefore the local $8) symmetry of the
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system. We will discuss this model and &@symmetric  different multiplets invariant under the action of the (SD

extensions in the following sections. generatorsC,p(X,Y) = Lap(X) + Lap(y). Tensor products con-
taining a singlet factor on one of the rungs are trivial leading

to simple product states, e.g., the (@D singlets

[P0, . Altogether there are nine singlets, 12 quar-
In order to describe an extended quasi-one-dimensionakts and six quintets of this form. The remaining 169 states

electronic system one has to include coupling of neighboringire obtained by forming tensor products of quart2t®) and

rungs in addition to single-rung interactions considered inquintets(2.6). The decomposition of these products into ir-

the previous section. The simplest possible term is a(6BO reducible representations of &) reads

symmetric hopping term between adjacent rungs

III. COUPLING OF NEIGHBORING RUNGS

4 4= 145 10,
243 [65(0e,(y) +d(x)d,(y) +Hel, (3 45— 4516,
which can be brought into a manifestly &psymmetric 5@5=1¢104 14

form using the alternating definitions of the spin(®sl) and ) ) )
(2.2). This hopping term together with the local-rung inter- [(numbers denote the dimension of the correspondin(650

actions(2.11) yield the complete SZH mod&IThe ground- irrep]. For example, one of fpur S6) singlets in the tensor

state phase diagram of this system in the limit of strongProduct of quartet state@.7) is

coupling U,V>t, ,t|) has been determined by SZH using 1

perturbation theorysee Fig. 2. Four different phases have POy v)y= = (— | PO [P 2y — | (DN | (2)

been established at half filling. Voo (xy)) =5 (= WanVam = VaplVaa
In phase I(occurring for 0<V<—2U) the model can be (N (1 (2) (N (1 (2)

mapped onto an Isinglike system in a magnetic field: phase H WDV + VD). (3.3

la (V=—U/3) is a charge-density waV\€DW) phase andy|  similar combinations of the rung states appear in the other

(V=—UI3) corresponds to the disordered Ising phase. Phasgates, the Casimir charges of the new multiplets Ge6

Il is a spin-gapd-wave phase(product of rung singlels  for the decupletsC=10 for the 14-dimensional an@

emerging forv=-U,U=0 and forV=-2U,U<0. The = =15/2 for the 16-dimensional representations. The multi-

phase Il V<—U,V=0) is the superspin phase where thepjets can be classified further according to the different ei-

SQ(5) quintet is dominant. For a further examination of this genvalues of) and S on their member states. In Fig. 1 the

superspin phase, SZH have used the finitely correlated wav@ate content of the various multiplets is shown. In the fol-

function lowing we use this classification of the ) multiplets to
construct ladder systems with exact ground states including
L different S@5) symmetric nearest-neighbor interactions
|‘P§ZH>=Tr(H ranam)) (3.2 '
x=1
(summation over the indexis implied and the trace is taken IV. EXTENSIONS OF SZH

in the 4x4 matrix space where thE? are definell In this

form periodic boundary conditions have been imposed. By AS mentioned in the Introduction the finitely correlated
adding many particle interactions to their original Hubbard-wave functions originally introduced to discuss the spin-
type Hamiltonian, this stat.2) can be made to be the exact liquid phases arising in one-dimensional higher-spin Heisen-
ground state of the resulting model. This state has been aberg model$® have recently been generalized to more gen-
gued to capture the essential physics of the superspi@ral lattices. In particular, ladder models whose ground states
phase—similar to the role of the AKLT-model as a represenare of this form have been constructéd®*°In these spin
tative for a Haldane-gapped spin-1 chain. The wave functiosystems the ground state is of the foning) =11%_,g, where
(3.2) will be the starting point for constructing a generalizedg, is a (2x2) matrix containing the different states on a
matrix product wave function including all 16 states on asingle site or rung (e.g., spin-1 states for the AKLT model,
rung (see Sec. IYand later be used for a variational study of singlet and triplet states for a two-le8~=1/2 ladder, etg.

