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We calculate the longitudinal conductivities of a two-dimensional noninteracting electron gas in a uniform
magnetic field and a lateral electric or magnetic periodic modulation in one spatial direction, in the quantum
regime. We consider the effects of the electron-impurity scattering anisotropy through the vertex corrections on
the Kubo formula, which are calculated with the Bethe-Salpeter equation, in the self-consistent Born approxi-
mation. We find that due to the scattering anisotropy the band conductivity increases, and the scattering
conductivities decrease and become anisotropic. Our results are in qualitative agreement with recent experi-
ments.
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[. INTRODUCTION quantum effects determined by the Landau quantization also
play a role in this regime. Théweakej oscillations of the

Magnetotransport properties of two-dimensional electrorresistivity componenp, which are observed when the cur-
gases(2DEG9 at semiconductor interfaces, subjected torent flowsparallel to the superlattice and have a phase op-
one-dimensional lateral superlattices defined by periodiposite to those op, , have been explained by the quantum
electrostatic or magnetostatic fields, have attracted increasimscillations in the density of statg®09).}* For stronger
interest during the last decade. Properties like the commenmagnetic fields, the presence of well-defined Landau bands
surability (Weis9 oscillations of the magnetoresistahce has been clearly identified also in the perpendicular
or the low-field positive magnetoresistahcare well resistancé? More recently, periodic magnetic fields with
understood and have been qualitatively explained botlextremely strong gradients of amplitudes up to 0.4 T and
by quantum-mechanica® and by classical transport periods of 500 nm have been obtained, and huge magnetore-
calculations’® These interesting effects occur at low tem- sistance oscillations have been detecfedresumably of a
peraturegabout 4 K or beloy, where the transport proper- quantum origin. Experiments on another class of unidirec-
ties are governed by random-impurity scattering. It is welltional (electrostatit superlattices, of short periods, have
known that in the high-mobility 2DEGs at semiconductor shown an anisotropy of the magnetoresistivity tensor which
interfaces the basic scattering mechanism is due to longzould be explained within a semiclassical theory by different
range Coulomb impurities, which lead predominantly totransport times in the directions perpendicular and parallel to
small-angle scattering of the electrons. In all the mentionedhe superlattice, and ascribed to the anisotropic character of
papers this aspect has, however, been neglected and ttie scattering eventé.
electron-impurity scattering has been treated within simpli- Previous quantum-mechanical calculations for modulated
fied, phenomenological models, related to a simplesystems have treated the electron-impurity self-energy as a
relaxation-time approximation. Such models are suitablesimplec number?15Strictly speaking, this is correct only
only for short-range §-potentia) impurities, which lead to for & impurities in the unmodulated system, whereas for
isotropic scattering, in contrast to the anisotropic scatteringnodulated systems even in the simple self-consistent Born
implied by realistic impurities. approximation and fors impurities a complicated self-

Only the most recent calculations, based on classical mesnergy operator results, which does neither commute with
chanics and Boltzmann equation, have proven that an adhe Hamiltonian of the impurity-free modulated system nor
equate treatment of scattering anisotropy is important for amith the Green-function operator of the impurity averaged
understanding of the experimental data. For instance, theystem. The assumption of@anumber self-energy may be
number and the amplitude of the resolved Weiss oscillationsufficient to explain certain aspects of the influence of a pe-
of the resistivity componen, , measured when the current riodic modulation on the magnetoresistivities qualitatively,
flows perpendicularto the superlatticéi.e., perpendicular to especially for a weak modulation. For a strong modulation,
the direction of translational invariangean be fitted only if  however, it cannot be justified and will lead to incorrect re-
a strongly anisotropic scattering is assumé¥Although in  sults. Moreover, to include the effect of strongly anisotropic
the regime of Weiss oscillations the magnetic fields are apimpurity scattering, which turned out to be important in the
parently weak enough to allow for classical calculations,classical calculations, we have to consider long-range impu-

0163-1829/2001/631)/11532212)/$15.00 63 115322-1 ©2001 The American Physical Society



MANOLESCU, GERHARDTS, SUHRKE, AND RSSLER PHYSICAL REVIEW B63 115322

rity potentials, which lead to important current vertex correc-peculiar anisotropies of the conductivity tensor in the pres-

tions and are not compatible withcenumber approximation ence of anisotropic impurity scattering.

for the self-energy. For isotropic electron-impurity scattering, the relaxation
In this paper we take the mentioned experimental infortime in Eg. (2.1) is the average flight time of an electron

mation as a motivation to perform a quantum-mechanicabetween two scattering eventss 75.. For anisotropic scat-

transport calculation with a more elaborated treatment of théering this has to be replaced by the transport or momentum

electron-impurity scattering, including the scattering anisotrelaxation time,r= r,,, which is given by

ropy. We shall consider only modulations of the 2DEG vary-

ing along one lateral direction, partly because this is a situ- 1 1

; : . . T dé
ation of considerable experimental relevance, but also since —=— =—W(0;kg)(1—cosh), (2.3
we expect in this situation especially strong anisotropy ef- T Tsc)-m 27

fects resulting from the interplay of anisotropic periodic
modulation and anisotropic impurity scattering. We use thevherew is the scattering amplitude for elastic scattering at
Kubo formalism, and we calculate the electron-impurity self-the Fermi edge from an initial statg to a final statek,
energy in the self-consistent Born approximati®CBA),  which depends only offk¢|=|k;|=kg and the angles be-
on the same footing with the vertex function, with a numeri-tweenk; andk;. For isotropic scatteringw(6;kg)=1 and
cal scheme based on Fourier expansions. For technical reag = 75c. In general, howevery, /75.>1, and this ratio in-
sons we describe the finite-range impurities by Gaussian pareases with increasing predominance of small-angle scatter-
tentials. After recalling the simplest and most importanting. This means that with increasing importance of forward
classical result$Sec. Il and Appendix B we describe our scattering, and fow.7>1, the conductivity componert,,
calculations(Sec. Ill and Appendix A and then we discuss and the scattering contribution ter,, should become
examples with electric and magnetic modulati¢Bec. IV).  smaller® whereasA oy, is expected to become larger, simi-
Finally we close with some general conclusig8ec. \). lar to o.

