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Anisotropic scattering and quantum magnetoresistivities of a periodically modulated
two-dimensional electron gas
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We calculate the longitudinal conductivities of a two-dimensional noninteracting electron gas in a uniform
magnetic field and a lateral electric or magnetic periodic modulation in one spatial direction, in the quantum
regime. We consider the effects of the electron-impurity scattering anisotropy through the vertex corrections on
the Kubo formula, which are calculated with the Bethe-Salpeter equation, in the self-consistent Born approxi-
mation. We find that due to the scattering anisotropy the band conductivity increases, and the scattering
conductivities decrease and become anisotropic. Our results are in qualitative agreement with recent experi-
ments.
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I. INTRODUCTION

Magnetotransport properties of two-dimensional elect
gases~2DEGs! at semiconductor interfaces, subjected
one-dimensional lateral superlattices defined by perio
electrostatic or magnetostatic fields, have attracted increa
interest during the last decade. Properties like the comm
surability ~Weiss! oscillations of the magnetoresistanc1

or the low-field positive magnetoresistance2 are well
understood and have been qualitatively explained b
by quantum-mechanical3–6 and by classical transpor
calculations.7,8 These interesting effects occur at low tem
peratures~about 4 K or below!, where the transport proper
ties are governed by random-impurity scattering. It is w
known that in the high-mobility 2DEGs at semiconduct
interfaces the basic scattering mechanism is due to lo
range Coulomb impurities, which lead predominantly
small-angle scattering of the electrons. In all the mention
papers this aspect has, however, been neglected and
electron-impurity scattering has been treated within sim
fied, phenomenological models, related to a sim
relaxation-time approximation. Such models are suita
only for short-range (d-potential! impurities, which lead to
isotropic scattering, in contrast to the anisotropic scatter
implied by realistic impurities.

Only the most recent calculations, based on classical
chanics and Boltzmann equation, have proven that an
equate treatment of scattering anisotropy is important for
understanding of the experimental data. For instance,
number and the amplitude of the resolved Weiss oscillati
of the resistivity componentr' , measured when the curren
flows perpendicularto the superlattice~i.e., perpendicular to
the direction of translational invariance!, can be fitted only if
a strongly anisotropic scattering is assumed.9,10 Although in
the regime of Weiss oscillations the magnetic fields are
parently weak enough to allow for classical calculatio
0163-1829/2001/63~11!/115322~12!/$15.00 63 1153
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quantum effects determined by the Landau quantization
play a role in this regime. The~weaker! oscillations of the
resistivity componentr i , which are observed when the cu
rent flowsparallel to the superlattice and have a phase o
posite to those ofr' , have been explained by the quantu
oscillations in the density of states~DOS!.1,4 For stronger
magnetic fields, the presence of well-defined Landau ba
has been clearly identified also in the perpendicu
resistance.11,12 More recently, periodic magnetic fields wit
extremely strong gradients of amplitudes up to 0.4 T a
periods of 500 nm have been obtained, and huge magne
sistance oscillations have been detected,13 presumably of a
quantum origin. Experiments on another class of unidir
tional ~electrostatic! superlattices, of short periods, hav
shown an anisotropy of the magnetoresistivity tensor wh
could be explained within a semiclassical theory by differe
transport times in the directions perpendicular and paralle
the superlattice, and ascribed to the anisotropic characte
the scattering events.14

Previous quantum-mechanical calculations for modula
systems have treated the electron-impurity self-energy a
simplec number.4,12,15Strictly speaking, this is correct only
for d impurities in the unmodulated system, whereas
modulated systems even in the simple self-consistent B
approximation and ford impurities a complicated self
energy operator results, which does neither commute w
the Hamiltonian of the impurity-free modulated system n
with the Green-function operator of the impurity averag
system. The assumption of ac-number self-energy may b
sufficient to explain certain aspects of the influence of a
riodic modulation on the magnetoresistivities qualitative
especially for a weak modulation. For a strong modulati
however, it cannot be justified and will lead to incorrect r
sults. Moreover, to include the effect of strongly anisotrop
impurity scattering, which turned out to be important in t
classical calculations, we have to consider long-range im
©2001 The American Physical Society22-1
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rity potentials, which lead to important current vertex corre
tions and are not compatible with ac-number approximation
for the self-energy.

In this paper we take the mentioned experimental inf
mation as a motivation to perform a quantum-mechan
transport calculation with a more elaborated treatment of
electron-impurity scattering, including the scattering anis
ropy. We shall consider only modulations of the 2DEG va
ing along one lateral direction, partly because this is a s
ation of considerable experimental relevance, but also s
we expect in this situation especially strong anisotropy
fects resulting from the interplay of anisotropic period
modulation and anisotropic impurity scattering. We use
Kubo formalism, and we calculate the electron-impurity se
energy in the self-consistent Born approximation~SCBA!,
on the same footing with the vertex function, with a nume
cal scheme based on Fourier expansions. For technical
sons we describe the finite-range impurities by Gaussian
tentials. After recalling the simplest and most importa
classical results~Sec. II and Appendix B!, we describe our
calculations~Sec. III and Appendix A!, and then we discus
examples with electric and magnetic modulations~Sec. IV!.
Finally we close with some general conclusions~Sec. V!.

II. SIMPLE CLASSICAL RESULTS

We sketch briefly the simplest results concerning the
fect of the scattering anisotropy in transport. For the hom
geneous, unmodulated system, the best known expres
for the conductivities of the 2DEG in a magnetic field are t
classical Drude formulas,

sxx5syy5
s0

11~vct!2
, 2sxy5syx5vctsxx ,

~2.1!

s05ne2t/m being the zero-field conductivity, andvc
5eB0 /m the cyclotron frequency in the externally applie
perpendicular magnetic fieldB0 . n is the electron density,t
is the relaxation time, andm is the conduction-band effectiv
mass. Forvct@1 the diagonal conductivities are propo
tional to the scattering rate,sxx ,syy;1/t, resulting from
transitions of electrons between closed cyclotron orbits, m
diated by electron-impurity scattering. Those contributions
the conductivity will be called scattering contributions in t
following. In the presence of a~weak! modulation inx direc-
tion, the guiding centers of the cyclotron orbits perform
drift motion in y direction. This drift leads to an additiona
contribution tosyy , which in the simplest approximation7

can be written as the average of the square of the drift
locities taken over all drifting orbits at the Fermi energyEF ,

Dsyy5
e2nt

EF
^v̄y

2&. ~2.2!

