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Electronic ladders with SO„5… symmetry: Phase diagrams and correlations at half filling

Holger Frahm and Martin Stahlsmeier
Institut für Theoretische Physik, Universita¨t Hannover, D-30167 Hannover, Germany

~Received 29 September 2000; published 12 March 2001!

We construct a family of electronic-ladder models with SO~5! symmetry that have exact ground states in the
form of finitely correlated wave functions. Extensions for these models preserving this symmetry are studied
using these states in a variational approach. Within this approach, the zero-temperature phase diagram of these
electronic ladders at half filling is obtained, reproducing the known results in the weak coupling~band insu-
lator! and strong-coupling regime, first studied by Scalapino, Zhang, and Hanke. Finally, the compact form of
the variational wave functions allows us to compute various correlation functions for these systems.
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I. INTRODUCTION

The use of symmetries is an important tool to underst
the effects of strong correlation in electronic systems. R
cently, the SO~3! symmetry of the antiferromagnetic~AFM!
order parameter has been combined with that ofd-wave su-
perconductivity to form a five-component-vector ord
parameter.1 It has been argued that the low-energy sector
the resulting theory exhibits an approximate SO~5! symmetry
that allows us to explain certain features such as the vici
AFM order and superconductivity in the phase diagram
the high-Tc materials. Numerical diagonalization studi
have been performed and the spectrum of low-lying exc
tions could in fact be classified according to this symmet

A complementary approach has been the attempt to c
struct microscopic electronic systems with manifest SO~5!
invariance and studies of such models to extract
low-energy behavior. Scalapino, Zhang, and Hanke s
ceeded in constructing a two-chain ladder Hamiltonian
this type and studied the strong-coupling phase diagram
this system where they were able to identify several dist
phases~Ref. 2, referred to as SZH in the following!. The
properties of these systems at weak coupling in the met
regime have been studied by means of bosonization.3,4 Such
ladder systems, particularly for magnetic insulators, have
tracted much attention recently due to the existence of v
ous experimental realizations in materials closely related
the high-Tc substances.5 An interesting observation of Ref.
is the existence of an SO~5! superspin phase that has be
studied in a variational approach based on finitely correla
matrix-product states similar to the ones used forS51
Haldane magnets.6–8 Finitely correlated states have also be
considered in electronic systems to describe aspects o
phase diagram of extended Hubbard models9,10 and other
one-dimensional electronic models.11,12

For SU~2! spin systems the variational approach has b
generalized to lattices with ladder geometry and proven
give access to large parts of their phase diagram.13–16This is
the motivation for the present work where we extend
matrix-product states originally introduced in Ref. 2 to d
scribe the strong-coupling physics of the SO~5! superspin
phase. We construct manifestly SO~5!-invariant many-
particle wave functions from matrices containingall 16 elec-
tronic states on a given rung of the electronic ladder. T
0163-1829/2001/63~12!/125109~12!/$15.00 63 1251
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relative weight of the six different SO~5! multiplets on a
rung is controlled by free parameters that are used to perf
a variational study of the zero-temperature phase diagram
the ladder at half filling. At strong coupling, the resul
known from Ref. 2 are reproduced within our approach. F
thermore, at weak coupling and sufficiently large interch
hopping amplitudet' the matrix-product state correctly de
scribes the gapped ground state of a band insulator co
sponding to a filled Fermi sea of electrons with one par
For intermediate coupling we find a phase with finite amp
tude of the SO~5!-spinor quartets that are essential for t
presence of a metallic phase of the ladder. The compact f
of the variational states allows us to study various correlat
functions of interest.

In the following section we present the classification
the electronic states of a two-leg ladder system accordin
the SO~5! symmetry and discuss all possible SO~5!-
symmetric single rung interactions. In Sec. III we review t
SZH model and consider tensor products of rung state
include couplings of neighboring rungs. Section IV dea
with various SO~5!-symmetric extensions of this model an
a general construction routine for systems with exact finit
correlated ground states is given. Section V contains a
tailed analysis of the ground-state phase diagram of the
tem in the case of weak and intermediate coupling withi
variational approach based on such wave functions. Furt
more, we calculate the corresponding correlation functio
within this approach. A summary of our results is given
Sec. VI.

II. ELECTRONIC STATES OF SO „5…-SYMMETRIC
LADDER MODELS

We consider a two-chain electronic ladder model w
canonical creation and annihilation operatorscs

†(x),cs(x)
for electrons~with spin-projections5↑,↓) on sitesx of the
upper leg and analogous operatorsds

†(x),ds(x) for the elec-
trons on the lower leg. In order to discuss the SO~5! symme-
try of the ladder model and to classify all the 16 possib
states on a rung according to this symmetry, these opera
are combined into four-dimensional SO~5! spinors2,17

Ca~x!5„c↑~x!,c↓~x!,d↑
†~x!,d↓

†~x!…T ~x even! ~2.1!
©2001 The American Physical Society09-1



at

w
t

ergy
nt
s a

ing
the

As

i-
n the

HOLGER FRAHM AND MARTIN STAHLSMEIER PHYSICAL REVIEW B63 125109
and

Ca~x!5„d↑~x!,d↓~x!,c↑
†~x!,c↓

†~x!…T ~x odd!. ~2.2!

Using this definition the ten local generatorsLab of the
SO~5! algebra on a single rungx are defined as

Lab~x!52
1

2
Ca

†~x!Gab
ab Cb~x!, a,b51, . . . ,5. ~2.3!

HereGab are ten antisymmetric, 434 matrices~their explicit
form is given in Appendix A!. A convenient basis of the
Hilbert space on a single rung is diagonal in the quadr
Casimir charge

C~x!5 (
a,b

Lab
2 ~x!. ~2.4!

