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Dispersion relation and optical transmittance of a hexagonal photonic crystal slab
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The dispersion relation and the optical transmittance of a two-dimensional photonic crystal composed of the
hexagonal array of cylindrical air holes fabricated in a dielectric slab were analyzed by group theory and the
numerical calculation based on the finite-difference time-domain method. The decay rate of the leaky modes
that exist above the light linéhe dispersion relation in gitin the band diagram was also evaluated, from
which the absence of the coupling between certain internal eigenmodes and the external radiation field was
shown. This phenomenon was related to symmetry mismatching by the group-theoretical argument. It was also
shown that a certain leaky band has a quality factor as large as 3000 over its entire spectral range. These
features as well as the opaque frequency regions due to symmetry mismatching were clearly demonstrated by
the calculated optical transmission spectra.

DOI: 10.1103/PhysRevB.63.125107 PACS nuniber42.70.Qs, 07.05.Tp, 41.20.Jb, 42.82.Et

[. INTRODUCTION above thdight line in a square lattice have infinite lifetimes

Recently, much attention has been paid to two-was reproduced for our case, and its origin was clarified by
dimensional photonic crystals fabricated in dielectricthe group theory. It will also be shown that the opaque fre-
slabs'~*2 The radiation field in these crystals are controlledguency regions in the transmission spectra do not necessarily
by the periodic dielectric structure in the two-dimensionalimply the presence of photonic band gaps.
plane and by the confinement due to the index difference in
the th[rd Qirection. I_3ecause .the sophisticated techniq_ueg for Il. SYMMETRY OF EIGENMODES
the thin-film formation and lithography that are familiar in
the fields of electronics and opto-electronics can be utilized Figure 1 shows the schematic illustration of the two-
for their fabrication, specimens of high quality and with dimensional photonic crystal slab that we deal with in this
large area are now available for experimental studies. Thpaper. It consists of the regular hexagonal array of air holes
introduction of structural defects and waveguides in thesdabricated in a dielectric slab with the refractive index of 3.4
crystals is also possible, and their various applications té¢GaAs. The right-hand side of the figure shows the top view
opto-electronic devices have been proposed. Lasing with I0ef the configuration of several air holes. The lattice constant,
calized defect modes has already been repdfted. the radius of the cylindrical holes, and the thickness of the

However, the confinement of the radiation field in theslab are denoted bg, r, andd, respectively. We assume for
third direction is not complete. It is widely believed that only the sake of simplicity that the structure is uniform in the
those modes that satisfy a certain relation between the eigegirection. We also assume that it is sandwiched by air. Pho-
frequency and the wave vector, which will be described latetonic crystal slabs of this kind, which are referred to as the
with the idea of the so-callelight line, are confined and the air-bridge type, have been one of the main subjects of the
rest of the eigenmodes have short lifetimes. This feature ofecent investigations. The following parameters were as-
the photonic crystal slabs may impose a serious constraint on
their applicability, since the available frequency range is lim- .
ited. On the other hand, to our knowledge, the consequenc: v
of the finite lifetime in the fundamental properties of the
photonic crystal slabs such as the optical transmittance ha /..; - =
not been fully clarified. T

In this paper, we will report a theoretical investigation on ¢ &
the photonic band structure, the lifetime of the eigenmodes,
and the op_tlcal transmittance c.)f a two-dlmenSIOHal hexag_o- FIG. 1. Left: Schematic illustration of the two-dimensional pho-
nal photonic crystal fab_rlcz_;\ted Ina dlele<_:tr|c slab. The Maifonic crystal slab. It is composed of a regular hexagonal array of
features of the transmission spectra will be related to theyingrical air holes fabricated in a dielectric slab. The structure is
spatial symmetry of the radiational eigenmodes and theiperiogic and infinite in the andy directions, and sandwiched by air
lifetime. Especially, we will show the presence of the eigen-in the z direction. The boundaries are locatedzat +d/2. Right:
modes above théight line with extremely long lifetimes,  Top view of the configuration of several air holes, wharandr
which result in unexpectedly high transmittance. The symdenote the lattice constant and the radius of the air holes, respec-
metry of the eigenmodes was examined by both numericalvely. For the numerical calculation, the following parameters were
calculation and the group-theoretical analysis. The amazingssumed: The refractive index of the dielectric skab3.4, d
finding by Paddon and Younhg that certain eigenmodes =0.5a, andr=0.25.

