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Dispersion relation and optical transmittance of a hexagonal photonic crystal slab
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The dispersion relation and the optical transmittance of a two-dimensional photonic crystal composed of the
hexagonal array of cylindrical air holes fabricated in a dielectric slab were analyzed by group theory and the
numerical calculation based on the finite-difference time-domain method. The decay rate of the leaky modes
that exist above the light line~the dispersion relation in air! in the band diagram was also evaluated, from
which the absence of the coupling between certain internal eigenmodes and the external radiation field was
shown. This phenomenon was related to symmetry mismatching by the group-theoretical argument. It was also
shown that a certain leaky band has a quality factor as large as 3000 over its entire spectral range. These
features as well as the opaque frequency regions due to symmetry mismatching were clearly demonstrated by
the calculated optical transmission spectra.
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I. INTRODUCTION

Recently, much attention has been paid to tw
dimensional photonic crystals fabricated in dielect
slabs.1–12 The radiation field in these crystals are controll
by the periodic dielectric structure in the two-dimension
plane and by the confinement due to the index differenc
the third direction. Because the sophisticated techniques
the thin-film formation and lithography that are familiar
the fields of electronics and opto-electronics can be utili
for their fabrication, specimens of high quality and wi
large area are now available for experimental studies.
introduction of structural defects and waveguides in th
crystals is also possible, and their various applications
opto-electronic devices have been proposed. Lasing with
calized defect modes has already been reported.12

However, the confinement of the radiation field in t
third direction is not complete. It is widely believed that on
those modes that satisfy a certain relation between the ei
frequency and the wave vector, which will be described la
with the idea of the so-calledlight line, are confined and the
rest of the eigenmodes have short lifetimes. This feature
the photonic crystal slabs may impose a serious constrain
their applicability, since the available frequency range is li
ited. On the other hand, to our knowledge, the conseque
of the finite lifetime in the fundamental properties of th
photonic crystal slabs such as the optical transmittance
not been fully clarified.

In this paper, we will report a theoretical investigation
the photonic band structure, the lifetime of the eigenmod
and the optical transmittance of a two-dimensional hexa
nal photonic crystal fabricated in a dielectric slab. The m
features of the transmission spectra will be related to
spatial symmetry of the radiational eigenmodes and th
lifetime. Especially, we will show the presence of the eige
modes above thelight line with extremely long lifetimes,
which result in unexpectedly high transmittance. The sy
metry of the eigenmodes was examined by both numer
calculation and the group-theoretical analysis. The amaz
finding by Paddon and Young13 that certain eigenmode
0163-1829/2001/63~12!/125107~7!/$15.00 63 1251
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above thelight line in a square lattice have infinite lifetime
was reproduced for our case, and its origin was clarified
the group theory. It will also be shown that the opaque f
quency regions in the transmission spectra do not necess
imply the presence of photonic band gaps.

II. SYMMETRY OF EIGENMODES

Figure 1 shows the schematic illustration of the tw
dimensional photonic crystal slab that we deal with in th
paper. It consists of the regular hexagonal array of air ho
fabricated in a dielectric slab with the refractive index of 3
~GaAs!. The right-hand side of the figure shows the top vie
of the configuration of several air holes. The lattice consta
the radius of the cylindrical holes, and the thickness of
slab are denoted bya, r, andd, respectively. We assume fo
the sake of simplicity that the structure is uniform in thez
direction. We also assume that it is sandwiched by air. P
tonic crystal slabs of this kind, which are referred to as
air-bridge type, have been one of the main subjects of
recent investigations. The following parameters were

FIG. 1. Left: Schematic illustration of the two-dimensional ph
tonic crystal slab. It is composed of a regular hexagonal array
cylindrical air holes fabricated in a dielectric slab. The structure
periodic and infinite in thex andy directions, and sandwiched by a
in the z direction. The boundaries are located atz56d/2. Right:
Top view of the configuration of several air holes, wherea and r
denote the lattice constant and the radius of the air holes, res
tively. For the numerical calculation, the following parameters w
assumed: The refractive index of the dielectric slab5 3.4, d
50.5a, andr 50.25a.
©2001 The American Physical Society07-1
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sumed for the numerical calculation:d50.5a and r
50.25a. The structure hasD6h symmetry, which is the di-
rect product of theC6v andCi point groups:

D6h5C6v3Ci . ~1!