the ground-state phase diagram of the SZH model and itBifferent properties under translation in the extended direc-
various S@5) symmetric extensions beyond strong couplingtion can be realized by an appropriate choice of the free
(see Sec. Y The hopping tern{3.1) is one of many possi- parameters appearing @y (e.g., an alternation to introduce
bilities to include interactions between two adjacent rungs oflimerizatiort®2%2}. Within a transfer matrix approach, it is
the ladder but the requirement for a local (§0symmetry  straightforward to compute various ground-state correlation
puts constraints on the explicit form of these terms. Explicitfunctions for different boundary conditions, periodic ones
expressions for some of the interaction terms are listed iorrespond to taking the trace of the matrix-product wave
terms of electron operators in Appendix B. For a classificafunction??

tion of these additional interactions we consider products of For a further analysis of the SZH model and the construc-
wave functions on two neighboring rungsndy. A decom-  tion of SQ5)-symmetric ladder systems with exact ground
position into S@5) multiplets similar to(2.5—(2.7) gives 50  states in matrix product form, we have extended the wave

125109-3



HOLGER FRAHM AND MARTIN STAHLSMEIER PHYSICAL REVIEW B63 125109

2
1
o o
-2 "o | ® 1 2 S7
-1
-2
(a)
Q FIG. 1. The irreducible S®)
representations appearing on a
2 pair of rungs decomposed corre-
sponding to the eigenvalues &f

and S% (a) the quartet(with Ca-
simir charge C=5/2), (b) the
quintet (C=4), (c) the ten-
dimensional C=6), (d) the 14-
dimensional C=10), and(e) 16-
dimensional C=15/2) irrep
(double circle indicate two states
with identical eigenvalugs

()

function (3.2) to include the three S@) singlets(2.5 and  sequence is that the ansatz cannot be expected to describe the
the two SQ@5) spinor quartet$2.7) formation of ferromagnetic domains with higher spin states.
An analogous argument holds for higher values of the charge

L Q, corresponding to strong local deviations from half filling.
|‘I’o>:Tf( H1 gx({pi}))- (4.1 There is a simple way to construct spin-ladder systems
. with matrix-product wave functions as ground stitesd a
Now g, is a 5% 5 matrix andp; (i=1, ... ,6) arevariational ~ generalization to electronic-ladder models with an(50

parameters assigning different weights to the multipletSymmetry is straightforward. The starting point is a general
(2.5—(2.7) on a rung(see Appendix A We restrict our- SO(5)-symmetric Hamilton operator on two neighboring
selves to the translational invariant case, where the paraniungs

etersp; are chosen to be independent of the rung position 4 16 14

In this case the matrix-product wave function on two neigh- |, 1= 2 A kD 2 pkl 4 2 )\14|514

boring rungs contains two S6) singlets, two quartets, one R = e e B = "

quintet, and one decuplet. The 14-dimensional and 16- 5 10 10 s
dimensional representations are absent by construction. The k.| 2kl K.l 2kl

states of the matrix product are linear combinations of the +k,|2:1 MG );1 P10#+k,|2:1 M );1 Psu

basifj in Sﬁc. 1 above,htheir eg&i}cit Lorlm |§ ratr?er compli- % A 1

cated. With respect to the spin-8) subalgebra the remain- . N

ing multiplets present in the matrix product contain spin sin- +k|§::1 gD Zl PZZL“LkIZl NDPEL (4.2
glet, doublet, and triplet states on(gtates with total spin ' a '

polarization S>>1 are members of the 14- and 16- where P!, =|y{) ) (44| are projection operators on all
dimensional representations, see Fig.An immediate con- possible S@) multiplets(see Sec. ). The state$¢§fit> are
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product wave functions on two rungsand! label the mul- v=—2U Vv
tiplet, w the states in the multiplet, ardlis the correspond-
ing dimension of this irreducible representation. The hermi-
ticity of h,, 1 requiresA{V=(\{"¥)* for the coupling
constants, leaving altogether 322 free parameters in the v=-um
Hamiltonian. A HamiltoniarH = X,h, ., has a finitely cor- \ \
related ground statgl ,)=11,g, with zero energy provided ® -~
that the following conditions are satisfié#l(1) hy x+1 has to N u
annihilate all states contained in the matrix elements of the
productg,dy+ 1, (2) all other eigenstates o, .. ; have posi-
tive energy. Starting with an ansatz fgg in Eq. (4.1), one
has to identify all multlplet$¢('d)) contained in the product
wave functlongxg)<+l These multlplets are labeled by indi-
cesiyg=1,...,0q Where the maximum numbeg, is the Ve—U
number of multiplets with an equal Casimir chargkig the
dimension of the irreducible representadion.g.,g0=2 i
the product wave function on two neighboring rungs con-
tains two independent S8 decuplets. After the determina-
tion of the multiplet content of¥,) the corresponding pa-
rameters\ “'? in h are set to zero to fulfill the first 2, 22 .2
ood XX+ 1 . . Et, ~t)[P4Ps(25p5+ p1— P2~ P3) +h2(P2Pp3—5pP1Ps)
condition. The remaining operators in E@.2) will now I
project on states not included in the matrix-product wave +(p2—p2)(5paps— P1P3) ], (5.3
function, which leads to zero energy for the ansatz. To sat-
isfy now the second condition, the reduced matricesvhere h;= 5p6+ p1+ p2+ p3, h,= p§+ pé and w

