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Selective quantum evolution of a qubit state due to continuous measurement
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We consider a two-level quantum systéqubit) that is continuously measured by a detector. The informa-
tion provided by the detector is taken into account to describe the evolution during a particular realization of
the measurement process. We discuss the Bayesian formalism for such “selective” evolution of an individual
qubit and apply it to several solid-state setups. In particular, we show how to suppress qubit decoherence using
continuous measurement and a feedback loop.
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[. INTRODUCTION of quantum mechanics. Because of the dominance of this
approachat least in the solid-state communjitye will call

Studies of two-level quantum systems have acquired reit “conventional.” .
cently a new meaning related to the use of this simple quan- 1he other general approach to continuous quantum mea-
tum object as an elementary ceffjubi) of a quantum sure_men(see, e.g., Refs. l?—B_éxpllcnly or |mpI|c_|tIy uses
computert This paper addresses the measurement of a qubj€ |dear?f thehsta';]e collagﬁeohce the close (rjelat#)n of t?'s
L - - to the theory of “operations” and “effects” for
state, so it necessarily touches the long-standing an pproach to . X
<l somewhat contrgversial oroblem gof quagtum e description of imprecise measurements—see, e.g., Refs.

Ze4which is k der th f i 38-40. Since quantum measurement is a fundamentally in-
measuremert, “which IS known under the name of quantum yeterministic process so that the exact measurement result is

state “collapse.” _ o _ typically unpredictable, the approach describes the random
Having in mind a solid-state realization of quifior dif-  gyo|ytion of the quantum state of the measured system. The
fere.nt.proposals see, e.g.,_Refs. Died us emphasize that a important advantage in comparison with the conventional ap-
realistic detector has a noisy output signal, so the measurgyoach is the absence of averaging over the total ensemble;
ment of a qubit state should necessarily have finite duratiohence, it is possible to describe the evolution ofratividual
in order to provide an acceptable signal-to-noise ratio. In thigjuantum system during a particular realization of the mea-
situation the “orthodox” collapse postuldfe® cannot be  surement process. The evolution of the measured system ob-
applied directly, since the measurement is not instantaneousiously correlates with a particular measurement outcome; in
The necessity of a more general formalism is obvious, foiother words, it is selected bigonditioned o the measure-
example, in the case when the qubit “self-evolution” ment result. So, this approach is usually called the approach
changes the quantum state considerably during a measuref selectiveor conditional quantum evolution. There is a
ment process. Even if there is no self-evolution, one carather broad variety of formalisms and their interpretations
wonder what happens with the qubit state after a partiallyvithin the approach!*" Depending on the details of the
Comp|eted measurememvhen the Signa|_to_noise ratio is studied measurement setup and applled formalism, dlfferent
still on the order of unity. So, we need a formalism to de- @uthors discuss quantum trajectories, quantum state diffu-
scribe the gradual qubit evolution, caused by the measuréion, stochastic evolution of the wave function, quantum
ment process. As will be discussed later, the Sdimger jumps, stochastic SC“.“mger equation, comple>_< Hamil-
equation alone is not sufficient for the complete descriptiorfonian, method of restricted-path integral, Bayesian formal-

of this evolution, and should be complemented by a slightl)}esm' ?:g((:a'f(folr;?rmgﬂlsﬁggfmiesne;i\{ﬁ/? ddgﬁiﬁr?\t f\i?ljtisc?r?,
generalized collapse principle. 9 Lo pp d

Continuous quantum measurement was a subiect of exteisﬁ relatively well developed in quantum optics; in contrast, it
4 | Was introduced into the context of solid-state mesoscopics

sive theoretical analysis during last two decades, and ther@nly recently*

are two main approaches to this problem. One approach is |, the present paper we continue the development of the
based on the theory of interaction with a dissipative|3(,jlyesian formalisi36:374L4%or selective quantum evolu-
environment>'* Taking the trace over the numerous de-tion of a qubit due to continuous measurement. Several is-
grees of freedom of the detector, it is possible to obtain a&yes of the formalism derivation and interpretation are ex-
gradual evolution of the measured system density matrilained in more detail than in previous papers. A new way of
from the pure initial state to the incoherent statistical mix-derivation is presented for a special case of low-transparency
ture, thus describing the measurement prote&sSince the  quantum point contacttunnel junction as a detector. We
procedure implies an averaging over #resemblethe final  also discuss equatioribriefly mentioned in Ref. 36for the
equations of this formalism are deterministic and can be deevolution of a qubit measured by single-electron transistor,
rived from the Schrdinger equation alone, without any no- which go beyond the approximation used for a nonideal de-
tion of state collapse. The success of the theory in describintgctor in Ref. 34. Special attention is paid to a regime outside
many solid-state experiments has supported an opinion conthe “weakly responding” limit. Finally, we discuss the op-
mon nowadays that the collapse principle is a needless pagration of a quantum feedback loop that can suppress the
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qubit l,=2m(T+AT/2)%p,p,e?VI% (V is the voltage across the
tunnel junction andp,, are the densities of states in the
electrodes while if the measured electron is in dot 2, the
average current is,=2m(T—AT/2)?p,p, V.
The difference between the currents,

Al=1,— 15, (4)

detector determines the detector response to the electron positmn
) ) ... tice the different sign in the definition dfl used in Ref. 34
FIG. 1. Tunnel junction as a det_ector pf the electron position iNBacause of the finite noise of the detector curry, the

:2it(()jlf)(l;EIt[e)_u(;?":%;lr(]eittsa?}’?:tz\:glit?oar:nC)efrtgzl%r:r.ls-li—tr;len:;trt;e?t;dgf_ two states of the system cannot be distinguished instanta-

the measured two-level systefmubib. % neOL_Jst and the signal-to-noise ratio gra_dually improves with
the increase of the measurement duration. Let us define the

typical measurement time,, necessary to distinguish be-

tween the two states as the time for which the signal-to-noise

qubit decoherence caused by interaction with the environ

ment. ratio is close to unity#
Il. EXAMPLES OF MEASUREMENT SETUP _( S, + \/g)z -
The total HamiltonianH of a qubit continuously mea- 7m 2(A1)?
sured by a detector, N
whereS; andS, are the low-frequency spectral densities of
H=Hopg+ Hper+ HinT, (1)  the detector noise for stat¢s) and|2). (As will be seen

. - . later, 7, also determines the time scale for selective evolu-

consists of terms de_scrlbln_g the_: qubit, the detector, and theron of the qubit state due to measuremgrior a low-

interaction. The qubit Hamiltonian transparency tunnel junctid® ,=2el; ,coth(BeV/2), where

e B is the inverse temperature. At sufficiently small tempera-
HQB=§(cIcl—c£c2)+H(cIc2+ chcy) (2)  tures, B l<eV (we assume zero temperature unless spe-

cially mentioned, the detector shot noise is given by the

is characterized by the energy asymmetrpetween two Schottky formula,

levels and the mixingtunneling strengthH (we assume real

H without loss of generality The Hamiltonian(2) is written S127 2€ly5. 6)

in the basis defined by the coupling with the detector. WeTo avoid an explicit account of the detector quantum noise,

will refer to mutually orthogonal statgd) and|2) as “lo-  we will consider only processes at frequencieseV/4 (in

calized” states in order to distinguish them from the “diag- particular, we assume, *<eV/#).

onal” basis consisting of the ground and excited states, The major part of the paper will be devoted to the detector

. . . _ / . ) )
which differ in energy by Q= (4H?+¢?)*2 in the “weakly responding” regime when two states of the
detector differ only a little(one can also call this regime
A. Double-dot measured by tunnel junction “linear,” while the term “weak coupling” is reserved for a