Corresponding anisotropies are expected for the resistivity

Il. SIMPLE CLASSICAL RESULTS tensor

We sketch briefly the simplest results concerning the ef-
fect of the scattering anisotropy in transport. For the homo- __ Tyyixxyn 24
. Pxx(yy,xy) 2 - (2.9
geneous, unmodulated system, the best known expressions OOyt gy
for the conductivities of the 2DEG in a magnetic field are the

classical Drude formulas, For the homogeneous system, the classical Drude resistivity
tensor has diagonal components which are independent of
0o I the magnetic field,p,,=pyy=1/og, and thus alwaysie-
1+ ()2’ Txy= Tyx= QT creasewith increasing importance of forward scattering. A
(2.1  Simple argument for this result is that the dominant contri-
bution to the electrical resistance comes from the electron
ogo=n€’r/m being the zero-field conductivity, and.  backscattering while the forward scattering gives no contri-
=eBy/m the cyclotron frequency in the externally applied bution. Obviously, for finite-range impurities the scattering
perpendicular magnetic fiely. nis the electron density;  anisotropy favorizes the forward-scattering events. For a sys-
is the relaxation time, anehis the conduction-band effective tem with periodic modulation inx direction, the classical
mass. Forw.m>1 the diagonal conductivities are propor- calculationé® yield a modulation-induced contributiakp,,
tional to the scattering rater,y,oy,~ 1/7, resulting from  which, in contrast to I#,, increaseswith increasing forward
transitions of electrons between closed cyclotron orbits, mescattering.
diated by electron-impurity scattering. Those contributions to It has also been emphasized in Refs. 7 and 9 that, even for
the conductivity will be called scattering contributions in the isotropic scattering, the backscattering term in Boltzmann’'s
following. In the presence of @veak modulation inx direc-  equation does not vanish as in homogeneous systems, but
tion, the guiding centers of the cyclotron orbits perform arather is important to guarantee particle conservation, i.e.,
drift motion in y direction. This drift leads to an additional the equation of continuity. This backscattering term, which is
contribution tooy,, which in the simplest approximation the classical analog of the vertex corrections in the quantum
can be written as the average of the square of the drift vetreatment, is necessary to obtain the corfectasilocal B,
locities taken over all drifting orbits at the Fermi eneify, dependence of the modulation-induced resistance correction
for large magnetic fields, which i§p,,/po~ (Bo)? for elec-
tric and Apyy/po~(Bo)° for pure magnetic modulatioh.
The simplistic approximation of Eq2.2) is not in accord
with the equation of continuity and yields asymptotic results
Being due to open orbits with a finite velocity, the which are by a factor proportional toBf) 2 too small®
modulation-induced contributioA ., is, similar too, pro-  These deficiencies become importanBjf becomes so large
portional to the scattering time itself and not to its inverse that the cyclotron diameterR, of electrons at the Fermi
as oy,. These differentr dependences lead us to expectlevel becomes smaller than the modulation peadd

Oxx= Oyy=

e’nr

E—FGZ). (2.2

Aoyy= y
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Ill. KUBO FORMULA AND SELF-CONSISTENT
EQUATIONS S

The Hamiltonian of an electron situated in thg,Y()
plane, in the presence of modulating magnetic and electric

fields is
1 l>’\/v >>/\/\/ + \:\/
H=ﬁ[p+eA(x)]2+V(x). (3.1 >

FIG. 1. Diagrams for the generalized SCBA: Dydé&s. (3.2
The electric and magnetic modulations are defined by a peand(3.3)] and Bethe-SalpetdEgs. (3.5 and(3.6)] equations.
riodic potential, V(x)=V(x+a), and by a magnetic field
with periodiczcomponenB(x) =B(x+a), respectively. We dAE)
always assume a nonvanishing average vBy# 0 of B(x), Taa™ J d [_ "dE
and we shall denote by=(%/eB,)? the corresponding

?

00l E),

magnetic length. For the vector potential we use the Landau e%h L o
gaugeA(x) = (0,/$B(x')dx’). In absence of the modulation TaalE)= 5 — 1~ THval2F, (E)=F, " (E)

the eigenstates are the well-known Landau statég) [see Y

Eqg. (Al)] with center coordinateX,= — Izpy/ﬁ, wherep, is -F, (B)]}, (3.4

the conserved canonical momentum. The modulation lifts the . . .

: ! . wherea=Xx,y, L, andL, are the linear dimensions of the
degeneracy with respect %, which, however, remains a 2DEG. 7 is the Iéermi fJnction is the velocit rator
good quantum number due to the translational invariance i " } Vo IS the velocily operator,
the y direction. The energy spectrum becomes structured i@d spin degeneracy is assumed. The vertex functigfis
periodic bands,En,X0=En,X0+a, with the corresponding E(G‘TuaG”') with o=+ are given by the equations
modified eigenstatg$1X,). Such modulation-induced bands , , , ,
have recently been calculated for arbitrarily strong pure anda’ (E)=G7(E)v,G” (E)+ G (E)I[F;” (E)]G” (E),
mixed electric and magnetic modulations, and the energy (3.5
spectra and eigenstates have been related to the different
types of corresponding classical orbifsin the following, , ,
we will have to distinguish between two relevant basis sets  [Fa” (E)]=”if dRu(r=R)FZ” (E)u(r—R), (3.6)
of the Hilbert space, theandau basig|nX,)} of eigenstates _ o . _
of the homogeneous 2DEG, and thedulated basi§|nXo)} which are similar to Eqs(3.2) and (3.3). Equation(3.5) is
of eigenstates of the modulated 2DEG. the Bethe-Salpeter equation for the vertex function, and Eq.

We apply the standard procedure of averaging the re¢3.6) defines the vertex correctiohEFZ‘T'(E)] in the SCBA.
tarded(advanceyl Green’s functions over all the configura- A diagrammatic formulation of the SCBA is shown in Fig. 1.
tions of randomly distributed impuritieggiz(éi>imp, It is sufficient for calculations of the conduc_:tivi_ty if interfer-_
where @i)‘l(E)=E—H—Vimpii0+ andVp, is the po- ence effects such as weak or strong localization are not im-

tential describing a given impurity configuration. This leads,Portant. I ' I or the i _
in the simplest consistent approximation, to the coupled AS @ Simple and easily tractable model for the impurity

equations potential, we use a Gaussian model,
u ~
(G*) YE)=E-H-3*(E), (3.2 u(r)=—5e 10", () =upe” @0, (3.7
o

whereu is the Fourier transform. Within the SCBA, the scat-
tering effect of randomly distributed impurities of density

is described by only two parameters, an enerﬁﬁ
Equation (3.2 defines the self-energy operat®*(E)  =n,uim/#2 which determines.=2#4/T in Eq. (2.3), and
=A(E)¥iI'(E)/2. The spectral operatoA(E)=[G™ (E) the impurity ranger,. In the presence of a strong perpen-
—G"(E)]/(2mi) and I'(E) are positive (semijdefinite  dicular magnetic field, these parameters enter the equations
Hermityan operators. The DOS isD(E)—Dyhw,/  for the Green’s functions and the conductivities via the en-
(ma)3,[3dXo(NXo|G(E)[NXy), where Do=mi(w#?).  ergyTo=\Tohw.=nuy/I=7y\Bo, which determines the
Equation (3.3) is the self-consistent Born-approximation scattering-induced broadening of the spectrum, and the
(SCBA), the self-consistent approximation of the lowest or-length ratiory/I, which determines the anisotropy of the
der in the impurity concentration;, u being the electron- impurity scattering® This model allows a direct comparison

Ei(E)=nifdRu(r—R)Gi(E)u(r—R). (3.3

impurity potential. between the results for pointliker {=0) and finite-range
The diagonal conductivities are calculated from the Kubo(r,#0) impurities. Major simplifications of the transport
formulal®181® calculation occur only for the unmodulated system and
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ro=0. A direct inspection of Eq4.3.2—(3.6) shows that in  Weiss oscillations, and both conductivity contributions may
this case the self-energy operator becomes a sifeplergy- become comparable for strong fields, in the regime of the
dependentc number, and the current vertex corrections, Eq.Shubnikov—de Haa&SdH) oscillations. Also, the scattering