I

FIG. 2. Strong-coupling phase diagrakh,andV measured in
units oft;.

and between two neighboring runpsee Eq(3.1)] it is

MY (1#i4) have to be chosen positive definiiee., posi- = \h?+16h2.
tive eigenvaluessuch that Eq(4.1) will be the lowest en- In the strong coupling limit one can neglect these hopping
ergy state of the system. terms(5.2) and(5.3). Minimizing the energy with respect to

In principle a general Hamiltonian, where our angdtd)  the p; reproduces exactly the phase diagram calculated by
is the exact ground state, can be built by operators projectingzH within perturbation theorg¢Fig. 2) where the phases are
on the other remaining S6) multiplets (e.g., the 14- fixed by the largest amplitudg; of the corresponding state
dimensional and the four 16-dimensional representationsand the crossover is continuous. Phase | is dominated by the
and it has 249 free coupling constaitf" (I#i4). We give  bonding singlet state with amplitud®, phase I1l is the su-
explicit expressions for some of these operators in terms gberspin phasep), and phase Il consists of products of rung
electron operators in Appendix B 3. In general, however, theinglets ;). In this approach with translationally invariant
structure of these projection operators is quite complicateg, the crossover between the two Ising-phases cannot be re-
making it difficult to motivate these exactly solvable systemsproduced. We now extend this analysis of the phase diagram
on physical grounds. of the SZH model to weak and intermediate coupling.

V. VARIATIONAL STUDIES OF THE PHASE DIAGRAM A. Weak coupling phase diagram

An examination of the SZH model beyond strong cou- The band structure of the noninteracting system at half
pling can be done by using E¢4.1) as a variational wave filling is well known. ForU=V=0 there are two energy
function. This wave function leads to the variational energybands, given by

Erung:<q’0| HCoqumA“’O) e-(k)y==2t, —4t|| cogk), —m<k=sw (5.4

~(p3+p3)(U2—V)+5p3(U/2+V)—p2(3U+3V) and two different cases have to be distinguished.
5.1) For t, <2t the Fermi energy intersects the two bands
(5. [see Fig. 8a)] and fort, =2t they are separated by an en-
for spin and charge interaction on a rufgee Eq.(2.10)].  ergy gap[see Fig. 8)]. The gapless systent,(<2t|) has
Herepg is the parameter corresponding to the(SQquintet,  been studied using bosonization of the low-lying modes in
p; is the weight of the singlgt)) andp, ; of the symmetric  the vicinity of the four Fermi points to obtain the phase
and antisymmetric linear combinations of the other(50 diagram for weak coupling{,V<t, ,t): Lin et al* found
singlets(2.5). The variational energy corresponding to thethat at half filling the system is driven toward an integrable
hopping term on a rung is SQO(8)-symmetric Gross-Neveu model in a weak-coupling
renormalization-group analysis and predicted the occurrence
(w—h )} of additional phases compared to the strong-coupling case.
1 The ongoing debate on these residse the criticism of Ref.
(5.2  23) cannot be clarified within the present ansatz: Using fi-