Our study will be applicable to several different types of different meaning in particular,
qubits and detectors. As the main example we consider a IAl]< lo=(1,+1,)/2 %)
double quantum dot occupied by a single electron, the posi- E
tion of which is measured by a low-transparency tunnel junc- _ _ _
tion nearby(see Fig. 1 Following the model of Ref. 43, let [517%1<S, S=(S1+5)/2, ®
us assume that the tunnel barrier height depends on the Ise the typical measurement time is
cation of the electron in either dot 1 or 2; then the current
through the tunnel junctiofwhich is the detector outputs Tm=2S5 /(A1) 9
sensitive to the electron location. In this case the detector a

) . ; . . nIgrwklr ndin tector the tim [ f in-
interaction Hamiltonians can be written as or a weakly responding detector the e saally o

dividual electron passages through the detector is much
shorter thanr,,, so the current can be considered continuous

Hper=2>, Eiaja+>, Eala,+, T(ala+ala,), on the measurement time scale.
| r Ir
AT B. Double-dot and quantum point contact
_ T t t t _ .
H|NT—|§; 7(0101_0202)(& ataja), ) Besides the low-transparency tunnel junction as a detec-

tor, we can also consider a quantum point contact with arbi-
where bothT and AT are real and their dependence on thetrary transparency that depends on the electron position in
states in electroded ,f) is neglected. If the electron occu- the double dot. This setup in the context of continuous quan-
pies dot 1, then the average current through the detector tsm measurement has been extensively studied both
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wherei=1,2 corresponds to the charge state of the qubit.
|$| H@ *2¢ pij(t) Well outside the Coulomb blockade range the difference be-
tween the rates i’ ,—T'| ;= —AE/e’R_ and I'g,—T'r;
=AE/e’Rg, whereRL(R)>h/e2 are the resistances of tun-
I(t) nel junctions.
The measurement time to distinguish between stdtps
and|2) for this setup is given by Ed5), in which the spec-
FIG. 2. Single-electron transistofdetectof measuring the tral density of the single-electron transistor current can be
charge state of the single-Cooper-pair qubit). calculated using equations of Refs. 58 and(®@ Schottky
formula used for this purpose in Ref. 54 is valid only in a
experimentall§®*¢ and theoretically’~>?In spite of a some- limiting case. In the special case corresponding to EtR)
what different mathematical descriptigwe will not write  the shot noise is given by the formefla
the Hamiltonian explicitly this case is very close to the case
above, which we prefer because of its simplicity. The obvi- Sizzeli(rf,i+F2R,i)/(FL,i+FR,i)2- (13
ous feature is the different formula for the shot nofse,

S =2el, (1-T; ), (10 D. Two SQUID’s

wherel, ,=7T; £3V/x#. Notice that for the quantum point One more solid-state realization of continuous quantum
contact as a detector we make the conditignfor weakly ~ measurement of a.qublt can be dpne using two flux states of
responding regime a little stronge\l|<(1—7;,)l1,, SO 2 SQUID as a qubit and another inductively coupled SQUID

that both transmitted and reflected currents can be consideré§ @ detectdi The corresponding Hamiltonian and calcula-

minor difference in the formalism is related to the fact that
the typical output signal from a SQUID is voltage instead of

C. Cooper-pair box and single-electron transistor -
current in the examples above.

Another interesting measurement set(fig. 2) intro-
duced in Ref. 54 in the context of a solid-state quantum
computer, is a single-Cooper-pair box measured by a single-

electron transistofa somewhat similar setup has been re-  The goal of the present paper is the analysis of a selective
cently used for the experimental demonstratfaf quantum  eyolution of the qubit state due to continuous measurement,
oscillations in the time domajnThe qubit in this case is (aking into account the detector outp(t). However, before
represented by two charge states of a small-capacitance J@it “let us review the results of the conventional

sephson junction. The Josephson coupling provides the M3pproach?47-5254to this problem that does not take into
trix elementH in Eq. (2) that is assumed to be much smaller gccount the detector output.

than the single-electron charging energy, so that only two \ye describe the quantum state of a qubit by the density
charge statesadjusted by the gate voltage to be close inpyayrix pij in the basis of localized statés) and|2), so that
energy are important. The cap_acmvely couple_d single- pii (p1+ pap=1) is the probability to find the system in the
electron transistofassumed to be in the normal sfai@sen-  giate)j) if an instantaneous measurement in this basis is per-
sitive to the charge state of the Cooper-pair box and serves 3Srmed whilepy, (pa1=p*,) characterizes the coherence: in
the detector; the currerit(t) through the transistor is the particulyar,|p12|2=p11p22 éorresponds to a pure state. In :[he

measurement output, conventional approach the evolution ofpj; is calculated

One can find the detailed discussion of the Hamiltoniaq~I ; - ; ; ;
. X . sing the Schrdinger equation for the combined system in-
for this measurement setup in Ref. 54. The qubit state affe.Ctauding the detector and then tracing out the detector degrees
the energy of the middle island of the single-electron transis

- H H 7-52,54
tor (Fig. 2), so the interaction is of “density-density” type: of freedom that leads to the following equaticfie:

Ill. RESULTS OF THE CONVENTIONAL APPROACH

. . H
> alan— con59 . (11 p11="p2="—27 1M p1p, (14)
m

AE T T
HINT=7(C2C2_01C1)

where the factor in large brackets is the number of extra
electrons on the transistor island. In the “orthodox” regime
of sequential single-electron tunnelig’ in the transistor,
the energy changAE affects the rates of tunneling through
the two tunnel junctions and thus affects the average currenthere the effect of continuous measurement is described by
I. In the simplest case when the electrons can tunnel only ithe ensemble decoherence rBte (Such equations in simi-

a strict alternating sequence with rafg@sandI'y, the aver- lar problems when the environment causes dephasing are

. e H
P12:|gP12+|ﬁ(P11_ p22) —T'4p12, (15

age current$; andl, can be calculated 2% known for many years, see, e.g., Refs. 13, 62, angl 63.
For a double-dot measured by a tunnel junctiéig. 1)
li=el'| I'ri /(I i+TRri), (120  the decoherence rate has been obtained in Ref. 43:
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(V1= 1,)2 =(27,) ! should remain valid in the cotunneling regime as
=% - (16)  well; this fact will be obvious from the Bayesian formalism.
The quantum backaction of a SQUID in the linear-
Comparing this equation with Eq&) and(6) one can easily response approximation was calculated in Ref. 65. It was
notice thatl'y has a direct relation to the typical measure-shown that the total energy sensitivity of a SQUIB €
ment time,,: — €3,) Y2 (which takes the backaction into accouistlimited
1 by #/2. Hereey is the “output” energy sensitivitythe out-
Fg=(27m) (17 put signal of a SQUID i8/(t)], ¢ describes the intensity of
This relation obviously remains valid in the weakly respond-backaction noise, and,, characterizes their correlation.

ing regime when the decoherence rate can be expressed asfom the inequalitye, e, =72/4 we easily get an inequality
for spectral densities;s,=#%2(dV/d®)?, wheredV/d® de-

Ig=(A1)%/4S,. (18 scribes the SQUID response to the fldx For the two-

- . SQUID measurement setup considered in the present paper,
In the case of a finite-transparency quantum point contac, o qubit dephasing due to backaction noise Iig
as a detectdr—>? the ensemble decoherence rate has been. )25 /472 where Ad is the measured flux difference

mainly studied in the weakly responding regime. Theb
resulf®=47°0-52most important for us is that for symmetric
coupling Eq.(18) is still valid, just the shot noise is now

given by Eq.(10) instead of Eq(6) (as mentioned, the tem- other setups discussed above. This lower bound can be

perature is zerno In the asymmetric case, if the phase of achieved only when the SQUID sensitivity is quantum-
transmitted and reflected electrons in the detector is Sens““ﬁﬁnited

to stateg1) and|2), then there is an extra term in the equa- '\t that the main equatiori¢4) and (15) of the con-

