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Systematic and causal corrections to the coherent potential approximation
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The dynamical cluster approximatidPCA) is modified to include disorder. The DCA incorporates nonlo-
cal corrections to local approximations such as the coherent potential approxir@gén by mapping the
lattice problem with disorder, and in the thermodynamic limit, to a self-consistently embedded finite-sized
cluster problem. It satisfies all of the characteristics of a successful cluster approximation. It is causal, pre-
serves the point-group and translational symmetry of the original lattice, recovers the CPA when the cluster
size equals one, and becomes exacNags-. We use the DCA to study the Anderson model with binary
diagonal disorder. It restores sharp features and band tailing in the density-of-states, which reflect correlations
in the local environment of each site. While the DCA does not describe the localization transition, it does
describe precursor effects of localization.
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[. INTRODUCTION perturbation theory formalism for disordered systems. In
Sec. Il A we show that the CPA is equivalent to neglecting

The coherent potential approximatiofCPA)'~3 is a  momentum conservation at all internal vertices of the dia-
widely used method for treating disordered systems. Withirgrams, and in Sec. IlIB we introduce the DCA for disor-
the CPA, the problem is first averaged over all possible disdered systems that systematically restores the momentum
order configurations in an attempt to regain the translationatonservation relinquished by the CPA. In Sec. IV we show
invariance lost due to disorder. Then nonlocal correlations ofhat the DCA satisfies each of the desired characteristics de-
the disorder potential are neglected leading to a selfscribed above. In Sec. V we show results for the two-
consistent single-site approximatidlike the Weiss mean- dimensional Anderson model with binary diagonal disorder.
field theory of magnetisin It has been applied with great Finally in the Appendix we present an alternate way of view-
success to a variety of probletis including ab initio cal- ~ ing and justifying the disordered DCA algorithm developed
culations in disordered metallic allo§s. in this paper, using the replidar othe)y methods of disorder

Nevertheless, the CPA fails to provide a completely sataveraging.
isfactory theory for disordered syster#s a single-site
mean-field theory, it cannot account for the disorder induced,
short-ranged but nonlocal, correlations due to the local order
in the environment of each site responsible for band tailing We consider an Anderson model with diagonal disorder,
and sharp structures in the density-of-states. There have bedrscribed by the Hamiltonian
many attempt&®® to formulate nonlocal corrections to the
CPA in which the lattice is mapped onto a self-consistently
embedded finite-sized cluster. However, as argued clearly H= >, t(CIUCj,UwL C]-T’(TCLU)-FE (Vi—wni ,, D
and in detail by Gonig,these theories all fail in some sig- (i).o i
nificant way. A successful theory must be able to account for
fluctuations in the local environment in a self-consistent waywhere C!, creates a quasiparticle on siie with spin
become exact in the limit of large cluster sizes, and recover, ni,(,ZCIUCi,(,. The disorder occurs in the local orbital
the CPA when the cluster size equals one. It must be easilgnergiesV;, which we assume are independent quenched
implementable numerically and preserve the translationalandom variables distributed according to some specified
and point-group symmetries of the lattice. Finally, and mostprobability distributionP(V). The DCA formalism that we
significantly, it should be fully causal so that the single-develop in this paper is a general method valid for any
particle Green function and self-energy are analytic in theP(V). However, for illustrative purposes, for the specific cal-
upper half-plane. No presently existing cluster extension otulations presented in this paper, we take=+V with
the CPA satisfiesll these requirement’ equal probability 1/2binary disorder.

Recently, a new method called the dynamical cluster ap- The effect of the disorder potential;,V;n; , can be de-
proximation(DCA)®~*°was developed for ordered correlated scribed using standard diagrammatic perturbation théairy
systems such as the Hubbard model to add nonlocal correthough we will eventually sum tall orders. It may be re-
tions to the dynamical mean-field approximation. In this pa-written in reciprocal space as
per, we modify the DCA to include disorder and show that

II. BASIC FORMALISM

the resulting formalism satisfies all of the above stated re- 1
guirements for a successful cluster extension of the CPA. Hyis=— 2 vicl +Cur Ue”i(k*k’)_ 2
In the next section, we review the basic diagrammatic N ko '
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FIG. 1. The first few graphs in the irreducible self-energy of a N# i#jkgkgks .

diagonally disordered system. EaChrepresents the scattering of a
statek from sites(markedX) with a local disorder potential dis-
tributed according to some specified probability distributiRV). ><G(k5)G(k4)G(k3)> : ®)
The numbers label thk states.
Evaluating the disorder average we get the following two
The corresponding irreduciblskeletal contributions to the terms:
self-energy may be represented diagrammatitadiyd are
displayed in Fig. 1. 1