Ci consists of the identity operationÊ and the mirror reflec-
tion by thex-y plane,ŝz . Thus any eigenmode of the radia
tion field should be symmetric (sz51) or antisymmetric
(sz521) about thex-y plane. In order to avoid unneces
sary complexity, let us restrict our discussion to the symm
ric modes in what follows. The antisymmetric modes can
treated in a similar manner.

Let us first examine what kind of radiational eigenmod
are expected to appear by the group-theoretical argum
The key idea is the reduction of the reducible representat
given by the linear combination of unperturbed eigenfu
tions. For the case of two-dimensional photonic crystals w
infinite thickness14 and general three-dimensional photon
crystals,15,16 plane waves in free space were used as the
perturbed eigenfunctions. The group-theoretical predict
was usually satisfactory in the low-frequency range. For p
tonic crystals composed of dielectric spheres17 and certain
metallic systems,18 the Mie resonance states may be used
this purpose. For the present problem, the guided modes
uniform slab with a spatially averaged dielectric constant
be used as the unperturbed eigenfunctions.

In a uniform slab, the guided modes are classified i
four categories according to the symmetry for the mirror
flection ŝz and to their polarizations. Those modes who
electric fields lie in thex-y plane are referred to as transver
electric ~TE! modes, whereas those modes whose magn
fields lie in thex-y plane are referred to as transverse m
netic ~TM! modes. Each mode is also characterized by
wave numberki in thex-y plane. The dispersion relations o
the guided modes are obtained from the following equatio

mk cosS kzd

2 D2kz sinS kzd

2 D50

for TE modes withsz51, ~2!

«k cosS kzd

2 D2kz sinS kzd

2 D50

for TM modes with sz521, ~3!

mk sinS kzd

2 D1kz cosS kzd

2 D50

for TE modes withsz521, ~4!

«k sinS kzd

2 D1kz cosS kzd

2 D50

for TM modes with sz51, ~5!

where« and m denote the relative permittivity and perm
ability of the slab, respectively. In these equations,kz is thez
component of the wave vector defined in the dielectric sl
12510
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whereask is the spatial decay constant in thez direction in
the air region. When we denote the refractive index of
slab byn (5A«m), kz andk are related to the angular fre
quency of the radiational eigenmode,v, by

v25
c2

n2
~ki

21kz
2!5c2~ki

22k2!, k.0 ~6!

where c is the light velocity in free space. The dispersio
curves for the lowest four bands in the uniform slab with
refractive index of 2.86, which is the spatial average for
structure shown in Fig. 1, are depicted in Fig. 2, where t
bands withsz521 are also shown for comparison. Th
ordinate and the abscissa denote the normalized frequ
and the normalized wave number, respectively. In this figu
solid lines represent the dispersion relation for modes w
sz51, whereas broken lines represent that for modes w
sz521. On the other hand, the dotted-broken line deno
the dispersion relation in air~free space!, which we will refer
to as the light line hereafter. If the eigenfrequency lies bel
the light line, the decay constantk is real, and thus the eigen
mode is confined in the slab. In other words, it is a guid
mode. If the eigenfrequency lies above the light line,k is
purely imaginary, and the radiation field escapes from
slab. In this case, the radiational mode is not a real eig
mode, but is a resonant state with a complexv, which is
often called a leaky mode. Only the guided modes were p
ted in Fig. 2.

One of the important features of the radiational bands
the uniform slab is that only the lowest two bands start fro
v50, whereas higher bands have infrared cutoff frequ

FIG. 2. The dispersion curves of the lowest four guided mo
in a uniform slab with the refractive index of 2.86, which is th
spatially averaged refractive index of the structure shown in Fig
The ordinate is the normalized frequency, whered denotes the
thickness of the dielectric slab. The abscissa denotes the norma
in-plane wave number. Solid lines represent the dispersion relat
of modes withsz51 whose in-plane components of the elect
field are symmetric about thex-y plane, whereas broken lines rep
resent those of modes withsz521 whose electric fields are anti
symmetric. The dotted-broken line is referred to as thelight line,
which shows the dispersion relation in air.
7-2
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DISPERSION RELATION AND OPTICAL . . . PHYSICAL REVIEW B 63 125107
cies. For example, the third and fourth lowest bands, wh
are a TE mode withsz521 and a TM mode withsz51,
respectively, have a cutoff at

vc5
pc

dAn221
. ~7!