In addition we choose to diagonalize the total chargeQ
5 1

2 (c†c1d†d22) and the z component of the spinSz

5 1
2 (c†szc1d†szd). Based on the eigenvalues ofC the Hil-

bert space can be decomposed into six SO~5! multiplets.
~1! Three SO~5! singlets (C50), for R see Eq.~A2!,

uC0,0
(1)&5uV&[

c↑
†d↓

†2c↓
†d↑

†

A2
u0&5

1

A2
S U↑↓ L 2U↓↑ L D ,

uC0,0
(2)&5

1

A8
CaRabCbuV&;U↑↓

2 L , ~2.5!

uC0,0
(3)&5

1

A8
Ca

†RabCb
† uV&;U 2

↑↓ L .

~2! An SO~5! vector quintet (C54) containing the ferro-
magnetically polarized state at half filling

uC5,a
(1)&P H U22 L ,U↑↓

↑↓ L ,U↑↑ L ,U↓↓U,U↑↓ L 1U↓↑ L J ,

a51, . . . ,5. ~2.6!

~3! Two SO~5! spinor quartets (C55/2) for an odd num-
ber of electrons on a given rung

uC4,a
(1)&;A2CauV&P H U2↑ L ,U2↓ L ,U ↑

↑↓ L ,U ↓
↑↓ L J ,

a51, . . . 4,

~2.7!

uC4,a
(2)&;A2Ca

† uV&P H U ↑
2 L ,U ↓

2 L ,U↑↓
↑ L ,U↑↓

↓ L J ,

a51, . . . 4.

We label the statesuCd,a
(k) & on a rung by the dimensiond of

the corresponding multiplet (a51, . . . ,d) and an additional
indexk. Similarly, we can characterize product states on t
rungs ~see Sec. III!. Alternatively, the vector quinte
~2.6! can be constructed from SO~5! spinors uC5,1(2)

(1) &
12510
ic

o

5(1/A2)(n16n5)uV&, uC5,3(4)
(1) &5(1/A2)(n26n3)uV& and

uC5,5
(1)&5n4uV& with the superspin vector

na~x![
1

2
Ca

†~x!Gab
a Cb~x!, a51, . . . ,5. ~2.8!

Again, the explicit form of the 434 Dirac G matricesGa is
given in Appendix A.

Any electronic ladder model with a local SO~5!-symmetry
on a rung has to preserve the degeneracy of the en
within the states of each single multiplet. The invaria
Hamiltonian on a single rung can therefore be written a
sum over projection operators on these states:

hx5l5 (
m51

5

uC5,m
(1)&^C5,m

(1)u1 (
k,l 51

2

l4
(k,l ) (

m51

4

uC4,m
(k) &^C4,m

( l ) u

1 (
k,l 51

3

l0
(k,l )uC0,0

(k)&^C0,0
( l ) u, ~2.9!

whereld
(k,l )5(ld

( l ,k))* because of the hermiticity ofhx . All
SO~5!-symmetric terms on a rung can be expressed us
linear combinations of these projection operators, e.g.,
projection operator on the first singletuC0,0

(1)& is

P̂0,0
1,15uC0,0

(1)&^C0,0
(1)u52 1

3 Sc
W ~x!Sd

W ~x!1 4
3 @SW c~x!SW d~x!#2,

~2.10!

with P̂d,m
k,l 5ucd,m

(k) &^cd,m
( l ) u andSW c(x)5 1

2 c†(x)sW c(x). A com-
plete classification of these terms is given in Appendix B.
a simple example we choose

l05S 2
7

2
U23V 2A2t' 22A2t'

U

2
2V 0

*
U

2
2V

D ,

l45S 0 22t'

* 0 D , and l55
U

2
1V,

which leads to the Hubbard-type Hamiltonian2 with an
SO~5!-symmetry introduced by SZH

Hrung5HCoulomb1HHopping

5(
x

„U$@nc↑~x!2 1
2 #@nc↓~x!2 1

2 #1~c→d!%

1V@nc~x!21#@nd~x!21#1J SW c~x!SW d~x!

22t'@cs
†~x!ds~x!1H.c.#…, ~2.11!

whereJ54(U1V). This condition on the exchange ampl
tude guarantees the degeneracy between the states i
SO~5! quintet and therefore the local SO~5! symmetry of the
9-2
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ELECTRONIC LADDERS WITH SO~5! SYMMETRY: . . . PHYSICAL REVIEW B 63 125109
system. We will discuss this model and SO~5!-symmetric
extensions in the following sections.

III. COUPLING OF NEIGHBORING RUNGS

In order to describe an extended quasi-one-dimensio
electronic system one has to include coupling of neighbor
rungs in addition to single-rung interactions considered
the previous section. The simplest possible term is an SO~5!-
symmetric hopping term between adjacent rungs

22t i (
^x,y&

@cs
†~x!cs~y!1ds

†~x!ds~y!1H.c.#, ~3.1!

which can be brought into a manifestly SO~5!-symmetric
form using the alternating definitions of the spinors~2.1! and
~2.2!. This hopping term together with the local-rung inte
actions~2.11! yield the complete SZH model.2 The ground-
state phase diagram of this system in the limit of stro
coupling (U,V@t' ,t i) has been determined by SZH usin
perturbation theory~see Fig. 2!. Four different phases hav
been established at half filling.

In phase I~occurring for 0<V<22U) the model can be
mapped onto an Isinglike system in a magnetic field: ph
Ia (V>2U/3) is a charge-density wave~CDW! phase and Ib
(V<2U/3) corresponds to the disordered Ising phase. Ph
II is a spin-gapd-wave phase~product of rung singlets!,
emerging forV>2U,U>0 and for V>22U,U<0. The
phase III (V<2U,V<0) is the superspin phase where t
SO~5! quintet is dominant. For a further examination of th
superspin phase, SZH have used the finitely correlated w
function

uC0
SZH&5TrS )

x51

L

GanauV& D ~3.2!