. . 2\2Airi- (kg +kg—kg—kg)airi - (kst+ky—ks—k
Here eachO represents the scattering of an electronic (vZ)2enitarkaksalglr (ks e mkamia)

4 ..
Bloch state from a local disorder potential at some site rep- N ijkgkaks
resented byX. The dashed lines connect scattering events X G(ks)G(K4)G(Kks)
that involve the same local potential. In each graph, the sums
over the sites are restricted so that the diffedérg represent 1 _
scattering fromdifferent sites. No graphs representing a —— > (V)% (k)G (ks) G(kg) G(ky).
single scattering event are included since these may simply N ikakaks
be absorbed as a renormalization of the chemical potemntial (6)

Translational invariance and momentum conservation are o ) )
restored by averaging over all possible values of the disordéylomentum”conservisttlc:n IS .restor?d r?y the sum owandj;
potentialsV, . For example, consider the second diagram inl-€:» OVer all possible locations of the two scatterers. It is

Fig. 1, given by reflected by the Laue functiond=Né,. ..., within the
’ sums
1 .
_ 2 <V3>G(k3)G(k )elri-(kl—k3+k3—k4+k4—k2)' Oy P
N3 ikgk ¢ 23 - 2 (VZ)2NS 4 Ket+k
3) N3 kikaks 2T Kg K5 TKg
where G(k) is the disorder-averaged single-particle Green X G(ks)G(ks)G(k3)
function for statek. The average over the distribution of 5
scattering potentialgV?)=(V®) independent ofi. After _ Tkakg 202
summation over the remaining labels, this becomes N3 kskz4ks (V5)°G(ks)G(ka)G(ks). (V)
(V3>G(r=O)26kl,k2, (4) Since the first term in E(7) involves convolutions o6 (k)

it reflects nonlocal correlationflLocal contributions such as

whereG(r=0) is the local Green’s function. Thus the sec-the second term in Ed7) can, if one so chooses, be com-
ond diagram’s contribution to the self-energy involves onlybined together with the contributions from the corresponding
local correlations. Since the internal momentum labels allocal diagrams such as the third diagram in Fig. 1 by replac-
ways cancel in the exponential, the same is true for all noning (V) in the latter by the cumulartv*)—(V2)? ] Given
crossing diagrams shown in the top half of Fig. 1. the fact that differenX’s must correspond to different sites,

Only the diagrams with crossing dashed lines are nonloit is easy to see that all crossing diagrams must involve non-
cal. Consider the fourth-order diagrams such as those show@cal correlations.
on the bottom left and upper right of Fig. 1. When we im-
purity average, we generate potential ter(vé) when the Ill. CLUSTER APPROXIMATIONS
scattering occurs from the same local poterial., the third
diagram or (V2)2 when the scattering occurs from different
sites, as in the fourth diagram. When the latter diagram is Inthe CPA, nonlocal correlations involving different scat-
evaluated, to avoid overcounting, we need to subtract a ternerers are ignored. Thus, in the calculation of the self-energy,
proportional to(V?)? but corresponding to scattering from we ignore all of the crossing diagrams shown on the bottom
the same site. This term is needed to account for the fact thaff Fig. 1; and retain only the class of diagrams such as those
the fourth diagram should really only be evaluated for sitesshown on the top representing scattering from a single local
i #j! For example, the fourth diagram yields disorder potential. These diagrams are shown in Fig. 2.

A. The coherent potential approximation
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over the momenta within each coarse-graining cell shown in
Fig. 3. As illustrated in Fig. 4 for a fourth-order graph, this
leads to the replacement of the lattice propagators
G(kq),G(ks), . .. by  coarse-grained propagators
G(K),G(K"), ... which are given by

E(K)E%Z G(K+K), (10)
k

where N is the number of points of the latticéy, is the

number of cells in the cluster, and tkesummation runs over
the momenta of the cell about the cluster momentur(cf.
Fig. 3.