Being due to open orbits with a finite velocity, th
modulation-induced contributionDsyy is, similar tos0, pro-
portional to the scattering timet itself and not to its inverse
as sxx . These differentt dependences lead us to expe
11532
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peculiar anisotropies of the conductivity tensor in the pr
ence of anisotropic impurity scattering.

For isotropic electron-impurity scattering, the relaxati
time in Eq. ~2.1! is the average flight time of an electro
between two scattering events,t5tsc . For anisotropic scat-
tering this has to be replaced by the transport or momen
relaxation time,t5t tr , which is given by

1

t tr
5

1

tsc
E

2p

p du

2p
w~u;kF!~12cosu!, ~2.3!

wherew is the scattering amplitude for elastic scattering
the Fermi edge from an initial statek i to a final statek f ,
which depends only onuk f u5uk i u5kF and the angleu be-
tweenk f and k i . For isotropic scattering,w(u;kF)[1 and
t tr5tsc . In general, however,t tr /tsc.1, and this ratio in-
creases with increasing predominance of small-angle sca
ing. This means that with increasing importance of forwa
scattering, and forvct@1, the conductivity componentsxx
and the scattering contribution tosyy should become
smaller,16 whereasDsyy is expected to become larger, sim
lar to s0.

Corresponding anisotropies are expected for the resisti
tensor

rxx(yy,xy)5
syy(xx,yx)

sxxsyy1sxy
2

. ~2.4!

For the homogeneous system, the classical Drude resist
tensor has diagonal components which are independen
the magnetic field,rxx5ryy51/s0, and thus alwaysde-
creasewith increasing importance of forward scattering.
simple argument for this result is that the dominant con
bution to the electrical resistance comes from the elect
backscattering while the forward scattering gives no con
bution. Obviously, for finite-range impurities the scatteri
anisotropy favorizes the forward-scattering events. For a s
tem with periodic modulation inx direction, the classica
calculations7,9 yield a modulation-induced contributionDrxx
which, in contrast to 1/s0, increaseswith increasing forward
scattering.

It has also been emphasized in Refs. 7 and 9 that, even
isotropic scattering, the backscattering term in Boltzman
equation does not vanish as in homogeneous systems
rather is important to guarantee particle conservation,
the equation of continuity. This backscattering term, which
the classical analog of the vertex corrections in the quan
treatment, is necessary to obtain the correct~quasilocal! B0
dependence of the modulation-induced resistance correc
for large magnetic fields, which isDrxx /r0;(B0)2 for elec-
tric and Drxx /r0;(B0)0 for pure magnetic modulation.9

The simplistic approximation of Eq.~2.2! is not in accord
with the equation of continuity and yields asymptotic resu
which are by a factor proportional to (B0)22 too small.9

These deficiencies become important ifB0 becomes so large
that the cyclotron diameter 2Rc of electrons at the Ferm
level becomes smaller than the modulation perioda.7,9
2-2
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III. KUBO FORMULA AND SELF-CONSISTENT
EQUATIONS

The Hamiltonian of an electron situated in the (x,y)
plane, in the presence of modulating magnetic and elec
fields is

H5
1

2m
@p1eA~x!#21V~x!. ~3.1!

The electric and magnetic modulations are defined by a
riodic potential,V(x)5V(x1a), and by a magnetic field
with periodicz componentB(x)5B(x1a), respectively. We
always assume a nonvanishing average valueB0Þ0 of B(x),
and we shall denote byl 5(\/eB0)1/2 the corresponding
magnetic length. For the vector potential we use the Lan
gauge,A(x)5(0,*0

xB(x8)dx8). In absence of the modulatio
the eigenstates are the well-known Landau statesunX0& @see
Eq. ~A1!# with center coordinatesX052 l 2py /\, wherepy is
the conserved canonical momentum. The modulation lifts
degeneracy with respect toX0 which, however, remains a
good quantum number due to the translational invarianc
the y direction. The energy spectrum becomes structure
periodic bands,En,X0

5En,X01a , with the corresponding

modified eigenstatesunX0). Such modulation-induced band
have recently been calculated for arbitrarily strong pure
mixed electric and magnetic modulations, and the ene
spectra and eigenstates have been related to the diffe
types of corresponding classical orbits.17 In the following,
we will have to distinguish between two relevant basis s
of the Hilbert space, theLandau basis$unX0&% of eigenstates
of the homogeneous 2DEG, and themodulated basis$unX0)%
of eigenstates of the modulated 2DEG.

We apply the standard procedure of averaging the
tarded~advanced! Green’s functions over all the configura
tions of randomly distributed impurities,G6[^Ĝ6& imp ,
where (Ĝ6)21(E)5E2H2Vimp6 i01 andVimp is the po-
tential describing a given impurity configuration. This lead
in the simplest consistent approximation, to the coup
equations

~G6!21~E!5E2H2S6~E!, ~3.2!

S6~E!5niE dR u~r2R!G6~E!u~r2R!. ~3.3!

Equation ~3.2! defines the self-energy operatorS6(E)
5D(E)7 iG(E)/2. The spectral operatorA(E)5@G2(E)
2G1(E)#/(2p i ) and G(E) are positive ~semi-!definite
Hermityan operators. The DOS isD(E)2D0\vc/
(pa)SnE 0

adX0(nX0uG2(E)unX0), where D05m/(p\2).
Equation ~3.3! is the self-consistent Born-approximatio
~SCBA!, the self-consistent approximation of the lowest o
der in the impurity concentrationni , u being the electron-
impurity potential.