- <\PO| HHopplng|\I’O> tJ_ 8p1p2+ 2

p p4>
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strong-coupling diagrantsee Fig. 2 The superspin phase
disappears and also the &D quartets have no significant
weight (p4,ps,Ps~0) as expected for a band insulator.
Considering the complete ground-state phase diagram
(see Fig. 4 we find an additional phase for intermediate
coupling U,V=t, ,t) where the S() quartets have the
largest weight, in particular the rung-symmetric die@’)
@ (0) (A5). Apart from these, the symmetric singlet state
(VIR =W R,V p)|Q)—which  determines  the
FIG. 3. Band structure of a two-leg ladder model fa¥ t, ground state in phase I—has a significant weight. Due to the
=tjand(b) t, =2t;. resonating structure of the ansatz and the relatively large
variational value o (AH)?) the phase boundaries are not
nitely correlated wave functions always leads to an exponervery accurate—for a more detailed study of this question the
tial decay of correlation functions, indicating the existence ofpresent work should be complemented by a numerical ap-
an energy gap between the ground state and the first excitgmoach. As discussed earlier, it is not possible within this
state. approach to determine the position of the crossover line be-
tween the two Ising phases, or even whether this transition
B. Phase diagram fort, =2t still occurs for the case of weak or intermediate coupling.

Fort, =2t the variational ansatz gives the exact ground
state for the noninteracting systetd € V=0).
Choosingp;=—(1/1/2), p,=(1/4/2), and p;=0 for i The physics in the ground state is determined by ground-
=3,...,6 we find state correlation functions, which are easily computed from
) matrix-product wave functions. The matrix-product ansatz
(4.1) with the six free parameteng; represents the ground
| W)~ Hl (—cld]+cld]—dld]-clc])(x)|0), state for a large class of models. We have calculated various
“ (5.5) correlation functions explicitly in the thermodynamic limit
(L—0) for this variety of modelga detailed list is given in
which corresponds to complete filling of the modes with en-Appendix Q and we determined the correlation length and
ergy e_(k) in Eq. (5.9, the band insulator. Consequently, the amplitude of different ground-state correlations for the
we expect the variational approach to give reasonable resul&ZH model when we used the ansatz as a variational wave
for the weak-coupling phase diagram in this regime of hop<function.
ping amplitudes. The quality of the approach can be mea- The two-point correlations in matrix-product states are al-

sured by the mean deviatiov(((AH)2>= \/<H2)—(H>2 of  Ways short-rangedf not vanishing and have the following

the energy. FotJ,V<t, .t the mean deviation stays small form:
compared to the energy so that the ansatz should give reli- s -y
able results. (O'(r)0(0))=A({pi})e "~

We find that only two phases are present in the weak- - . . .
coupling case(see Fig. 4 the Ising phase |ff,) and the They exhibit an exponential decay with the correlation

. length¢& and amplitudeA({p;}). As an example, we consider
spin-gap d-wave phase I ;) already known from the the correlation length an{d a}mplitude of the expectation value
N of the spin-spin correlation functiofiS; 4(r)S; 4(0)) (see
v Fig. 5 and of field correlatorgc!(r)c4(0)), @,Be{g,u}

(Fig. 6) for the SZH model on a circle in thg-V-plane(with
I, U2+V2=3) intersecting the phases I,Il and the quartet
Ve_U/3 s I phase(see Fig. 4.
T The spin-spin correlation functiorgiécyd(r)écvd(o» in
Ty T~ 5 Fig. 5 is nonvanishing only in the quartet phase but with an
U extremely small correlation length indicating strong nearest
\? neighbor correlations. For the electron-electron correlation in
Fig. 6 with ¢4 ,(X)=[c(X)+c (X)]£[d;(x)+d (X)] the
correlation length¢ is small for all anglesp but with a very
large amplitudeA except in the quartet phase.

The sharp peak in both diagramsdt- 3 7 indicates the
crossover of the phases Il and | in Fig. 4 where the correla-
tion length diverges. Calculating these correlations in the
FIG. 4. Phase diagram for =2t (t;=1): the phase boundaries strong-coupling limit, the phase boundaries in Fig. 4 are de-

were calculated by comparing the amplitudes of the different mulnoted by very sharp peaks in the electron-electron correlation
tiplets. length &t (Ng.u(0) with a nonvanishing amplitude. The
g,u B

C. Ground-state correlations

v=U
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o ¢
FIG. 5. Correlation length and amplitude for the spin-spin cor- FIG. 6. The correlation length and amplitude of the expectation

value (c;u(r)cg,u(O)), the full line corresponds to

relation function, the full line corresponds ¢6q)(r) Se(q)(0)) and _
e(e)t /=e(d) (¢l ()cew)(0)) and the dotted line tdc] ,(r)cy(g)(0)).