Dielectric slab
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sumed for the numerical calculationd=0.5a and r L.op 7

=0.25. The structure haBg, symmetry, which is the di- . w=ck, ',"

rect product of theCg, and C; point groups: 0.8L i 1M, =1

- s A TE,0.=-1
Den=Ce, XC; . (o ) 6: i T T 0, =1
_ . . A . ! y/ -~ TE, 0,=1

C; consists of the identity operatidh and the mirror reflec- g‘; I / 7

tion by thex-y plane,o,. Thus any eigenmode of the radia- 0.4] ,/

tion field should be symmetrico(,=1) or antisymmetric I e

(0,=—1) about thex-y plane. In order to avoid unneces- 5l pa

sary complexity, let us restrict our discussion to the symmet- 1 /,f’

ric modes in what follows. The antisymmetric modes can be [ /

treated in a similar manner. 0.0 — — :

; . . - . 0.0 0.5 1.0 1.5 2.0
Let us first examine what kind of radiational eigenmodes
are expected to appear by the group-theoretical argumen #

The key idea is the reduction of the reducible representations
given by the linear combination of unperturbed eigenfunc-
fuo_ns_. For_the cas‘,‘e of two-dimensional PhOtor?'C crystals W.'ﬂ]n a uniform slab with the refractive index of 2.86, which is the
infinite t[—,“ﬁ;kneS§ and general three-dimensional photonic spatially averaged refractive index of the structure shown in Fig. 1.
CryStalsl' ' P'a”e Wa\,/es in free space were u_sed as th,e ,unThe ordinate is the normalized frequency, wheralenotes the
perturbed eigenfunctions. The group-theoretical predictiony,;cxness of the dielectric slab. The abscissa denotes the normalized
was usually satisfactory in the low-frequency range. For phol‘n-plane wave number. Solid lines represent the dispersion relations

tonic (_:rystals Cognpose_d of dielectric sphéfeand certain  of modes witho,=1 whose in-plane components of the electric
metallic systems? the Mie resonance states may be used fofield are symmetric about the y plane, whereas broken lines rep-

this purpose. For the present problem, the guided modes in@sent those of modes with,= — 1 whose electric fields are anti-
uniform slab with a spatially averaged dielectric constant carsymmetric. The dotted-broken line is referred to as ligbt line,
be used as the unperturbed eigenfunctions. which shows the dispersion relation in air.
In a uniform slab, the guided modes are classified into
four categories according to the symmetry for the mirror re-whereas« is the spatial decay constant in thelirection in
flection o, and to their polarizations. Those modes whosethe air region. When we denote the refractive index of the
electric fields lie in thex-y plane are referred to as transverseslab byn (= e ), k, and « are related to the angular fre-
electric (TE) modes, whereas those modes whose magnetiguency of the radiational eigenmode, by
fields lie in thex-y plane are referred to as transverse mag-
netic (TM) modes. Each mode is also characterized by the 5 c? 5 o s o
wave numbek in thex-y plane. The dispersion relations of w*=—(kjt+ky)=c(ki—«%), x>0 ©)
the guided modes are obtained from the following equations: n
wherec is the light velocity in free space. The dispersion
5<kzd> . (kzd) _ curves for the lowest four bands in the uniform slab with a
K co§ — | —k,sinl—|=0