The diagonal conductivities are calculated from the Ku
formula,16,18,19
11532
ic

e-

u

e

in
in

d
y

ent

ts

-

,
d

-

o

saa5E dEF2
dF~E!

dE Gsaa~E!,

saa~E!5
e2\

2p

1

LxLy
Tr$va@2Fa

12~E!2Fa
11~E!

2Fa
22~E!#%, ~3.4!

wherea5x,y, Lx and Ly are the linear dimensions of th
2DEG,F is the Fermi function,va is the velocity operator,

and spin degeneracy is assumed. The vertex functionsFa
ss8

[^ĜsvaĜs8& with s56 are given by the equations

Fa
ss8~E!5Gs~E!vaGs8~E!1Gs~E!I @Fa

ss8~E!#Gs8~E!,

~3.5!

I @Fa
ss8~E!#5niE dR u~r2R!Fa

ss8~E!u~r2R!, ~3.6!

which are similar to Eqs.~3.2! and ~3.3!. Equation~3.5! is
the Bethe-Salpeter equation for the vertex function, and

~3.6! defines the vertex correctionsI @Fa
ss8(E)# in the SCBA.

A diagrammatic formulation of the SCBA is shown in Fig.
It is sufficient for calculations of the conductivity if interfer
ence effects such as weak or strong localization are not
portant.

As a simple and easily tractable model for the impur
potential, we use a Gaussian model,

u~r !5
u0

pr 0
2

e2(r /r 0)2
, ũ~q!5u0e2(qr0)2/4, ~3.7!

whereũ is the Fourier transform. Within the SCBA, the sca
tering effect of randomly distributed impurities of densityni

is described by only two parameters, an energyG0
0

5niu0
2m/\2 which determinestsc52\/G0

0 in Eq. ~2.3!, and
the impurity ranger 0. In the presence of a strong perpe
dicular magnetic field, these parameters enter the equat
for the Green’s functions and the conductivities via the e
ergy G05AG0

0\vc5Aniu0 / l[gAB0, which determines the
scattering-induced broadening of the spectrum, and
length ratio r 0 / l , which determines the anisotropy of th
impurity scattering.16 This model allows a direct compariso
between the results for pointlike (r 050) and finite-range
(r 0Þ0) impurities. Major simplifications of the transpo
calculation occur only for the unmodulated system a

FIG. 1. Diagrams for the generalized SCBA: Dyson@Eqs.~3.2!
and ~3.3!# and Bethe-Salpeter@Eqs.~3.5! and ~3.6!# equations.
2-3
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r 050. A direct inspection of Eqs.~3.2!–~3.6! shows that in
this case the self-energy operator becomes a simple~energy-
dependent! c number, and the current vertex corrections, E
~3.6!, vanish.16,18

A. The usual ‘‘c-number approximation’’

Although this is no longer true in the presence of a mo
lation, even ifd-impurities are assumed, the ansatz that
self-energy is still ac number~i.e., independent of all the
quantum numbers!, has been used quite often.4,12,15,20A jus-
tification of thec-number approximation~CNA! may be that,
besides its simplicity, it is exact~for d impurities! in the limit
of zero modulation and, therefore, may be reasonable
for sufficiently weak modulations. This ansatz is sufficient
ensure the vanishing of the vertex corrections, but, on
other hand, it captures essential effects of the collisions
of the density of states.4 Moreover, it is regarded as satisfa
tory if one is interested mainly in the influence of the syst
geometry and not of impurity scattering on the transp
properties. In the CNA the Green-function operator is dia
onal in the modulated basis, @nX0uGs(E)un8X0#
5dn,n8Gnn

s (X0 ,E), such that the longitudinal conductivitie
may be written as

saa~E!5
\e2

p2l 2E0

adX0

a (
nn8

z~nX0uvaun8X0!z2

3Im Gnn
2 ~X0 ,E!Im Gn8n8

2
~X0 ,E!. ~3.8!

In this expression the essential difference betweensxx and
syy , generated only by the anisotropy of the modulation
determined by the diagonal (n5n8) contribution which ex-
ists only for a5y, since (nX0uvxunX0)50. This intra-
Landau-band contribution, also known asband
conductivity,21 is related to the net motion of electrons in th
direction perpendicular to the electric field and/or the gra
ent of the magnetic field defining the modulation, with t
group velocity

~nX0uvyunX0!52
1

mvc

dEn,X0

dX0
. ~3.9!

If the scattering broadeningG0 is much smaller than the
modulation-induced bandwidth of the Landau levels, and
this in turn is so small that adjacent Landau bands do
overlap, simple estimates of the dependence of the diffe
conductivity contributions onG0 and the DOS at the Ferm
level, D(EF), are available. As shown in Appendix B, th
band conductivity diverges forG0

0→0 like @G0D(EF)#22

~providedEF is inside a Landau band and not too close to
band edge!. This explains—in the quantum treatment—t
Weiss oscillations, with minima whenEF intersects a flat
band.4 The inter-Landau-band contribution to Eq.~3.8! (n
Þn8), also known asscattering conductivity, in general be-
haves like@G0D(EF)#2, and entirely determinessxx . Within
the CNA, for a sufficiently clean system~smallG0

0!, the scat-
tering conductivitysyy

scat is much smaller than the band co
ductivity at weak magnetic fields, i.e., in the regime of t
11532
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Weiss oscillations, and both conductivity contributions m
become comparable for strong fields, in the regime of
Shubnikov–de Haas~SdH! oscillations. Also, the scattering
conductivities are almost the same in the modulated and
modulated directions.22