;iont ggﬁg,éﬁgzthdecohere”bceEratl‘g so the decoherence (Guniiong) formalism do not depend on the detector output
aste an given by Eq(18). I(t), and so they cannot be used for the prediction of the

- - _l - -
R Ih§4|r;equal|_tyl“ld>(|27tm) thas.bteen also qbtameq ml detector current behavidfor generality, we again choose
el. or a singie-electron ransistor measuring a singl€ga cyrrent as a detector output signal even though for a

Cooper-pair box. The interaction Hamiltoniéhl) allows us S - -
; - 2 5 QUID it should be changed t@(t)]. An important step
to relate the dephasing ratey=(AE)“S,/44%, to the low- toward this goal has been taken in Ref. 43 for a tunnel junc-

frequency spectral densi, .Of the quctugting humbem of tion as a detectofa similar analysis for the single-electron
extra electrons on the transistor central island. These ﬂucw?fansistor has been performed in Refs. 54 angl 66t us

tions have been calculated in Refs. 58 and 59 within thedivide the density matrixoij into terms corresponding to

framework of the OthOdOX .theoﬁ?.ln particular, assuming different numbers of electrons passed through the measur-
the weakly responding regime and the two-charge-state dy

. . > 11,64 ing tunnel junction pj; =Enp{} (only diagonal terms im are
namics corresponding to Eqe2) and (13) we obtait consideregl Then the evolution of these terms is given by

(AE)2T T'g the equatiorf§
(19

Iy

etween two qubit states. Using the inequality above for the
products,sy we obtain a lower bound for the ensemble de-
coherence raté? T'y=(AV)?/4s,=(27,) * similar to all

CRAT +TR)

(notice a different expression in Ref.)54n this case

. I I, ., .H
p?lz_gp21+ Epgl _25 Im pi,, (22)

. l> lo H
(20) p22=—gp22+ Epgz l+2% Im pl,, (23

so for I''~T'r this product is necessarily large 'y “n :ii n +iﬂ( n Tl P 1 R
>(27,) "L, sinceRg >h/e2 However, if the tunnel rates ~ P127 7 P12 13 \PumP2d = 75— P12m g P12
are very differen{that happens close to the Coulomb block- (24

ade threshold then the dephasing rate can be comparable tgQ , . . _
(27y) L. Assumingl'g>T"| one can simplify Eq(20) to z\a‘?gfsiqrr?ﬁ(wﬁ?oing\(/g) can be derived from Eq§22)—(24)

_ 2 2/212 Even though these equations couple the evolution of the
2lamn=8(I TR (RETh)" 1 system density matrix with the number of electrons passed
Formally, this expression becomes less than B4F R_  through the detector, they cannot predict the behavior of the
<#T'r//8; however, in this case the significant cotunnelingcurrentI(t) and do not allow the calculation gf;; for a
makes the orthodox approach invalid and the quantum noisgiven realization ofl(t). Actually, this is quite expected
contribution becomes importafftin the cotunneling regime  since the conventional formalism describes ¢msemble av-
(well below the Coulomb blockade threshpldy should be  eragedevolution while the analysis of a particular measure-
obviously comparable to (&, ! because in this case essen-ment realization requires a formalism suitable for iadi-
tially the barrier heightthe energy of the virtual statés  vidual quantum system.The use of the conventional
sensitive to a measured state, so the detecting principle bérmalism was the reason why several recent attefpts’
comes similar to the case of Fig. 1. The inequallly to analyze the detector current were not very succe$3fae

8I{THTE+T)
(T +TRAT2h/e?Ry—T2#/e?R, )2’

ZFdTm:
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analysis of a particular realization of the measurement prorealization of the measurement process; however, the formal-
cess can be performed using the Bayesian formalism dissm describes the mutual dependence of the stochastic evo-

cussed in the next section. lutions of p;;(t) andl(t) and thus allows us to make experi-
mental predictions not accessible by the conventional
IV. BAYESIAN FORMALISM approach.

) ) o When Eq.(29) is substituted into Eqg25) and (26), we
In the Bayesian formalisnithe name originates from the get a system of nonlinear stochastic differential equations.
Bayes formul&*®® for probabilities that was derivecbnly  The analysis of such equations requires special care, since
for the weakly respondinginean regime, the evolution of thejr solution depends on the accepted definition of the
the qubit density matrix during a particular measuremengerijvativé? (this happens because the noise increases with

process is described by the equatfns the decrease of the time scale, and &dt=const=S,/2

_ _ H 2A| does not decrease witlit). In Egs.(25) and (26) we have
p11= ~P22= — 27 Im p12+p11p22§[l(t)—lo], used the symmetric definitionp(t)=lim__ [p(t+7/2)
(25  —p(t—17/2)]/7. This is the so-called Stratonovich interpre-

tation of the nonlinear stochastic equations. The main advan-
. € H tage of this interpretation is that all standard calculus formu-
P12= 1y P12tz (P11 p22) = (P11~ p22) las [for example, €g)’=f'g+fg’] remain valid’? so the
intuition based on usualnonstochastic differential equa-
tions typically works well(this is the reason why we prefer
the Stratonovich interpretatipnits other advantage is the
correct limit in the case when the white noise term is ap-
proximated by a properly converging sequence of smooth
functions’?

Al
Xg[l(t)_ lolp12— Yap12 (26)

(in Stratonovich interpretation, see belpwvhich replace
Egs.(14) and(15) of the conventional formalism. Here

(A1)2 However, for some purposés.g., for averaging over sto-
va=Tqg— 7 =0 (270 chastic variables and for numerical simulatipitsis more
So convenient to use another definition of the derivatipét)
is the decoherence rate due to the “pure environmémt8al = IimHO[p(tJr 7)—p(t)]/ 7. This is called the [tonterpreta-

continuous measurement does not produce this decoh@rencg, 54 it is the most commonly used interpretation in math-

which differs fr_om the ensemble decoherence iaje One o aticq) Jiterature on stochastic differential equations. There
can see thayy=0 in the example of a tunnel junction as a ;s 4 simple rule of translation between the two

Svit:féor’ which thus can be called an ideal detecferl,  jnterpretationd? for an arbitrary system of equations
v 1 Xi(1)=Gi(x,t) +Fi(x D&(t) (30
n=1- r_d Tor dTm (28) in Stratonovich interpretation, the correspondingdtpiation

L . . that has the same solution is
A similar ideal situation occurs for a quantum point contact

when I'y=(A1)%/4S,, and also for the two-SQUID setup . S; dFi(x,t)
when the sensitivity of the measuring SQUID is quantum- Xi(0)=Gi(x,)+ 7* ; % Fe(x,t) +Fi(x,t)&(1),
limited and the output and backaction noises are uncorre- (31)

lated. The important prediction of the Bayesian formalism is
that in such an ideal situatiofwhich is experimentally ac- Wherex;(t) are the components of the vectdt), G; andF;
cessible, an initially pure state of the qubit remains pure are arbitrary functions, and the consteBjt is the spectral
during the evolution; moreover, an initially mixed state candensity of the white noise procegét). Applying this trans-
be gradually purified in the course of continuousformation to Eqs(25), (26), and(29) we get the following
measurement (For a somewhat similar, though different equations in [tanterpretation:
phenomenon see Ref. 70.