the dotted line tdSy(q)(r) Sy(c)(0)).

spin-spin correlations are zero in the whole phase diagram > <|5(141 )= W—hl(p4—p5)2, (5.69
and give no further hints of an underlying structure in the u . 2wh,
system.
S (22— 2 M4 pg)? (5.6h
D. Variational examination of SO(5)-symmetric extensions H () 2wh, '
Our variational approach is also suitable to study the A A w—h
phase diagrams of various S§)-symmetric extensions of D P, T PEL Y = ——(p2—pd), (5.6i)
the SZH model. We have considered additional interactions u ' ' wh,
on a single rung and between two neighboring rungs, using 5p2
the construction routine of Secs. Il and IV. EM: <P?éi)>: WS (5.6)

1. Single-rung interactions L .
These maodifications of the model cause some changes in the

All single-rung interactions can be constructed using theyround-state phase diagram, e.g., the simple terms like Egs.
projection operators of Sec. Il and a detailed list of all pos-(5.64 and(5.6j) will only shift the phase boundaries without
sible terms can be found in the Appendix B. Taking into changing the general structure of the phase diagram. Other
account the operatoif', with the coupling constants{*" interactions like the pair-hopping ter(6.6f)
leads to the following contributions to the variational energy . .

(5.1), calculated with the ansatz.1): toair(dld]cic, +H.c)~PE%,+ P, (5.7

p2 will dramatically change the phase diagrasee Fig. 7.
<'5(1610)>: L (5.6a For small negative values @, (|tpair|<t)) the Ising-
’ w phase | of the phase diagram in Fig. 4 with the symmetric
1 amplitudep, splits into two singlet phases: a symmetns )
(ﬁ’(2620)>: —(po+pa)?, (5.6b and an antisymmetric phasep30 [see Fig. Ta) , tp?i,
' 2w = —1], where the crossover line has the same gradient (
=—2V). Increasing the amplitude df,,;; leads to a pure

(P33 )= i( —py)? (5.60 antisymmetric phasgsee Fig. ), ty,;,=—4] in | and also
(00 = 5y (P27 Pa) ' to a strong change of the shape of the quartet phase. For
small positive values of,;, the general structure of the
f1o ao 2 phase diagram is preservéike Fig. 4). In the regime of the
(P60t Pooy =~y Pa(Pstp2), (560 coupling constants witlt,;, >t the quartet phase vanishes
(see Fig. 8
2 Other interactions also exhibit strong effects on the phase
513, p31 ., V2 3 . . : - .
<P(0 0T P 0)>— P1(P3—P2), (5.60 diagram, e.g., including a quartet term likg that contains a
' ' w hopping term on a rung and a bond-charge interactime
Appendix B.
(B3t B =~ (p2-p3) (5.6 t 2
00" F(0,0/ = { \Pa7P2)s : tquad (¢]d; +H.c){1—(ng;—ng)%+T<1] (5.9
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V=-2U V=-2U
\) v
I(p3> T I(p,) 1
s FIG. 7. Phase diagram far
5 7\ 5 =2t including pair hopping for
1] '————< 1] @ tpairzftﬂ and (b) tpair:
-5 _4tH with tHZl.
I I
(a) vt (D) Vel

leads to different phase diagrams, depending on the coupling). For them we can calculate the corresponding variational

constant. For positive values tf,, the quartet phase van- energy, e.g., the two-pair hopping term leading to a{S530

ishes with increasing values of the coupling constéké in  singlet-singlet transition

Fig. 8 until there are only the three known phagsse Fig.

9(a)]. For tqua<O0 the quartet phase grosee Fig. %)], to-paill ] dT(y)d](x)d](y)c (%)

dominated by the symmetric combinatiop,f of the states.
The mean deviation in the weak coupling limit in these

two special cases.7) and (5.8) is small compared to the

einer_gy(calculated onha circlle With;ad“B:ho'l arounoUl SQ(5)-singlet interactions on two rungs lead to similar ex-
=V=0) except for the valué,,,<—1. The ansatz also pressions, which will change the phase diagrdig. 4) in

provides very good results in the strong-coupling liMR (* {he |sing phase according to the value of the coupling con-
=100), except for the crossover lines to the superspin phasﬁanttz _
-pair -

where the mean deviation is very large. The same problem Inciuding an S@6)-quartet interaction in the SZH model
occurs in the intermediate coupling regime in the quarte};See Eq(B18)] gives the variational energy

Xci(y)e (x)c (y)+H.c] (5.9

giVing Etwo-pair~2t2-pair(p2+p3)2(p3_p2)2- The other

phase where the ansatz is not a good eigenstate of the sys
tem. _ . _ _ w—h, , s )
We expect that including t_he other interactions on a rung Ethxym(pz— p3)(pz—ps). (5.10
will lead to similar changes in the ground-state phase dia- 2 1
gram.