For largeB0, the estimates given in Appendix B yiel
syy

band;(B0)22 for pure electric andsyy
band;(B0)24 for pure

magnetic modulation, leading toDrxx /r0;(B0)2 and
Drxx /r0;(B0)0, respectively. All these results for the CN
are in agreement with the corresponding classical res
summarized in Sec. II. This confirms our expectation, t
consideration of vertex corrections is important, not on
from a quantitative point of view, in order to include th
effect of anisotropic scattering, but also from a qualitati
point of view, to avoid violation of the equation of continu
ity. The neglect of vertex correction, e.g., in the CNA, lea
to uncontrolled and~at least for largeB0) unacceptable re-
sults, even for isotropic scattering.9 The deficiencies of the
CNA also became clear from a quantitative comparison
tween experimental results and quantum-mechanical calc
tions which were nonperturbative with respect to the perio
modulation potential.15 In that work it turned out to be im-
possible to fit the magnitude of the experimental resista
and the dominance of scattering conductivity over band c
ductivity ~indicated by resistanceminima at the flat band
conditions! at the same time.

B. Beyond the CNA

The aim of the present paper is to go beyond the CN
Indeed, there exists no justification of the CNA within th
formalism of the SCBA. Even if weassumethat the Green
operator~3.2! is diagonal, say in the modulated basis, a
insert that into Eq.~3.3!, the evaluation of the kernel~see
Appendix A! yields a nondiagonal self-energy, and thus
the next iteration step a nondiagonal Green operator. O
finds that there exists no basis in which the Hamiltonian
the modulated system~without disorder!, the impurity-
averaged Green function, and the self-energy operator
simultaneously diagonal, since these three operators do
not commute with each other. For obtaining numerical so
tions of the self-consistent equations~3.2! and~3.3! and~3.5!
and ~3.6! we find it convenient to express the matrix el
ments of all the operators in the Landau basis, since
kernels describing the impurity averaging in the SCBA a
independent of the modulation in this case.

Then, for a given modulation model and for fixed valu
of energyE and average magnetic fieldB0, the matrix ele-
ments of the Green operator̂ m,X0uGs(E)un,X08&
5dX

08 ,X0
Gm,n

s (X0 ,E) depend on two discrete~Landau! quan-

tum numbers and a quasicontinuous one~center coordinate!.
Equation~3.3! provides a linear relation between these a
the self-energy matrix elements, which have the same st
ture, mediated by the SCBA kernel, which depends on f
discrete indices and a single continuous one, since theX0
relation is of a convolution type~see Appendix A!. Thus, it is
convenient to expand theX0 dependence into a Fourier se
ries. Moreover, we restrict our consideration to modulat
models of defined parity, which allows to reduce the num
2-4
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of Fourier coefficients by a factor of two. Equations.~3.2!
and ~3.3! provide a nonlinear integral equation fo
Gm,n

s (X0 ,E) or, equivalently,Sm,n
s (X0 ,E). At finite tem-

perature, the solutions are needed in a finite interval aro
the chemical potential, which has to be calculated for giv
average electron density. Having calculated these soluti
we can solve the linear integral equations~3.5! and~3.6! for
the vertex functions, which have a similar matrix structure
the Green operator and are needed to calculate the con
tivity components. It is evident that the requirements on s
age capacity and computational time increase rapidly w
the number of Landau levels and of Fourier coefficien
which have to be taken into account. Due to the limit
computer facilities, we will therefore have to use somew
unrealistic model assumptions, which allow us to restr
e.g., the number of necessary Fourier coefficients. We
also restrict the investigation of scattering-anisotropy effe
to the consideration of only two values of the impurity ran
r 0. The results of the CNA can be found by takingr 050
and, simultaneously, reducing all the Fourier series to
first term withp50 ~which is the average value, see Appe
dix A!. Note that the latter prescription is an additional a
proximation which has no justification, but allows the com
parison of the correct results with those of the CNA.

We shall consider the effects of the anisotropic collisio
on the scattering and band contributions to the diagonal c
ponents of theconductivity tensor. In order to illustrate the
results for theresistivity tensor, Eq. ~2.4!, we shall simplify
the Hall conductivity by completely neglecting the impuri
effects on it. Of course, quantum Hall plateaus are thus
nored, although they are seen in the experiments on mo
lated systems for larger magnetic fields. However, we
sume that the structure of the longitudinal resistivities
mostly determined by the periodic Landau bands for su
ciently low magnetic fields, and not by localization effec
which are beyond the SCBA. Especially the anisotropy
fects corresponding to the band conductivity are expecte
result from the diagonal components of the conductivity t
sor ~a corresponding diagonal contribution in the modula
basis does not exist for the Hall conductivity!. With these
assumptions, the Hall conductivity is given by

sxy5
2i\e2

p l 2 E
0

a dX0

a (
nÞn8

F~EnX0
!

3
~nX0uvxun8X0!~n8X0uvyunX0!

~EnX0
2En8X0

!2
. ~3.10!

IV. RESULTS

For computational reasons we have chosen our mod
tion parameters such that we can obtain convergent re
by truncating the Landau basis to the first 10–30 wave fu
tions, and the Fourier series with respect toX0 to the first
10–20 terms. We avoid the necessity of including high
Fourier coefficients by keeping a relatively weak modulat
amplitude, and also by choosingr 0 shorter, but comparable
to l. For a disorder broadening much smaller than the typ
11532
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bandwidth, the periodic matrix elementsGnn8
s (X0 ,E) and

Fnn8
ss8(X0 ,E) as functions ofX0 exhibit large polelike struc-

tures ~which become poles forG0→0) if E falls into the
spectrumEm,X0

of the Landau bandsm5n or m5n8. Ap-
parently this structure requires the inclusion of many Fou
coefficients. But, due to the Gaussian factors of the Lan
wave functions, the matrix elements of the collision opera
G2 decay like Gaussians with increasinguX02X08u, Eq. ~A3!,
and thus the higher-order Fourier amplitudes have a van
ing ~also Gaussian! contribution to Snn8

s (X0 ,E) and

I @Fnn8
ss8(X0 ,E)#, respectively. This can be directly seen o

the analytical results available forr 050, Eqs. ~A10! and
~A7!. For r 0Þ0 the Fourier coefficients are calculated b
integrating the periodic functions, and in order to keep
reasonable number of points in the integrals we restric
ourselves nevertheless to a relatively large disorder broa
ing, i.e.,G0 smaller, but comparable to the width of the La
dau bands. Therefore, we do not attempt to give necess
realistic results, but rather to identify and to understand
effects of the anisotropic scattering qualitatively.

