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Systematic and causal corrections to the coherent potential approximation
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The dynamical cluster approximation~DCA! is modified to include disorder. The DCA incorporates nonlo-
cal corrections to local approximations such as the coherent potential approximation~CPA! by mapping the
lattice problem with disorder, and in the thermodynamic limit, to a self-consistently embedded finite-sized
cluster problem. It satisfies all of the characteristics of a successful cluster approximation. It is causal, pre-
serves the point-group and translational symmetry of the original lattice, recovers the CPA when the cluster
size equals one, and becomes exact asNc→`. We use the DCA to study the Anderson model with binary
diagonal disorder. It restores sharp features and band tailing in the density-of-states, which reflect correlations
in the local environment of each site. While the DCA does not describe the localization transition, it does
describe precursor effects of localization.
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I. INTRODUCTION

The coherent potential approximation~CPA!1–3 is a
widely used method for treating disordered systems. Wit
the CPA, the problem is first averaged over all possible d
order configurations in an attempt to regain the translatio
invariance lost due to disorder. Then nonlocal correlations
the disorder potential are neglected leading to a s
consistent single-site approximation~like the Weiss mean-
field theory of magnetism!. It has been applied with grea
success to a variety of problems,1–3 including ab initio cal-
culations in disordered metallic alloys.4

Nevertheless, the CPA fails to provide a completely s
isfactory theory for disordered systems.3 As a single-site
mean-field theory, it cannot account for the disorder induc
short-ranged but nonlocal, correlations due to the local or
in the environment of each site responsible for band tail
and sharp structures in the density-of-states. There have
many attempts5,6,3 to formulate nonlocal corrections to th
CPA in which the lattice is mapped onto a self-consisten
embedded finite-sized cluster. However, as argued cle
and in detail by Gonis,3 these theories all fail in some sig
nificant way. A successful theory must be able to account
fluctuations in the local environment in a self-consistent w
become exact in the limit of large cluster sizes, and reco
the CPA when the cluster size equals one. It must be ea
implementable numerically and preserve the translatio
and point-group symmetries of the lattice. Finally, and m
significantly, it should be fully causal so that the sing
particle Green function and self-energy are analytic in
upper half-plane. No presently existing cluster extension
the CPA satisfiesall these requirements.3,7

Recently, a new method called the dynamical cluster
proximation~DCA!8–10was developed for ordered correlate
systems such as the Hubbard model to add nonlocal co
tions to the dynamical mean-field approximation. In this p
per, we modify the DCA to include disorder and show th
the resulting formalism satisfies all of the above stated
quirements for a successful cluster extension of the CPA

In the next section, we review the basic diagramma
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perturbation theory formalism for disordered systems.
Sec. III A we show that the CPA is equivalent to neglecti
momentum conservation at all internal vertices of the d
grams, and in Sec. III B we introduce the DCA for diso
dered systems that systematically restores the momen
conservation relinquished by the CPA. In Sec. IV we sh
that the DCA satisfies each of the desired characteristics
scribed above. In Sec. V we show results for the tw
dimensional Anderson model with binary diagonal disord
Finally in the Appendix we present an alternate way of vie
ing and justifying the disordered DCA algorithm develop
in this paper, using the replica~or other! methods of disorder
averaging.

II. BASIC FORMALISM

We consider an Anderson model with diagonal disord
described by the Hamiltonian

H5 (
^ i j &,s

t~Ci ,s
† Cj ,s1Cj ,s

† Ci ,s!1(
is

~Vi2m!ni ,s , ~1!

where Ci ,s
† creates a quasiparticle on sitei with spin

s, ni ,s5Ci ,s
† Ci ,s . The disorder occurs in the local orbita

energiesVi , which we assume are independent quench
random variables distributed according to some speci
probability distributionP(V). The DCA formalism that we
develop in this paper is a general method valid for a
P(V). However, for illustrative purposes, for the specific ca
culations presented in this paper, we takeVi56V with
equal probability 1/2~binary disorder!.

The effect of the disorder potential( isVini ,s can be de-
scribed using standard diagrammatic perturbation theory~al-
though we will eventually sum toall orders!. It may be re-
written in reciprocal space as

Hdis5
1

N (
i ,k,k8,s

ViCk,s
† Ck8,sei r i (k2k8). ~2!
©2001 The American Physical Society02-1
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M. JARRELL AND H. R. KRISHNAMURTHY PHYSICAL REVIEW B63 125102
The corresponding irreducible~skeletal! contributions to the
self-energy may be represented diagrammatically3 and are
displayed in Fig. 1.