FIG. 3. N.=4 cluster cell{shown by different fill patternshat As N. increases from one, systematic nonlocal corrections
partition the first Brillouin zondédashed ling Each cell is centered to the CPA self-energy are introduced. To see this, recall that
on a cluster momenturK (filled circles. To construct the DCA  the self-energy is a functional of the Green function. Accord-
cluster, we map a generic momentum in the zone sudhtasthe  ing to Nyquist's sampling theoref,to reproduce correla-
nearest cluster poir€ =M (k) so thatk=k—K remains in the cell  tions of length<L/2 in the Green function and correspond-
aroundK. ing self-energy, we only need to sample the reciprocal space

at intervals ofAk~2/L. Knowledge of these Green func-

Employing diagrammatic arguments, it is easy to see thations on a finer scale in momentum is th&k unnecessary,
the CPA is fully equivalent to the neglect of momentumand may be discarded to reduce the complexity of the prob-
conservation at each internal vertex. This is accomplished biem. Thus the cluster self-energy will be constructed from
setting each Laue function within the symg., in Eq(7)]to  the coarse-grained averagef the single-particle Green’s
1. We may then freely sum over the internal momenta, leavfunction within the cell centered on the cluster momenta. For
ing only local propagators. All nonlocal self-energy contri- short distances<L/2, whereL is now the linear size of the
butions(crossing diagramsmust then vanish. For example, clyster, the Fourier transform of the Green's funct®(r)
consider again the fourth graph. If we replace the Laue func= g(r)+ O[(rAk)?], so that short-ranged correlations are

ton N, i, kg+k—1 1N Eq.(7), then the two contributions reflected in the irreducible quantities constructed fr@m

cancel and this diagram vanishes. Thus an alternate definghereas, longer ranged correlationsL/2 are cut off by the
tion of the CPAM in terms of the Laue functiond, is finite size of the clustet.

We show in the Appendix that free-energy arguments pre-

A=Acpa=1. ®  sented previousfyapply to the disordered case as well. In
That is, the CPA is equivalent to the neglect of momentunparticular, the DCA estimate of the lattice free energy is
conservation at all internal vertices of the disorder-averageehinimized by the choic& (k,w)=3[M(k),w].

irreducible graphs. Algorithm: With the substitutiod —Apcs, most of the
diagrams represented in Fig. 1 remain. However, the com-
B. The dynamical cluster approximation plexity of the problem is greatly reduced since the nontrivial

The DCA systematically restores the momentum consersums involve only the cluster momenka (numberingN,
vation at internal vertices, which was relinquished by theinstead ofN). Furthermore, since these diagrams are the
CPA, and so incorporates nonlocal corrections. This is dongame as those from a finite-sized periodic clusteXoéites,
by dividing the Brillouin zone intdN,, equal cells, as shown we can easily sum this series to all orders by numerically
in Fig. 3 and requiring that momentum be partially con-solving the corresponding cluster problem. The resulting al-
served for momentum transfers between the coarse grainir@prithm is as follows(for notational convenience the fre-
cells shown in Fig. 3, but ignored for momentum transfersquency arguments are not displayed betow
within each cell. This may be accomplished by employing (1) Make a guess for the impurity-averaged cluster self-
the Laue functions energy (K), usually zero.

(2) Calculate the coarse-grained cluster Green functions
A=Apca=Ncom(k,) +M(k,) M(ky)+M(ky) . .. » ©)

whereM (k), illustrated in Fig. 3, maps the momentdo the G(K)= & 2 1 . (11)
nearest cluster momentd. Apca becomes one whedl, N T o+ pu—eii—2(K)
=1 since then all momenta are mapped to the zone center by
M. Thus the CPA is recovered in this limit. Furthermore, as (3) Calculate the cluster-excluded propagatg(K)
N. becomes large, the exact result is recovered since 1/[1/§(K)+2(K)]. The introduction ofG(K) is neces-
limy_—...M(k)=k for all momentak. sary to avoid overcounting diagrams on the cluster.

If we employ the DCA Laue function in each of the self-  (4) Fourier transforng to the real-space matrix represen-
energy diagrams shown in Fig. 1 then we may freely suntation of the cluster problem,[i.e., write G,
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A, A Apca= N M(k) + M(k2) , M(k3) + M(kg) X X FIG. 4. Use of the DCA Laue functioApcp
N QN QN leads to the replacement of the lattice propagators
Ky ks ks~ 1Y GK+q) = GK) ,/K_Q, K-Q G(ky),G(ky), ... by coarse grained propagators
> ) 4 : T s G(K),G(K'), ... .