FIG. 2. The dispersion curves of the lowest four guided modes

2 2 refractive index of 2.86, which is the spatial average for the
structure shown in Fig. 1, are depicted in Fig. 2, where two
bands witho,=—1 are also shown for comparison. The
ordinate and the abscissa denote the normalized frequency
@ ke @ _ and the normalized wave number, respectively. In this figure,
£K CO k, sin =0 . ; i ) .
2 2 solid lines represent the dispersion relation for modes with

for TE modes witho,=1, 2

o,=1, whereas broken lines represent that for modes with

for TM modes with o= —1, ) o,=—1. On the other hand, the dotted-broken line denotes
k.d k.d the dispersion relation in aifree spacg which we will refer
wK sin(i +k cos( L) =0 to as the light line hereafter. If the eigenfrequency lies below
z . . . .
2 2 the light line, the decay constantis real, and thus the eigen-
. _ mode is confined in the slab. In other words, it is a guided
for TE modes with o-,= — 1, @ mode. If the eigenfrequency lies above the light lireis
K purely imaginary, and the radiation field escapes from the
sxSiﬂ(i +k, co:(i) =0 slab. In this case, the radiational mode is not a real eigen-
2 2 mode, but is a resonant state with a complexwhich is

(5) often called a leaky mode. Only the guided modes were plot-
ted in Fig. 2.

wheree and o denote the relative permittivity and perme-  One of the important features of the radiational bands in

ability of the slab, respectively. In these equatidgds thez  the uniform slab is that only the lowest two bands start from

component of the wave vector defined in the dielectric slabw=0, whereas higher bands have infrared cutoff frequen-

for TM modes with o,=1,
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cies. For example, the third and fourth lowest bands, which ky
are a TE mode witlr,=—1 and a TM mode withr,=1,
respectively, have a cutoff at

mC

dynZ—1" @)

K
r
Therefore, when we deal with the low-frequency region as
K

W=

Y
>
=

we will do in the following sections, it is fairly enough to
take the lowest band into account. This treatment is espe-
cially justified for photonic crystals with small thickness, for
which the cutoff frequencies are high. As we will see in the
next section, the dispersion relation of modes with 1 can ) _ _ o
be actually well approximated fasa/2mc<0.5 by the fold- FIG: 3. The two-dimensional first Brlllqum zone of the hexago-
ing of the lowest dispersion curve into the two-dimensionan@! IatFlce. Therg are two sets of threpoints that are connected
Brillouin zone, provided that we take into consideration theP reciprocal lattice vectors, and thus are equivalent to each other.
mixing and the frequency splitting where more than oneor‘teuizte?rx;?ntzﬁ;nOaggrztr;g\r’lvsn(')rf' ttg; f:{?;:ﬁg‘fﬂ"gi;ng?;;e
band with the same Symme_try Crosses each other. On trfélree sets of two equivaleM points, \l/)vhich are invariant under
other hand, we have to take into account higher bands Whesnymmetry operations of the,, point group, is also shown
we deal with higher-frequency regions. We should also note 2 ' '
that the mixing of the TE and TM modes with the samge
takes place in the photonic crystal slabs. IIl. PHOTONIC BAND STRUCTURE AND

Table | summarizes the results of the symmetry assign- TRANSMISSION SPECTRA
ment by the folding of the dispersion curves of the lowest TE  £qr the numerical calculation of the photonic band struc-
and TM modes into the first Brillouin zone. The irreducible ture, we employed the method of the Fourier transformation
representation of the electric field obtained by the reductionys ihe time-correlation function of the electromagnetic
procedure mentioned previously are listed for three highlyie|q 20 The temporal evolution of the electromagnetic field
symmetric points, that is, the, K, andM points.(For nota-  \yas calculated for eack, by the finite-difference time-
tion of the wave vectors, see Fig) 3hese points are invari- - qomain(FDTD) method® with an initial condition that sat-
ant by the symmetry operations that belong to@g, Cs,,  jsfied the Bloch theorem. Namely, we imposed the following

and C,, point groups, respectively. Thus, their eigenmodesongitions on the electric fielfi(r,t) and the magnetic field
are classified according to the irreducible representations qfy .