Here eachs represents the scattering of an electro
Bloch state from a local disorder potential at some site r
resented byX. The dashed lines connect scattering eve
that involve the same local potential. In each graph, the s
over the sites are restricted so that the differentX ’s represent
scattering fromdifferent sites. No graphs representing
single scattering event are included since these may sim
be absorbed as a renormalization of the chemical potentiam.

Translational invariance and momentum conservation
restored by averaging over all possible values of the diso
potentialsVi . For example, consider the second diagram
Fig. 1, given by

1

N3 (
i ,k3 ,k4

^Vi
3&G~k3!G~k4!ei r i•(k12k31k32k41k42k2),

~3!

where G(k) is the disorder-averaged single-particle Gre
function for statek. The average over the distribution o
scattering potentialŝ Vi

3&5^V3& independent ofi. After
summation over the remaining labels, this becomes

^V3&G~r50!2dk1 ,k2
, ~4!

whereG(r50) is the local Green’s function. Thus the se
ond diagram’s contribution to the self-energy involves on
local correlations. Since the internal momentum labels
ways cancel in the exponential, the same is true for all n
crossing diagrams shown in the top half of Fig. 1.

Only the diagrams with crossing dashed lines are non
cal. Consider the fourth-order diagrams such as those sh
on the bottom left and upper right of Fig. 1. When we im
purity average, we generate potential terms^V4& when the
scattering occurs from the same local potential~i.e., the third
diagram! or ^V2&2 when the scattering occurs from differe
sites, as in the fourth diagram. When the latter diagram
evaluated, to avoid overcounting, we need to subtract a t
proportional to^V2&2 but corresponding to scattering from
the same site. This term is needed to account for the fact
the fourth diagram should really only be evaluated for si
iÞ j ! For example, the fourth diagram yields

FIG. 1. The first few graphs in the irreducible self-energy o
diagonally disordered system. Eachs represents the scattering of
statek from sites~markedX) with a local disorder potential dis
tributed according to some specified probability distributionP(V).
The numbers label thek states.
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N4 (
iÞ j k3k4k5

Vi
2Vj

2ei r i•(k11k42k52k3)ei r j •(k51k32k42k2)

3G~k5!G~k4!G~k3!L . ~5!

Evaluating the disorder average^&, we get the following two
terms:

1

N4 (
i j k3k4k5

^V2&2ei r i•(k11k42k52k3)ei r j •(k51k32k42k2)

3G~k5!G~k4!G~k3!

2
1

N4 (
ik3k4k5

^V2&2ei r i•(k12k2)G~k5!G~k4!G~k3!.

~6!

Momentum conservation is restored by the sum overi and j;
i.e., over all possible locations of the two scatterers. It
reflected by the Laue functions,D5Ndk1•••

, within the
sums

dk2 ,k1

N3 (
k3k4k5

^V2&2Ndk21k4 ,k51k3

3G~k5!G~k4!G~k3!

2
dk2 ,k1

N3 (
k3k4k5

^V2&2G~k5!G~k4!G~k3!. ~7!

Since the first term in Eq.~7! involves convolutions ofG(k)
it reflects nonlocal correlations.@Local contributions such as
the second term in Eq.~7! can, if one so chooses, be com
bined together with the contributions from the correspond
local diagrams such as the third diagram in Fig. 1 by repl
ing ^V4& in the latter by the cumulant^V4&2^V2&2 .# Given
the fact that differentX’s must correspond to different sites
it is easy to see that all crossing diagrams must involve n
local correlations.

III. CLUSTER APPROXIMATIONS

A. The coherent potential approximation

In the CPA, nonlocal correlations involving different sca
terers are ignored. Thus, in the calculation of the self-ene
we ignore all of the crossing diagrams shown on the bott
of Fig. 1; and retain only the class of diagrams such as th
shown on the top representing scattering from a single lo
disorder potential. These diagrams are shown in Fig. 2.

FIG. 2. The first few graphs of the CPA self-energy. Here t
Green function line represents the average local propagator.
2-2
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SYSTEMATIC AND CAUSAL CORRECTIONS TO THE . . . PHYSICAL REVIEW B 63 125102
Employing diagrammatic arguments, it is easy to see
the CPA is fully equivalent to the neglect of momentu
conservation at each internal vertex. This is accomplished
setting each Laue function within the sum@e.g., in Eq.~7!# to
1. We may then freely sum over the internal momenta, le
ing only local propagators. All nonlocal self-energy cont
butions~crossing diagrams! must then vanish. For example
consider again the fourth graph. If we replace the Laue fu
tion Ndk11k4 ,k51k3

→1 in Eq.~7!, then the two contributions
cancel and this diagram vanishes. Thus an alternate de
tion of the CPA,11 in terms of the Laue functionsD, is

D5DCPA51. ~8!