Therefore, when we deal with the low-frequency region
we will do in the following sections, it is fairly enough t
take the lowest band into account. This treatment is es
cially justified for photonic crystals with small thickness, f
which the cutoff frequencies are high. As we will see in t
next section, the dispersion relation of modes withsz51 can
be actually well approximated forva/2pc<0.5 by the fold-
ing of the lowest dispersion curve into the two-dimensio
Brillouin zone, provided that we take into consideration t
mixing and the frequency splitting where more than o
band with the same symmetry crosses each other. On
other hand, we have to take into account higher bands w
we deal with higher-frequency regions. We should also n
that the mixing of the TE and TM modes with the samesz
takes place in the photonic crystal slabs.

Table I summarizes the results of the symmetry ass
ment by the folding of the dispersion curves of the lowest
and TM modes into the first Brillouin zone. The irreducib
representation of the electric field obtained by the reduc
procedure mentioned previously are listed for three hig
symmetric points, that is, theG, K, andM points.~For nota-
tion of the wave vectors, see Fig. 3.! These points are invari
ant by the symmetry operations that belong to theC6v , C3v ,
and C2v point groups, respectively. Thus, their eigenmod
are classified according to the irreducible representation
the correspondingk groups,19 which are listed in the fifth and
sixth columns. In Table I, equivalent wave vectors with t
same length in the extended-zone scheme, which are liste
the second column, are distinguished by a subscript. T
length and the number of the equivalent wave vectors
listed in the third and fourth columns.
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III. PHOTONIC BAND STRUCTURE AND
TRANSMISSION SPECTRA

For the numerical calculation of the photonic band stru
ture, we employed the method of the Fourier transformat
of the time-correlation function of the electromagne
field.20 The temporal evolution of the electromagnetic fie
was calculated for eachki by the finite-difference time-
domain~FDTD! method21 with an initial condition that sat-
isfied the Bloch theorem. Namely, we imposed the followi
conditions on the electric fieldE(r ,t) and the magnetic field
H(r ,t):

E~r1a,0!5eiki•aE~r ,0!, ~8!

H~r1a,0!5eiki•aH~r ,0!, ~9!

FIG. 3. The two-dimensional first Brillouin zone of the hexag
nal lattice. There are two sets of threeK points that are connecte
by reciprocal lattice vectors, and thus are equivalent to each o
One set among them are shown in this figure. TheK point is invari-
ant under symmetry operations of theC3v point group. One of the
three sets of two equivalentM points, which are invariant unde
symmetry operations of theC2v point group, is also shown.
slab,
at is
TABLE I. The irreducible representations for the electric field of the guided modes in the uniform
whose wave vector,ki , is reduced in the two-dimensional first Brillouin zone of the hexagonal lattice th
shown in Fig. 3. The irreducible representations were calculated for the lowest TE mode withsz51 and the
lowest TM mode withsz521.