A. Electric modulation

We start with an example of a pure electric modulati
@B(x)[B0#, determined by the electrostatic potentialV(x)
5U cos(2px/a), with U50.8 meV anda5400 nm. The ma-
terial parameters are for GaAs:m50.067m0, the electron
density (nel51.9331011 cm22, EF(B050)56.91 meV)
chosen such thatnB058 T, n being the filling factor, and
we assume spin degeneracy. We fix the temperature to
and the disorder parameterg50.5 meV T21/2 corresponding
to a mobility m52.23105 cm2/Vs at B050 in CNA and to
an increasingly larger mobility with growing anisotropy o
scattering as the ratiot tr /tsc increases.

In Fig. 2 we showD(EF) and a typical energy spectrum
with B050.81 T so that the Fermi level is in the Landa
bandwidthn54. We compare the CNA with the results o
the calculations with a matrix self-energy forr 050 (d im-
purities! and for a finiter 0. Broadened van Hove singular
ties~VHS’s! are resolved in all cases. The small maximum
B050.9 T is an artifact due to the elliptic shape of the DO
typical for the SCBA: unlike in the CNA, in the other calcu
lations the self-energy depends on the center coordinate,
since the disorder broadening is comparable to the ba
width, the two high-DOS peaks due to the band edges m
partially overlap, yielding extra maxima in between. Su
details are, however, not important for the conductivities.

Results for the conductivities are shown in Fig. 3, again
the CNA, and also with a matrix self-energy~including the
vertex corrections!, for two choices ofr 0. Note that the Lan-
dau bands do not overlap in the present case. Thus, in
CNA the scattering and band conductivities are given by
estimates Eqs.~B7! and ~B11! in Appendix B. Numerically,
we obtainsxx'syy in the CNA, which tells that,in this
approximationand for the chosen values of modulation am
plitude and~relatively large! disorder broadening, the ban
conductivity is very small. The first flat-band condition~see
Appendix B! at EF is obtained forB0'0.5 T, where the
2-5
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scattering conductivities have maxima. When the vertex c
rections are included, even forr 050, the situation com-
pletely changes: with increasing magnetic field the two c
ductivities have opposite evolutions. The pure scatter
conductivitysxx is drastically reduced, and the band condu
tivity leads to a dramatic increase ofsyy . While the double-
peak structure of the DOS is no longer resolved insxx , it
may survive insyy .

We can interpret these results in physical terms, tak
into account that the anisotropy of the modulation results
anisotropic electron states: unbound propagation in they di-
rection and confined cyclotronic motion in thex direction
within the cyclotron diameter 2Rc52lA2n11. For low
magnetic fields such that 2Rc@a the effect of the modula-
tion on the scattering events is averaged out and the sca
ing remains isotropic forr 050. This changes for 2Rc!a,
when the electrons propagate along relatively narrow ch
nels in they direction. Thedecreaseof sxx , with respect to
the CNA, can be understood just like the effect of the sc
tering anisotropy on the longitudinal~scattering! conductivi-
ties in the absence of the modulation, but in the presenc
the magnetic field.16 At the same time, theincreaseof the
band conductivity contributing tosyy can be understood in
analogy to the effect of the scattering anisotropy on the c
ductivity of quasifree electrons, with no modulation and
magnetic field. A Landau band has the strongest disper

FIG. 2. ~a! Density of states at the Fermi level for the elect
modulation, D05m/p\2. ~b! The energy spectrum forB0

50.81 T. The dashed horizontal line shows the Fermi level.
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in its center and an uncertainty in energy due to disor
broadening translates into a much smaller rangeDky;DX0
of available final states after scattering as compared to
band edges. This in turn leads to a stronger increase in
ward scattering and, thus, to the enhanced band conduct
in the middle of a band. Obviously, this effect is stronger
finite-range impurities than forr 050. The decomposition of
syy into scattering and band contributions is, however, co
plicated by the vertex corrections, which in fact with increa
ing modulation amplitude mix them increasingly togeth
Therefore the behavior of the scattering contribution tosyy
cannot be very clearly identified and understood with th
simple interpretations.

We found numerically that for the results shown in Figs
and 4, the vertex corrections corresponding toI @Fa

11# and
I @Fa

22# are negligible. Ford impurities one can show ana
lytically that they vanish exactly fora5x ~see Appendix A!.
In general, their small values can be explained with the h
of the Ward identities, which relateI @Fa

ss# to the commuta-
tors of the self-energy with the position operators.18 The ma-
trix elements of the vertex corrections become determined
differences between off-diagonal matrix elements of the s
energy, which are small unless the Landau-level mixing
very strong. So practically all the anisotropy effects obtain
for the electric modulation are determined byI @Fa

21#.
In general, the resistivities reproduce the structure of

conductivities, according to Eq.~2.4!, where the denominato

FIG. 3. Conductivities for the electric modulation.
2-6
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ANISOTROPIC SCATTERING AND QUANTUM . . . PHYSICAL REVIEW B63 115322
is in fact given by the square of the Hall conductivity.rxx is
qualitatively similar tosyy , and ryy to sxx , respectively.
Qualitatively, the results confirm the expectations, which
deduced from the analysis of the classical and the CNA
sults: anisotropic scattering reduces the transport scatte
rate and thus reduces the scattering conductivity~and conse-
quently sxx! and increases the band conductivity~and thus
syy). For G0

0!\vc , this should enhancerxx , see Fig. 4 and
Fig. 5~a!, but lowerryy , see Fig. 5~b!. In particular, forr 0
50, the strong enhancement ofrxx over the CNA result ob-
served at largerB0 values in Fig. 4, also agrees with th

FIG. 4. Resistivities for the electric modulation.