The phase diagrams obtained for different values of the cou-
pling constant,,, are very similar to the phase diagram in
2. Two-rung interactions Fig. 4. The additional interaction has no significant effect

In most cases the §6)-symmetric interactions between €Xcept for minor changes of the crossover lines.
two neighboring terms have a very complex structure but for
some of them we can give simple expressi@ee Appendix VI. SUMMARY AND OUTLOOK

We have constructed a large class of electronic ladder
v models with S@) symmetry having finitely correlated
ground states and, consequently, correlation functions exhib-
iting exponential decay. These matrix-product states have
been used to perform a variational study of the ground-state
®,) phase diagram of the SZH modébr t, =2t;. For vanishing
coupling the ground state of the band insulator is found to be
" \ s in the class of variational states and at strong coupling the
phases identified by SZH are reproduced. In the intermediate
- T u coupling regime signatures of a new phase dominated by
local SA5) quartets are found, and at weak coupling the
SQ(5) superspin phase is absent. Within our approach it is
I possible to compute various correlations giving further in-
sights into the nature of the phases that have been identified.
Finally, we have introduced various $) symmetric exten-
sions to the SZH model and discussed their impact on the
phase diagram. In the future we will include dimerization in
FIG. 8. Phase diagram fdr =2t including pair hopping for ~ the matrix-product ansatz for further studies of the lIsing
tpair="4t) with tj=1. transitiorf in phase | and the possibility of spontaneous

V=-2U

V=-U

125109-8
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v=-2U V=-2U

v v
I(1)2) I I(Pz) II
5 s FIG. 9. Phase diagram fdr,
b 5 = 5 =2t including a quartet term

U U with (a) tquar:+4tH and (b)

-5 -5 tquar: —4t” with tH:]"

i il
(a) v-u (b v=—u

breaking of translational invariance in exactly solvable The quartets enter the matrig, in |q,)=p.|Q.)
models. +ps|Q, ) where|Q,,) are the symmetric and antisymmetric

combinations of Eq(2.7),
A e RN

TV R T
APPENDIX A: THE GAMMA MATRICES AND THE i‘ vl L (A5)
VARIATIONAL WAVE FUNCTION

For the construction of the S6)-invariant quantities, we They are.arranged in the right column and the lowest row of
have used the representation of the matrices in Ref. 2. Thgd: (A3) in such a way that in the produgigy., one has
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five Dirac T'-matrices have the following form: SQ(5) singlets on the diagonal only.
N R o RO R . (0 oy APPENDIX B: SO(5)-SYMMETRIC OPERATORS
Niey, 0 ) “lo g “loy, o) ON ONE (TWO) RUNGS

(A1) We present here a selection of various(5@&ymmetric
terms on a single and on two run@1) and (B2). Further-
more, a list of terms is given for which our matrix-product
ansatz(4.1) would be the lowest energy stat@3).

whereo are the Pauli matrices. The matridé® are defined
by I'3= —i/2[T'3,I'®] and the matrixR is given by

0 1
R=

1ol (A2)

1. Single-rung interactions

We now present all possible $8)-symmetric terms on a
rung. Their general construction is done in terms of projec-
tion operators on the different $8) multiplets. Expressed

Using these definitions, it is simple to construct the maggix
of the variational wave functioid.l). It has the following

structure through electronic operators, most of them are already
known from the SZH modgR2.11) and an additional biquad-
l91) ratic exchange. As a shorthand notation we introduce
2 |
. q2)
_ a A
87| | Pl a0+ 24 P'"PO,M] ) | [U,V.3,a]=U{[ne; (0~ $][ne, (0~ £1+ (c—d)}
|94) +VNe(X) — 1] Ng(x) = 1]+ IS(x) Sy(X)