Symmetry Wave vector
kid

2p
Number of modes TE mode withsz51 TM mode withsz521

C6v G0 0 1 Singular Singular
G1 2/A3 6 A21B11E11E2 A11B21E11E2

G2 2 6 A21B21E11E2 A11B11E11E2

C3v K0 2/3 3 A21E A11E
K1 4/3 3 A21E A11E
K2 2A7/3 6 A11A212E A11A212E

C2v M0 1/A3 2 A21B1 A11B2

M1 1 2 A21B2 A11B1

M2 A7/3 4 A11A21B11B2 A11A21B11B2
7-3
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where a denotes the elementary lattice vector of the tw
dimensional hexagonal structure. Boundary conditions of
same kind at arbitrary timet follow from these two condi-
tions. In order to deal with the infinite extent of the air r
gion, we imposed Mur’s absorbing boundary condition of t
first order21 at z56(3/2)a. The eigenfrequencies were ob
tained as the peak frequencies of the Fourier spectrum o
time-correlation function. Because of the mirror symme
(sz51) that we assumed in this paper and the bound
conditions, Eqs.~8! and ~9!, it was enough to treat only th
upper half (z>0) of a unit cell in the numerical calculation
When we deal with theS and T points, we could impose
additional boundary conditions, which brought about bo
the reduction of the numerical task and the assignment of
spatial symmetry to each mode. For example, theS point is
invariant by the mirror reflectionŝx that is illustrated in Fig.
1. So, its eigenmodes are classified into even (sx51) and
odd (sx521) modes. The former are also referred to asA
modes, whereas the latter are referred to asB modes. Thus,
we could reduce the spatial region for numerical calculat
to the positivex region by imposing the symmetrical or an
tisymmetrical boundary condition. The same holds for theT
point when we take into consideration the symmetry un
the mirror reflectionŝy instead ofŝx . As for theG point,
both ŝx andŝy operations could be used to distinguish tw
dimensional as well as one-dimensional representations.
radiational modes that are attributed to a two-dimensio
representation appeared as a degenerate pair of eigenm
with complimentary symmetry properties. For instance,
eigenmodes with E1 symmetry are characterized b
(sx ,sy)5(21,1) and (1,21). The unit cell was divided
into 1152 meshes to discretize the Maxwell equations. T
further decrease in the size of the spatial meshes did not
an apparent change in the eigenfrequencies.

The optical transmittance of ten lattice layers was cal
lated by the FDTD method with the lowest TE mode of
uniform slab with the refractive index of 3.4 as an incide
wave. It was propagated in theG-K or G-M direction. The
transmittance was evaluated by the ratio of the avera
Poynting vector of the transmitted wave to that of the in
dent wave.

The photonic band structures and the transmission spe
are shown in Fig. 4 for theG-K direction and Fig. 5 for the
G-M direction. In the band diagrams, solid and open circ
represent the odd~B! and even~A! modes, respectively. Th
light line is represented by a dotted-broken line. The symm
tries of the eigenmodes obtained by the numerical calc
tion shown in these figures are consistent with the gro
theoretical prediction that is given in Table I. They are a
consistent, as they should be, with the compatibi
relations14,19 listed in Table II that relate the symmetries
modes with adjacent wave vectors. Such modes that do
match the group-theoretical prediction based on the fold
of the lowest TE mode appeared atva/2pc>0.57.

It is known that the modes withsz51 tend to have a
photonic band gap below the light line. We can actually o
serve a band gap atva/2pc50.26–0.31. However, taking
into account the leaky band that exists just above the l
12510
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line in the same frequency region, this is not a true gap. T
leaky band is of TM origin, and the corresponding unp
turbed band with complex eigenfrequencies is obtained
the extrapolation of the dispersion curve shown in Fig
beyond the infrared cutoff. As we also see in other freque
regions, one of the remarkable features of the band struc
is the clear existence of the dispersion curves above the
line. These leaky bands have small decay rates around tG

FIG. 4. The photonic band structure~left-hand side! and the
optical transmittance~right-hand side! in the G-K direction. The
ordinate is the normalized frequency, wherea denotes the lattice
constant. For numerical calculation, those parameters that are l
in the caption of Fig. 1 were used. In the band diagram, solid circ
represent the odd~B! modes withsy521, whereas open circles
represent the even~A! modes withsy51. The irreducible represen
tations of thek groups for the electric field are also shown for theG
andK points. The transmittance was calculated for ten lattice lay
with the lowest TE mode in the uniform slab with the refracti
index of 3.4 as an incident wave. Thus, the incident wave has
symmetry ofsz51 andsy521. The even~A! modes do not con-
tribute to the optical transmission, since they do not couple to
incident wave because of the symmetry mismatching.

FIG. 5. The photonic band structure~left-hand side! and the
optical transmittance~right-hand side! in the G-M direction. The
same parameters as in Fig. 4 were assumed for numerical cal
tion. In the band diagram, solid circles represent the odd~B! modes
with sx521, whereas open circles represent the even~A! modes
with sx51. The irreducible representations of thek groups for the
electric field are also shown for theG andM points. The even~A!
modes do not contribute to the optical transmission because o
symmetry mismatching.
7-4
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DISPERSION RELATION AND OPTICAL . . . PHYSICAL REVIEW B 63 125107
point, as we will see later. Especially, their decay rates
exactly equal to zero just at theG point.