FIG. 5. Resistivities for the magnetic modulation in the regim
of high band conductivity.
11532
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predictions based on Boltzmann’s equation: the neglec
backscattering~i.e., vertex corrections, as in the CNA!,
which violates the equation of continuity, results in too sm
values forrxx and becomes increasingly important with i
creasingB0.

B. Magnetic modulation

In the following examples we consider a pure magne
modulation@V(x)[0#, defined by a periodic magnetic fiel
of the formB(x)5B01B1 cos(2px/a). We shall discuss two
cases, first with a high and then with a low band conduc
ity, in order to separate the anisotropy effects, and also
compare with the available experimental results.

1. The regime of high band conductivity

We choose the modulation parameters comparable
those in the experiment by Yeet al.on strongly magnetically
modulated 2DEG.13 The experiment shows huge oscillation
of the magnetoresistivityrxx for values of the average mag
netic field B0 in the intermediate regime between that
positive magnetoresistance and that of distinct SdH pe
The positive magnetoresistance effect is also huge and
ers the Weiss oscillations. In general, for both electric a
magnetic modulations, the positive magnetoresistance
the Weiss oscillations have been successfully explained
the classical transport calculations, where the classical a
log of the band conductivity is in fact calculated.7–10 In the
intermediate regime mentioned here, the quantum effects
come important. The modulated magnetic field is strong a
generates Landau bands that partially overlap, yielding os
lations of the DOS at the Fermi level. We ascribe the hu
oscillations observed in the experiment to the resulting os
lations of the band conductivity.

In our calculations we takea5400 nm andB150.23 T
for the modulation, andg50.3 meV T21/2 for the scattering-
energy parameter. In Fig. 5 we show the calculated resis
ities with B0 starting at the end of the positive
magnetoresistance regime. The vertex corrections
included, both for zero and finite impurity range. The cont
bution of the scattering conductivity is negligible insyy , and
thus in rxx @see Eq.~2.4!#, because the Landau bands a
much wider than the disorder broadeningG0. The filling fac-
tor varies between 21 and 11.4, and the number of Lan
bands intersected by the Fermi level, for a fixedB0, varies
between four and two.

In Fig. 6~a! we have selected three energy spectra wit
VHS at the Fermi level, corresponding to a Landau ba
edge. The singularities are well resolved inD(EF), Fig. 6~b!.
The profile ofD(EF) is very well reproduced in both resis
tivities calculated at zero temperature, Fig. 5.rxx has minima
andryy has maxima whereD(EF) has maxima. This clearly
tells thatrxx is determined by the band conductivity andryy
by the scattering conductivity. For a finite temperature, like
K, the VHS are smeared and the resistivities oscillate acco
ing to the number of the Landau bands at the Fermi lev
For instance, for 0.442 T,B0,0.473 TthreeLandau bands
are intersected by the Fermi level, while for 0.473 T,B0
,0.504 T four bands, Fig. 6~a!, such thatrxx has a maxi-
2-7
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MANOLESCU, GERHARDTS, SUHRKE, AND RO¨ SSLER PHYSICAL REVIEW B63 115322
mum in the first interval@low D(EF)] and a minimum in the
second one@high D(EF)], while ryy has the opposite evolu
tion.

Just like in the case of the electric modulation, the eff
of the scattering anisotropy and of the vertex corrections i
increase the band conductivity and to decrease the scatt
contributions. Here, such effects are not so important forr 0
50 due to the relatively low average magnetic field. The
fore, the DOS-induced oscillations of the resistivities can
qualitatively explained even in the CNA@not shown in Fig.
5; compare the estimate for the band conductivity in the c
of overlapping bands, Eq.~B12! in Appendix B#, and the
oscillations can be amplified by reducing the disorder para
eter g. Of course, quantitative agreement with the expe
ment cannot be expected in our calculations, where the
order parameters are chosen according to computati
possibilities rather than to experimental requirements. T
model of Gaussian impurities involves two parameters,r 0

andg;Aniu0. For a direct comparison between the theor
ical and the experimental results, for different choices ofr 0

FIG. 6. ~a! Energy spectra for the magnetic modulation w
GaAs parameters, corresponding to Fig. 5.~b! The density of states
at the Fermi level forr 0510 nm.
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one should also adjustg, e.g., by imposing a fixed zero
magnetic-field resistance. This is given by the transport ti
t tr , Eq. ~2.3!, which can be calculated analytically for ou
Gaussian impurity model.To keept tr fixed, we should com-
pare the results forr 0510 nm andg50.3 meV T21/2 with
those forr 050 andg'0.05 meV T21/2. Of course, the real-
istic scatterers have a long range, with Coulomb tails de
mined by the spacer width, and may be not too well appro
mated by Gaussians.

Experimental results in this regime exist only on the
sistivity componentrxx , not onryy , to our knowledge. We
predict that, as indicated by our calculations,ryy should be at
least one order of magnitude smaller thanrxx and should
oscillate in a similar manner, but with minima and maxim
interchanged. Unlike the Weiss oscillations, which are de
mined by the geometric commensurability of the cyclotr
diameter with the modulation period,1 these novel
modulation-induced oscillations occur for Fermi energies
low the lowest commensurability~flat-band! condition, and
are essentially a DOS effect.