Equations(25) and (26) allow us to calculate the evolu-
tion of p;; for a given measurement outpl(t). In order to
analyze the behavior of(t), these equations should be

. . H 2A1
P11= — P2o= — 2% Impqo+ P11P22§ &u, (32

complemented by the formula .8 H Al
P Y P12:|gP12+'%(Pll_l)zz)_(P11_P22)§P12§(t)
Al
() =lo=— (P11 p22) + &(1), (29 (A1)2
—|vat 45, P12 (33

where &(t) is a zero-correlated‘white” ) random process
with the same spectral density as the detector H&i@, while the current (t) is still given by Eq.(29). Similar equa-
=S,. The stochasticity of the detector current does not allowtions (in a different notationhave been obtained in Ref. 28
us to predict exactly the evolution @f; in each particular for a symmetric two-level system measured by an ideal de-
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tector =0,y4=0). Notice that the [tdinterpretation has

been used in the majority of theories describing selective

evolution due to quantum measuremé&sge Refs. 17—-19 and
references therejn

Using the lfointerpretation it is easier to see that averag-

ing of the evolution equations over the random procg&ss
(i.e., averaging over different detector outpuisads to the
conventional equationg14) and (15). However, for the
analysis of an individual realization of the evolution, Ito

PHYSICAL REVIEW B 63 115403

P(T)= p1a(t) exp{—(l_ll)z paAt)
(27D)Y? 2D (2mD)*?
T 2
xex;{— Sl } 37)

whereD = Sy/2At. Thenl is substituted into Eqg34) and
(35) to calculatep;;(t+ At) from pj;(t). The last step of the

equations are typically less transparent for physical imerpreprocedure is the additional evolution duridg due to finite

tation. For example, the term p,,(Al)2/4S, in Eq. (33)

H (rotation in thep,4-p1» plane. Then the whole procedure

does not actually cause decoherence in an individual realizaS repeated for the next time stéyi and so on.

tion but just compensates the noise term proportiongf
due to the Itadefinition of the derivative, and so,,(t) does
not decrease exponentially in time kf#0. Similarly, the

fact that the measurement tries to localize the density matrix

in one of two states is not clear from E¢32) and(33) while
it is obvious from Eqs(25)—(29).

To avoid confusion due to the difference between Straaged pure noiseEE(At)*lft

tonovich and lfointerpretations, it is helpful to write the
exact solution of Eqs(25) and(26) [which is also the solu-
tion of Egs.(32) and(33)] in the special caskl =0:

pu(t+7)  pua(t) exif —(1(7)—11)%7/S]

poAt+7)  p2dt) exg — (1(7)—1,)27S,]’ 39
prAt+T) _ prat)e”” e " (35
[p1a(t+ T)polt+ 1 ]Y2 [p1a(t)pon(t) ]2 '
where
T(7)= Efwl(t')dt' 36)
TJt

is the detector current averaged over the time interval (
+ 7). These equations have clear physical meaning:(&4.

is just the Bayes formula while Eq35) describes gradual
decoherence due to the “pure environment” characterize
by v4. (The Bayes formuf$®®says that the updated prob-
ability P*(A) of a hypothesisA given that eventF has
happened in an  experiment, is  equal
P(A)P(FA)IZ A P(B)P(FB)] where P(A) is the prob-
ability before the experimentP(F|.A) is the conditional
probability of eventF for hypothesis4, and the sum is over

An alternative algorithm can be based directly on the Ito
equations(32) and(33) that are more natural for numerical
simulations than the Stratonovich equations because of the
forward-looking” definition of the derivative. For suffi-
ciently small At [now much smaller than all time scales
So/(A1)2, #IH, #ile, and ygl] we first calculate the aver-

Aty t)dt’, as a random
number using the Gaussian distribution

P(&)=(27D) Y2ex{ — (£)%/2D], (39)

where agairD = Sy/2At. Then this number is substituted into
Eq. (32):

p11(t+ A1) =p11(t) —2At(H/%)ImM p1(t) + p1a(t) pooft)

X(2A1/Sy) EAt (39

and similarly into Eq.(33). Then the updating procedure is
repeated for the next steft and so on. The detector current
can be calculated using E9).

Both Monte Carlo algorithms are equivalent; however, the
first algorithm is better because it allows longer time steps.
The equivalence for smallt can be proven analytically us-
ing a second-order series expansion of Eg4) and(35) and
has also been checked numerically. Notice that Adr
<Sy/(Al)?, the current distributiori37) is indistinguishable
from the distributionP(é+ Al(p11— p22)/2) given by Eq.
39).

A typical result of the Monte Carlo simulation is shown in
Fig. 3. The solid lines show a particular realization of the
evolution ofp(t) (diagonal and nondiagonal elements of the

to density matrix for a symmetric qubitg =0, measured by a

detector with couplingC=%(A1)2/SyH=0.1 and ideality
factor =0.7. The real part op5(t) is not shown since its
evolution is decoupled fromq4(t) and Impq5(t). The com-

the complete set of mutually exclusive hypotheses. For diSpleter incoherent initial state is chosem,,(0)=0.5,

cussion of the so-called quantum Bayes theorem see, e.g
Ref. 40)

'p12(0)=0. Nevertheless, the measurement leads to the

gradual onset of quantum coherent Rabi oscillations. This

A useful tool for analysis of the measurement process iiannens because the measurement randomly tries to localize

Monte Carlo simulation of an individual process realization.

For this purpose we can use Ed84) and (35 comple-
mented by the simulation of evolution due to finke Let
us choose a sufficiently small time stéqg (much smaller
thanz/H) and apply the following algorithm. First, for each
time step {,t+At) we pick the averaged current
=(At)"LfI*A(t’)dt’ as a random number using the prob-
ability distribution

the qubit, while the finiteH provides oscillations when the
state becomes at least partially localized. The qubit state is
gradually purified, eventually reaching a pure state if the
detector is ideal. For a nonideal detectfig. 3) the state
remains partially incoherent, which decreases the amplitude
of the oscillations.

The qubit gradually “forgets” its initial state during the
evolution and the density matrix(t) becomes determined
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1.0 TN S Y Y on the correspondence between classical and quantum mea-
surements.

In the classical caseH=0, p;,=0) the measurement
process can be described as an evolution of probabipties
and p,, that reflect our knowledge about the system state.
Then for arbitraryAt (which can be comparable tg,) the

average current obviously has the probability distribution
given by Eq.(37). After the measurement duringt the in-
formation about the system state has increased and the prob-
abilities p,, and p», should be updated using the measure-

ment result and the Bayes formuléd4), which completely
describes the classical measurement.

The next step is an important assumption: in the quantum
case withH=0 the evolution ofp;; andp,, is still given by
PN I IR NI N NI Eq. (34) because there is no principal possibility to distin-
guish between classical and quantum cases, performing only
this kind of measurement. Even though this assumption is
quite obvious, it is not derived formally but should rather be
regarded as a consequence of the correspondence principle.
In other words, this is the natural generalization of the col-
lapse postulate to the case of incomplétaprecisg¢ mea-
surement.