(3.6), vanish®18 conductivities are almost the same in the modulated and un-
modulated direction$
A. The usual “c-number approximation” For largeB,, the estimates given in Appendix B yield
band band

. . ~ (By) 2 for pure electric andr22"%~ (B,) ~* for pure
Although this is no longer true in the presence of a modu—;g net(ic O)modﬁla‘:ion leadin t&&y /( f’v)(B )02 pand
lation, even if S-impurities are assumed, the ansatz that the g ’ g Pxx’Po 0

~ 0 i
self-energy is stil a numberi.e., independen of all the /oot BOCEEN. S0 et e e 0
quantum numbejshas been used quite oftéh?1>2°A jus- 9 b 9

L o summarized in Sec. Il. This confirms our expectation, that
tification of thec-number approximatiofCNA) may be that, . : . -

; T X N - consideration of vertex corrections is important, not only
besides its simplicity, it is exa¢tor § impurities in the limit

of zero modulation and, therefore, may be reasonable alsfrom a quantitative point of view, in order to include the

Sifect of anisotropic scattering, but also from a qualitative
for sufficiently weak modulations. This ansatz is sufficient to ~ . . G . .
ensure the v):';mishing of the vertex corrections, but, on th oint of view, to avoid violation qf the equation of continu-
other hand, it captures essential effects of the collisions an y- The neglect of vertex correction, e.g., in the CNA, leads

of the density of statesMoreover, it is regarded as satisfac- 0 uncontrolled andat least for largeB,) unacceptable re-

. > A . sults, even for isotropic scatteriigrhe deficiencies of the
tory if one is interested mainly in the influence of the system o .

. ; . CNA also became clear from a quantitative comparison be-
geometry and not of impurity scattering on the transportt

. . &~ tween experimental results and quantum-mechanical calcula-
properties. In the CNA the Green-function operator is dlag'tions which were nonperturbative with respect to the periodic
onal in the modulated basis,[nXy|G7(E)|n’Xq] P P P

. - L 202 modulation potential® In that work it turned out to be im-

— 5”~’;)’G””(.X°’E)’ such that the longitudinal conductivities possible to fit the magnitude of the experimental resistance
may be written as and the dominance of scattering conductivity over band con-
he? fadX ductivity (indicated by resistanceninima at the flat band

€ [2d% , conditions at the same time.
Uaa(E):? 4 2 |(nXO|Ua|n XO)l2 3
71<Jo @& nn
B. Beyond the CNA

The aim of the present paper is to go beyond the CNA.
In this expression the essential difference betwegpand Indeed, there exists no justification of the CNA within the
ayy, generated only by the anisotropy of the modulation, isformalism of the SCBA. Even if wassumethat the Green
determined by the diagonah&n’) contribution which ex-  operator(3.2) is diagonal, say in the modulated basis, and
ists only for a=y, since iXplv,nXy)=0. This intra- insert that into Eq(3.3), the evaluation of the kerndkee
Landau-band contribution, also known asband Appendix A yields a nondiagonal self-energy, and thus in
conductivity?? is related to the net motion of electrons in the the next iteration step a nondiagonal Green operator. One
direction perpendicular to the electric field and/or the gradifinds that there exists no basis in which the Hamiltonian of
ent of the magnetic field defining the modulation, with thethe modulated systenfwithout disordey, the impurity-
group velocity averaged Green function, and the self-energy operator are
simultaneously diagonal, since these three operators do all
1 dEn,xo not commute with each other. For obtaining numerical solu-
Mos dX. (3.9 tions of the self-consistent equatiof®2) and(3.3) and(3.5)
¢ 0 and (3.6) we find it convenient to express the matrix ele-
If the scattering broadeningj, is much smaller than the ments of all the operators in the Landau basis, since the
modulation-induced bandwidth of the Landau levels, and ifkernels describing the impurity averaging in the SCBA are
this in turn is so small that adjacent Landau bands do noihdependent of the modulation in this case.
overlap, simple estimates of the dependence of the different Then, for a given modulation model and for fixed values
conductivity contributions o’y and the DOS at the Fermi of energyE and average magnetic fiel, the matrix ele-
level, D(Eg), are available. As shown in Appendix B, the ments of the Green operator{m,Xo|G?(E)|n,X{)
band conductivity diverges foFSHO like [ToD(Eg)] 2 = b‘xéyxoGﬁ]’n(Xo,E) depend on two discref¢.anday quan-
(providedEg is inside a Landau band and not too close to aym numbers and a quasicontinuous ¢oenter coordinate
band edge This explains—in the quantum treatment—the Equation(3.3) provides a linear relation between these and
Weiss oscillations, with minima wheRg intersects a flat the self-energy matrix elements, which have the same struc-
band? The inter-Landau-band contribution to E@.8) (N ture, mediated by the SCBA kernel, which depends on four
#n'), also known ascattering conductivityin general be-  discrete indices and a single continuous one, sincexge
haves like[ T',D(Eg)]?, and entirely determinas,,. Within  relation is of a convolution typésee Appendix A Thus, it is
the CNA, for a sufficiently clean systefamallI'j), the scat-  convenient to expand th, dependence into a Fourier se-
tering conductivityoS¢?'is much smaller than the band con- ries. Moreover, we restrict our consideration to modulation
ductivity at weak magnetic fields, i.e., in the regime of themodels of defined parity, which allows to reduce the number

XIM G, (Xo,E)IMG,, (X0,E). (3.8

(nX0|vy|nX0):—
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of Fourier coefficients by a factor of two. Equationi8.2)  bandwidth, the periodic matrix elemen@,(Xo,E) and
a’ld (3.3 provide a nonlln%ar integral - equation for F77 (Xo,E) as functions ofX, exhibit large polelike struc-
Ginn(Xo,E) or, equivalently, Xy, y(Xo,E). At finite tem- y roq qyhich become poles foF,—0) if E falls into the
perature, _the solunqns are needed in a finite interval aroun pectrumE,, . of the Landau bandsi=n or m=n’. Ap-

the chemical potential, which has to be calculated for given 7o . . . .
average electron density. Having calculated these solutiong,""renﬂ.y this structure requires the mclusmn of many Fourier
we can solve the linear integral equatidBs5) and (3.6) for coefﬂments. But, due to _the Gaussian factors _of the Landau
the vertex functions, which have a similar matrix structure aé/vzave funcpons, the matrlx gle_ments (_)f the ccglhsmn operator
the Green operator and are needed to calculate the conduc- decay like Gaussians with increasif,— Xo|, Eq. (A3),
tivity components. It is evident that the requirements on stor@nd thus the higher-order Fourier amplitudes have a vanish-
age capacity and computational time increase rapidly witing (also Gaussian contribution to X7,(Xo,E) and

the number of Landau levels and of Fourier coefficients|[F " (X,,E)], respectively. This can be directly seen on
which have to be taken into account. Due to the limitedthe analytical results available fap=0, Egs.(A10) and
computer facilities, we will therefore have to use somewha{A7). For r,#0 the Fourier coefficients are calculated by
unrealistic model assumptions, which allow us to restrictintegrating the periodic functions, and in order to keep a
e.g., the number of necessary Fourier coefficients. We willeasonable number of points in the integrals we restricted
also restrict the investigation of scattering-anisotropy effectgurselves nevertheless to a relatively large disorder broaden-
to the consideration of only two values of the impurity rangeing, i.e.,I", smaller, but comparable to the width of the Lan-
ro. The results of the CNA can be found by taking=0  dau bands. Therefore, we do not attempt to give necessarily
and, simultaneously, reducing all the Fourier series to theealistic results, but rather to identify and to understand the
first term withp=0 (which is the average value, see Appen-effects of the anisotropic scattering qualitatively.

dix A). Note that the latter prescription is an additional ap-
proximation which has no justification, but allows the com-
parison of the correct results with those of the CNA.