the corresponding groups:® which are listed in the fifth and

sixth columns. In Table I, equivalent wave vectors with the

same length in the extended-zone scheme, which are listed in E(r+a,0)=eI"3E(r,0), (8)
the second column, are distinguished by a subscript. Their

length and the number of the equivalent wave vectors are A

listed in the third and fourth columns. H(r+a,0)=eI"3H(r,0), 9

3
M
z

T \K
M

TABLE I. The irreducible representations for the electric field of the guided modes in the uniform slab,
whose wave vectok , is reduced in the two-dimensional first Brillouin zone of the hexagonal lattice that is
shown in Fig. 3. The irreducible representations were calculated for the lowest TE mode,withand the
lowest TM mode witho,=—1.

k,d
Symmetry Wave vector # Number of modes TE mode witti,=1 TM mode witho,=—1

Cey Ty 0 1 Singular Singular

r, 213 6 A,+B,+E;+E, A;+B,+E;+E,

r, 2 6 A,+By+E +E, A+B+E+E,
Cs, Ko 2/3 3 A,+E A +E

Ky 4/3 3 A,+E A +E

K, 2713 6 A, +A,+2E A +A,+2E
Co, Mg 113 2 A,+B; A;+B,

M, 1 2 A,+B, A;+B;

M, J773 4 A;+A,+B;+B, A;+A,+B;+B,
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where a denotes the elementary lattice vector of the two- Transmittance
dimensional hexagonal structure. Boundary conditions of the - 0.5 1.0
same kind at arbitrary time follow from these two condi- 'g\q
tions. In order to deal with the infinite extent of the air re- P

gion, we imposed Mur’s absorbing boundary condition of the %

first ordef! at z= = (3/2)a. The eigenfrequencies were ob- —

tained as the peak frequencies of the Fourier spectrum of the
time-correlation function. Because of the mirror symmetry =]
(0,=1) that we assumed in this paper and the boundary
conditions, Egs(8) and(9), it was enough to treat only the
upper half g=0) of a unit cell in the numerical calculation.
When we deal with the® and T points, we could impose 01 X
additional boundary conditions, which brought about both

the reduction of the numerical task and the assignment of the FIG. 4. The photonic band structueeft-hand sidg and the
spatial symmetry to each mode. For example,Xhgoint is optical transmittanceright-hand sidg in the I'-K direction. The

. . . I~ . N ordinate is the normalized frequency, whexalenotes the lattice

invariant by the mirror reflectionr, that is illustrated in Fig. . . _

1 So. its ei d lassified int 1 d constant. For numerical calculation, those parameters that are listed
. S0, its eigenmodes are classified into evep<(1) an in the caption of Fig. 1 were used. In the band diagram, solid circles

odd (o= —1) modes. The former are also referred tafas

represent the od@) modes witho,=—1, whereas open circles
modes, whereas the latter are referred t@asodes. Thus, (epresent the eved) modes witho,= 1. The irreducible represen-

we could reduce the spatial region for numerical calculationgagions of thek groups for the electric field are also shown for the

to the positivex region by imposing the symmetrical or an- andk points. The transmittance was calculated for ten lattice layers
tisymmetrical boundary condition. The same holds forthe with the lowest TE mode in the uniform slab with the refractive

point when we take into consideration the symmetry undeindex of 3.4 as an incident wave. Thus, the incident wave has the
the mirror reflectiono instead ofo, . As for thel’ point, ~ symmetry ofs,=1 ando,=—1. The evenlA) modes do not con-

both (}X and (}y operations could be used to distinguish two- _trib_ute to the optical transmission, since th_ey do n_ot couple to the

dimensional as well as one-dimensional representations. THgcident wave because of the symmetry mismatching.