=3G(K)expiK-(r,—rm)] hence the disorder potential Causality: It is easy to show that this algorithm is fully
may be represented as a diagonal matrigwith elements/,  causaf o . N
on the cluster sites labeled Iy and form a new estimate of ~ For our purposes, this is equivalent to requiring that all

the disorder-averaged cluster Green function matrix the retarded propagators and self-energies are Herglotz, or
analytic in the upper-half-plane. Since the diagrams which
G=((G 1-Vv) b, (120 describe the DCA cluster problem are isomorphic to those of

a real finite-size periodic cluster, the corresponding impurity
averaged cluster self-energy shares the causal properties of
c}his system. Furthermore, the coarse graining &§¢jgannot

) violate causality, since the sum of analytic functions is ana-
form a new estimate of the self-energy(K)=1/G(K) |ytic. The only “suspect” step is the cluster-exclusion step

where the averag@ indicates an average over disorder con-
figurations on the clustér.
(5) Transform back to the cluster reciprocal space an

—1G(K). _ (3), thus we must show that the imaginary parto nega-
(6) Repeat, starting fronf2), until X (K) converges to the tive semidefinite. The essential steps of the argument are
desired accuracy. sketched in Fig. 5. The imaginary part of(K,w)

The algorithm recovers the CPA fd¥;=1 and becomes _[G(K,w) 1+3(K,w)] ! is negative provided that

exact where—c. IM[G(K,») ]=-Im3(K,0). G(K,w) can be written as

G(K,w)=(N./N)2%(z¢ +%) Hw), where thezy . x(w) are

complex numbers with a positive semidefinite imaginary part
In Ref. 3 Gonis discusses the CPA, and various methods. Img(K,w). For anyK and w, the set of pointzy . ()

to incorporate nonlocal corrections. He lists the most impor4,e on a segment of the dasHeatizontalline in the upper-

tant characteristics of a successful cluster theory. A succespyjf-plane due to the fact that the imaginary paiinidepen-

ful theory must be able to account for fluctuations in the ~ . .
g : . ~dentof k. The mappingz— 1/z maps this line segment onto

local environment in a self-consistent way, become exact in : )

e . a segment of the dashed circle shown in the lower-half-plane.
the limit of large cluster sizes, and recover the CPA when the— i . . ) )
cluster size becomes one. It must be straightforward t&>(K,@) is obtained by summing the points on the circle
implement numerically and preserve the full point-groupS€gment, yielding the empty dot that must iethin the
symmetry of the lattice. Finally, and most significantly, it dashed circle. The inverse necessary to t&(&,w) to
should be fully causal so that the single-particle Green func4/G(K,w) maps this point onto the empty dot in the upper-
tion and self-energy are analytic in the upper-half-plane. Imalf-plane, which must li@bovethe dashed line. Thus, the
the next two sections, we demonstrate that the DCA Sat'Sf'e|§naginary part ofG(K,w) ! is greater than or equal to

each of these requirements. hi iv b ded f
The limits N.—1 andN.—«: As mentioned above, the —ImX(K,w). This argument may easily be extended for

DCA recovers the CPA foN.=1. WhenN =1, K=0, and G(z) for anyzin the upper-half-plane. Thugis completely

~ . . analytic in the upper-half-plane.
k=K. Then the DCA algorithm reduces to the self-consistent Preservation of the lattice symmetry: Since the DCA is

scatla_lr equa;[_lons(ln contrast to the DCA, which involves formulated in reciprocal space, it preserves the translational
matrix equations symmetry of the system. However, care must be taken when
selecting the coarse-graining cells to preserve the point-

IV. CHARACTERISTICS OF THE DCA

G= i ;_ (13) group symmetries of the lattice. For example, the calcula-
N k w+/.L—6k_2 7 =1
_ K Gg
G 1=1/G+3, (14) N\, o =
--------- -1 t————it
C
G=((g"1-V)Y), (15 m 2 601
which together correspond exactly to the prescription for J \‘\
CPA? and are easily solved, for example by iteration. ' K
As N.—» the DCA becomes exact, including correla- \ B o -1
tions over all length scales. For, the DCA Laue function .. <%k
requires complete momentum conservation in this limit, i.e., T
[K,G(K)]=[k,G(k)], henceG=1/(w+ u—¢€), which is
the bare lattice Green function so that Efj2) amounts to FIG. 5. lllustration of the essential steps of the proof that the
solving the problem by exact diagonalization. DCA is causalsee the tejt
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FIG. 7. The coarse-graining cells f&f.=8 and 10 each cen-
tered on a coarse-grained momeitarepresented as black filled
dots. ForN.=8 equivalent moment& are always mapped to
equivalent coarse-grained momektaHowever, this is not true for
N.= 10 where, for example, the two equivalent momenta shown by
open dots are mapped to inequivalent coarse-grained momenta.
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The implementation of the DCA clearly requires an efficient
FIG. 6. Different tile sizes and orientations. The tiling principal algorithm for disorder averaging on a cluster of si¥g.