We shall consider the effects of the anisotropic collisions We start with an example of a pure electric modulation
on the scattering and band contributions to the diagonal com-B(x) =B;], determined by the electrostatic potentié]x)
ponents of theconductivity tensarin order to illustrate the =U cos(2mx/a), with U=0.8 meV anca=400 nm. The ma-
results for theresistivity tensarEq. (2.4), we shall simplify  terial parameters are for GaAm=0.067n,, the electron
the Hall conductivity by completely neglecting the impurity density (1g=1.93<10" cm 2, Eg(By=0)=6.91 meV)
effects on it. Of course, quantum Hall plateaus are thus igehosen such thatB,=8 T, v being the filling factor, and
nored, although they are seen in the experiments on moduve assume spin degeneracy. We fix the temperature to 1 K,
lated systems for larger magnetic fields. However, we asand the disorder parametgr=0.5 meV T %2 corresponding
sume that the structure of the longitudinal resistivities isto a mobility u=2.2x10° cn?/Vs atBy=0 in CNA and to
mostly determined by the periodic Landau bands for suffi-an increasingly larger mobility with growing anisotropy of
ciently low magnetic fields, and not by localization effects scattering as the ratie,, / 7. increases.
which are beyond the SCBA. Especially the anisotropy ef- In Fig. 2 we showD(E) and a typical energy spectrum,
fects corresponding to the band conductivity are expected taith B,=0.81 T so that the Fermi level is in the Landau
result from the diagonal components of the conductivity tenbandwidthn=4. We compare the CNA with the results of
sor (a corresponding diagonal contribution in the modulatedthe calculations with a matrix self-energy fog=0 (8 im-
basis does not exist for the Hall conductivityVith these  purities and for a finiter,. Broadened van Hove singulari-
assumptions, the Hall conductivity is given by ties(VHS'’s) are resolved in all cases. The small maximum at
B,=0.9 T is an artifact due to the elliptic shape of the DOS,
typical for the SCBA: unlike in the CNA, in the other calcu-

A. Electric modulation

2ite? fa dX,
Oxy= |2 jo “a E f(Enxo) lations the self-energy depends on the center coordinate, and
. n#n since the disorder broadening is comparable to the band-
(nXolvxn’"Xo) (N Xolvy|NXo) width, the two high-DOS peaks due to the band edges may
X (3.10  partially overlap, yielding extra maxima in between. Such
(Enx, = En’Xo) details are, however, not important for the conductivities.
Results for the conductivities are shown in Fig. 3, again in
V. RESULTS the CNA, and also with a matrix self-energncluding the

vertex corrections for two choices of ;. Note that the Lan-

For computational reasons we have chosen our moduladau bands do not overlap in the present case. Thus, in the
tion parameters such that we can obtain convergent resulBNA the scattering and band conductivities are given by the
by truncating the Landau basis to the first 10—30 wave funcestimates Eq9B7) and(B11) in Appendix B. Numerically,
tions, and the Fourier series with respectdg to the first ~we obtaino,,~ay, in the CNA, which tells thatin this
10-20 terms. We avoid the necessity of including higherapproximationand for the chosen values of modulation am-
Fourier coefficients by keeping a relatively weak modulationplitude and(relatively large disorder broadening, the band
amplitude, and also by choosimg shorter, but comparable conductivity is very small. The first flat-band conditi¢see
tol. For a disorder broadening much smaller than the typicaRAppendix B at Er is obtained forBy=~0.5 T, where the
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FIG. 2. (a) Density of states at the Fermi level for the electric FIG. 3. Conductivities for the electric modulation.

modulation, Dy=m/##%2. (b) The energy spectrum forB,

=0.81 T. The dashed horizontal line shows the Fermi level. A . . .
in its center and an uncertainty in energy due to disorder

scattering conductivities have maxima. When the vertex corbroadening translates into a much smaller range~A X
rections are included, even fop=0, the situation com- of available fina_l states after scattering as compared to the
pletely changes: with increasing magnetic field the two conPand edges.. This in turn leads to a stronger increase in 'fqr—
ductivities have opposite evolutions. The pure scatteringvard scattering and, thus, to the enhanced band conductivity
conductivity o, is drastically reduced, and the band conduc-n the middle of a band. Obviously, this effect is stronger for
tivity leads to a dramatic increase of,,. While the double- ~ finite-range impurities than far,=0. The decomposition of
peak structure of the DOS is no longer resolvedig, it ~ yy INtO Scattering and band _contrlbu'qon_s is, hovyev_er, com-
may survive inoy, . pl|cated by the vertex corrections, whlgh in fa(_:t with increas-

We can interpret these results in physical terms, taking"d modulation amplitude mix them increasingly together.
into account that the anisotropy of the modulation results inherefore the behavior of the scattering contributior{g
anisotropic electron states: unbound propagation irytie ~ cannot be very clearly identified and understood with these
rection and confined cyclotronic motion in thedirection ~ SimPple interpretations. o
within the cyclotron diameter R,=2ly2n+1. For low We found numerically that for the results shown in Figs. 3

; ; ++

magnetic fields such thatR>a the effect of the modula- and 4, the vertex corrections correspondind[té,, "] and
tion on the scattering events is averaged out and the scattef-F, | are negligible. Fors impurities one can show ana-
ing remains isotropic for,=0. This changes for R,<a, lytically that they vanish exactly for=x (see Appendix A
when the electrons propagate along relatively narrow charln general, their small values can be explained with the help
nels in they direction. Thedecreaseof oy, with respect to  of the Ward identities, which relat¢ F7] to the commuta-
the CNA, can be understood just like the effect of the scattors of the self-energy with the position operatt3he ma-
tering anisotropy on the longitudinécattering conductivi-  trix elements of the vertex corrections become determined by
ties in the absence of the modulation, but in the presence dfifferences between off-diagonal matrix elements of the self-
the magnetic field® At the same time, théncreaseof the  energy, which are small unless the Landau-level mixing is
band conductivity contributing te,, can be understood in Vvery strong. So practically all the anisotropy effects obtained
analogy to the effect of the scattering anisotropy on the confor the electric modulation are determined By, *].
ductivity of quasifree electrons, with no modulation and no In general, the resistivities reproduce the structure of the
magnetic field. A Landau band has the strongest dispersioconductivities, according to EqR.4), where the denominator
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0.12 . . . . . . . . . predictions based on Boltzmann’s equation: the neglect of
backscattering(i.e., vertex corrections, as in the CNA
0.10 which violates the equation of continuity, results in too small
values forp,, and becomes increasingly important with in-
o 00 creasingBy.
@
£ 006
& B. Magnetic modulation
0.04 In the following examples we consider a pure magnetic
_ modulation[ V(x)=0], defined by a periodic magnetic field
0.02 1 of the formB(x) = B,y + B, cos(2mx/a). We shall discuss two
cases, first with a high and then with a low band conductiv-

05 06 07 08 09 10 11 12 13 14 15 ity, in order to separate the anisotropy effects, and also to
Bo(M compare with the available experimental results.