~summation over the indexa is implied and the trace is take
in the 434 matrix space where theGa are defined!. In this
form periodic boundary conditions have been imposed.
adding many particle interactions to their original Hubba
type Hamiltonian, this state~3.2! can be made to be the exa
ground state of the resulting model. This state has been
gued to capture the essential physics of the super
phase—similar to the role of the AKLT-model as a repres
tative for a Haldane-gapped spin-1 chain. The wave func
~3.2! will be the starting point for constructing a generaliz
matrix product wave function including all 16 states on
rung~see Sec. IV! and later be used for a variational study
the ground-state phase diagram of the SZH model and
various SO~5! symmetric extensions beyond strong coupli
~see Sec. V!. The hopping term~3.1! is one of many possi-
bilities to include interactions between two adjacent rungs
the ladder but the requirement for a local SO~5! symmetry
puts constraints on the explicit form of these terms. Expl
expressions for some of the interaction terms are listed
terms of electron operators in Appendix B. For a classifi
tion of these additional interactions we consider products
wave functions on two neighboring rungsx andy. A decom-
position into SO~5! multiplets similar to~2.5!–~2.7! gives 50
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different multiplets invariant under the action of the SO~5!
generatorsLab(x,y)5Lab(x)1Lab(y). Tensor products con
taining a singlet factor on one of the rungs are trivial lead
to simple product states, e.g., the SO~5! singlets
uC0,0

( i )&xuC0,0
( j )&y . Altogether there are nine singlets, 12 qua

tets and six quintets of this form. The remaining 169 sta
are obtained by forming tensor products of quartets~2.7! and
quintets~2.6!. The decomposition of these products into
reducible representations of SO~5! reads

4^ 451% 5% 10,

4^ 554% 16,

5^ 551% 10% 14

@numbers denote the dimension of the corresponding SO~5!
irrep#. For example, one of four SO~5! singlets in the tensor
product of quartet states~2.7! is

uC0,0
(10)~x,y!&[

1

2
~2uC4,1

(1)&uC4,3
(2)&2uC4,2

(1)&uC4,4
(2)&

1uC4,3
(1)&uC4,1

(2)&1uC4,4
(1)&uC4,2

(2)&). ~3.3!

Similar combinations of the rung states appear in the ot
states, the Casimir charges of the new multiplets areC56
for the decuplets,C510 for the 14-dimensional andC
515/2 for the 16-dimensional representations. The mu
plets can be classified further according to the different
genvalues ofQ andSz on their member states. In Fig. 1 th
state content of the various multiplets is shown. In the f
lowing we use this classification of the SO~5! multiplets to
construct ladder systems with exact ground states includ
different SO~5! symmetric nearest-neighbor interactions.

IV. EXTENSIONS OF SZH

As mentioned in the Introduction the finitely correlate
wave functions originally introduced to discuss the sp
liquid phases arising in one-dimensional higher-spin Heis
berg models6–8 have recently been generalized to more ge
eral lattices. In particular, ladder models whose ground st
are of this form have been constructed.13,18,19 In these spin
systems the ground state is of the formuC0&5)x51

L gx where
gx is a (232) matrix containing the different states on
single site or rungx ~e.g., spin-1 states for the AKLT mode
singlet and triplet states for a two-legS51/2 ladder, etc.!.
Different properties under translation in the extended dir
tion can be realized by an appropriate choice of the f
parameters appearing ingx ~e.g., an alternation to introduc
dimerization18,20,21!. Within a transfer matrix approach, it i
straightforward to compute various ground-state correlat
functions for different boundary conditions, periodic on
correspond to taking the trace of the matrix-product wa
function.22

For a further analysis of the SZH model and the constr
tion of SO~5!-symmetric ladder systems with exact grou
states in matrix product form, we have extended the w
9-3
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FIG. 1. The irreducible SO~5!
representations appearing on
pair of rungs decomposed corre
sponding to the eigenvalues ofQ
and Sz: ~a! the quartet~with Ca-
simir charge C55/2), ~b! the
quintet (C54), ~c! the ten-
dimensional (C56), ~d! the 14-
dimensional (C510), and~e! 16-
dimensional (C515/2) irrep
~double circle indicate two state
with identical eigenvalues!.
et
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function ~3.2! to include the three SO~5! singlets~2.5! and
the two SO~5! spinor quartets~2.7!

uC0&5TrS )
x51

L

gx~$pi%!D . ~4.1!

Now gx is a 535 matrix andpi ( i 51, . . . ,6) arevariational
parameters assigning different weights to the multipl
~2.5!–~2.7! on a rung~see Appendix A!. We restrict our-
selves to the translational invariant case, where the par
eterspi are chosen to be independent of the rung positiox.
In this case the matrix-product wave function on two neig
boring rungs contains two SO~5! singlets, two quartets, on
quintet, and one decuplet. The 14-dimensional and
dimensional representations are absent by construction.
states of the matrix product are linear combinations of
basis in Sec. III above, their explicit form is rather comp
cated. With respect to the spin-SU~2! subalgebra the remain
ing multiplets present in the matrix product contain spin s
glet, doublet, and triplet states only~states with total spin
polarization Sz.1 are members of the 14- and 1
dimensional representations, see Fig. 1!. An immediate con-
12510
s
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sequence is that the ansatz cannot be expected to describ
formation of ferromagnetic domains with higher spin stat
An analogous argument holds for higher values of the cha
Q, corresponding to strong local deviations from half fillin

There is a simple way to construct spin-ladder syste
with matrix-product wave functions as ground states13 and a
generalization to electronic-ladder models with an SO~5!
symmetry is straightforward. The starting point is a gene
SO~5!-symmetric Hamilton operator on two neighborin
rungs

hx,x115 (
k,l 51

4

l16
(k,l ) (

m51

16

P̂16,m
k,l 1 (

m51

14

l14 P̂14,m

1 (
k,l 51

5

l10
(k,l ) (

m51

10

P̂10,m
k,l 1 (

k,l 51

10

l5
(k,l ) (

m51

5

P̂5,m
k,l

1 (
k,l 51

16

l4
(k,l ) (

m51

4

P̂4,m
k,l 1 (

k,l 51

14

l0
(k,l )P̂0,0

k,l , ~4.2!