t.ranslation vectorsy, and azl,.form two sides of each tiling.square (Needless to say, this particular aspect is common to all ap-
(l"UStrated for theNCZZO tlllng). For square tile geometrleagx proaches where disorder averaging is invoh{@en for a
=—ayy andag =ayy. system with binary diagonal disorder, where each site can
. . . ._acquire only one of two values for the potentiat ) the
tions 'presen'ted in .Sec. M are'done for a simple square Iattlc(?otal number of disorder configurations i8<2 which grows
B.Otrr]'t it af“i its reC|procalt_lattlcevf\}ave(%t syrr?metry W'tht xponentially withN; . For a generic quenched disorder, the
eight point-group operations. Yve must choose a se OErobability of the various disorder configurations are deter-
coarse-graining cells, which preserve this point-group symg ;o by the specifieB(V); whereas, for annealed disorder
metry. Thlsdmay bfh@ciongtb¥htlilng the regltlattﬁce W.'th the probability of a configuration depends upon an effective
sguares, and using e points that correspond 1o tn€ recip- g 17 yann factor determined by the electronic partition
roca_l space of the tiling centers. For _Iarge an Important ¢, tion for that particular disorder configuratidn.
configuration of the half-filled system is all of the sites that In this section, we propose an approach to carrying out
haveV;=—V occupied and/;=+V unoccupied. To retain o gisorder averaging by statistically sampling disorder con-
this configuration on the cluster, whéh>1 we will choose figurations using a Markov process. For systems with
N. even.

. . L guenched disorder, one could also sample random configu-
_ Square tilings with an even number of sites inclg  a4ions of the disorder potentials and calculate the corre-
=4.8,10,16,18,20,26,32,34,36 . . Thefirst few are illus-  g55nqing Green's function using matrix inversion. A signifi-
trated in Fig. 6. The relation between the principal lattice

) : cant advantage of the Markov technique is that it may be
vectors of the lattice centerg; and a,, and the reciprocal

. ) easily modified to treat either quenched or annealed
lattice takes the usual formg=27a;/|a;Xa,|, with Ko isorder®

=ng,+mg, for integern andm. For tilings with eithera,, In a Markov process, each disorder configuration depends
=ayy (corresponding tdN.=8,18,32. ..) or one ofay, Or  ypon the previous configurations. To evolve from one con-
ayy zero (corresponding tN.=1,4,16,36. . .), theprinci-  figuration to another, we will propose local changes in the

pal reciprocal lattice vectors of the coarse-grained systemgisorder potentials. These changes are accepted with some
either po_int along the same directions as the principal reCipprobability determined by either the effective Boltzmann
rocal lattice vectors of the real system or are rotated fronactor? for annealed disorder, or the probability distribution
them by /4. As a result equivalent momenkaare always  p(v,), for quenched disorder. If we accept such a change in
mapped to equivalent coarse-grained momefitaAn €x-  one of the disorder potentials, say on sitehen the new
ample for Nc=8 is shown in Fig. 7. However, foN:  Green’'s function matrixG,, ,, depends on the previous

=10,20,26,34. . ., theprincipal reciprocal lattice Vectors of Green's function matris, ,, through the matrix relationship
the coarse-grained system do not point along a hightyhere, once again, for notational convenience, the fre-
symmetry direction of the real lattice. Since all points within quency arguments are not displayed

a coarse-graining cell are mapped to its cetethis means
that these coarse graining choices violate the point-group G l-Gl=v-v’. (16)

symmetry of the real system. This is illustrated fg= 10 in . . . .
y y y R intSince we change on the potential on the biéed the matri-

, , - VIRV
in the real lattice, fall in inequivalent coarse graining cellscesV andV’ are diagonal, their differencé/=V—V" is a

and so are mapped to inequivaléatpoints. Thus the tilings ?_i;\gonal matrix with only thdth diagonal element finite.

corresponding toN;=10,20,26,34. .. violate the point- en

g\r/%lijgejymmetry of the real lattice system and should be G/ m=Gn,m+Gn,|5V|G|',m- 17)
An efficient numerical algorithm for disorder averaging: If we setl=n in Eq. (17), we get
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@ @ FIG. 9. The density-of-states fdt.=1 and forN.= 32 for four

FIG. 8. The self-energN.=1 and forN.=16 for different  values of disorder potenti.
values ofK for V=0.1 (left) and V=0.5 (right). The thin lines
show X (K,w) for K=(0,0), K=(0,7), K=(m/2,7/2), andK
=(/2,0), plotted vsw for N.=16. ForV=0.1 the self-energy at
the different values oK is essentially the same as tNe=1 result.
For V=0.5, they differ significantly, indicating that the momentum

atop of one another. They also are hence very close to the
self-energy folN.=1 (the CPA resultindicating that it is a
very good approximation for the self-energy wh&his
small. However, for large¥ = 0.5, the self-energy curves at

dependence of the self-energy increases With different values ofK for N,=16 differ considerably from
each other and from the CPA self-energy obtained With
G =1. Thus, asV increases, nonlocal corrections clearly be-
,m

(18) come important and are expressed in the momentum depen-

Gl
" 1-Gy, 0V dence of the self-energy.