radiational modes that are attributed to a two-dimensional

representation appeared as a degenerate pair of eigenmodi@€ in the same frequency region, this is not a true gap. This

with complimentary symmetry properties. For instance, thdeaky band is of TM origin, and the corresponding unper-

eigenmodes with E; symmetry are characterized by turbed band vyith complex_ eigeqfrequencies is ob_taingd by

(0y,0y)=(—1,1) and (1+-1). The unit cell was divided the extrapolation of the dispersion curve shown in Fig. 2

into 1152 meshes to discretize the Maxwell equations. Th&eyond the infrared cutoff. As we also see in other frequency

further decrease in the size of the spatial meshes did not giv&gions, one of the remarkable features of the band structure

an apparent Change in the eigenfrequenciesl is the clear existence of the dispersion curves above the |Ight
The optical transmittance of ten lattice layers was calculine. These leaky bands have small decay rates arount the

lated by the FDTD method with the lowest TE mode of a

uniform slab with the refractive index of 3.4 as an incident Transmittance

wave. It was propagated in tH&-K or I'-M direction. The 0.0 0.5 1.0

0.5 T 7 ]

transmittance was evaluated by the ratio of the averaged AL E, , ]
Poynting vector of the transmitted wave to that of the inci- : s 5 r"

ynting 7 oo
bi

dent wave. 0.4
B‘]“*\\ -

The photonic band structures and the transmission spectra
are shown in Fig. 4 for th&'-K direction and Fig. 5 for the
I'-M direction. In the band diagrams, solid and open circles
represent the od(B) and even(A) modes, respectively. The ; /,w
light line is represented by a dotted-broken line. The symme- 02 A E——
tries of the eigenmodes obtained by the numerical calcula- /
tion shown in these figures are consistent with the group- o1 i
theoretical prediction that is given in Table I. They are also r M
consistent, ‘as they should be, with the compatibility 5 1he photonic band structutéeft-hand side and the
relations ) “St?d in Table Il that relate the symmetries of optical transmittancéright-hand sidg in the I'-M direction. The
modes with adjacent wave vectors. Such modes that do NQbme parameters as in Fig. 4 were assumed for numerical calcula-

match the group-theoretical prediction based on the foldingion | the band diagram, solid circles represent the @jdnodes
of the lowest TE mode appeared@a/2mc=0.57. with o,= — 1, whereas open circles represent the ef®nmodes

It is known that the modes witlr,=1 tend to have a with o,=1. The irreducible representations of thgroups for the
photonic band gap below the light line. We can actually ob-electric field are also shown for tHe and M points. The everiA)
serve a band gap ata/27wc=0.26—-0.31. However, taking modes do not contribute to the optical transmission because of the
into account the leaky band that exists just above the lightymmetry mismatching.

v

wa

8 0.3
o
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TABLE II. The compatibility relations in the triangular lattice. 0.025
T 2 0.020 A
3rd
r Ax A A 0.015 / \ r
A, B B - '
B, A B Q
5 B A 0.010
Ei, E» A+B A+B N A N p
K A, A - / @g é:/‘ E \
A, B - 0.000
E A+B _ M 4h 2a T N3 K
M A, By - A FIG. 6. The inverse of the quality facto®( %) of several bands.

A,, B, _ B Solid and open circles represent the dél and even(A) modes,
respectively.Q ! is equal zero, or in other words, the lifetime is
infinite near theK and M points, since the dispersion curves are
éocated below the light line in those regions. A remarkable feature
of this figure is thalQ ! is extremely small at thE point as well.

o his ph iginates f th t i tching be-
Let us proceed to the transmission spectra. The lowest T 'S PRENOMENON Orginates trom the symmeTy mismatcning be

de of th " lab. which d for the inci een the guided modes in the photonic crystal and the diffracted
mode of the uniform slab, which was assumed for the INCHadiation field in free space. Another important feature is @at

dent wave, is odd about thg or o, mirror reflection. Thus s small for the third lowest odd mode in tiie K direction and for

the even modes in the photonic crystal do not contribute tahe fourth lowest odd mode in tH&-M direction, which results in

the optical transmission, since they do not couple to the inthe high transmittance in the corresponding frequency regions. See
cident wave because of the symmetry mismatching. This feaext for details.