FIG. 4. Resistivities for the electric modulation. 1. The regime of high band conductivity

is in fact given by the square of the Hall conductivipy,, is We choose the modulation parameters comparable to
9 y q X those in the experiment by Y&t al. on strongly magnetically

qualitatively similar too,, and p,, to oy, respectively. 3 . -
Qualitatively, the results confirm the expectations, which Wemodulated 2DEG? The experiment shows huge oscillations

deduced from the analysis of the classical and the CNA re(-;feg::e f{;]%gget?r:etsr:ztl;/r;izixmtcrji;?;u?es ?&Lh%;\ﬁézget&?géf
sults: anisotropic scattering reduces the transport scatterinlggosi,[ive maonetoresistance and thatgof distinct SdH peaks
rate and thus reduces the scattering conducti@hd conse- mag . . P '
. : The positive magnetoresistance effect is also huge and cov-
quently o,,) and increases the band conductivignd thus ; o )

) For[0<# this should enhan see Fig. 4 and ers the Weiss oscillations. In general, for both electric and
Ic:r_yy. bOtI @e Fi (l;ﬁxx’ deul g.f magnetic modulations, the positive magnetoresistance and
_'g- tS(ha)’ tu OWe}f]Pyy’ seet ig. 8. ?hpa(_[,ll\TK ar, (I)t”Ob the Weiss oscillations have been successfully explained by
=0, the strong enhancement g over the result 0D~ the classical transport calculations, where the classical ana-

served at largeB, values in Fig. 4, also agrees with the |o4 of the hand conductivity is in fact calculatéd In the
intermediate regime mentioned here, the quantum effects be-

04 ' ' ' ' ' ' come important. The modulated magnetic field is strong and
To=0,T=1K ----- . . . .
-@ AN To=100m T= 1K . generates Landau bands that partially overlap, yielding oscil-
0a b Y To=10nm, T=0K 7= lations of the DOS at the Fermi level. We ascribe the huge
N\ ' oscillations observed in the experiment to the resulting oscil-
< - j ' . lations of the band conductivity.
£ o2l \ N In our calculations we taka=400 nm andB;=0.23 T
X P for the modulation, ang/=0.3 meV T 2 for the scattering-
EZER AN | VT o energy parameter. In Fig. 5 we show the calculated resistiv-
o1 f i \ ‘\\— ites with B, starting at the end of the positive-
| Y e ' ) magnetoresistance regime. The vertex corrections are
""""""""" : included, both for zero and finite impurity range. The contri-
%_35 040 045 050 o055 o060 o065 070 butlor_1 of the scattering conductivity is negligibledr,, and
By(T) thus in Pxx [see Eq.(2:4)], because the Landag .bands are
much wider than the disorder broadening The filling fac-
0.007 ' ' ' R ' tor varies between 21 and 11.4, and the number of Landau
P i bands intersected by the Fermi level, for a fixggl varies
between four and two.
0005 - [ . In Fig. 6@ we have selected three energy spectra with a
& SN / ; VHS at the Fermi level, corresponding to a Landau band
2 0004 1 U O L ' i edge. The singularities are well resolved(Eg), Fig. 6b).
Soooaft’ i/ % “'\‘ [ A The profile of D(Eg) is very well reproduced in both resis-
o N Loy T ' tivities calculated at zero temperature, Figp%, has minima
0.002 1 1 T andp,, has maxima wher®(Eg) has maxima. This clearly
0001 b ' A tells thatp,, is determined by the band conductivity apg,
’ N DN \ by the scattering conductivity. For a finite temperature, like 1
0 1 1 1 1 1 IIAGSE

K, the VHS are smeared and the resistivities oscillate accord-

ing to the number of the Landau bands at the Fermi level.

For instance, for 0.442 ¥B,<0.473 TthreeLandau bands
FIG. 5. Resistivities for the magnetic modulation in the regimeare intersected by the Fermi level, while for 0.473 B,

of high band conductivity. <0.504 T four bands, Fig. @), such thatp,, has a maxi-

035 040 045 050 055 0.60 065 0.70
Bo(M
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(@) one should also adjusy, e.g., by imposing a fixed zero-
' ' magnetic-field resistance. This is given by the transport time
T, EQ. (2.3), which can be calculated analytically for our

] Gaussian impurity model.To keeg, fixed, we should com-
/ pare the results for,=10 nm andy=0.3 meV T ¥? with

T
By=0442T

AN
s[ O\ those forr,=0 andy~0.05 meV T 2. Of course, the real-
4 \\ istic scatterers have a long range, with Coulomb tails deter-
' mined by the spacer width, and may be not too well approxi-
mated by Gaussians.

Experimental results in this regime exist only on the re-
sistivity componenp,,, not onp,,, to our knowledge. We
predict that, as indicated by our calculatiopg, should be at
least one order of magnitude smaller thap and should
oscillate in a similar manner, but with minima and maxima
interchanged. Unlike the Weiss oscillations, which are deter-
mined by the geometric commensurability of the cyclotron
diameter with the modulation peridd, these novel
modulation-induced oscillations occur for Fermi energies be-
low the lowest commensurabilit{flat-band condition, and

are essentially a DOS effect.

L
7

Energy (meV)

2. The regime of low band conductivity

Measurements of the magnetoresistance in botimdy
directions in the quantum regime have been recently per-
4 formed on magnetically modulated 2DEGs in InAs
heterostructure$>** The electron density is typically one or-
der of magnitude higher than in GaAs systems, and thus the
T filling factors are much larger. The SdH peaks observed in
pxx are about 20 times higher thany, . At the same time,
with decreasing the uniform fiel®8,, the SdH minima at
even filling factors are replaced by resistivity maxima, while

J the minima shift to odd filling factors. It has been convinc-
0 L L L L L L ingly demonstrated that these minima are not due to spin
035 040 045 050 055 060 065 070 splitting, which in fact is not resolved in this case. A similar
Bo(M even-odd shift has been observed in electrically modulated

FIG. 6. (a) Energy spectra for the magnetic modulation with systems, and explained by the behavior of the scattering con-

GaAs parameters, corresponding to Fig(l§.The density of states ductivity_when two Lar_1dau bands partially OYe”aP- T_he
at the Fermi level for,=10 nm. overlapping VHS of adjacent Landau bands yield maxima

instead of SdH minima, while minima occur f& in the

mum in the first intervalow D(Eg)] and a minimum in the  middle of a bandlower DOS.** We therefore believe that,
second onghigh D(Eg)], while p, has the opposite evolu- similarly, also in the experiment of Heisenbeegal,*>**
tion. only the scattering conductivities are observed, and thus the