where P̂d,m
k,l 5ucd,m

(k) &^cd,m
( l ) u are projection operators on a

possible SO~5! multiplets~see Sec. III!. The statesucd,m
(k) & are
9-4
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product wave functions on two rungs,k and l label the mul-
tiplet, m the states in the multiplet, andd is the correspond-
ing dimension of this irreducible representation. The her
ticity of hx,x11 requiresld

(k,l )5(ld
( l ,k))* for the coupling

constants, leaving altogether 322 free parameters in
Hamiltonian. A HamiltonianH5(xhx,x11 has a finitely cor-
related ground stateuC0&5)xgx with zero energy provided
that the following conditions are satisfied:13 ~1! hx,x11 has to
annihilate all states contained in the matrix elements of
productgxgx11, ~2! all other eigenstates ofhx,x11 have posi-
tive energy. Starting with an ansatz forgx in Eq. ~4.1!, one
has to identify all multipletsucd,m

( i d)
& contained in the produc

wave functiongxgx11. These multiplets are labeled by ind
ces i d51, . . . ,gd where the maximum numbergd is the
number of multiplets with an equal Casimir charge (d is the
dimension of the irreducible representation!, e.g.,g1052 if
the product wave function on two neighboring rungs co
tains two independent SO~5! decuplets. After the determina
tion of the multiplet content ofuC0& the corresponding pa
rametersld

(k,i d) in hx,x11 are set to zero to fulfill the firs
condition. The remaining operators in Eq.~4.2! will now
project on states not included in the matrix-product wa
function, which leads to zero energy for the ansatz. To
isfy now the second condition, the reduced matric
ld

(k,l ) ( lÞ i d) have to be chosen positive definite~i.e., posi-
tive eigenvalues! such that Eq.~4.1! will be the lowest en-
ergy state of the system.

In principle a general Hamiltonian, where our ansatz~4.1!
is the exact ground state, can be built by operators projec
on the other remaining SO~5! multiplets ~e.g., the 14-
dimensional and the four 16-dimensional representatio!
and it has 249 free coupling constantsld

(k,l ) ( lÞ i d). We give
explicit expressions for some of these operators in term
electron operators in Appendix B 3. In general, however,
structure of these projection operators is quite complica
making it difficult to motivate these exactly solvable syste
on physical grounds.

V. VARIATIONAL STUDIES OF THE PHASE DIAGRAM

An examination of the SZH model beyond strong co
pling can be done by using Eq.~4.1! as a variational wave
function. This wave function leads to the variational ener

Erung5^C0uHCoulombuC0&

;~p2
21p3

2!~U/22V!15p6
2~U/21V!2p1

2~ 7
2 U13V!

~5.1!

for spin and charge interaction on a rung@see Eq.~2.11!#.
Herep6 is the parameter corresponding to the SO~5! quintet,
p1 is the weight of the singletuV& andp2,3 of the symmetric
and antisymmetric linear combinations of the other SO~5!
singlets ~2.5!. The variational energy corresponding to t
hopping term on a rung is

Et'
5^C0uHHoppinguC0&;t'F8p1p212S p5

22p4
2

h2
D ~w2h1!G

~5.2!
12510
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and between two neighboring rungs@see Eq.~3.1!# it is

Et i
;t i@p4p5~25p6

21p1
22p2

22p3
2!1h2~p2p325p1p6!

1~p4
22p5

2!~5p2p62p1p3!#, ~5.3!

where h155p6
21p1

21p2
21p3

2, h25p4
21p5

2 and w
5Ah1

2116h2
2.

In the strong coupling limit one can neglect these hopp
terms~5.2! and~5.3!. Minimizing the energy with respect to
the pi reproduces exactly the phase diagram calculated
SZH within perturbation theory~Fig. 2! where the phases ar
fixed by the largest amplitudepi of the corresponding stat
and the crossover is continuous. Phase I is dominated by
bonding singlet state with amplitudep2, phase III is the su-
perspin phase (p6), and phase II consists of products of run
singlets (p1). In this approach with translationally invarian
pi the crossover between the two Ising-phases cannot be
produced. We now extend this analysis of the phase diag
of the SZH model to weak and intermediate coupling.

A. Weak coupling phase diagram

The band structure of the noninteracting system at h
filling is well known. For U5V50 there are two energy
bands, given by

e6~k!562t'24t i cos~k!, 2p<k<p ~5.4!

and two different cases have to be distinguished.
For t',2t i the Fermi energy intersects the two ban

@see Fig. 3~a!# and for t'>2t i they are separated by an e
ergy gap@see Fig. 3~b!#. The gapless system (t',2t i) has
been studied using bosonization of the low-lying modes
the vicinity of the four Fermi points to obtain the pha
diagram for weak coupling (U,V!t' ,t i): Lin et al.4 found
that at half filling the system is driven toward an integrab
SO~8!-symmetric Gross-Neveu model in a weak-coupli
renormalization-group analysis and predicted the occurre
of additional phases compared to the strong-coupling c
The ongoing debate on these results~see the criticism of Ref.
23! cannot be clarified within the present ansatz: Using

FIG. 2. Strong-coupling phase diagram,U and V measured in
units of t i .
9-5
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nitely correlated wave functions always leads to an expon
tial decay of correlation functions, indicating the existence
an energy gap between the ground state and the first ex
state.

B. Phase diagram fort�Ð2t i

For t'>2t i the variational ansatz gives the exact grou
state for the noninteracting system (U5V50).