2. The regime of low band conductivity

Measurements of the magnetoresistance in bothx and y
directions in the quantum regime have been recently p
formed on magnetically modulated 2DEGs in InA
heterostructures.23,24The electron density is typically one or
der of magnitude higher than in GaAs systems, and thus
filling factors are much larger. The SdH peaks observed
rxx are about 20 times higher than inryy . At the same time,
with decreasing the uniform fieldB0, the SdH minima at
even filling factors are replaced by resistivity maxima, wh
the minima shift to odd filling factors. It has been convin
ingly demonstrated that these minima are not due to s
splitting, which in fact is not resolved in this case. A simil
even-odd shift has been observed in electrically modula
systems, and explained by the behavior of the scattering c
ductivity when two Landau bands partially overlap. Th
overlapping VHS of adjacent Landau bands yield maxi
instead of SdH minima, while minima occur forEF in the
middle of a band~lower DOS!.12 We therefore believe that
similarly, also in the experiment of Heisenberget al.,23,24

only the scattering conductivities are observed, and thus
big difference betweenrxx and ryy is not due to the band
conductivity, but due to an anisotropy of the scattering co
tributions torxx andryy .

We use the parameters of InAs,m50.023m0, an electron
density such thatnB0575 T, and spin degeneracy. For th
magnetic modulation we takea5300 nm andB150.1 T.
We calculate the resistivities in the regime of the SdH os
lations for impurity parameters suitable to obtain domina
contributions from the scattering conductivities:r 055 nm
and two values for the disorder broadening,g
55 meV T21/2 and g56 meV T21/2. The resistivities are
shown in Fig. 7. AtT54.2 K, the thermal energykBT is
much smaller than the width of the Landau bands. A ref
ence energy spectrum is displayed in Fig. 8. In the explo
interval of B0 values, the cyclotron diameter of the states
the Fermi level varies betweena/2 and a/3, such that the
vertex corrections are very strong.
2-8
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ANISOTROPIC SCATTERING AND QUANTUM . . . PHYSICAL REVIEW B63 115322
The contribution of the band conductivity is seen as
central maximum in each of the first three SdH peaks ofrxx ,
located in 2.5 T,B0,3.15 T. With increasingB0 these cen-
tral structures disappear, apparently because the effe
disorder broadeningG0 increases. Indeed, by increasing t
parameterg the mentioned central maxima decrease, and
the same time the lateral shoulders ofrxx , as well asryy ,
increase.

This behavior clearly shows that the scattering conduc
ity is dominant here. The anisotropy of the scattering c
ductivities, i.e.,sxx!syy , or rxx@ryy , is an effectqualita-
tively determined by the vertex corrections, and not by
band conductivity. We have already mentioned such an
fect in the discussion of Figs. 3 and 4, where it was l
pronounced and combined with the presence of a hig
band conductivity, but visible even ford impurities. This
type of anisotropy, of the scattering conductivities, cannot
obtained in the CNA. In that approximation againsxx'syy
~or rxx'ryy), and unlike in the example of the electr
modulation, the CNA resistivities become here several tim

FIG. 7. Resistivities for the magnetic modulation in the regim
of low band conductivity.

FIG. 8. An energy spectrum for the magnetic modulation w
InAs parameters, corresponding to Fig. 7, withB053 T.
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bigger than those plotted in Fig. 7. Our results for the m
netic modulation thus show characteristic similarities w
the experimental results of Heisenberget al. We are not able
to offer a simple argument that could explain the strong
isotropy of the scattering conductivities obtained from t
numerical calculations quantitatively. However, we attribu
this anisotropy to both the anisotropic electronic states
the anisotropic impurity scattering. Of course, stro
anisotropies can be understood qualitatively in the phys
picture of quasiclassical orbits with a relaxation of the rig
energy-versus-X0 dispersion due to disorder broadening~see
the discussion in Sec. IV A of the enhancement of the ba
conductivity in the middle of a Landau band!. Scattering
processes that lead to an effective motion in they direction,
and thus contribute tosyy

scat, are possible with arbitrarily
small changes of the center coordinateX0, and are favored if
forward scattering predominates. On the other hand, ela
scattering processes leading to a substantial effective mo
in x direction require a finite~large! change of theX0 coor-
dinate, i.e., a scattering by a large angle. Such processes
consequently their contributions tosxx

scat, are suppressed b
predominant forward scattering, and for 2Rc,a they be-
come even more improbable, since they require a tunne
through an energy barrier. These aspects have to be b
clarified by future analytical calculations.

An analogous set of experimental results has been
tained for an electric modulation of a very short period~32
nm!.14 The resistivity tensor is anisotropic, the resistance
the modulated direction being up to five times bigger than
the uniform direction. The amplitudes of the Shubnikov–
Haas peaks are well represented by Dingle plots, which
specific to unmodulated~homogeneous! systems, where only
the scattering conductivity exists. The results suggest tha
band conductivity plays no role in these data, and thus
resistance anisotropy is determined by the scattering an
ropy, as we find in our present calculations.

V. CONCLUSIONS AND FINAL REMARKS

We have shown with numerical calculations that f
strong magnetic fields the anisotropic character of
electron-impurity scattering has both quantitative and qu
tative effects on the resistivity tensor of modulated syste
Our magnetotransport calculation is based on a consis
evaluation of the disorder broadening of the single-parti
Green functions~and thereby the density of states! and of the
Kubo formulas for the conductivity tensor. Formally, the a
isotropy effects enter through vertex corrections, which
calculated from the Bethe-Salpeter~integral! equations. In
contrast to homogeneous systems, for modulated syst
these anisotropy effects are important even for short-ra
(d-potential! impurities, if the average magnetic field is s
strong that the cyclotron diameter of the electrons at
Fermi level is smaller than the modulation period. Of cour
such effects become even much more important for imp
ties of finite range.

The main results of including the anisotropy effects~ver-
tex corrections! are as follows.
2-9
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~1! The band conductivity increases, just like the cond
tivity of a homogeneous 2DEG for zero magnetic fie
~which is inversely proportional to the disorder-scatteri
rate!.