Just like in the case of the electric modulation, the effectig difference betweep,, and p,, is not due to the band
of the scattering anisotropy and of the vertex corrections is teonductivity, but due to an anisotropy of the scattering con-
increase the band conductivity and to decrease the scatteritigoutions top,, andp,, .
contributions. Here, such effects are not so important for We use the parameters of InAs=0.023m,, an electron
=0 due to the relatively low average magnetic field. There-density such thatBy=75 T, and spin degeneracy. For the
fore, the DOS-induced oscillations of the resistivities can bemagnetic modulation we taka=300 nm andB;=0.1T.
qualitatively explained even in the CNot shown in Fig. We calculate the resistivities in the regime of the SdH oscil-
5; compare the estimate for the band conductivity in the casktions for impurity parameters suitable to obtain dominant
of overlapping bands, EqB12) in Appendix B|, and the contributions from the scattering conductivitieg=5 nm
oscillations can be amplified by reducing the disorder paramand two values for the disorder broadeningy
eter y. Of course, quantitative agreement with the experi-=5 meV T %2 and y=6 meV T 2 The resistivities are
ment cannot be expected in our calculations, where the dishown in Fig. 7. AtT=4.2 K, the thermal energigT is
order parameters are chosen according to computationatuch smaller than the width of the Landau bands. A refer-
possibilities rather than to experimental requirements. Thence energy spectrum is displayed in Fig. 8. In the explored
model of Gaussian impurities involves two parametegs, interval of By values, the cyclotron diameter of the states at
and y~ +/n;u,. For a direct comparison between the theoretthe Fermi level varies betwees2 anda/3, such that the
ical and the experimental results, for different choicespf vertex corrections are very strong.

D(E;)/D,
M)
T
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bigger than those plotted in Fig. 7. Our results for the mag-
6 N netic modulation thus show characteristic similarities with
L the experimental results of Heisenbertgal. We are not able

Yo to offer a simple argument that could explain the strong an-
isotropy of the scattering conductivities obtained from the
' numerical calculations quantitatively. However, we attribute
this anisotropy to both the anisotropic electronic states and
the anisotropic impurity scattering. Of course, strong
anisotropies can be understood qualitatively in the physical
picture of quasiclassical orbits with a relaxation of the rigid
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energy-versusc, dispersion due to disorder broadenifsge

the discussion in Sec. IV A of the enhancement of the band

conductivity in the middle of a Landau bandScattering

processes that lead to an effective motion in ytairection,

/ and thus contribute torf,?“, are possible with arbitrarily

'3.4" - 36 ‘3'.8 small changes of the center coordinXig and are favored if

forward scattering predominates. On the other hand, elastic

scattering processes leading to a substantial effective motion

FIG. 7. Resistivities for the magnetic modulation in the regimein x direction require a finitélarge) change of thex, coor-

of low band conductivity. dinate, i.e., a scattering by a large angle. Such processes, and

consequently their contributions 65", are suppressed by

The contribution of the band conductivity is seen as apredominant forward scattering, and foR2<a they be-

central maximum in each of the first three SdH peaks,of =~ come even more improbable, since they require a tunneling

located in 2.5 KB,<3.15 T. With increasind®, these cen- through an energy barrier. These aspects have to be better

tral structures disappear, apparently because the effectiv@arified by future analytical calculations.

disorder broadening', increases. Indeed, by increasing the An analogous set of experimental results has been ob-

parametery the mentioned central maxima decrease, and a&ainﬁg for an electric modulation of a very short peri@@

the same time the lateral Shou|dersmt(, as well aspyy’ nm). The I'eSIStIVIty tensor is anlsotroplc, the resistance in

increase. the modulated direction being up to five times bigger than in
This behavior clearly shows that the scattering conductivihe uniform direction. The amplitudes of the Shubnikov—de

ity is dominant here. The anisotropy of the scattering conHaas peaks are well represented by Dingle plots, which are

ductivities, i.e.,0.<0yy, OF px pyy, is an effeciualita- specific to .unmodulatgdjomogeneoussystems, where only

tively determined by the vertex corrections, and not by thehe scattering conductivity exists. The results suggest that the

band conductivity. We have already mentioned such an efoand conductivity plays no role in these data, and thus the

fect in the discussion of Figs. 3 and 4, where it was lesdesistance anisotropy is determined by the scattering anisot-

pronounced and combined with the presence of a higheioPy, as we find in our present calculations.

band conductivity, but visible even fa$ impurities. This

type of anisotropy, of the scattering conductivities, cannot be

obtained in the CNA. In that approximation agam~ o V. CONCLUSIONS AND FINAL REMARKS

(Or py~ , and unlike in the example of the electric . . .

modﬁij(l)éltig%?)the CNA resistivities becom% here several times Wwe have S*.‘OWT‘ with numerlcal cf’;llculatlons that for

Sstrong magnetic fields the anisotropic character of the

Pyy (Ve?)

electron-impurity scattering has both quantitative and quali-
%0 — ] tative effects on the resistivity tensor of modulated systems.
- Our magnetotransport calculation is based on a consistent
O —— - . : . . :
- evaluation of the disorder broadening of the single-particle
— 200 ] Green functiongand thereby the density of statesd of the
< g
% Kubo formulas for the conductivity tensor. Formally, the an-
= 0 ] isotropy effects enter through vertex corrections, which are
2 e calculated from the Bethe-Salpeténtegra) equations. In
8 qop ] contrast to homogeneous systems, for modulated systems
these anisotropy effects are important even for short-range
50 F 7 (5-potentia) impurities, if the average magnetic field is so
strong that the cyclotron diameter of the electrons at the
%5 ; 5 3 . 5 é Fermi level is smaller than the modulation period. Of course,
KX, such effects become even much more important for impuri-
ties of finite range.
FIG. 8. An energy spectrum for the magnetic modulation with ~ The main results of including the anisotropy effegtsr-
InAs parameters, corresponding to Fig. 7, wigh=3 T. tex correctiongare as follows.
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(1) The band conductivity increases, just like the conduc-qualitatively new effects in the resistivities.
tivity of a homogeneous 2DEG for zero magnetic field
(which is inversely proportional to the disorder-scattering ACKNOWLEDGMENTS
rate. D
(2) The scattering conductivities decrease, just like the A.M. has been supported by UniversiRegensburg, un-

— — .~ _der Graduiertenkolleg, “Komplexita in Festkapern”
angltudmal .cor?duct|V|'t|es of a hompgeneous 2D.EG n a(GK176). Useful discussions with David Heisenberg, Dieter
high magnetic fieldwhich are proportional to the disorder-

) Weiss, and Bernard Etienne are also acknowledged.
scattering rate

(3) The scattering conductivity in the direction of the
modulation becomes lower than that in the direction perpen-
dicular to the modulation. In the numerical calculation we find it most convenient to

The comparison with the available experimental resultg;se the Landau basis,
suggests that the scattering anisotropy is important not only
in the classical regiméow By),*%but also in the quantum  (X,y|nXp)=exp(—iXoy/1?) ¢o[ (x—X)/11/(L,HY2, (A1)

case(high Bo). This is seen, in both regimes, in the bandwith n=0,1,2 ... theorbital (oscillatop quantum number

i emta oty bonmanil toene o2l (megenL, the quasconinuote cener
P d lering conductivity. EXperir ) coordinate. Equation§3.3) and (3.6) have the same struc-
for both p,, andp,,, in a unidirectional modulation for high P .
XX vy ; 3,24 : ture, which in matrix form reads

magnetic fields are, however, rarely availabté>2*but still
our results agree qualitatively with these experiments. 5