Choosing p152(1/A2), p25(1/A2), and pi[0 for i
53, . . . ,6 we find

uC0&;)
x51

L

~2c↑
†d↓

†1c↓
†d↑

†2d↑
†d↓

†2c↑
†c↓

†!~x!u0&,

~5.5!

which corresponds to complete filling of the modes with e
ergy e2(k) in Eq. ~5.4!, the band insulator. Consequentl
we expect the variational approach to give reasonable re
for the weak-coupling phase diagram in this regime of h
ping amplitudes. The quality of the approach can be m

sured by the mean deviationA^(DH)2&5A^H2&2^H&2 of
the energy. ForU,V!t' ,t i the mean deviation stays sma
compared to the energy so that the ansatz should give
able results.

We find that only two phases are present in the we
coupling case~see Fig. 4!: the Ising phase I (p2) and the
spin-gap d-wave phase II (p1) already known from the

FIG. 3. Band structure of a two-leg ladder model for~a! t'
5t i and ~b! t'52t i .

FIG. 4. Phase diagram fort'52t i (t i51): the phase boundarie
were calculated by comparing the amplitudes of the different m
tiplets.
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strong-coupling diagram~see Fig. 2!. The superspin phas
disappears and also the SO~5! quartets have no significan
weight (p4 ,p5 ,p6;0) as expected for a band insulator.

Considering the complete ground-state phase diag
~see Fig. 4! we find an additional phase for intermedia
coupling (U,V>t' ,t i) where the SO~5! quartets have the
largest weight, in particular the rung-symmetric oneuQa

1&
~A5!. Apart from these, the symmetric singlet sta
(Ca

†RabCb
†2CaRabCb)uV&—which determines the

ground state in phase I—has a significant weight. Due to
resonating structure of the ansatz and the relatively la
variational value of̂ (DH)2& the phase boundaries are n
very accurate—for a more detailed study of this question
present work should be complemented by a numerical
proach. As discussed earlier, it is not possible within t
approach to determine the position of the crossover line
tween the two Ising phases, or even whether this transi
still occurs for the case of weak or intermediate coupling

C. Ground-state correlations

The physics in the ground state is determined by grou
state correlation functions, which are easily computed fr
matrix-product wave functions. The matrix-product ans
~4.1! with the six free parameterspi represents the groun
state for a large class of models. We have calculated var
correlation functions explicitly in the thermodynamic lim
(L→`) for this variety of models~a detailed list is given in
Appendix C! and we determined the correlation length a
the amplitude of different ground-state correlations for t
SZH model when we used the ansatz as a variational w
function.

The two-point correlations in matrix-product states are
ways short-ranged~if not vanishing! and have the following
form:

^O†~r !O~0!&5A~$pi%!e2r /j.

They exhibit an exponential decay with the correlati
lengthj and amplitudeA($pi%). As an example, we conside
the correlation length and amplitude of the expectation va
of the spin-spin correlation function̂SW c,d(r )SW c,d(0)& ~see
Fig. 5! and of field correlatorŝca

†(r )cb(0)&, a,bP$g,u%
~Fig. 6! for the SZH model on a circle in theU-V-plane~with
U21V253) intersecting the phases I,II and the quar
phase~see Fig. 4!.

The spin-spin correlation function̂SW c,d(r )SW c,d(0)& in
Fig. 5 is nonvanishing only in the quartet phase but with
extremely small correlation length indicating strong near
neighbor correlations. For the electron-electron correlation
Fig. 6 with cg,u(x)5@c↑(x)1c↓(x)#6@d↑(x)1d↓(x)# the
correlation lengthj is small for all anglesf but with a very
large amplitudeA except in the quartet phase.

The sharp peak in both diagrams atf; 5
8 p indicates the

crossover of the phases II and I in Fig. 4 where the corre
tion length diverges. Calculating these correlations in
strong-coupling limit, the phase boundaries in Fig. 4 are
noted by very sharp peaks in the electron-electron correla
length j^cg,u

† (r )cg,u(0)& with a nonvanishing amplitude. Th
l-
9-6
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spin-spin correlations are zero in the whole phase diag
and give no further hints of an underlying structure in t
system.

D. Variational examination of SO„5…-symmetric extensions

Our variational approach is also suitable to study
phase diagrams of various SO~5!-symmetric extensions o
the SZH model. We have considered additional interacti
on a single rung and between two neighboring rungs, us
the construction routine of Secs. II and IV.

1. Single-rung interactions

All single-rung interactions can be constructed using
projection operators of Sec. II and a detailed list of all po
sible terms can be found in the Appendix B. Taking in
account the operatorsP̂d,m

k,l with the coupling constantsld
(k,l )

leads to the following contributions to the variational ener
~5.1!, calculated with the ansatz~4.1!:

^P̂(0,0)
1,1 &5

p1
2

w
, ~5.6a!

^P̂(0,0)
2,2 &5

1

2w
~p21p3!2, ~5.6b!

^P̂(0,0)
3,3 &5

1

2w
~p22p3!2, ~5.6c!

^P̂(0,0)
1,2 1 P̂(0,0)

2,1 &5
A2

w
p1~p31p2!, ~5.6d!

^P̂(0,0)
1,3 1 P̂(0,0)

3,1 &5
A2

w
p1~p32p2!, ~5.6e!

^P̂(0,0)
2,3 1 P̂(0,0)

3,2 &5
1

w
~p3

22p2
2!, ~5.6f!

FIG. 5. Correlation length and amplitude for the spin-spin c

relation function, the full line corresponds to^SW c(d)(r )SW c(d)(0)& and

the dotted line tô SW c(d)(r )SW d(c)(0)&.
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^P̂(4,m)
1,1 &5

w2h1

2wh2
~p42p5!2, ~5.6g!

(
m

^P̂(4,m)
2,2 &5

w2h1

2wh2
~p41p5!2, ~5.6h!