That is, the CPA is equivalent to the neglect of moment
conservation at all internal vertices of the disorder-avera
irreducible graphs.

B. The dynamical cluster approximation
The DCA systematically restores the momentum cons

vation at internal vertices, which was relinquished by t
CPA, and so incorporates nonlocal corrections. This is d
by dividing the Brillouin zone intoNc equal cells, as shown
in Fig. 3 and requiring that momentum be partially co
served for momentum transfers between the coarse grai
cells shown in Fig. 3, but ignored for momentum transf
within each cell. This may be accomplished by employi
the Laue functions

D5DDCA5NcdM (k1)1M (k2),M (k3)1M (k4) . . . , ~9!

whereM (k), illustrated in Fig. 3, maps the momentak to the
nearest cluster momentaK . DDCA becomes one whenNc
51 since then all momenta are mapped to the zone cente
M . Thus the CPA is recovered in this limit. Furthermore,
Nc becomes large, the exact result is recovered si
limNc→`M (k)5k for all momentak.

If we employ the DCA Laue function in each of the se
energy diagrams shown in Fig. 1 then we may freely s

FIG. 3. Nc54 cluster cells~shown by different fill patterns! that
partition the first Brillouin zone~dashed line!. Each cell is centered
on a cluster momentumK ~filled circles!. To construct the DCA
cluster, we map a generic momentum in the zone such ask to the

nearest cluster pointK5M (k) so thatk̃5k2K remains in the cell
aroundK .
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over the momenta within each coarse-graining cell shown
Fig. 3. As illustrated in Fig. 4 for a fourth-order graph, th
leads to the replacement of the lattice propagat
G(k1),G(k2), . . . by coarse-grained propagato
Ḡ(K ),Ḡ(K 8), . . . which are given by

Ḡ~K ![
Nc

N (
k̃

G~K1 k̃!, ~10!

where N is the number of points of the lattice,Nc is the
number of cells in the cluster, and thek̃ summation runs over
the momenta of the cell about the cluster momentumK ~cf.
Fig. 3!.

As Nc increases from one, systematic nonlocal correctio
to the CPA self-energy are introduced. To see this, recall
the self-energy is a functional of the Green function. Acco
ing to Nyquist’s sampling theorem,12 to reproduce correla-
tions of length&L/2 in the Green function and correspon
ing self-energy, we only need to sample the reciprocal sp
at intervals ofDk'2p/L. Knowledge of these Green func
tions on a finer scale in momentum is thenDk unnecessary,
and may be discarded to reduce the complexity of the pr
lem. Thus the cluster self-energy will be constructed fro
the coarse-grained averageof the single-particle Green’s
function within the cell centered on the cluster momenta. F
short distancesr &L/2, whereL is now the linear size of the
cluster, the Fourier transform of the Green’s functionḠ(r )
'G(r )1O@(rDk)2#, so that short-ranged correlations a
reflected in the irreducible quantities constructed fromḠ;
whereas, longer ranged correlationsr .L/2 are cut off by the
finite size of the cluster.9

We show in the Appendix that free-energy arguments p
sented previously9 apply to the disordered case as well.
particular, the DCA estimate of the lattice free energy

minimized by the choiceS(k,v)5S̄@M (k),v#.
Algorithm: With the substitutionD→DDCA , most of the

diagrams represented in Fig. 1 remain. However, the co
plexity of the problem is greatly reduced since the nontriv
sums involve only the cluster momentaK ~numberingNc
instead ofN). Furthermore, since these diagrams are
same as those from a finite-sized periodic cluster ofNc sites,
we can easily sum this series to all orders by numerica
solving the corresponding cluster problem. The resulting
gorithm is as follows~for notational convenience the fre
quency arguments are not displayed below!:

~1! Make a guess for the impurity-averaged cluster se

energyS̄(K ), usually zero.
~2! Calculate the coarse-grained cluster Green functio

Ḡ~K !5
Nc

N (
k̃

1

v1m2eK1 k̃2S̄~K !
. ~11!

~3! Calculate the cluster-excluded propagatorG(K )

51/@1/Ḡ(K )1S̄(K )#. The introduction ofG(K ) is neces-
sary to avoid overcounting diagrams on the cluster.

~4! Fourier transformG to the real-space matrix represe
tation of the cluster problem, @i.e., write Gn,m
2-3
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FIG. 4. Use of the DCA Laue functionDDCA

leads to the replacement of the lattice propagat
G(k1),G(k2), . . . by coarse grained propagato

Ḡ(K ),Ḡ(K 8), . . . .
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5(KG(K )expiK•(rn2rm)# hence the disorder potentia
may be represented as a diagonal matrixV ~with elementsVn
on the cluster sites labeled byn) and form a new estimate o
the disorder-averaged cluster Green function matrix

G5^~G 212V!21&, ~12!

where the averagê& indicates an average over disorder co
figurations on the cluster.13

~5! Transform back to the cluster reciprocal space a

form a new estimate of the self-energyS̄(K )51/G(K )
21/G(K ).