The comparison with classical measurement cannot de-
scribe the evolution op4,; however, there is an upper limit:
|p1ad=<[p11p22]"% Surprisingly, this inequality is sufficient
for the exact calculation op,(t) in the important special
case of an ideal detector ahid=0. Averaging this inequality

over all possible detector outpﬁmsing distribution37) we
get the inequality
FIG. 3. Solid lines: gradual purification of the qubit density

matrix p(t) in the course of continuous measurement, starting from t+ 7)< t ) 1Y%exd — (A1) 27/4 41
the completely incoherent state. Dashed lines show the evolution [padt+ 7)< [p1u(DpzAV)] H = (ADr/4S]. (4D

starting from localized states, assuming the same detector currenbn the other hand, for such averaged dynamics (&)

mostly by the detector record. To illustrate this fact, theactually reaches the upper boufgke Egs(14), (15), and
dashed lines in Fig. 3 show the qubit evolution calculated by18)] in the cases discussed in Sec.(tlinnel junction, sym-
Egs. (25) and (26) starting from two localized states and Metric quantum point contact, or quantum-limited SQUID as
assuming that the detector currénbt shown is exactly the a detector. This is possibleonly if in each realization of the
same as in the measurement realization corresponding to ttigeasurement process the initially pure density matikt)
solid lines. As expected, after the time comparabletdhe  Stays pure all the timép,5(t)|*= p14(t) p2o(t). This fact has
dashed lines become close to the solid lines. been the main point in the Bayesian formalism derivation in
The tendency to qubit-state localization due to measureRef. 34.
ment can be described quantitatively using the deterministic As the next step of the derivation, a mixed initial state has
part of Eqs(25) and(29). However, because of the equation been taken into accourffor H=0 and an ideal detector
nonlinearity the typical localization time; cannot have a using conservation of the “degree of puritfEq. (35) with
unique definition. If we define it via an exponential-growth yq= 0] that directly follows from a statistical consideration.
factor expt/7) for pq4(t) evolution wherp,; is close to 1/2, Then the qubit state evolution due to finlehas been sim-
then ply added to the evolution due to measurement. Finally, the
interaction with the extra environmefwhich does not pro-
71=2S0/(Al1)?, (400 vide any measurement resuttas been taken into account by

which exactly coincides with the definition of the typical ntroducing the decoherence rajg. _
measurement time,,. [If for the definition we choose the . First-order series expansion of the corresponding equa-

exponential-decrease factor exqi(n) when the state is al- 10N forp;(t+At) leads to differential equatiori@5) and
most localized, therr, would be twice smallet. (26). The reason why we get equations in Stratonovich inter-

pretation is that the first-order expansion is necessarily based
on the standard calculus rules that are valid only in this in-
terpretation. Using a second-order expansion we can obtain
In this section we briefly review the derivation of the differential equations both in Stratonovich and itderpre-
Bayesian formalism presented in Ref. 34, which was basethtions, depending on the definition of the derivative.

P11

6 8
t/(h/H)

V. DERIVATION BASED ON BAYES FORMULA
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VI. ALTERNATIVE DERIVATION OF THE FORMALISM ~n(t) n(ty)
Pij k
Let us discuss now an alternative way of deriving the . | | -
Bayesian formalism, which is based on E(@2)—(24) of the |(lub1t 1 detector 1 pointer 1
conventional approacta somewhat similar derivation of the quantum collapse classical
Bayesian formalism has been recently presented in Ref. 37 interaction information

Since these equations have been defivedly for the tunnel
junction as a detector, we limit ourselves to this case.
Equationg22)—(24) describe the coupled evolution of the

qubit density matrixp;; and the numben of electrons passed . '
. TR »the evolution of the measured systetp,should be suffi-
through the detector, considering the “qubit plus detector ciently frequent, in particulatt,</i/H. For a while let us

as a closed system. We need to make a small but very im ompletely neglect the terms proportionalHdn Egs. (22)—

portant step in order to describe an individual measureme 4) and discuss their effect later. Then these equations can
process: we need to construct an open system that outputs T £ n
solved exactly. For the initial conditiorp;;(0)

classical information to the outside. For this purpose let us™ h ution i
introduce the next stage of the measurement setup that will 9n.oPij(0) the solution is
be called “pointer” (see Fig. 4. By definition, the pointer

FIG. 4. The pointer is introduced into the model to extract the
classical signal from the detector.

X : ; : . (I,t/e)"
deals only with classical signals while quantum description pli(t)= —exp(— |1t/€)p11(0), (45)
is allowed for the detector. n:
Let us consider the following model. The pointer does not .
interact with the detector most of the time, however, at time 1 1)= (It/e) expl— 1,/€) pof O) 46
moments=t, (k=1,2, .. .) thepointer measure@n simple p2AD) = XA~ 12t/e)p2( 0),
orthodox way the total numbern of electrons passed
through the detector. By our assumption the measured ) (V111 ,t/e)" l,+1, st
should be a classical number, so after each measurement by p7j,(t)= exp — t+ —|p12(0).
: a . . n! 2e h
the pointer the numbem,=n(t,) is well defined. However, (47)

during the “free” evolution of the “qubit plus detector”

between the measurements by pointer, the numfigrgets  Similar equations describe the evolution afkth measure-
smeared according to Sclinger equation, i.e., satisfy Eqs. ment by the pointer, justis shifted byt, andn is shifted by
(22)—(24). By introducing sufficiently frequent reado(dol-  n,. Using Eqgs.(43) and (44) we derive the iterative equa-
lapse into the model we get the ability to describe the timetions for the qubit density matrix:

dependence of the detector current. Of course, many other

collapse scenarios are possible, however, if we show that pll(tk)zpll(tk—l)l?nkexlx_|1Atk/e)
within some limits the measurement process does not depend
on the choice of times, this is a good argument justifying x[pll(tk,l)lfnkexr(— 1At /e)
the generality of the model. R
The collapse at=t, can be described in the orthodox +poalti )1, Mexp(— LAt /)], (48)
way1%-12 The probability P(n) to measuren electrons
passed through a detector is pot)=1—p1a(ty), (49)
P(n)=pha(te) +p5ty). (42) Pt sty 12
The measurement by pointer picks some random numper P1Atk) = prti-a) p11(tee1)poote1)
according to distributior(42), however, after the measure- .
ment this number is already well defined and the density X explieAty/h), (50
matrix should be immediately updaté«:bllapsed:lo‘lz while the probabilityP(n,) to getn=n, att=t, is
pij (te+0)= 8y pij (1 +0), (43 (At /e)2™
P(n= W[l1nkexq_|1Atk/e)P11(tk71)
Ny k/*
Pjj (t—0) An
pij(ty+0)= : (49) +15"*exp( — | At /) poalty—1)]. (51)

p1(ty—0)+ poK(ty—0)

where&mnk is the Kronecker symbol. After that the evolution

is described by Eq$22)—(24) until the next collapse occurs

att=ty ;. t)=p1a(tc 1), t) = poati_1), 52
The detector current in our model has a natural averaging pult)=pulti-a). P2t =padli-) 52

during time period betweety _; andt, and can be calculated — .
ingime p o1 andly prdti) = proltic D)explie At /h)

as I, ,=eAn,/At,, where An,=n(t,)—n(t,_4) and Aty

=t,—t,_,. Since the detector output is intended to reflect X exf — (V11— 1,)2At /2], (53)

It is instructive to check that the averagingmf(t,) over the
result of measurement att, gives simple equations
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which are consistent with the conventional equationscollapse and make it only “at the end of the day.” Any

(14)—(16)." readout from the detector necessarily changes the qubit state
One can easily see that E@8) can be interpreted as the (or in other words, informs us about the changed thus

Bayes formula, while Eq(50) is the conservation of the affects the qubit evolution.