(
m

^P̂(4,m)
1,2 1 P̂(4,m)

2,1 &5
w2h1

wh2
~p4

22p5
2!, ~5.6i!

(
m

^P̂(5,m)
0,0 &5

5p6
2

w
. ~5.6j!

These modifications of the model cause some changes in
ground-state phase diagram, e.g., the simple terms like
~5.6a! and~5.6j! will only shift the phase boundaries withou
changing the general structure of the phase diagram. O
interactions like the pair-hopping term~5.6f!

tpair~d↑
†d↓

†c↑c↓1H.c.!; P̂(0,0)
2,3 1 P̂(0,0)

3,2 ~5.7!

will dramatically change the phase diagram~see Fig. 7!.
For small negative values oftpair (utpairu<t i) the Ising-

phase I of the phase diagram in Fig. 4 with the symme
amplitudep2 splits into two singlet phases: a symmetric (p2)
and an antisymmetric phase (p3) @see Fig. 7~a! , tpair
521], where the crossover line has the same gradientU
522V). Increasing the amplitude oftpair leads to a pure
antisymmetric phase@see Fig. 7~b!, tpair524] in I and also
to a strong change of the shape of the quartet phase.
small positive values oftpair the general structure of th
phase diagram is preserved~like Fig. 4!. In the regime of the
coupling constants withtpair@t i the quartet phase vanishe
~see Fig. 8!.

Other interactions also exhibit strong effects on the ph
diagram, e.g., including a quartet term like~i! that contains a
hopping term on a rung and a bond-charge interaction~see
Appendix B!.

tquar@~c↑
†d↑1H.c.!$12~nc↓2nd↓!2%1↑↔↓# ~5.8!

FIG. 6. The correlation length and amplitude of the expectat
value ^cg,u

† (r )cg,u(0)&, the full line corresponds to
^cg(u)

† (r )cg(u)(0)& and the dotted line tôcg(u)
† (r )cu(g)(0)&.

-
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FIG. 7. Phase diagram fort'
52t i including pair hopping for
~a! tpair52t i and ~b! tpair5
24t i with t i51.
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leads to different phase diagrams, depending on the coup
constant. For positive values oftquar the quartet phase van
ishes with increasing values of the coupling constant~like in
Fig. 8! until there are only the three known phases@see Fig.
9~a!#. For tquar,0 the quartet phase grows@see Fig. 9~b!#,
dominated by the symmetric combination (p4) of the states.

The mean deviation in the weak coupling limit in the
two special cases~5.7! and ~5.8! is small compared to the
energy~calculated on a circle with radiusR50.1 aroundU
5V50) except for the valuetquar<21. The ansatz also
provides very good results in the strong-coupling limit (R
>100), except for the crossover lines to the superspin ph
where the mean deviation is very large. The same prob
occurs in the intermediate coupling regime in the qua
phase where the ansatz is not a good eigenstate of the
tem.

We expect that including the other interactions on a ru
will lead to similar changes in the ground-state phase d
gram.

2. Two-rung interactions

In most cases the SO~5!-symmetric interactions betwee
two neighboring terms have a very complex structure but
some of them we can give simple expressions~see Appendix

FIG. 8. Phase diagram fort'52t i including pair hopping for
tpair54t i with t i51.
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B!. For them we can calculate the corresponding variatio
energy, e.g., the two-pair hopping term leading to an SO~5!
singlet-singlet transition

t2-pair@d↑
†~x!d↑

†~y!d↓
†~x!d↓

†~y!c↑~x!

3c↑~y!c↓~x!c↓~y!1H.c.# ~5.9!

giving Etwo-pair;2t2-pair(p21p3)2(p32p2)2. The other
SO~5!-singlet interactions on two rungs lead to similar e
pressions, which will change the phase diagram~Fig. 4! in
the Ising phase according to the value of the coupling c
stantt2-pair .

Including an SO~5!-quartet interaction in the SZH mode
@see Eq.~B18!# gives the variational energy

E5tqxy

w2h1

2wh2~w1h1!
~p2

22p3
2!~p4

22p5
2!. ~5.10!

The phase diagrams obtained for different values of the c
pling constanttqxy are very similar to the phase diagram
Fig. 4. The additional interaction has no significant effe
except for minor changes of the crossover lines.

VI. SUMMARY AND OUTLOOK

We have constructed a large class of electronic lad
models with SO~5! symmetry having finitely correlated
ground states and, consequently, correlation functions ex
iting exponential decay. These matrix-product states h
been used to perform a variational study of the ground-s
phase diagram of the SZH model2 for t'>2t i . For vanishing
coupling the ground state of the band insulator is found to
in the class of variational states and at strong coupling
phases identified by SZH are reproduced. In the intermed
coupling regime signatures of a new phase dominated
local SO~5! quartets are found, and at weak coupling t
SO~5! superspin phase is absent. Within our approach i
possible to compute various correlations giving further
sights into the nature of the phases that have been identi
Finally, we have introduced various SO~5! symmetric exten-
sions to the SZH model and discussed their impact on
phase diagram. In the future we will include dimerization
the matrix-product ansatz for further studies of the Isi
transition2 in phase I and the possibility of spontaneo
9-8
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FIG. 9. Phase diagram fort'
52t i including a quartet term
with ~a! tquar514t i and ~b!
tquar524t i with t i51.
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breaking of translational invariance in exactly solvab
models.
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APPENDIX A: THE GAMMA MATRICES AND THE
VARIATIONAL WAVE FUNCTION

For the construction of the SO~5!-invariant quantities, we
have used the representation of the matrices in Ref. 2.
five Dirac G-matrices have the following form:

G15S 0 2 isy

isy 0 D , G2,3,45S sW 0

0 sW tD , G55S 0 sy

sy 0 D ,

~A1!

wheresW are the Pauli matrices. The matricesGab are defined
by Gab[2 i /2@Ga,Gb# and the matrixR is given by

R[S 0 1

21 0D . ~A2!