ture is clearly observed atwa/27c=0.26—0.32 and

0.48-0.50 for thd'-K direction, andwa/2mc=0.24-0.30 method?® For this purpose, we first excited the eigenmode
for theI'—M direction. In these frequency ranges, there is naby a dipole moment oscillating at its eigenfrequency located
odd mode and the transmittance is extremely small. The lowin the photonic crystal and observed its decay after switching
est transmittance is less than£0 On the other hand, the off the oscillation. The accumulated electromagnetic energy
transmittance is also small even when there is an odd mode i (t) decreases with time as

it is leaky. This is because the incident wave is diffracted

into the air region, and the electromagnetic energy transmit- w(t—1tp)
ted in thel’-K or I'-M direction becomes small. This feature u(t)= U(to)exr{ - T}
is marked when the lifetime and/or the group velocity of the
eigenmodes are small. The low transmittance of this kind iSNhereto stands for the switch-off time an@ is the quality
observed awa/2m7c=0.38-0.41 for thel'-K direction and  factor of the eigenmode. In Fig. 6, the calcula®d?® is
wa/2mc=0.40~0.45 for thel'—M direction. On the other pjotted for the relevant bands. Solid and open circles repre-
hand, the transmittance is high when their lifetime is long.sent the oddB) and even(A) modes, respectivehyQ ! is

The high transmittance of this kind is observed aroundequal to zero, or in other words, the lifetime is infinite near
wa/2mc=0.45 for thel'-K direction and aroundva/2mc  the K and M points, since the dispersion curves are located

=0.48 for thel’-M direction. below the light line in these regions. A remarkable feature of
Let us conclude this section with the following. As was this figure is thatQ ! is extremely small at th& point,

mentioned above, the transmittance may be low in two casegjhere the modes shown in Fig. 6 have #g A,, andE,
(1) when there is no symmetry-matched mode édvhen  symmetries. As we shall see, this phenomenon originates
the lifetime of the eigenmode is short. It may also be low infrom the symmetry mismatching between the gu|ded modes
the high-frequency regiof8) when the Bragg diffraction in  in the photonic crystal and the diffracted radiational field in
the x-y plane takes place. These facts imply that the frefree space. Namely, the coupling between them is forbidden
quency regions with low transmittance do not necessarilypy symmetry, and the lifetime, and thu®,are infinite.
correspond to photonic band gaps. So, we must be careful | et us examine the diffraction process of a mode with a
when we compare the transmission spectra obtained by exyave vectork,. Because of the conservation of the momen-
perimental observation and the band diagrams. tum in thex-y plane, the wave vector of a diffracted wave,
k, is generally given by

point, as we will see later. Especially, their decay rates ar
exactly equal to zero just at tHé point.

(10

IV. DECAY RATES
k=kj+G+kze,, (1)
As we saw in the previous section, the decay rate is an
important quantity that characterizes the basic optical propwhere G, and e, are a reciprocal-lattice vector of the two-
erties of the leaky modes. It can be evaluated by examiningimensional hexagonal structure and the unit vector inzthe
the temporal decay of the eigenmodes by the FDTDdirection, respectivelyk, is given by
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k, has theE symmetry for thel’ point in the square lattice.
A Therefore, only thé& modes in the photonic crystal couple to
ey the external radiation field. The coupling for all other modes
i‘ is forbidden by symmetry and they have infinite lifetimes.
€, The absence of the coupling discussed here originates from
the structural symmetry in the two-dimensional plane. So, it
- % T= N, can also be observed in those specimens without the mirror
X v symmetry about tha-y plane.
- o o o ® D