The numerical calculations of this work require the solu- Anr(Xo)= > L imnrm (X0, X0)Brme (Xg),  (A2)
tion of the non linear Dyson equation for the Green operator n'm’Xg

and of the linear Bethe-Salpeter equation for the vertex opa being eitherS, or I[F], andB being eitheiG or F. Due to
erators, each of which depends on two discrétanday the translational invariance along all these operators are

quantum ”“’T‘bers .a?”d one quasu;ontmuo)ig) (quantum diagonal inXy and, similar to the energy spectrlfy x , the
number, and in addition on the continuous parameters ener _ o . 0
o dependence is periodic with the modulation peréodn

E andB,. To make this complex problem tractable with our he Landau basis th el  th llisi
numerical capabilities, we had to make rather restrictive ast'e -andau basis the matrix elements of the callision opera-

sumptions for the model parameters. In particular, we asor depend only on the difference of the center coordinates,
sumed a relatively large impurity broadening to ensure a

rapid convergence of the Fourier expansions. Therefore, the Tﬁm,n/m/(xo—xé):nif dR(nXeu(r—R)[n"Xg)

results shown in this paper are based on a few examples

rather than on a complete insight into the structure of the x(m’Xglu(r —R)|mXo), (A3)
vertex corrections and a systematic analysis of the length _

scales imposed by the modulation period, cyclotron radiusas can be shown, e.g., by using the Fourier transiomwh u.

and impurity range. Hence, Eq(A2) becomes a convolution with respectXq,

A more detailed, systematic investigation of anisotropic-and it can be simplified by the Fourier-series expansions
scattering effects in more realistic cases of high-mobility
modulated systems exceeds our present possibilities concern- "N / / e
ing computer memory and CPU time. Although quantita- B”'m'(xo)_péo bn,m,(p)cos{pKXOnL(n D7
tively our results depend on the parameters of the Gaussian (A4)
model for impurities, we believe they do not change qualita-
tively when the impurity range is increased to more realistiowhereK =2/a is the modulation wave vector, and where
values to simulate the situation at high-mobility semiconducthe phase shifts are chosen to satisfy the reflection symmetry
tor interfaces. Of course, in that case the realistic impuritymposed by the modulations: we take=0 for B=G, be-
model is the Coulomb potential of a charged particle situate@guse Gl (—Xo)=(— 1)(”_m)Gﬁm(Xo), and j=1 for B
outside the 2DEG. Nevertheless, for such a model, in order. oo’ _ n—m+1)zoo’
to avoid singularities in the scattering integréd) or (A6), F, becauseF;7 (—Xo)=(—1)( JFZ7(Xo). These
one has to include the screening effects of the 2DEG on thg
impurity potential, e.g., within a Thomas-Fermi approxima-
tion. Note, that the screening of the periodic lateral potentia
in the case of the electric modulation may considerably re-
duce the width of the Landau bands, and thus the influence

APPENDIX A:  THE SCBA KERNEL

roperties follow for our simple cosine modulations from the
orresponding properties of the matrix elements of the
Eamiltonian and of the velocity operator, respectively. Then,
g. (A2) becomes

of VHS on the magnetoresistivities, which we do not expect Ann(Xo)= 2 2 b (P)D e (PKD)

for a magnetic modulatioff>® On the other hand, the depen- n'm’ P=0

dence of the screening length on the DOS at the Fermi level, -

and also the alternating of quasimetallaompressiblgand xoos{pKXO+(n—m+j)§ : (AS)

insulating(incompressiblgphases in strong magnetic fields,
open the possibility of describing more complicated butwhere
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qv2
Ul—

2
n. o0
Dnm,n’m’(pKI): sz dqq } Enn’(qz)Emm’
mlcJo

><(qz)‘-]nfn’fm+m'(pKlq\/E)r (AG)
with

] 1/2
Enm<z)=(—) 202G T2 T ) = (— 1)V (2)

n!
(A7)

LM(x) being the Laguerre polynomials, adg(x) the Bessel
functions. We have the following properties:

_(_a\n+m+n'+m’
Dnm,n’m’_( 1) Dmn,m’n’:

(A8)

(A9)

Dnm,n’m’: Dn’m',nm-

In particular, fors impurities, i.e., foru(q)=uo, Eq.(A6)
can be integrated analytically, and one obt&ins

n,u3 . ,
Dnm,n’m’(pKI): > |2Enm(p 2)Enm(p©2), (A10)
T

wherez= (K|)?/2. Using the Fourier serid&\5) in Egs.(3.3)

and (3.6), we solve iteratively the self-consistent equations

(3.2 and (3.3) and (3.5 and (3.6), starting from the CNA.
The velocity matrix elements, used in E¢8.5 and (3.4),
are

lw
<n’xo|Ua|nxo>:ﬂaTzc(\/n+15n',n+1
+ 77i\/n,+15n,n’+1)y

with the notation @, 7y)=(i,1).
One can directly show the following symmetries:

(A11)

(FZU ):m:(F;U 7U)nma

(A12)

PHYSICAL REVIEW B3 115322

1 T
Vin(Xo)=U Emn<§I2K2) cos( KXo+ (m—n) 5) ,
(B1)

with E,(z) defined in Eq(A7). For weak modulation, per-
turbation expansion yields to lowest orderln

Efr, = €nt U Enn(I?K2/2)cog KXp), (B2)

with e,=hw(n+1/2). Since forR,=1y2n+1>1/K one
has the asymptotic expressfonE,,(12K?/2)~cosKR,
—ml4)/(wKR,/2)Y? one expects flat Landau bands, if the
flat-band condition 2R,=a(\—1/4) holds for a A
=1,2,.... Thestates of the modulated basis &re first
order inU,

Vrn(X
InXp)M=[nXo)+ > |n'X0>M-
n’#n
In first order of U, this leads to a nonvanishing diagonal
matrix element ofv, in the modulated basis, given by
(NXolvy[nXp) = — (M) 'dESY /dX,.  For the off-
diagonal velocity matrix elements one obtains

(M Xolv o[ nXo) P=KMXo|v o[ nXo) [P+ O(U/fi o),

(B3)

€En— €y

(B4)

where the leading contributionémXo|v ,|nXo)|? are inde-
pendent ofU and identical forv, andv,, see Eq.(All).
Thus, for weak modulation the scattering conductiviti§§™"
and af,;at are approximately the same. For stronger modula-
tion this is no longer true, even within the CNA.

Within the CNA the imaginary part of Eq3.3) reads

e rs ad Xy _
|m2 (E)—E; fOTImGnn(X01E)I (85)

and the DOS is given bﬂ)(E)zDOImE‘(E)/(ng). For

an estimate of the scattering and band conductivities we as-
sume that the collision broadening n (E) of the spectral
functions ImG,(Xo,E)/7 is much smaller than the

for both a=x,y, and from the symmetries of the Hamil- modulation-induced bandwidti ~U|E,(12K?/2)|], and
tonian, which in the Landau representation is a real, symmeihat the latter is much smaller thanw.. Then the dominant

ric matrix, and of the velocity operators, see E411), also

(FZ Y mn=—(FZ ) (A13)

and

(FS" Y= (FY V- (A14)

Analog properties occur also for the matrix elements of the

operatorsl[Fg"']. In particular, ford impurities we have in
addition

(I Dinn=ULFZ D nms
which impliesI[F{7]=0.