~6! Repeat, starting from~2!, until S̄(K ) converges to the
desired accuracy.

The algorithm recovers the CPA forNc51 and becomes
exact whenNc→`.

IV. CHARACTERISTICS OF THE DCA

In Ref. 3 Gonis discusses the CPA, and various meth
to incorporate nonlocal corrections. He lists the most imp
tant characteristics of a successful cluster theory. A succ
ful theory must be able to account for fluctuations in t
local environment in a self-consistent way, become exac
the limit of large cluster sizes, and recover the CPA when
cluster size becomes one. It must be straightforward
implement numerically and preserve the full point-gro
symmetry of the lattice. Finally, and most significantly,
should be fully causal so that the single-particle Green fu
tion and self-energy are analytic in the upper-half-plane
the next two sections, we demonstrate that the DCA satis
each of these requirements.

The limits Nc→1 andNc→`: As mentioned above, the
DCA recovers the CPA forNc51. WhenNc51, K50, and
k̃5k. Then the DCA algorithm reduces to the self-consist
scalar equations~in contrast to the DCA, which involves
matrix equations!:

Ḡ5
1

N (
k

1

v1m2ek2S̄
, ~13!

G 2151/Ḡ1S̄, ~14!

Ḡ5^~G 212V!21&, ~15!

which together correspond exactly to the prescription
CPA,3 and are easily solved, for example by iteration.

As Nc→` the DCA becomes exact, including correl
tions over all length scales. For, the DCA Laue functi
requires complete momentum conservation in this limit, i

@K ,Ḡ(K )#[@k,G(k)#, henceG51/(v1m2ek), which is
the bare lattice Green function so that Eq.~12! amounts to
solving the problem by exact diagonalization.
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Causality: It is easy to show that this algorithm is ful
causal.9

For our purposes, this is equivalent to requiring that
the retarded propagators and self-energies are Herglotz
analytic in the upper-half-plane. Since the diagrams wh
describe the DCA cluster problem are isomorphic to those
a real finite-size periodic cluster, the corresponding impu
averaged cluster self-energy shares the causal propertie
this system. Furthermore, the coarse graining step~2! cannot
violate causality, since the sum of analytic functions is a
lytic. The only ‘‘suspect’’ step is the cluster-exclusion ste
~3!, thus we must show that the imaginary part ofG is nega-
tive semidefinite. The essential steps of the argument
sketched in Fig. 5. The imaginary part ofG(K ,v)

5@Ḡ(K ,v)211S̄(K ,v)#21 is negative provided tha

Im@Ḡ(K ,v)21#>2Im S̄(K ,v). Ḡ(K ,v) can be written as
Ḡ(K ,v)5(Nc /N)( k̃(zK1 k̃)

21(v), where thezK1 k̃(v) are
complex numbers with a positive semidefinite imaginary p

2Im S̄(K ,v). For anyK andv, the set of pointszK1 k̃(v)
are on a segment of the dashedhorizontal line in the upper-
half-plane due to the fact that the imaginary part isindepen-

dentof k̃. The mappingz→1/z maps this line segment ont
a segment of the dashed circle shown in the lower-half-pla
Ḡ(K ,v) is obtained by summing the points on the circ
segment, yielding the empty dot that must liewithin the
dashed circle. The inverse necessary to takeḠ(K ,v) to
1/Ḡ(K ,v) maps this point onto the empty dot in the uppe
half-plane, which must lieabovethe dashed line. Thus, th
imaginary part ofḠ(K ,v)21 is greater than or equal to

2Im S̄(K ,v). This argument may easily be extended f
G(z) for any z in the upper-half-plane. ThusG is completely
analytic in the upper-half-plane.

Preservation of the lattice symmetry: Since the DCA
formulated in reciprocal space, it preserves the translatio
symmetry of the system. However, care must be taken w
selecting the coarse-graining cells to preserve the po
group symmetries of the lattice. For example, the calcu

FIG. 5. Illustration of the essential steps of the proof that
DCA is causal~see the text!.
2-4
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SYSTEMATIC AND CAUSAL CORRECTIONS TO THE . . . PHYSICAL REVIEW B 63 125102
tions presented in Sec. V are done for a simple square lat
Both it and its reciprocal lattice have aC4v symmetry with
eight point-group operations. We must choose a set
coarse-graining cells, which preserve this point-group sy
metry. This may be done by tiling the real lattice wi
squares, and using theK points that correspond to the recip
rocal space of the tiling centers. For largeV, an important
configuration of the half-filled system is all of the sites th
haveVi52V occupied andVi51V unoccupied. To retain
this configuration on the cluster, whenNc.1 we will choose
Nc even.