—lgs) —lga) a1y lg2) | O .
+ al Se(x)S4(x) 2. (B1)
(A3)
) ) o In addition, we find various single-electron and pair-hopping
The three S(®) singlets are included in this ansatz only on terms together with bond-charge type interactions. Using the
the main diagonal elementSF'{{)=|w{!}) from (2.5 and  notation of Sec. I for the projection operators on a rung, we
| Z?) are the symmetric and an antisymmetric combina-obtain the following terms by projection on the singlets
tions of the two other singlets

1
~ pll_ 1 1) —
[T = (IR, WEFW R WHQ).  (A4) Poo= W6 WE = {0,0.— 5.5}, (B2)

125109-9
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fop 1 12 4] 1

Poo=|2: " 2303/ " 3NN (1-no)—c—d],
(83)

fas 1 12 4] 1

Poo=|2:~ 7033 " 2[NaiMa(1=ne)—ced],
(B4)

A N 1
Poot P%;}):—Z[(c%dﬁH.c.)ndl(ncl— 1) +1 1],

2
(BS)

pra.pit_ ity by -1+
oot Poo= \/E[(CT 1tH.e)ng [ng —1]+ T« ],
(B6)
P5a+Pyg=dld]cic,+H.c. (B7)
The projection operators on the quartet states read

8 16
33

+(1—ng g )Ng+nging (Nc—2), (BY)

8 16

0,0,—5,—3

+(1—=ng;Ng )Nc+NgiNg (Ng—2), (BY)

4
2 Pii+PiL={cld+He)[1=(ne—ng)?]+ 11},
P

(B10)

and finally, projection on the quintet gives
i Ps = 11 13 20 B11
n=1 S 2’33/ ( )

2. Interactions between neighboring rungs

Equivalently, the S(d)-symmetric expressions on two

PHYSICAL REVIEW B63 125109

PE3x.Y) =W yINPExY) | =PEdx)PEAY)
(B13)

[see Eq.(2.5) for the definition of the wave functiomsAll
projection operators of states consisting of at least on@&SO
singlet on a rung can be decomposed in the same manner.
For some of these operators a compact representation in
terms of electron operators is possible. As an example con-
sider the operator

cix)clx)di(y)dl(y)e (y)e,(y)d;(x)d;(x) +H.c.
(B14)

describing pair exchange between two neighboring rungs. It
causes a transition between two (8Dsinglet states and can
be written as

~P3Ay)P3Ax)+H.c. (B15)
Other S@5) singlet-singlet transitions of this type are

dl(x)dl(y)dl(x)dl(y)c;(x)ci(y)e, (x)e (y) +H.c.,

Na(Y)ne; (Y)ne (V[T (x)d](x)c;(x)c;(x) +H.c],
(B1o)

No(x)ng; (x)ng; (OS] (y)C[(y)d;(y)d, (y) + H.cl,
where
Na(y) = [1_ naT(y) - nal(y) + naT(y)nal(y)]v
aeic,dl. (B17)

Similar terms are obtained from projection operators on
direct products of an S()-singlet on one and an 3B
quartet on the other rung, e.g.,

[([ne;(x)—ng; (x) 12— 1}el(y)c](x)cl(y)d; (y)d (x)d, (y)
+{[Nn¢;(x) —ng (x)]*—1}
xcl(x)cl(y)c](y)d;(x)d;(y)d,(y)]+H.c. (B18)

The projection operators on the remaining 169 states with

rungs can be classified. The choice of the basis on the twd Structure similar to Eq3.3) cannot easily be decomposed

rung system is very important for the structure of the(H0O

in this way. They are significantly more complex, generically

symmetric terms. Using the simplest combination, the prodtheir expansion into electronic operators produces compli-

uct of an S@5) singlet on one rung and another &D
multiplet on the other gives for a projection operator, e.g.,

5 5
2 PLL(xy)=Piix) X Ps,(y)  (B12)
p=1 pn=1

for the product of an S(®) singlet on rungk and an S(b)
quintet ony, WherelsﬁjLL is defined in Sec. Il. The numbeks
andl in PX' depend on the way the different multiplets on

cated bond-charge interaction terms. Still, forming suitable
linear combinations of such terms can lead to simple(53O
symmetric terms on two rungs, e.g., the pair-hopping term in
Eq. (3.1) or a diagonal hopping term