If we substitute this result back into E¢L7), we get As shown in Fig. 9(top left) the single-particle density-
of-states is essentially independentNyf for V=0.1; how-
G =G . +G oV G (19 ever, forV=1.0, the density-of-states depends strongly upon
nmeEAm R G ey, T N¢. In particular the gap aroun@=0, which is sharp for

_ i _ N.=1, is partially filled in. The top and bottom of the band
an equation that requires rough¥if operations to evaluaté 5 acquire tails all, increases. WheN.>1, the density-
for each frequency. _ ) _ _ . .of-states acquires several additional structures, which corre-
_ Because the technique involves importance sampling, it i§pond to important local configurations of the disorder. The
likely to miss rare configurations of disorder, and any speciahqgjtional features and the band tails are absent in the CPA

physics that arises from such configurations, such as Lifshitz,q pelieved to be due to local order in the environment of
tails in the density-of-stateDOS). However, when these oach sité

configurations are well known, we can easily adapt this
method to include them. This may be done by excluding
them from the sampling, and then including the correspond-
ing configurations in the sample with the appropriate re- Despite its advantages over the CPA as discussed above,

B. (Absence of localization

weighting. one feature that the DCA shares with the CPA and similar
self-consistent cluster methods is its limited ability to take
V. RESULTS into account localization effectS™*" To show this, we mea-
sure the probability that an electron remains at kifier all
A. Single-particle properties time:15:16

To illustrate the algorithm discussed above, we present
calculations on a two-dimensional square lattice system with P(o0) =

. A .
. : ; im (|G(I,1,t)[?) = —f de(|G) ((e+in)|?).
t=0.25 and binary random disorder so thgt=*+V with tm;<| ( )[%)= lim 7)o «([Cri(e+inl%)

— —0
equal probability. No tricks are used to force the algorithm to ! (20)
remain causal such as renormalizing the spectrum or cutting
off any negative tails of the density-of-states. As shown in Refs. 15 and 1B(«) is expected to be

The self-energy is plotted in Fig. 8 fdd,=1 and for nonzero as long as there are a thermodynamically significant
N.=16 for different values oK for V=0.1 (left) andV  fraction of localized states in the spectrum of eigenstates of
=0.5(right). ForV=0.1 the self-energy fox.= 16 has very the disordered system. In one and two dimensions this is
litte momentum dependence, thus the different curves falexpected to happen for arbitrarily small but thermodynami-
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FIG. 10. The local hybridization rate wheh=0.4 for several FIG. 11. The probability that an electron on a sitemains after
values ofN.. The probability that the electron remains localized a timet, P(t)={|G(l,I,t)|?) for several values oN. when V
p(7—0), when e=0 (half-filling) is shown in the inset. Ay =0.4.

—0, p(7) extrapolates to zero indicating the lack of localization.

o _ _ . lationally invariant host into which electrons can escape.
cally significant disorder. Since the cluster is formed byThys, if the density-of-states is finite at some energy, then

coarse graining the real-lattice problem in reciprocal spacehe corresponding states cannot be localized unless the hy-

local quantities on the cluster and the real lattice correspongridization rate at that energy between the cluster and the
one-to-one. Thus, to test for localization, we need only applyyost vanishes.

formula (20) for each site on the cluster. Making this substi-

_ ) _ _ . As described in Ref. 10, the hybridization rate between
tution and introducing the local coarse-grairtédt not dis-  the cluster and its host is given by
order averaged  spectral function, A(l,w)=
—(1/m)Im G, |(w), Eq. (20) becomes 1
P(e)=lim p(7) G(K,v)
n—0
—2ig o A(l,0)A(l,0") The net hybridization rate to a site on the clusféne
= lim > f dodow'{ ——— ). K-integrated (K, )] is plotted in Fig. 10 wherv/=0.4 for
g0 Ne T o w—w'—2iy

several values o, . It remains finite over the entire region
(21)  Where the corresponding density-of-states, shown in Fig. 9,
is finite. This is consistent with the lack of localization dem-
p(#) is plotted versus; in the inset to Fig. 10 for the half- onstrated in the inset.
filled model whenV=0.4. Thep(#) extrapolates to zero, We note that the hybridization falls & increasegfor
indicating the lack of localization.