Let us proceed to the transmission spectra. The lowes
mode of the uniform slab, which was assumed for the in
dent wave, is odd about theŝx or ŝy mirror reflection. Thus
the even modes in the photonic crystal do not contribute
the optical transmission, since they do not couple to the
cident wave because of the symmetry mismatching. This
ture is clearly observed atva/2pc50.26–0.32 and
0.48–0.50 for theG-K direction, andva/2pc50.24–0.30
for theG –M direction. In these frequency ranges, there is
odd mode and the transmittance is extremely small. The l
est transmittance is less than 1023. On the other hand, the
transmittance is also small even when there is an odd mo
it is leaky. This is because the incident wave is diffract
into the air region, and the electromagnetic energy trans
ted in theG-K or G-M direction becomes small. This featu
is marked when the lifetime and/or the group velocity of t
eigenmodes are small. The low transmittance of this kind
observed atva/2pc50.38;0.41 for theG-K direction and
va/2pc50.40;0.45 for theG2M direction. On the other
hand, the transmittance is high when their lifetime is lon
The high transmittance of this kind is observed arou
va/2pc50.45 for theG-K direction and aroundva/2pc
50.48 for theG-M direction.

Let us conclude this section with the following. As wa
mentioned above, the transmittance may be low in two ca
~1! when there is no symmetry-matched mode and~2! when
the lifetime of the eigenmode is short. It may also be low
the high-frequency region~3! when the Bragg diffraction in
the x-y plane takes place. These facts imply that the f
quency regions with low transmittance do not necessa
correspond to photonic band gaps. So, we must be ca
when we compare the transmission spectra obtained by
perimental observation and the band diagrams.

IV. DECAY RATES

As we saw in the previous section, the decay rate is
important quantity that characterizes the basic optical pr
erties of the leaky modes. It can be evaluated by examin
the temporal decay of the eigenmodes by the FD

TABLE II. The compatibility relations in the triangular lattice

T S

G A1 A A
A2 B B
B1 A B
B2 B A

E1 , E2 A1B A1B

K A1 A -
A2 B -
E A1B -

M A1 , B1 - A
A2 , B2 - B
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method.22 For this purpose, we first excited the eigenmo
by a dipole moment oscillating at its eigenfrequency loca
in the photonic crystal and observed its decay after switch
off the oscillation. The accumulated electromagnetic ene
U(t) decreases with time as

U~ t !5U~ t0!expF2
v~ t2t0!

Q G , ~10!

wheret0 stands for the switch-off time andQ is the quality
factor of the eigenmode. In Fig. 6, the calculatedQ21 is
plotted for the relevant bands. Solid and open circles rep
sent the odd~B! and even~A! modes, respectively.Q21 is
equal to zero, or in other words, the lifetime is infinite ne
the K andM points, since the dispersion curves are loca
below the light line in these regions. A remarkable feature
this figure is thatQ21 is extremely small at theG point,
where the modes shown in Fig. 6 have theB1 , A2, andE2
symmetries. As we shall see, this phenomenon origina
from the symmetry mismatching between the guided mo
in the photonic crystal and the diffracted radiational field
free space. Namely, the coupling between them is forbid
by symmetry, and the lifetime, and thus,Q are infinite.

Let us examine the diffraction process of a mode with
wave vectorki . Because of the conservation of the mome
tum in thex-y plane, the wave vector of a diffracted wav
k, is generally given by

k5ki1Gi1kzez , ~11!

whereGi and ez are a reciprocal-lattice vector of the two
dimensional hexagonal structure and the unit vector in thz
direction, respectively.kz is given by

FIG. 6. The inverse of the quality factor (Q21) of several bands.
Solid and open circles represent the odd~B! and even~A! modes,
respectively.Q21 is equal zero, or in other words, the lifetime
infinite near theK and M points, since the dispersion curves a
located below the light line in those regions. A remarkable feat
of this figure is thatQ21 is extremely small at theG point as well.
This phenomenon originates from the symmetry mismatching
tween the guided modes in the photonic crystal and the diffrac
radiation field in free space. Another important feature is thatQ21

is small for the third lowest odd mode in theG-K direction and for
the fourth lowest odd mode in theG-M direction, which results in
the high transmittance in the corresponding frequency regions.
text for details.
7-5
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kz5Av2

c2
2uki1Giu2. ~12!