(2) [dl(x)c,(y)—ch(x)d,(y)+H.c].
8%

3. SA5)-symmetric Hamiltonians with exact ground states

At the end of Sec. IV we claimed that a general Hamil-

the rungs are labeled. Another example is an operator prdenian where our ansata.l) is the ground state of the sys-

jecting on an S(®) singlet on each of the rungs

tem is given by

125109-10
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4 16 14
i A 1
= 3 A S P+ S NiePua, Mg (kW) ©9
KI=1 u=1 u=1
+ additional terms. (B9 ~ With
The coupling constants have to be chosen suchxhat0 h;=5p3+pi+p3+p3 hy=p5+ps,

and the matrix\ 15 of coupling constants is positive definite.

This implies thaE=0 is a lower bound on the spectrum and and

therefore the state (4.1)—having zero energy by > >
construction—will be a ground state. The additional terms in w=Vhi+16n;.
Eq' (B19) are the projection operators on the remaining mu"This enables us to calculate the expectation values of any
tiplets, not present in the matrix-product wave function. For . : .
example, the projection operator on one of tha®@inglets operator acting on a single or two rungs, respectively. For

not present in this product reads example, we find

o 2

MVL=cfoel(y)el(ef(y)di()d; (y)d, (0d,(y) $-0. (57" TJSI% 6

+ g (X)Ng (Y)Ngy (X)Ngy (Y)N(X)Ne(y) +(c—d)]. or local .
(B20) or local magnetic moments and
Just as\ ;¢ above, the matricesy, d=0,4,5,10 coupling the + _ i w—h; 2 _
projection operators on the remaining multiplets have to be {Caw (X)) Cau (X)) = h, (p5+3py)+2h, F4p1p, |,
chosen to be positive definite. (C7)
APPENDIX C: CORRELATION FUNCTIONS 1lw—h,
<CZ(X)Cﬁ(X)>=V_V{h—(2p4p5)_4p2p3} a#p

The calculation of expectation values between matrix- 2 C9
product states is straightforward using a transfer matrix
method(see, e.g., Ref. 22 for electronic expectation values. Here,Be{g,u} and

To this end we define a 2625 transfer matrixG on a  ¢g  (X)=[c;(x)+c (X)]=[d(x)+d(x)].
rung Correlations between the total spin on two rungs decay

; exponentially
G“lr%NG(ilrh)v(izviz)Eg(i1viz)g(11rJ2) (€1 . 2\ 2
. 3 h,—4 w—h;+8
with the indices ($,S)=— ! pe) L7 °Ps
4w(hytw) | Ay h,—4p§
a;=1,...,25-+(1)), ... ,(15,(2D), ... (55). (C9Y

In terms ofG the norm of the ground state can be written asas expected for finitely correlated states. Spin-spin correla-
tions between individual sites on rungs separated by a dis-

25
tancer can be expressed as

(Wo|Wo)=TrG-=>, \F, (€2
i=1 2\r
o o 3 h,—4pg
where \; are the eigenvalues d@&. In the thermodynamic (Sa(r)Sp(0))=Aqp({Pi}) N
limit (L—<) the largest eigenvalug,; dominates this ex- .
pression and we obtaifW o| ¥ ,)~\} . Similarly, one-point h1—8pg
correlators of an operatd are +Bap(Pi}) N . (C10
1 where the amplitudes,z({pi}) andB,g({p;}) depend on
(O)= )\—l<91|z(0)|61> (C3  the choice ofa and B, i.e., whether correlators of spins on
the same or on different legs of the ladder are considered.
and a two-point correlation function reads Analogously, one can study electronic correlations, e.g.,
21N 8
(0lon)=2 F(E (&112(01)[en)(en|Z(Oy) ey). (ey(rei(neg(0)ey(0) == 3(S:S),
N n
(C4) h r h r
Herele,) are the eigenvectors with eigenvalng of G and (cq u(r)Cg,u(O)>=Cg,u({pi})(—2 + Dg,u({Pi})( - —2) :
t0.q | : ’ Ay Ay
Z(0;)~g'0O;g is the transfer matrix related to the operator (c11)
O;. With the matrix (A3) the largest eigenvalue d& is
given by with the amplitude<C, , andDy .
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