large N, T'(K,w)~O(1/N.)*°] especially at the band
This result can be understood from either a diagrammatiedges, although, given that it is defined entirely in terms of

perspective or by carefully assessing the cluster problem. Adisorder-averaged propagators, it is still unlikely to be sensi-
is well known!’ the crossing diagrams, especially those thative to localization effects. However, the number of diagram-
involve many crossings, describe the coherent backscatteringatic crossings in two-particle propertiésuch as the con-

of electrons which are responsible for localization. Hence thaluctivity) which are strongly affected by localization effects,

CPA, which includes only noncrossing diagrams, cannot dedoes increase with, even within the DCA. Thus, it is likely
scribe localization. Within the DCA, however, foi,>1

that disordered DCA can describe the precursor effects of
some crossing graphs are restoréd/ithin each diagram,

localization. Some evidence for this can be seen irfinge
eachX represents scattering from a distinct site. Since theréime) probability that an electron on a siteemains after a

are onlyN, sites on the cluster, the maximally crossed DCAtime t, P(t)=(|G(l,l1,t)|?). As shown in Fig. 11, foiN,
graphs can have at mobl, crossings. Since all states are =1, this probability falls quickly with time. The long-time
expected to be localized in the two-dimensional disorderedbehavior is shown in the inset. A¢; increases, the electron
system, apparently an infinite number of crossings aregemains localized for longer times. Hence one can hope that
needed to describe localization diagrammatically. From the careful finite-size scaling study of two-particle properties

perspective of the cluster, this result is not surprising sincavithin the disordered DCA can even capture some aspects of
each site on the cluster is coupled to a noninteracting tranghe localization transition.
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VI. CONCLUSION order, as for example corresponding to the Hamiltonian:

We have developed a modification of the dynamical clus- H=Hg+ Hgi, (A1)
ter approximation to treat disordered systems. This formal-
ism satisfies all of the characteristics of a successful cluster
approximation. It is causal, preserves the point-group and Ho=2> &CpoCr.o (A2)
translational symmetry of the original lattice, recovers the ko
CPA when the cluster size goes to one, and becomes exact as
N.—c<. Like the CPA the problem is disorder averaged and Hais= > Vini o, (A3)
has a simple diagrammatic formulation. It is easy to imple- i '

ment numerically and restores sharp features and band tailghereg, = €, — u, andV, is the random potential distributed

ronment of each site. Although the DCA does not capture th@ations arise because the disorder averaging has to be done
localization transition, it does describe the precursor effecty, thefree energy

of localization. It systematically restores the crossing graphs

known to be responsible for localization, and might be able F=—-kgTInz

to access the localization transition itself via an appropriate

finite-size scaling analysis of two-particle properties that re-and theGreen functions

mains to be developed. G (1)=—TIT.C, (7)Cl _exp(—BH)]/Z.

The DCA formalism we have discussed here can also be = ToheR e
extended to problems wittlisorder and interactionsimply ~ HereZ=Tr[exp(—BH)] is the partition function, andl, rep-
by incorporating interaction diagrams in the self-energy.resents the imaginary-time ordering operator.

This is also discussed in the Appendix. The DCA should be In the replica trick;? one writes

able to provide a good description of localization effects at
finite temperatures in such contexts. For, in such cases the
scattering processes are partially inelastic, so that the coher-
ent back scattering disappears after a characteristic inelastic-
scattering time?® In this time only a finite number of back- and assumeghat the order of taking the limiim,—0 and
scattering processes can occur so only a finite number dfisorder averaging can be interchanged. Then for any posi-
diagrammatic crossings are needed to describe the finitdive integerm;, the resulting disorder averaged quantities
temperature physics, and these are captured in the DCA. such agZ™), (Gy(7)), etc., can be represented in terms of
aninteracting problem involvingm, replicas of the original
electronic degrees of freedom, which we index with the sub-
scripta=1,...m,.
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orffy. It is a pleasure to acknowledge useful discussions withvariable functional integral® to represent the traces above,
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DMR-9704021, DMR-9357199, and PHY94-07194 and b e .