Using these definitions, it is simple to construct the matrixgx
of the variational wave function~4.1!. It has the following
structure

~A3!

The three SO~5! singlets are included in this ansatz only o
the main diagonal elements.uC̃0,0

(1)&[uC0,0
(1)& from ~2.5! and

uC̃0,0
(2,3)& are the symmetric and an antisymmetric combin

tions of the two other singlets

uC̃0,0
(2,3)&5~Ca

†RabCb
†7CaRabCb!uV&. ~A4!
12510
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The quartets enter the matrixgx in uqa&5p4uQa
1&

1p5uQa
2& whereuQa

6& are the symmetric and antisymmetr
combinations of Eq.~2.7!,

uQa
6&; H U ↓

2 L 6U2↓ L ,U ↑
2 L 6U2↑ L ,U ↑

↑↓ L
6U↑↓

↑ L ,U ↓
↑↓ L 6U↑↓

↓ L J . ~A5!

They are arranged in the right column and the lowest row
Eq. ~A3! in such a way that in the productgxgx11 one has
SO~5! singlets on the diagonal only.

APPENDIX B: SO„5…-SYMMETRIC OPERATORS
ON ONE „TWO … RUNGS

We present here a selection of various SO~5!-symmetric
terms on a single and on two rungs~B1! and ~B2!. Further-
more, a list of terms is given for which our matrix-produ
ansatz~4.1! would be the lowest energy state~B3!.

1. Single-rung interactions

We now present all possible SO~5!-symmetric terms on a
rung. Their general construction is done in terms of proj
tion operators on the different SO~5! multiplets. Expressed
through electronic operators, most of them are alrea
known from the SZH model~2.11! and an additional biquad
ratic exchange. As a shorthand notation we introduce

@U,V,J,a#[U$@nc↑~x!2 1
2 #@nc↓~x!2 1

2 #1~c→d!%

1V@nc~x!21#@nd~x!21#1JSW c~x!SW d~x!

1a@SW c~x!SW d~x!#2. ~B1!

In addition, we find various single-electron and pair-hoppi
terms together with bond-charge type interactions. Using
notation of Sec. II for the projection operators on a rung,
obtain the following terms by projection on the singlets

P̂0,0
1,15uC0,0

(1)&^C0,0
(1)u5F0,0,2

1

3
,
4

3G , ~B2!
9-9
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P̂0,0
2,25F1

2
,2

1

4
,
2

3
,
4

3G1
1

2
@nd↑nd↓~12nc!2c↔d#,

~B3!

P̂0,0
3,35F1

2
,2

1

4
,
2

3
,
4

3G2
1

2
@nd↑nd↓~12nc!2c↔d#,

~B4!

P̂0,0
1,21 P̂0,0

2,15
1

A2
@~c↑

†d↑1H.c.!nd↓~nc↓21!1↑↔↓#,

~B5!

P̂0,0
1,31 P̂0,0

3,152
1

A2
@~c↑

†d↑1H.c.!nc↓@nd↓21#1↑↔↓#,

~B6!

P̂0,0
2,31 P̂0,0

3,25d↑
†d↓

†c↑c↓1H.c. ~B7!

The projection operators on the quartet states read

(
m51

4

P̂4,m
1,15F0,0,2

8

3
,2

16

3 G
1~12nc↑nc↓!nd1nd↑nd↓~nc22!, ~B8!

(
m51

4

P̂4,m
2,25F0,0,2

8

3
,2

16

3 G
1~12nd↑nd↓!nc1nc↑nc↓~nd22!, ~B9!

(
m51

4

P̂4,m
1,21 P̂4,m

2,15$c↑
†d↑1H.c.!@12~nc↓2nd↓!2#1↑↔↓%,

~B10!

and finally, projection on the quintet gives

(
m51

5

P̂5,m5F1,
1

2
,
13

3
,
20

3 G . ~B11!

2. Interactions between neighboring rungs

Equivalently, the SO~5!-symmetric expressions on tw
rungs can be classified. The choice of the basis on the t
rung system is very important for the structure of the SO~5!-
symmetric terms. Using the simplest combination, the pr
uct of an SO~5! singlet on one rung and another SO~5!
multiplet on the other gives for a projection operator, e.g

(
m51

5

P̂5,m
1,1~x,y!5 P̂0,0

1,1~x! (
m51

5

P̂5,m~y! ~B12!

for the product of an SO~5! singlet on rungx and an SO~5!

quintet ony, whereP̂d,m
k,l is defined in Sec. II. The numbersk

and l in P̂d,m
k,l depend on the way the different multiplets o

the rungs are labeled. Another example is an operator
jecting on an SO~5! singlet on each of the rungs
12510
o-

-

o-

P̂0,0
2,2~x,y!5uC0,0

(2)~x,y!&^C0,0
(2)~x,y!u5 P̂0,0

1,1~x!P̂0,0
2,2~y!

~B13!

@see Eq.~2.5! for the definition of the wave functions#. All
projection operators of states consisting of at least one SO~5!
singlet on a rung can be decomposed in the same man
For some of these operators a compact representatio
terms of electron operators is possible. As an example c
sider the operator

c↑
†~x!c↓

†~x!d↑
†~y!d↓

†~y!c↑~y!c↓~y!d↑~x!d↓~x!1H.c.
~B14!

describing pair exchange between two neighboring rungs
causes a transition between two SO~5! singlet states and ca
be written as

; P̂0,0
3,2~y!P̂0,0

3,2~x!1H.c. ~B15!

Other SO~5! singlet-singlet transitions of this type are

d↑
†~x!d↑

†~y!d↓
†~x!d↓

†~y!c↑~x!c↑~y!c↓~x!c↓~y!1H.c.,

Nd~y!nc↑~y!nc↓~y!@d↑
†~x!d↓

†~x!c↑~x!c↓~x!1H.c.#,
~B16!