| Another remarkable feature of Fig. 6 is the presence of
leaky bands with very small decay rates. They are the third
FIG. 7. Schematic illustration of the diffracted plane waves oflowest odd band in th&-K direction and the fourth lowest
the zeroth order for thé& point. k, denotes their wave vectog, odd band in thel’-M direction. The quality factor of the
ande, denote their two independent polarizations. These two plandormer is greater than 3000 everywhere betweer tadK
waves form the basis of tHg, irreducible representation of &,  points. The small decay rates of these two bands resulted in
point group. See text for details. the high transmittance arounea/2mc=0.45 in thel'-K di-
rection and arounda/27c=0.48 in thel'-M direction.
w? ) Finally, let us give a qualitative estimation of the trans-
k.= g‘|kH+GH| : (12 mittance. The flow of the radiational energy is described by
the group velocityv, which is given by the slope of the
It is easy to show that whema/2xc is less than 2/3, G,  dispersion curve, if the dielectric constant of the photonic

should be equal to zero fd, to be real for thd™ point for  crystal is reaf> When we denote the propagation length by
which k;=0. Therefore, the diffracted waves are character-, the time necessary for the propagation is equdl /.

ized by just one wave vectds, given by The damping factor of the leaky mode is thus given by
exp(-Lw/Qug), to which the transmittance is proportional.
® As an example, let us examine the third lowest odd band in
Ko=7&- (13)  theI'-K direction. Its group velocity is about/20 at the

middle of the band. If we assume thiat=10a, Q=3000,
We shall refer to these waves as the diffracted waves of thand wa/2wc=0.45, its damping factor is as large as 0.83.
zeroth order. They have two polarization components aghis is the origin of the high transmittance at this frequency.
shown in Fig. 7, where, ande, are the unit vectors in the  The third lowest odd mode may travel more tham 50 its

andy directions. These two waves, of course, have the samgfetime. Within this length, the leaky mode may be regarded
frequency. So, they are a degenerate pair of a twoas a guided mode.

dimensional irreducible representation of tl@;, point
group. Their transformation by, and o, is

V. CONCLUSION
(ox,09)=(-11), & (14
In summary, we have studied the dispersion relation of
_ the radiational eigenmodes of a two-dimensional photonic
(o,0y)=(171), &, (19 crystal composed of the hexagonal array of cylindrical air
They are thus the basis set of thE; irreducible holes fabricated in a dielectric slab by the group-theoretical
representation’ Because of the mismatching of the spatialargument and numerical calculation based on the FDTD
symmetry, they can only couple to tkg modes in the hex- method. The calculated dispersion relation was well approxi-
agonal photonic crystal. This is the reason why e A,, mated by the folding of the dispersion curve in a uniform
andE, modes at th&' point shown in Fig. 6 do not couple to slab with the spatially averaged refractive index into the two-
the radiation field in the air region and have the infinite qual-dimensional Brillouin zone. The decay rate of the leaky
ity factor. When the wave vector is near thiepoint, the  modes that exist above the light line in the band diagram was
coupling andQ ! are still small although they are not ex- also evaluated, from which the absence of the coupling be-
actly equal to zero. From this argument, it is expected thatween certain internal eigenmodes and the external radiation
the E; modes at thé” point should have short lifetimes. We field was shown. This phenomenon was related to their sym-
found anE; mode atwa/2mc=0.54 and its lifetime was metry mismatching by the group-theoretical argument. It was
really small. also shown that certain leaky modes have such large quality
A similar result was reported previously for a square lat-factors greater than 3000 that they behave as if they were
tice by Paddon and Yound.They found by numerical cal- guided modes over a distance larger than 50 times the lattice
culation that only the&e mode at thd™ point was diffracted constant. All these features as well as the opaque frequency
and had a finite lifetime. We can easily show by the similarregion due to the symmetry mismatching were clearly dem-
argument as we did for the hexagonal lattice that the possiblenstrated by the optical transmission spectra calculated by
diffracted waves in the low-frequency regiomd/2mwc<<1) the FDTD method.
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