Square tilings with an even number of sites includeNc
54,8,10,16,18,20,26,32,34,36, . . . . The first few are illus-
trated in Fig. 6. The relation between the principal latt
vectors of the lattice centers,a1 and a2, and the reciproca
lattice takes the usual formgi52pai /ua13a2u, with Knm
5ng11mg2 for integern andm. For tilings with eithera1x
5a1y ~corresponding toNc58,18,32, . . . ) or one ofa1x or
a1y zero ~corresponding toNc51,4,16,36, . . . ), theprinci-
pal reciprocal lattice vectors of the coarse-grained sys
either point along the same directions as the principal re
rocal lattice vectors of the real system or are rotated fr
them byp/4. As a result equivalent momentak are always
mapped to equivalent coarse-grained momentaK . An ex-
ample for Nc58 is shown in Fig. 7. However, forNc
510,20,26,34, . . . , theprincipal reciprocal lattice vectors o
the coarse-grained system do not point along a hi
symmetry direction of the real lattice. Since all points with
a coarse-graining cell are mapped to its centerK , this means
that these coarse graining choices violate the point-gr
symmetry of the real system. This is illustrated forNc510 in
Fig. 7, where the two open dots, resting at equivalent po
in the real lattice, fall in inequivalent coarse graining ce
and so are mapped to inequivalentK points. Thus the tilings
corresponding toNc510,20,26,34, . . . violate the point-
group symmetry of the real lattice system and should
avoided.

An efficient numerical algorithm for disorder averagin

FIG. 6. Different tile sizes and orientations. The tiling princip
translation vectors,a1 anda2, form two sides of each tiling squar
~illustrated for theNc520 tiling!. For square tile geometries,a2x

52a1y anda2y5a1x .
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The implementation of the DCA clearly requires an efficie
algorithm for disorder averaging on a cluster of sizeNc .
~Needless to say, this particular aspect is common to all
proaches where disorder averaging is involved.! Even for a
system with binary diagonal disorder, where each site
acquire only one of two values for the potential (6V) the
total number of disorder configurations is 2Nc, which grows
exponentially withNc . For a generic quenched disorder, t
probability of the various disorder configurations are det
mined by the specifiedP(V); whereas, for annealed disorde
the probability of a configuration depends upon an effect
Boltzmann factor determined by the electronic partiti
function for that particular disorder configuration.9

In this section, we propose an approach to carrying
the disorder averaging by statistically sampling disorder c
figurations using a Markov process. For systems w
quenched disorder, one could also sample random confi
rations of the disorder potentials and calculate the co
sponding Green’s function using matrix inversion. A signi
cant advantage of the Markov technique is that it may
easily modified to treat either quenched or annea
disorder.9

In a Markov process, each disorder configuration depe
upon the previous configurations. To evolve from one co
figuration to another, we will propose local changes in t
disorder potentials. These changes are accepted with s
probability determined by either the effective Boltzma
factor,9 for annealed disorder, or the probability distributio
P(Vi), for quenched disorder. If we accept such a change
one of the disorder potentials, say on sitel, then the new
Green’s function matrixGn,m8 depends on the previou
Green’s function matrixGn,m through the matrix relationship
~where, once again, for notational convenience, the f
quency arguments are not displayed!

G8212G215V2V8. ~16!

Since we change on the potential on the sitel and the matri-
cesV andV8 are diagonal, their differencedV5V2V8 is a
diagonal matrix with only thel th diagonal element finite
Then

Gn,m8 5Gn,m1Gn,ldVlGl ,m8 . ~17!

If we set l 5n in Eq. ~17!, we get

FIG. 7. The coarse-graining cells forNc58 and 10 each cen
tered on a coarse-grained momentaK represented as black filled
dots. For Nc58 equivalent momentak are always mapped to
equivalent coarse-grained momentaK . However, this is not true for
Nc510 where, for example, the two equivalent momenta shown
open dots are mapped to inequivalent coarse-grained moment
2-5
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Gl ,m8 5
Gl ,m

12Gl ,ldVl
. ~18!