Nc~x!nd↑~x!nd↓~x!@c↑
†~y!c↓

†~y!d↑~y!d↓~y!1H.c.#,

where

Na~y!5@12na↑~y!2na↓~y!1na↑~y!na↓~y!#,

aP$c,d%. ~B17!

Similar terms are obtained from projection operators
direct products of an SO~5!-singlet on one and an SO~5!
quartet on the other rung, e.g.,

†~@nc↑~x!2nd↑~x!#221%c↑
†~y!c↓

†~x!c↓
†~y!d↑~y!d↓~x!d↓~y!

1$@nc↓~x!2nd↓~x!#221%

3c↑
†~x!c↑

†~y!c↓
†~y!d↑~x!d↑~y!d↓~y!‡1H.c. ~B18!

The projection operators on the remaining 169 states w
a structure similar to Eq.~3.3! cannot easily be decompose
in this way. They are significantly more complex, generica
their expansion into electronic operators produces com
cated bond-charge interaction terms. Still, forming suita
linear combinations of such terms can lead to simpler SO~5!-
symmetric terms on two rungs, e.g., the pair-hopping term
Eq. ~3.1! or a diagonal hopping term

(
^x,y&

@ds
†~x!cs~y!2cs

†~x!ds~y!1H.c.#.

3. SO„5…-symmetric Hamiltonians with exact ground states

At the end of Sec. IV we claimed that a general Ham
tonian where our ansatz~4.1! is the ground state of the sys
tem is given by
9-10
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hx,x115 (
k,l 51

4

l16
(k,l ) (

m51

16

P̂16,m
k,l 1 (

m51

14

l14 P̂14,m

1additional terms. ~B19!

The coupling constants have to be chosen such thatl14.0
and the matrixl16 of coupling constants is positive definite
This implies thatE50 is a lower bound on the spectrum an
therefore the state ~4.1!—having zero energy by
construction—will be a ground state. The additional terms
Eq. ~B19! are the projection operators on the remaining m
tiplets, not present in the matrix-product wave function. F
example, the projection operator on one of the SO~5! singlets
not present in this product reads

l0
(k,l )@2c↑

†~x!c↑
†~y!c↓

†~x!c↓
†~y!d↑~x!d↑~y!d↓~x!d↓~y!

1nd↑~x!nd↑~y!nd↓~x!nd↓~y!Nc~x!Nc~y!1~c↔d!#.

~B20!

Just asl16 above, the matricesld , d50,4,5,10 coupling the
projection operators on the remaining multiplets have to
chosen to be positive definite.

APPENDIX C: CORRELATION FUNCTIONS

The calculation of expectation values between mat
product states is straightforward using a transfer ma
method~see, e.g., Ref. 22!.

To this end we define a 25325 transfer matrixG on a
rung

Ga1 ,a2
;G( i 1 , j 1),(i 2 , j 2)[g( i 1 ,i 2)

† g( j 1 , j 2) ~C1!

with the indices

a151, . . . ,25↔~11!, . . . ,~15!,~21!, . . . ,~55!.

In terms ofG the norm of the ground state can be written

^C0uC0&5Tr GL5(
i 51

25

l i
L , ~C2!

where l i are the eigenvalues ofG. In the thermodynamic
limit ( L→`) the largest eigenvaluel1 dominates this ex-
pression and we obtain̂C0uC0&;l1

L . Similarly, one-point
correlators of an operatorO are

^O&5
1

l1
^e1uZ~O!ue1& ~C3!

and a two-point correlation function reads

^O1
†Or&5 (

n51

25
1

ln
2 S ln

l1
D r

^e1uZ~O1!uen&^enuZ~Or !ue1&.

~C4!

Here uen& are the eigenvectors with eigenvalueln of G and
Z(Oi);g†Oig is the transfer matrix related to the operat
Oi . With the matrix ~A3! the largest eigenvalue ofG is
given by
12510
n
-
r

e

-
x

s

l15
1

2
~h11w! ~C5!

with

h155p6
21p1

21p2
21p3

2, h25p4
21p5

2,

and

w5Ah1
2116h2

2 .

This enables us to calculate the expectation values of
operator acting on a single or two rungs, respectively.
example, we find

^SW &50, ^~Si !2&5
w2h118p6

2

4w
~C6!

for local magnetic moments and

^cg~u!
† ~x!cg~u!~x!&5

1

w Fw2h1

h2
~p5

213p4
2!12h174p1p2G ,

~C7!

^ca
†~x!cb~x!&5

1

w Fw2h1

h2
~2p4p5!24p2p3G , aÞb

~C8!

for electronic expectation values. Here,a,bP$g,u% and
cg,u(x)5@c↑(x)1c↓(x)#6@d↑(x)1d↓(x)#.

Correlations between the total spin on two rungs de
exponentially

^SW 1SW r&52
3

4w~h11w!
S h124p6

2

l1
D rS w2h118p6

2

h124p6
2 D 2

~C9!

as expected for finitely correlated states. Spin-spin corr
tions between individual sites on rungs separated by a
tancer can be expressed as

^SW a~r !SW b~0!&5Aab~$pi%!S h124p6
2

l1
D r

1Bab~$pi%!S h128p6
2

l1
D r

, ~C10!

where the amplitudesAab($pi%) and Bab($pi%) depend on
the choice ofa andb, i.e., whether correlators of spins o
the same or on different legs of the ladder are conside
Analogously, one can study electronic correlations, e.g.,

^cg
†~r !cu

†~r !cg~0!cu~0!&52
8

3
^SW 1SW r&,

^cg,u
† ~r !cg,u~0!&5Cg,u~$pi%!S h2

l1
D r

1Dg,u~$pi%!S 2
h2

l1
D r

,

~C11!

with the amplitudesCg,u andDg,u .
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