PRF Grant No. ACF-PRF 33611-AC6. This research Ways (z r>_j Dc*Dcexd—p¥],
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HereW is an effective free-energy functional that arises from
APPENDIX: DISORDER-DCA FROM THE REPLICA the disorder averaging, and can be written as
METHOD
N
S . B ~
_An alternate way of justifying the DCA in the context of gy — > J' A7l o (D0, E)Ck gl T)+ 2 W(RY)
disordered systems is to use the replicaother suchtrick Ko,a JO i
for disorder averaging’ This maps the disorder averaged (AB)

problem into what looks like an interacting problem, and the,, hare

DCA formalism developed by us earli&?,can simply be ’

transcribed for this case, to arrive at the appropriate self- - B

consistent cluster problem. For the effective cluster problem, ”iEE Nigo(T)AT

the replica trick can be “undone,” and we recover the algo- “wo 70

rithm presented earlier in this paper. The same procedurend

also works for problems involvingoth disorder and inter-

actions We detail this below. ~ ~ ~
As is well known, for problems involvingjuenchedlis- exr[—W(ni)]=<exp(—Vini)>=J dViP(Vi)exp(=Vim).
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In terms of the cumulantéV'), of the disorder distribution But, as is easy to see using the same procedure as outlined
P(V), one can write earlier in this appendix, such an effective free-energy func-
. tional is exactly what one would obtain if one were to disor-
W(ﬁ-)=z £<V|> (7! der averagdusing the replica tricka cluster problem with
Yol e N, sites, which are dual to the cluster momeHtaa bare

. . . retarded cluster propagato§ ~(K,7—7'), and a random
So, clearly,W introduces(local in space but nonlocal in ( d propagatog “(K,r—17)

- . . X . otentialV; distributed according t&(V;) at every sitd of
time) interactions between electrons belonging to arbltrar)P L
replicas. the cluster. Hence we have an alternate justification for the

~ disorder-DCA algorithm set down in Sec. Ill. The above
Ianltfsc()\r}?) ri-r?:%zmdysaeer?gr\rlw\/(tﬁ)e] Ilznerpng)i\gﬁirs t?;(;gg lj:;irr?gu'theroute also enables one to quickly extend our discussions in
¢ ) . . . Ref. 9 regarding the two-particle propagators, Ward identi-
standard techniques of diagrammatic perturbation theo g 9 b bropag

ry. : I

. . ties, etc., to the disorder-DCA context. Most significantly,
Then, order-by-order in perturbation theory, the dependenc%e DCA estimate of the lattice self-energy is minimized by
onm, is explicit and analytic, and the lij1 ., can be evalu-

ated precisely. The resulting terms are in exact, one-to-ont'€ CNOICEZ 4(K, w) =2[M(k),w]. , _
correspondence with the terms obtainable by writing out the Ve note that the arguments presented in the main text and

diagrams from a direct perturbation expansion in powers of? this appendix are also easily extended to problems involv-
V; and then disorder averaging as discussed in Sec. Il. TH@g interactions and disorderFor example, for the case of
m,— O limit eliminates the diagram@n the interacting prob- the Hubbard model with diagonal disorder, one would add to
lem) containing internal loops with free sums over the rep-the starting Hamiltonian the interaction tetdi={'n; ;n; | .
lica indices(as required, since such diagrams never appear ioing through exactly the same procedures as outlined
the direct disorder averaged perturbation theory formalism o&bove, it is not hard to see that the only change is that the
Sec. ). effective free-energy functionals for the lattice and the clus-
For the “replicated interacting problem” obtained above, ter pick up the additional term&)=,nn;; ,n; |, and
one can transcribe exactly the DCA formalism discussed "UEaEiNc”i,T,a”i,l,a- The resulting cluster problem now has
Refs. 8 and 9. If one assumes that the self-consistent hogbth interactions and disorder on the cluster Ny sites,
propagators do not break replica symmetry, then the effecyhich are dual to the cluster momerita a bare(retardedl
ftive Clusf[er pr(_)blem corres_ponds to a F_ermionic functional,ster propagataf ~ (K, 7— 7'), a random potentiaV; dis-
integral mvo!vmg an effective, self-consistent cluster free'tributed according td(V,), and the Hubbard interactidd
energy functional given by at every sité of the cluster. One can resort to any technique

8 8 of one’s choice to solve this problem for the disorder-
— s —
,B‘I’c—KEM . deo d7'Ck 4.0l 7) averaged cluster Green’s functi®(K,») and cluster self-
N energies>, (K, w), and go through with the rest of the DCA

X G YK, 7— T')CK,a,a(T’Hi W(Th)- (A7) iteration.
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