If we substitute this result back into Eq.~17!, we get

Gn,m8 5Gn,m1Gn,l

dVl

12Gl ,ldVl
Gl ,m ~19!

an equation that requires roughlyNc
2 operations to evaluate14

for each frequency.
Because the technique involves importance sampling,

likely to miss rare configurations of disorder, and any spe
physics that arises from such configurations, such as Lifs
tails in the density-of-states~DOS!. However, when these
configurations are well known, we can easily adapt t
method to include them. This may be done by exclud
them from the sampling, and then including the correspo
ing configurations in the sample with the appropriate
weighting.

V. RESULTS

A. Single-particle properties

To illustrate the algorithm discussed above, we pres
calculations on a two-dimensional square lattice system w
t50.25 and binary random disorder so thatVi56V with
equal probability. No tricks are used to force the algorithm
remain causal such as renormalizing the spectrum or cu
off any negative tails of the density-of-states.

The self-energy is plotted in Fig. 8 forNc51 and for
Nc516 for different values ofK for V50.1 ~left! and V
50.5 ~right!. ForV50.1 the self-energy forNc516 has very
little momentum dependence, thus the different curves

FIG. 8. The self-energyNc51 and for Nc516 for different
values ofK for V50.1 ~left! and V50.5 ~right!. The thin lines

show S̄(K ,v) for K5(0,0), K5(0,p), K5(p/2,p/2), and K
5(p/2,0), plotted vsv for Nc516. ForV50.1 the self-energy a
the different values ofK is essentially the same as theNc51 result.
For V50.5, they differ significantly, indicating that the momentu
dependence of the self-energy increases withV.
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atop of one another. They also are hence very close to
self-energy forNc51 ~the CPA result! indicating that it is a
very good approximation for the self-energy whenV is
small. However, for largerV50.5, the self-energy curves a
different values ofK for Nc516 differ considerably from
each other and from the CPA self-energy obtained withNc
51. Thus, asV increases, nonlocal corrections clearly b
come important and are expressed in the momentum de
dence of the self-energy.

As shown in Fig. 9~top left! the single-particle density
of-states is essentially independent ofNc for V50.1; how-
ever, forV51.0, the density-of-states depends strongly up
Nc . In particular the gap aroundv50, which is sharp for
Nc51, is partially filled in. The top and bottom of the ban
also acquire tails asNc increases. WhenNc.1, the density-
of-states acquires several additional structures, which co
spond to important local configurations of the disorder. T
additional features and the band tails are absent in the C
and believed to be due to local order in the environment
each site.3

B. „Absence of… localization

Despite its advantages over the CPA as discussed ab
one feature that the DCA shares with the CPA and sim
self-consistent cluster methods is its limited ability to ta
into account localization effects.15–17To show this, we mea-
sure the probability that an electron remains at sitel for all
time:15,16

P~`!5 lim
t→`

^uG~ l ,l ,t !u2&5 lim
h→0

h

pE2`

`

de^uGl ,l~e1 ih!u2&.

~20!

As shown in Refs. 15 and 16P(`) is expected to be
nonzero as long as there are a thermodynamically signific
fraction of localized states in the spectrum of eigenstate
the disordered system. In one and two dimensions thi
expected to happen for arbitrarily small but thermodynam

FIG. 9. The density-of-states forNc51 and forNc532 for four
values of disorder potentialV.
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cally significant disorder. Since the cluster is formed
coarse graining the real-lattice problem in reciprocal spa
local quantities on the cluster and the real lattice corresp
one-to-one. Thus, to test for localization, we need only ap
formula ~20! for each site on the cluster. Making this subs
tution and introducing the local coarse-grained~but not dis-
order averaged! spectral function, Ā( l ,v)5

2(1/p)Im Ḡl ,l(v), Eq. ~20! becomes

P~`!5 lim
h→0

p~h!

5 lim
h→0

22ih

Nc
(

l
E

2`

`

dv dv8K Ā~ l ,v!Ā~ l ,v8!

v2v822ih
L .

~21!

p(h) is plotted versush in the inset to Fig. 10 for the half
filled model whenV50.4. Thep(h) extrapolates to zero
indicating the lack of localization.

This result can be understood from either a diagramm
perspective or by carefully assessing the cluster problem
is well known,17 the crossing diagrams, especially those t
involve many crossings, describe the coherent backscatte
of electrons which are responsible for localization. Hence
CPA, which includes only noncrossing diagrams, cannot
scribe localization. Within the DCA, however, forNc.1
some crossing graphs are restored. Within each diagram,
eachX represents scattering from a distinct site. Since th
are onlyNc sites on the cluster, the maximally crossed DC
graphs can have at mostNc crossings. Since all states a
expected to be localized in the two-dimensional disorde
system, apparently an infinite number of crossings
needed to describe localization diagrammatically. From
perspective of the cluster, this result is not surprising si
each site on the cluster is coupled to a noninteracting tra

FIG. 10. The local hybridization rate whenV50.4 for several
values ofNc . The probability that the electron remains localiz
p(h→0), when e50 ~half-filling! is shown in the inset. Ash
→0, p(h) extrapolates to zero indicating the lack of localizatio
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lationally invariant host into which electrons can esca
Thus, if the density-of-states is finite at some energy, th
the corresponding states cannot be localized unless the
bridization rate at that energy between the cluster and
host vanishes.