“degree of purity,” similar to the approach reviewed above. In the Ilimit of sufficiently frequent readoutAt,

The complete equivalence between E@8)—(51) and Eqs. <min(e/l,, €l,,A/H,Ale), the evolution equation§22)—(24)

(34)—(37) is achieved iflAl|<I, and also the probing time and(42)—(44) simplify because at most one electron can pass

At is much longer than the typical timg/e between indi- through the detector between readouts. During the periods of

vidual electron passages in the detec¢tar that the currentis time when no electrons are passed through the detector, the

essentially continuoysin this case the Poissonian distribu- evolution is essentially described by Eq22)—(24) with n

tions (45) and (46) obviously become Gaussian, and so the=0, while the frequent collapses just restore the density ma-

probability distributions for the currert=eAn,/At, given trix normalization, leading to the continuous qubit evolution:

by Eq.(37) and Eq.(51) coincide. Similarly, Eqs(48)—(50)

) . S : . _ : H Al

g)nr %gslvgél:'gg?o;?ic&c.jg with Eqs34) and (35) applied to P11=—Pog=— 2% Im pyp— — (54)
If the probing period is within the range/l <Aty _ _

<elg/(Al)?, the evolution ofp;; is smooth and so Eq#48) - e iH I 55

and (49) can be written in a differential form that coincides P12=7 P12t Z(Pll_p22)+ E(Pll_ P22)P1a- (59

with Egs. (25) and (26) of the Bayesian formalism witi
=0 andyy=0. The effect of finiteH can be now taken into However, at moments when one electron passes through the

account by the addition of obvious terms into E(®5) and dgtector, the qubit state changes abruptly; this change is
(26). However, this can be done onlyAft,<H/#% because in  9iven by Egs(48—(50) with An,=1 andAt,—0:
the opposite case the terms of more than the first powklr in

should be added to Eq$48)—(50) indicating a nontrivial pry(t+0)= l1p1(t0) ' (56)
interplay between two effects. l1p12(t—=0) +12p25(t—0)
So, we have shown that in the weakly responding case,
Al<l,, Egs. (22—(24) of the conventional approach p2At+0)=1-p1(t+0), (57)
complemented by a sufficiently frequent read¢edllapse,
ell g<At,<min[ely/(Al)% #/H] lead to the equations of the p1a(t+0)poy(t+0) |2
Bayesian approach. The decoherence fgtes zero because p1At+0)=p1t—0) p11(t—0)po(t—0)| (58)
the model® describes a tunnel junction that is an ideal de-
tector. and can be obviously interpreted as the Bayesian update.

Equationg54)—(58) correspond to the framework of “quan-
tum jump” model&37
It is easy to see that initially pure qubit state remains pure
The simple model considered in the previous section alunder quantum jump evolutiof64)—(58) and the density
lows us to analyze the effect of the repeated measuremeniatrix is gradually purified if started from a mixed state. The
by pointer on the qubit dynamics in more detail and beyondines in Fig. 5 show a particular realization of such evolution
the approximations of the Bayesian approach. First, it is imfor 1,/e=H/#%, 1,/1,=3, and completely incoherent initial
portant to notice that in this model the event of collapse astate,p15(0)=0.5, p;(0)=0. Each discontinuity of curves
t=t, does not disturb the qubit measurement by the detectoeorresponds to the passage of an electron through the detec-
More specifically, the collapse with unknown result is  tor (the jumps ofp,, are typically smaller than the jumps of
equivalent to the absence of the collapse. To prove this facRi1). The matrix elemenp,; always jumps up becaude
Egs.(43) and(44) can be averaged with the distributi¢) >1, and so the electron passage indicates that the|dtate
that results in unity operator. somewhat more likely than stat@). The jumps are more
The absence of disturbance by pointer is because in thpronounced whep,, is closer to 0.5 because the jump am-
model there are no density matrix elements that couple deplitude is Ap1=Alp11p20/(11p11+12p2,) [See Eq.(56)].
tector states with different number of passed electronsThe model allows us to consider finite ratip/l, in contrast
Physically, this is a consequence of the assumption of lowo Egs.(25) and (26) of the Bayesian approach. In the limit
detector-barrier transparency and infinite number of electronsf weakly responding detectofAl|<1,, the amplitude of
in the detector electrodes, so that the “attempt frequency” isjuantum jumps(54)—(56) is negligible and Eqs(25) and
much larger than any collapse frequendgr a quantum (26) are restoredin this sense they describe a “quantum
point contact the necessary condition for this assumption igliffusion” model3’) Notice, however, that equations of the
the large resistanc®=7/e?). In other words, this model is Bayesian approach are applicable to a broader class of detec-
intrinsically Markovian and the detector is classical in ators.
sense that the passage of individual electrons through detec- Since the model22)—(24) describes the ideal detector,
tor is essentially classic#hot quantur random proces®. the qubit state in Fig. 5 eventually becomes completely pure.
The absence of the disturbance by collapse with unknowiowever, if the readout periodt, is not sufficiently small,
result does not mean, however, that we can forget about thitbe information about the moments of electron passage

VII. EFFECT OF COLLAPSE DUE TO POINTER
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FIG. 6. The average qubit coherence facfoas a function of
the readout periodAt, for the measurement process shown in
Fig. 5.

same as in the case of only one last measurement. Similarly,

the probability distributionP(n,) [see Eq.(51)] averaged

over the resulh, of the first measurement exactly coincides

t/(h/H) 10 3 with P(n,) in absence of the first measurement.

_ o _ It is interesting to discuss the generalization of the model
_FIG. 5. The lines show a gradual purification of the qubit den-, e case of a low-transparency tunnel junction with finite

sity matrix p(t) in the regime of quantum jumg$requent detector temperature of electrodes. Then each of the currennd

readout with one-electron accuracyrhe dots, triangles, squares, I, can be decomposed into two currents flowing in opposite
and crosses correspond to finite readout periogg(%/H)=0.5, 1, d2irecti0ns P 9 PP

2, and 3, respectively.

'0.5 T T T T T T T T T T T T T T

L=1"=17, 117 =peV, (59
through the detector is partially lost that decreases our
knowledge about the qubit state. In the formalism this leadsvherei=1,2, 8 is the inverse temperature, antis the
to a partial decoherence of the qubit density matrix. Thevoltage across junction. In this case E(@2)—(24) are re-
symbols in Fig. 5(dots, triangles, squares, and crogsep-  placed by the following equations:
resent the readout with several different periods for exactly

the same realization of a measurement process as for the . =~ I7+17 N by o1 o H N
lines that represent very frequent readout. When the readout P11~~~ Pt g Pu + g Pu —25Impiy,
is still sufficiently frequentdots, we can monitor the qubit (60)
evolution with a good accuracgdots almost coincide with
the lines. However, with the increase of the readout period, I3+ Iy I, H
p11 becomes close to 0.5 angl, becomes close to zero,  p5,=— Tp22+ Fp'2‘2’1+ gpg;hr 2--Im P,
indicating a strongly mixed state. Figure 6 shows the corre- 61)
sponding decrease of the average coherence fattot
—4{p11p2—|p14?) with increase of the readout peridd, b -

; . ok . & H L+ +1+1]
(equal time between readouts is assum@étie averaging is N —i—pAi—(ph—pl)— —— =

- - P12 ﬁplz 7 P11~ P22 2 P12

done over the readout moments for sufficiently long realiza- e
tion of the measurement process. We also tried few other W ﬁ
expressions that describe the density matrix coherence, all of Ly12 pnt 172 Pt 62)
them show a similar dependence &t . Notice the vanish- e 12 e 12
ing coherence in Fig. 6 when the ratio betwedrt, . _
and the quantum oscillation periogtz/H is close to an If the readout period At is much shorter than
integer number(the regime of quantum nondemolition min(e/l;” A/H), the detector still does not decrease the qubit
measurements?. coherence in spite of the finite temperature. However, if in-