It is easy to show that whenva/2pc is less than 2/A3, Gi

should be equal to zero forkz to be real for theG point for
which ki50. Therefore, the diffracted waves are charact
ized by just one wave vectork0 given by

k05
v

c
ez . ~13!

We shall refer to these waves as the diffracted waves of
zeroth order. They have two polarization components
shown in Fig. 7, whereex andey are the unit vectors in thex
andy directions. These two waves, of course, have the sa
frequency. So, they are a degenerate pair of a t
dimensional irreducible representation of theC6v point
group. Their transformation byŝx and ŝy is

~sx ,sy!5~21,1!, ex ~14!

~sx ,sy!5~1,21!, ey . ~15!

They are thus the basis set of theE1 irreducible
representation.19 Because of the mismatching of the spat
symmetry, they can only couple to theE1 modes in the hex-
agonal photonic crystal. This is the reason why theB1 , A2,
andE2 modes at theG point shown in Fig. 6 do not couple t
the radiation field in the air region and have the infinite qu
ity factor. When the wave vector is near theG point, the
coupling andQ21 are still small although they are not ex
actly equal to zero. From this argument, it is expected t
theE1 modes at theG point should have short lifetimes. W
found anE1 mode atva/2pc50.54 and its lifetime was
really small.

A similar result was reported previously for a square l
tice by Paddon and Young.13 They found by numerical cal
culation that only theE mode at theG point was diffracted
and had a finite lifetime. We can easily show by the simi
argument as we did for the hexagonal lattice that the poss
diffracted waves in the low-frequency region (va/2pc,1)

FIG. 7. Schematic illustration of the diffracted plane waves
the zeroth order for theG point. k0 denotes their wave vector.ex

andey denote their two independent polarizations. These two pl
waves form the basis of theE1 irreducible representation of theC6v
point group. See text for details.
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has theE symmetry for theG point in the square lattice
Therefore, only theE modes in the photonic crystal couple
the external radiation field. The coupling for all other mod
is forbidden by symmetry and they have infinite lifetime
The absence of the coupling discussed here originates f
the structural symmetry in the two-dimensional plane. So
can also be observed in those specimens without the m
symmetry about thex-y plane.

Another remarkable feature of Fig. 6 is the presence
leaky bands with very small decay rates. They are the th
lowest odd band in theG-K direction and the fourth lowes
odd band in theG-M direction. The quality factor of the
former is greater than 3000 everywhere between theG andK
points. The small decay rates of these two bands resulte
the high transmittance aroundva/2pc50.45 in theG-K di-
rection and aroundva/2pc50.48 in theG-M direction.

Finally, let us give a qualitative estimation of the tran
mittance. The flow of the radiational energy is described
the group velocityvg , which is given by the slope of the
dispersion curve, if the dielectric constant of the photo
crystal is real.23 When we denote the propagation length
L, the time necessary for the propagation is equal toL/vg .
The damping factor of the leaky mode is thus given
exp(2Lv/Qvg), to which the transmittance is proportiona
As an example, let us examine the third lowest odd band
the G-K direction. Its group velocity is aboutc/20 at the
middle of the band. If we assume thatL510a, Q53000,
and va/2pc50.45, its damping factor is as large as 0.8
This is the origin of the high transmittance at this frequen
The third lowest odd mode may travel more than 50a in its
lifetime. Within this length, the leaky mode may be regard
as a guided mode.

V. CONCLUSION

In summary, we have studied the dispersion relation
the radiational eigenmodes of a two-dimensional photo
crystal composed of the hexagonal array of cylindrical
holes fabricated in a dielectric slab by the group-theoret
argument and numerical calculation based on the FD
method. The calculated dispersion relation was well appro
mated by the folding of the dispersion curve in a unifor
slab with the spatially averaged refractive index into the tw
dimensional Brillouin zone. The decay rate of the lea
modes that exist above the light line in the band diagram w
also evaluated, from which the absence of the coupling
tween certain internal eigenmodes and the external radia
field was shown. This phenomenon was related to their s
metry mismatching by the group-theoretical argument. It w
also shown that certain leaky modes have such large qu
factors greater than 3000 that they behave as if they w
guided modes over a distance larger than 50 times the la
constant. All these features as well as the opaque freque
region due to the symmetry mismatching were clearly de
onstrated by the optical transmission spectra calculated
the FDTD method.
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