As described in Ref. 10, the hybridization rate betwe
the cluster and its host is given by

G~K ,v!5ImS 1

Ḡ~K ,v!
1S̄~K ,v!D . ~22!

The net hybridization rate to a site on the cluster@the
K -integratedG(K ,v)] is plotted in Fig. 10 whenV50.4 for
several values ofNc . It remains finite over the entire regio
where the corresponding density-of-states, shown in Fig
is finite. This is consistent with the lack of localization dem
onstrated in the inset.

We note that the hybridization falls asNc increases@for
large Nc , G(K ,v);O(1/Nc)

10# especially at the band
edges, although, given that it is defined entirely in terms
disorder-averaged propagators, it is still unlikely to be sen
tive to localization effects. However, the number of diagra
matic crossings in two-particle properties~such as the con-
ductivity! which are strongly affected by localization effect
does increase withNc even within the DCA. Thus, it is likely
that disordered DCA can describe the precursor effects
localization. Some evidence for this can be seen in the~finite
time! probability that an electron on a sitel remains after a
time t, P(t)5^uG( l ,l ,t)u2&. As shown in Fig. 11, forNc
51, this probability falls quickly with time. The long-time
behavior is shown in the inset. AsNc increases, the electro
remains localized for longer times. Hence one can hope
a careful finite-size scaling study of two-particle propert
within the disordered DCA can even capture some aspec
the localization transition.

FIG. 11. The probability that an electron on a sitel remains after
a time t, P(t)5^uG( l ,l ,t)u2& for several values ofNc when V
50.4.
2-7
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VI. CONCLUSION

We have developed a modification of the dynamical cl
ter approximation to treat disordered systems. This form
ism satisfies all of the characteristics of a successful clu
approximation. It is causal, preserves the point-group
translational symmetry of the original lattice, recovers t
CPA when the cluster size goes to one, and becomes exa
Nc→`. Like the CPA the problem is disorder averaged a
has a simple diagrammatic formulation. It is easy to imp
ment numerically and restores sharp features and band
ing in the DOS which reflect correlations in the local en
ronment of each site. Although the DCA does not capture
localization transition, it does describe the precursor effe
of localization. It systematically restores the crossing gra
known to be responsible for localization, and might be a
to access the localization transition itself via an appropr
finite-size scaling analysis of two-particle properties that
mains to be developed.

The DCA formalism we have discussed here can also
extended to problems withdisorder and interactionssimply
by incorporating interaction diagrams in the self-ener
This is also discussed in the Appendix. The DCA should
able to provide a good description of localization effects
finite temperatures in such contexts. For, in such cases
scattering processes are partially inelastic, so that the co
ent back scattering disappears after a characteristic inela
scattering time.18 In this time only a finite number of back
scattering processes can occur so only a finite numbe
diagrammatic crossings are needed to describe the fi
temperature physics, and these are captured in the DCA
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APPENDIX: DISORDER-DCA FROM THE REPLICA
METHOD

An alternate way of justifying the DCA in the context o
disordered systems is to use the replica~or other such! trick
for disorder averaging.19 This maps the disorder average
problem into what looks like an interacting problem, and t
DCA formalism developed by us earlier,8,9 can simply be
transcribed for this case, to arrive at the appropriate s
consistent cluster problem. For the effective cluster probl
the replica trick can be ‘‘undone,’’ and we recover the alg
rithm presented earlier in this paper. The same proced
also works for problems involvingboth disorder and inter-
actions. We detail this below.

As is well known, for problems involvingquencheddis-
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order, as for example corresponding to the Hamiltonian:

H5H01Hdis, ~A1!

H05(
k,s

jkCk,s
† Ck,s , ~A2!

Hdis5(
is

Vini ,s , ~A3!

wherejk5ek2m, andVi is the random potential distribute
according to a given probability distributionP(V), compli-
cations arise because the disorder averaging has to be
on thefree energy

F52kBT ln Z

and theGreen functions

Gi , j~t!52Tr@TtCi ,s~t!Cj ,s
† exp~2bH !#/Z.

HereZ5Tr@exp(2bH)# is the partition function, andTt rep-
resents the imaginary-time ordering operator.