In the special casél=0 all the information about the dividual electron passages are not resolved, the information
qubit state is contained in the result of the last measuremem@pout the number of electrons passed in each direction is lost
by pointer. This fact can be easily proven by applying Egsthat leads to the qubit decoherence. In the framework of
(48)—(50) twice and checking that resulting qubit density Bayesian formalism in the case of quasicontinuous current,
matrix does not depend on the resujtof the first measure- e/l;” <At <min[el,/(Al;)?#/H], we can easily calculate the
ment while the dependence on the second resulis the  output current nois&,= 2elycoth(BeVi2) and the ensemble
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decoherence rat€ 4= coth(BeVI2)(Al)%/8el, (see also the Inequality (67) can be also interpreted in terms of the
derivation in Ref. 37. Thus calculated detector ideality fac- €nergy sensitivity of a single-electron transistor. Let us de-
tor, fine the output energy sensitivity as=(dI/dq) 2S,/2C
where C is the total island capacitance and/dq is the
n=[tanh BeVI2)]?, (63 response to the externally induced chagg&imilarly, let us
characterize the backaction noise intensity y=CS,/2

becomes significantly less than unity at temperatyges and the correlation between two noises by the magnitude

=eV. e1,=(d1/dg) 'S, /2. Since in absence of other decoherence
sourcestzsqj(CAE/Zeﬁ)z, whereAE is the energy cou-
VIIl. DETECTOR WITH CORRELATED OUTPUT pling between qubit and single-electron transissee Sec.
AND BACKACTION NOISES 1), and using also the reciprocity propertyq=CAE/e
Let us assume again a weakly respondiiean detector ~ — de/d¢, we can rewrite Eq(67) as

and consi_der the“case when”the output detec.tor noise is cor- (e1€,— €2,)V?=1h12, (68
related with the “backaction” noise that provides the fluc- ¢ e

tuationse(t) of the qubit energy level difference and thus similar to the result of Ref. 6&see also Refs. 52 and 77980
leads to the qubit dephasing. For example, this is the typicalvVhen the limit#/2 is achieved, the decoherence rate
situation for a single-electron transistor as a detetotin

this case the knowledge of the noisy detector outfti} ~  (AD?| ¢ eq,—eﬁp
gives some information about the probable backaction noise Yd— 45, (ﬁ/—Z)Z
“trajectory” e(t) that can be used to improve our knowl-

edge of the qubit state. The compensation for the most probn Egs. (64) and (65) for the selective evolution of an indi-

able trajectorys(t) leads to improved Bayesian evolution vidual qubit vanishesyy=0. In this sense the detector is

(69)

equations’ ideal, =1, where
. . H 2Al ~ 2 2 2
P11:_P22:_2g|mP12+P11P22§[|(t)_|o], %El_ﬁ:h (dl/dg) +(Sl<p) ’ (70
64 Te %S, %S,
A even though it can be a nonideal detecter<(1) by the
R H | revious definition,p=%2(d1/dg)%/S,S,. Notice a simple
P12:'%P12+'g(Pn_Pzz)—(Pn_Pzz)g['(t)—|o] Eelation, 7= i D503, P

X p1ot+iK[ (1) = (paal 1+ padd ) 1p1o— Yap12, (65

whereK = (de/d¢)S,,/Sph characterizes the correlation be-
tween the noise of curremtthrough the single-electron tran- in absence of correlation between noisesp¢f) and (),
sistor and the noise of its central electrode potertié,is  (S,,)?<S;S, .

the mutual low-frequency spectral densif§ The term in A similar conclusion is also valid for other kinds of de-
square brackets afté¢ in Eq. (65) is just the “pure output tectors: a quantum-limited total energy sensitivity2 is

noise” from Eq.(29). The dephasing rate, in Eq. (65) is  equivalent to detector idealityy=1. Besides the tunnel
now decreased because of partial recovery of the coherendenction*® quantum point contaéf;**and SQUID®® the re-
gime of ideal quantum detection is also achievable by super-
~ (A1)? K?S, 6  conducting single-electron transisitbrand normal single-
(66) electron transistor in cotunneling mo&&’® (The resonant-
tunneling single-electron transisifdr has ideality factor
comparable, but not equal, to unity.

(71)

[ TS

The term containingK in Eq. (65) is proportional to the
averagep(t) for givenl(t). Performing ensemble averaging
of this term[essentially, considering noisg(t) as uncorre-
lated withI(t)], we can reduce Eg$64) and (65) to Egs.
(25 and(26), while additional ensemble averaging oVét) The Bayesian formalism allows us to monitor the evolu-
leads to the conventional equatiofigh and (15). tion of an individual qubit using weak continuous measure-
The obvious inequalityy4=0 (in the opposite case the ment, thus avoiding strong instantaneous perturbations. This
condition|p;5/< p11p2, would be violatedlimposes a lower information can be used to control the qubit parameters

IX. QUANTUM FEEDBACK LOOP

bound for the ensemble decoherence ate andH in order to tune continuously the qubit state in such a
way that the evolution follows the desired trajectdgspme-
(A1)2 K2, what similar ideas have been discussed in Refs. 31, 35, 81,
I'y= 45, + 2 (67) and 82. This is possible even in the presence of decoherence

due to the environment and so presents an opportunity to
which is stronger than the inequalityl'@r,=1 (see Sec. suppress such decoherence.
). Continuous qubit purification using a quantum feedback
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loop* can be useful for a quantum computer. All quantum 0.0 \X 2 .;\\ g - WY A
algorithms require the supply of “fresh” qubits with well- T 2 4 s s 10 1 14
defined initial states. This supply is not a trivial problem (RH)

since a qubit left alone for some time deteriorates due to
interaction with the environment. The usual idea is to use the F|G. 8. Particular realizations of the qubit evolution for a quan-
ground state that should be eventually reached and does n@in feedback loop with strengtf=3, 0.3, and O(thin solid,
deteriorate. However, to speed up the qubit initialization wedashed, and dotted lines, respectiyeRhick line shows the desired
need to increase the coupling with environment, whichevolution. No extra environment is presedt 0.
should be avoided. Another possible idea is to perform a
projective measurement, after which the state becomes well=0.05:/H, and several values of the feedback fad¥ot 0,
defined. However, in the realistic case the coupling with thep.3, and 3. No extra environment is assumde:0. The
detector is finite, which makes projective measurement imqubit evolution starts from a localized statgj,(0)=1,
possible. So, a different idea is helpful: to tune the qubitplz(o):o, and the desired evolution is shown by the thick
continuously in order to overcome the dephasing due to theolid line. Without a feedbacki(=0) the phase of quantum
environment and so keep the qubit “fresh.” oscillations randomly fluctuatdsliffuses in time. However,

The schematic of such state purification is shown in Figfor sufficiently largeF the feedback “locks” the qubit evo-
7. The qubit is continuously measured by a weakly coupledution and makes it close to the desired one. Further increase
detector, and the detector signal is plugged into E&®.and  of F decreases the difference between the actual and desired
(65) [or into Eqgs.(25) and(26) in a simpler caskto monitor  evolution. WherF is too strong, the feedback loop becomes
the evolution of the qubit density matrix;(t). This evolu-  unstable. Overall, the behavior of this quantum feedback
tion is compared with the desired evolution, and the differ-loop is similar to the behavior of a traditional classical feed-
ence is used to generate the feedback signal that controls th@ck loop. In particular, we have checked that the increase of
qubit parameter$i and e in order to reduce the difference the averaging time-, and/or delay timery eventually leads
with the desired qubit state. to synchronization breakdown. A decrease of the detector