(A15)

APPENDIX B: SOME CNA RESULTS

contribution to Eq(3.8) comes from the Landau bands at the
energyE. Let us assume thd lies in the banchg, so that
|E— Ene Xy~ Re3(E)|<#fw.. Then, the leading-order con-
tributions to the scattering conductivity are obtained ffior
=ng andn’=ng*x1 (andn andn’ interchanged and we
may approximate

MG, (Xo,E)~ImE~(E)/(haw)? (B6)

Inserting this and the off-diagonal velocity matrix elements
from Eq.(A1l), we obtain

2

. (B7)

e? I'S [D(E)
sca N
T (E)~ 1 (2ng+1)7— { o)

Cc
This is a general result and holds for unmodulated systems
and for a 2DEG with a two-dimensional superlattice as
well.?” It shows that the scattering conductivity is propor-

The matrix elements of the electric modulation potentialtional to the scattering rate 1/7,.=T'0/2%, and that its

V(x)=U cosKX,) in the Landau representation &e

maxima and minima follow those of the DOS.
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The band conductivityr)y"™ is dominated by the term D(E)~2[mal?|dE,_x /dXolx,-x.],  (B10)
containing the square of the spectral function

Im G;FnF(XO,E)/w. Considered as a function of,, the lat-  where we assumed that E@8) is satisfied atXy= + Xg.

ter hass-function-like peaks at the valueé: satisfying Inserting this into Eq(B9) yields
E—En. x.—ReX(E)=0. (B8) o e fiw,| 4D, |2
To obtain an estimatéactually an upper limjtof oyy"", we h 13 [aD(E)

take the square of the velocity matrix elements and one of _ ) o
the ImG._. (Xo,E) factors atXo= X, i.e., we approximate Which is a reasonable estimate at energies well inside the
F F 1 ) - "

_ _ _ modulation-induced Landau bands.
Im G(Xo,E)~Im GnFnF(XF'E):lllmE (E). Then we If we repeat the analysis of the band conductivity for

obtain with Eqs.(3.8) and(3.9) overlapping Landau bands, i.e., if we drop the condition for
) the bandwidthJ|E,,(1?K?/2)| <A w. we arrive at
62 2l dEn X
o E)~ | — | (B9)

hilo dXo [, o dEn x,
which according to Eq(B8) depends ot (atT—0 onEg,) e2(2]\2 n 4% Enx,=E
via Xg=X¢(E). This shows already that;3"{E) is propor- oy (E)~ o F_)

0

-1
tional to the scattering time2#/I'3, and that it becomes 2 (dE”"XO)
small for flat bands and near the band edges, where the en- n' dXo
ergy dispersion becomes flat. This is opposite to the DOS, En'x,~F
which becomes large at flat bands and near the band edges
(VHS).
~ If Eqg. (B8) holds for E well within a Landau band, The difference of this expression to E&9) is the contribu-
i.e., sufficiently far from the band edges, we may approxi+jon of more than one Landau band at the same time to the
mate ImG,,_, (Xo,E)/ 7=~ 8(Xo—X¢)/|dEy x,/dXolx,~x.  total density of statesdenominator and of bands with dif-
to obtain fering group velocities to the conductivitpumeratoy.

(B12)

1D. Weiss, K.v. Klitzing, K. Ploog, and G. Weimann, Europhys. *°0. Steffens, T. Schkser, P. Rotter, K. Ensslin, M. Suhrke, J.P.
Lett. 8, 179(1989. Kotthaus, U. Resler, and M. Holland, J. Phys.: Condens. Matter
2p.H. Beton, E.S. Alves, P.C. Main, L. Eaves, M.W. Dellow, M. 10, 3859(1998.
Henini, O.H. Hughes, S.P. Beaumont, and C.D.W. Wilkinson,18T  Ando, A.B. Fowler, and F. Stern, Rev. Mod. Physt, 437

Phys. Rev. B42, 9229(1990. (1982.

°R.R. Gerhardts, D. Weiss, and K.v. Klitzing, Phys. Rev. L8%.  17s.p M. zwerschke, A. Manolescu, and R.R. Gerhardts, Phys.
1173(1989; R.W. Winkler, J.P. Kotthaus, and K. Plooipjid. Rev. B60, 5536(1999.
62, 1177 (1989; P. Vasilopoulos and F.M. Peeterifjd. 63, 18R R. Gerhardts and J. Hajdu, Z. Phys285, 126 (1971).
2120(1989. 19R R. Gerhardts, Z. Phys. 2, 327 (1975.

4C. Zhang and R.R. Gerhardts, Phys. RevB 12 850(1990.

5D.P. Xue and G. Xiao, Phys. Rev. B5 5986 (1992; F.M.
Peeters and P. Vasilopouldbjd. 46, 4667 (1992.

6Q.W. Shi and K.Y. Szeto, Phys. Rev.48, 12 990(1996.

7C.W.J. Beenakker, Phys. Rev. Lef2, 2020(1989.

8R.R. Gerhardts, Phys. Rev. 58, 11 064(1996.

9R. Menne and R.R. Gerhardts, Phys. Re\6B 1707(1998.

20y Tan, Phys. Rev. B9, 1827(1994).

21G.R. Aizin and V.A. Volkov, Zh. Ksp. Teor. Fiz.87, 1469
(1984 [Sov. Phys. JETBO, 844 (1984)].

22A. Manolescu and R.R. Gerhardts, Phys. Re\a@9707(1997).

23D, Heisenberg, Ph.D. thesis, UniversitaStuttgart and
Max-Planck-Institut fu Festkwoperforschung Stuttgart, 1998

104 p. Mirlin and P. Widfle, Phys. Rev. B58, 12 986(1998. , (unpublished _ o

115 Weiss, K.v. Klitzing, K. Ploog, and G. Weimann, Surf. Sci. D. Heisenberg, D. Weiss, K.v. Klitzing, M. Behet, J.D. Boeck,
229, 88(1990. and G. Borghgunpublished

121, Tornow, D. Weiss, A. Manolescu, R. Menne, K.v. Klitzing, 25| S. Gradshteyn and I.M. RyzhiKable of Integrals, Series, and
and G. Weimann, Phys. Rev. B!, 16 397(1996. Products(Academic, Orlando, 1994

13p D. Ye, D. Weiss, R.R. Gerhardts, K.v. Klitzing, and S. Tarucha,”°U.J. Gossmann, A. Manolescu, and R.R. Gerhardts, Phys. Rev. B
Physica B249-251 330(1998. 57, 1680(1998.

14F. petit, M. Hayne, F. Lelarge, and B. Etienne, Physica B?’R.R. Gerhardts, D. Weiss, and U. Wulf, Phys. Rev4® 5192
249-251 922 (1998. (1991.

115322-12