In the replica trick,19 one writes

ln Z5 lim
mr→0

Zmr21

mr
and 1/Z5 lim

mr→0
Zmr21

and assumesthat the order of taking the limitmr→0 and
disorder averaging can be interchanged. Then for any p
tive integermr , the resulting disorder averaged quantiti
such aŝ Zmr&, ^Gk(t)&, etc., can be represented in terms
an interactingproblem involvingmr replicas of the original
electronic degrees of freedom, which we index with the s
script a51, . . . ,mr .

For example, using the standard Fermionic~Grassmann
variable! functional integrals20 to represent the traces abov
we can write

^Zmr&5E D c* D c exp@2bC#, ~A4!

^Gk~t!&52E D c* D c ck,s,1~t!ck,s,1* ~0!exp@2bC#.

~A5!

HereC is an effective free-energy functional that arises fro
the disorder averaging, and can be written as

bC5 (
k,s,a

E
0

b

dt ck,s,a* ~t!~]t1jk!ck,s,a~t!1(
i

N

W~ ñi !

~A6!

where,

ñi[(
a,s

E
0

b

ni ,s,a~t!dt

and

exp@2W~ ñi !#5^exp~2Viñi !&5E dVi P~Vi !exp~2Viñi !.
2-8
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In terms of the cumulantŝVl&c of the disorder distribution
P(V), one can write

W~ ñi !5(
l 52

`
1

l !
^Vl&c~ ñi !

l .

So, clearly,W introduces~local in space but nonlocal in
time! interactions between electrons belonging to arbitr
replicas.

If one re-expands exp@2W(ñi)# in powers of the cumu-
lants ^Vl&c one can perform the Fermionic traces using
standard techniques of diagrammatic perturbation the
Then, order-by-order in perturbation theory, the depende
on mr is explicit and analytic, and the limmr→0 can be evalu-
ated precisely. The resulting terms are in exact, one-to-
correspondence with the terms obtainable by writing out
diagrams from a direct perturbation expansion in powers
Vi and then disorder averaging as discussed in Sec. II.
mr→0 limit eliminates the diagrams~in the interacting prob-
lem! containing internal loops with free sums over the re
lica indices~as required, since such diagrams never appea
the direct disorder averaged perturbation theory formalism
Sec. II!.

For the ‘‘replicated interacting problem’’ obtained abov
one can transcribe exactly the DCA formalism discussed
Refs. 8 and 9. If one assumes that the self-consistent
propagators do not break replica symmetry, then the ef
tive cluster problem corresponds to a Fermionic functio
integral involving an effective, self-consistent cluster fre
energy functional given by

bCc5 (
K ,s,a

E
0

b

dtE
0

b

dt8cK ,s,a* ~t!

3G 21~K ,t2t8!cK ,s,a~t8!1(
i

Nc

W~ ñi !. ~A7!
a
v.

th

D

d
dy
.

dy
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But, as is easy to see using the same procedure as out
earlier in this appendix, such an effective free-energy fu
tional is exactly what one would obtain if one were to diso
der average~using the replica trick! a cluster problem with
Nc sites, which are dual to the cluster momentaK , a bare
~retarded! cluster propagatorG 21(K ,t2t8), and a random
potentialVi distributed according toP(Vi) at every sitei of
the cluster. Hence we have an alternate justification for
disorder-DCA algorithm set down in Sec. III. The abo
route also enables one to quickly extend our discussion
Ref. 9 regarding the two-particle propagators, Ward ide
ties, etc., to the disorder-DCA context. Most significant
the DCA estimate of the lattice self-energy is minimized

the choiceSa(k,v)5S̄@M (k),v#.
We note that the arguments presented in the main text

in this appendix are also easily extended to problems invo
ing interactions and disorder. For example, for the case o
the Hubbard model with diagonal disorder, one would add
the starting Hamiltonian the interaction termU( i

Nni ,↑ni ,↓ .
Going through exactly the same procedures as outli
above, it is not hard to see that the only change is that
effective free-energy functionals for the lattice and the cl
ter pick up the additional termsU(a( i Nni ,↑,ani ,↓,a and
U(a( i Ncni ,↑,ani ,↓,a . The resulting cluster problem now ha
both interactions and disorder on the cluster ofNc sites,
which are dual to the cluster momentaK : a bare~retarded!
cluster propagatorG 21(K ,t2t8), a random potentialVi dis-
tributed according toP(Vi), and the Hubbard interactionU
at every sitei of the cluster. One can resort to any techniq
of one’s choice to solve this problem for the disorde

averaged cluster Green’s functionḠ(K ,v) and cluster self-

energiesS̄(K ,v), and go through with the rest of the DCA
iteration.
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