We have simulated a feedback loop designed to maintaiBoupling C decreases the evolution disturbance due to mea-
the perfect quantum oscillations of a symmetric qubit ( surement and allows more accurate tuning of quantum oscil-

=0), so that the desired evolution jg,;=[1+cos)]/2, |ations; on the other hand, in this case the feedback control
p12=1sin(Qt)/2 where ) =2H/#%. Let us assume an ideal becomes weaker and slower.
detector,n=1, so that the qubit decoherence ratein Egs. Qubit decoherence due to the presence of an extra envi-

(25) and(26) is due to the extra environment. The ratio be-ronment prevents complete purification of the quantum os-
tween the decoherence rate and the “measurement ratedillations so that the average qubit coherence faétdoe-
(A1)?/4S, is described by the factat=4S,y,4/(Al). comes less than 100%. However, if the qubit coupling with
To imitate a realistic situation, the currdrft) is averaged the detector is stronger than the coupling with its environ-
with a rectangular window of duration, running in time, ment,d=<1, the feedback loop still provides qubit evolution
before it is plugged into Eqg$25) and(26). So, thus calcu- quite close to the desired orisee Fig. 9. Most noticeably,
lated density matrixp?(t) differs (a little) from the “true” the phase of quantum oscillations does not diffuse far from
density matrixp(t) that is simultaneously simulated by the the desired valu€t. So, for example, the spectral density of
Monte Carlo method described in Sec. IV. The feedback sigthese oscillations has a delta-function shape at frequéncy
nal is proportional to the differenck¢ between the desired (with exponentially small widthin contrast to the maximum
oscillation phase)(t— 7,/2) and the phase calculated as value of 4 for the peak-to-pedestal ratio in the case of quan-
o(t)=arctaf2 Im pi,(t)/{p3,(t) — p3,(t)}]. Here the time tum oscillations without feedbadk:>*
shift 7,/2 partially compensates the detector signal delay due
to averaging. The feedback signal is used to control the qubit

: . X. DISCUSSION
tunnel barrier:H,(t)=H[1-FXA¢(t—749)] whereF is

the dimensionless strength of the feedback apis an ad- The Bayesian formalism discussed in this paper
ditional time delay ¢4=0 is preferable but not achievable in presents (as any formalism of selective quantum
a realistic situation evolutiont’~3) a controversy in interpretation. First of all, a

Figure 8 shows typical realizations of the qubijt's evo-  natural question is how it is possible that the qubit density
lution for C=A(A)%/SgH=1, =0, 7,=0.14/H, 74  matrix evolution can be described simultaneously by the
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10 f—t gt L ol 0 1 situation the conventional equations give a significantly
. ' . mixed statgso, essentially no predictions are possibihile
0.8 the Bayesian equations give a pure st@wed so some pre-
. dictions with 100% certainty are possiplé similar relation
_ 06 holds between Bayesian equatid2$) and(26) and the im-
g 11 ¢ proved Bayesian equatio§4) and(65): the latter ones give
0.4k ¢ a more accurate description of qubit evolution and allow us
11 to make more accurate predictions.
024 |4 The difference between density matrices calculated in dif-
1% ferent approaches can be easily understood if we treat den-
00 T T T T T T sity matrix not as a kind of “objective reality” but rather as
0 5 10 15 20 25 our knowledge about the qubit stdie accordance with or-

t/(A/H) thodox interpretation of quantum mechanicthen it is ob-
FIG. 9. Operation of the quantum feedback Idparticular re- vious that since Bayesian equations take into account addi-

alization for several decoherence rates due to extra environmenf,i(_)nall information [detector _ou_tpuﬂ (1], they_ provide us
d=y,X4S,/(A1)?=0.3, 1, and 3(thin solid, dashed, and dotted With & more accurate description of the qubit state than the

lines, respectively Thick solid line is the desired evolutiork conventional equations do.
=3, #(A1)%SgH=1, £=0, 7,=0.14/H, 74=0.05:/H. Another controversial issue is the state collapse due to
measurementhere it is more appropriate to mention the

i i i 1,20
conventional equationd4) and(15) and the Bayesian equa- mathematical formulation by lders??° rather than by von

tions (25) and(26) [and even also by the improved Bayesian Neumapﬁo). The conventlpnal equa.t|on's are derlveq without
equations(64) and (65)]. Which equations are correct? The anY notion of collapse while the derivation of Bayesian equa-
answer is as follows: all are correct depending on the problions requires either implicit or explicitas in the model of

lem considered. Sec. V) use of the collapse postulate. Philosophically, the

If only the ensemble evolution is studiéior example, the collapse postulate is almost trivial: when the result of the
ensemble of particles is measured, as in typical nuclear magbeasurement becomes available, we know for sure that the
netic resonance experimehtben the conventional approach State of the measured system has changed consistently with
is completely sufficient. It is also possible to use the Bayethe measurement resukven though it is generally impos-
sian equations; however, they should be averaged over aible to predict the result with certaintyln spite of being
possible measurement results, after which they coincide witlrivial, this postulate in my opinion cannot even in principle
the conventional equations. So, the selective approach do&e derived dynamically by the deterministic Satirmer
not have real advantages for the study of the averaged evequation because of the intrinsic randomness of the measure-
lution (besides a significant computational gain in somement result. In other words, the measurement process cannot
case$’ 9. There is still no advantage even for the majority be described by the Schiimger equation alone because this
of experiments with individual quantum systerfeee ex- equation is designed for closed systems while a quantum
amples in Sec. )lif the averaging is done over a number of object under measurement is always an open sysesmn
repeated experiments, disregarding the results of individuahcluding the detectgy since the measurement information is
measurementémore exactly, when not more than one num-output to the outside world(The incompatibility between
ber is recorded as a result of each )iun quantum mechanics and “macrorealism” has been dis-

The principal advantage of the selective evolution ap-<cussed, e.g., in Ref. 83.
proach arises for continuous measurement of an individual Following the orthodoxCopenhageninterpretation, we
guantum system when the continuous detector odtfilitis ~ can regard collapse not as a real physical process but rather
recorded(or at least two numbers are recorded in each.run as a convenient formal tool to get correct experimental pre-
In this case the selective approach gives the possibility talictions. In my opinion this tool is still irreplaceabl(é we
make experimental predictions, unaccessible for the convereave aside the many-worlds interpretatf§fs) for the com-
tional approach. The proposals of such experiments witlplete description of the quantum realt@f course, in many
solid-state qubits have been discussed, for example, in Refases the collapse postulate is not necessary as, for example,
34 for a one-detector setup and in Ref. 42 for a two-detectofor the description of decoherence due to interaction with the
setup (the latter experiment seems to be realizable at thenvironment—this problem has been solved with great suc-
present-day level of solid-state technolpgy cess by the conventional approach.

In this case the density matrices calculated by the conven- Bayesian equations predict several quite counterintuitive
tional and Bayesian equations are significantly differentresults. For example, even for a qubit with an infinite barrier
However, they do not contradict each other but rather thdetween localized stateld,= 0, the continuous measurement
Bayesian-calculated density matrix is more accurate than thiey an ideal detector leads to a gradual “flow” of the wave
conventional counterpart. For example, there are no situdunction between the statéfor an initially coherent qubjt
tions when two approaches predict different pure states ofhe interpretation of this effect is rather difficult if we treat
the qubit—then it would be possible to prove experimentallythe wave function as objective reality; in contrast, there is no
that one of the approaches is wrong. Instead, in a typicgbroblem with the orthodox interpretation. Most importantly,
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