~2! The scattering conductivities decrease, just like
longitudinal conductivities of a homogeneous 2DEG in
high magnetic field~which are proportional to the disorde
scattering rate!.

~3! The scattering conductivity in the direction of th
modulation becomes lower than that in the direction perp
dicular to the modulation.

The comparison with the available experimental resu
suggests that the scattering anisotropy is important not o
in the classical regime~low B0),9,10 but also in the quantum
case~high B0). This is seen, in both regimes, in the ba
conductivity, which has a classical origin, but also in t
pure quantum scattering conductivity. Experimental res
for both rxx andryy in a unidirectional modulation for high
magnetic fields are, however, rarely available,14,23,24but still
our results agree qualitatively with these experiments.

The numerical calculations of this work require the so
tion of the non linear Dyson equation for the Green opera
and of the linear Bethe-Salpeter equation for the vertex
erators, each of which depends on two discrete~Landau!
quantum numbers and one quasicontinuous (X0) quantum
number, and in addition on the continuous parameters en
E andB0. To make this complex problem tractable with o
numerical capabilities, we had to make rather restrictive
sumptions for the model parameters. In particular, we
sumed a relatively large impurity broadening to ensure
rapid convergence of the Fourier expansions. Therefore,
results shown in this paper are based on a few exam
rather than on a complete insight into the structure of
vertex corrections and a systematic analysis of the len
scales imposed by the modulation period, cyclotron rad
and impurity range.

A more detailed, systematic investigation of anisotrop
scattering effects in more realistic cases of high-mobi
modulated systems exceeds our present possibilities con
ing computer memory and CPU time. Although quanti
tively our results depend on the parameters of the Gaus
model for impurities, we believe they do not change qual
tively when the impurity range is increased to more realis
values to simulate the situation at high-mobility semicond
tor interfaces. Of course, in that case the realistic impu
model is the Coulomb potential of a charged particle situa
outside the 2DEG. Nevertheless, for such a model, in or
to avoid singularities in the scattering integrals~A3! or ~A6!,
one has to include the screening effects of the 2DEG on
impurity potential, e.g., within a Thomas-Fermi approxim
tion. Note, that the screening of the periodic lateral poten
in the case of the electric modulation may considerably
duce the width of the Landau bands, and thus the influe
of VHS on the magnetoresistivities, which we do not exp
for a magnetic modulation.22,26On the other hand, the depen
dence of the screening length on the DOS at the Fermi le
and also the alternating of quasimetallic~compressible! and
insulating~incompressible! phases in strong magnetic field
open the possibility of describing more complicated b
11532
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qualitatively new effects in the resistivities.
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APPENDIX A: THE SCBA KERNEL

In the numerical calculation we find it most convenient
use the Landau basis,

^x,yunX0&5exp~2 iX0y/ l 2!fn@~x2X0!/ l #/~Lyl !
1/2, ~A1!

with n50,1,2, . . . the orbital ~oscillator! quantum number
and X052p l 23(integer)/Ly the ~quasicontinuous! center
coordinate. Equations~3.3! and ~3.6! have the same struc
ture, which in matrix form reads

Anm~X0!5 (
n8m8X08

Gnm,n8m8
2

~X0 ,X08!Bn8m8~X08!, ~A2!

A being eitherS or I @F#, andB being eitherG or F. Due to
the translational invariance alongy, all these operators ar
diagonal inX0 and, similar to the energy spectrumEn,X0

, the

X0 dependence is periodic with the modulation perioda. In
the Landau basis the matrix elements of the collision ope
tor depend only on the difference of the center coordinat

Gnm,n8m8
2

~X02X08!5niE dR^nX0uu~r2R!un8X08&

3^m8X08uu~r2R!umX0&, ~A3!

as can be shown, e.g., by using the Fourier transformũ of u.
Hence, Eq.~A2! becomes a convolution with respect toX08 ,
and it can be simplified by the Fourier-series expansions

Bn8m8~X08!5 (
p>0

bn8m8~p!cosFpKX081~n82m81 j !
p

2 G ,
~A4!

whereK52p/a is the modulation wave vector, and whe
the phase shifts are chosen to satisfy the reflection symm
imposed by the modulations: we takej 50 for B5G, be-
cause Gnm

s (2X0)5(21)(n2m)Gnm
s (X0), and j 51 for B

5F, becauseFnm
ss8(2X0)5(21)(n2m11)Fnm

ss8(X0). These
properties follow for our simple cosine modulations from t
corresponding properties of the matrix elements of
Hamiltonian and of the velocity operator, respectively. The
Eq. ~A2! becomes

Anm~X0!5 (
n8m8

(
p>0

bn8m8~p!Dnm,n8m8~pKl !

3cosFpKX01~n2m1 j !
p

2 G , ~A5!

where
2-10
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Dnm,n8m8~pKl !5
ni

p l 2E0

`

dq qF ũS qA2

l D G2

Enn8~q2!Emm8

3~q2!Jn2n82m1m8~pKlqA2!, ~A6!

with

Enm~z!5S m!

n! D 1/2

z(n2m)/2e2z/2Lm
n2m~z!5~21!m2nEmn~z!,

~A7!

Ln
m(x) being the Laguerre polynomials, andJn(x) the Bessel

functions. We have the following properties:

Dnm,n8m85~21!n1m1n81m8Dmn,m8n8 , ~A8!

Dnm,n8m85Dn8m8,nm . ~A9!

In particular, ford impurities, i.e., forũ(q)[u0, Eq. ~A6!
can be integrated analytically, and one obtains25

Dnm,n8m8~pKl !5
niu0

2

2p l 2
Enm~p2z!En8m8~p2z!, ~A10!

wherez5(Kl )2/2. Using the Fourier series~A5! in Eqs.~3.3!
and ~3.6!, we solve iteratively the self-consistent equatio
~3.2! and ~3.3! and ~3.5! and ~3.6!, starting from the CNA.
The velocity matrix elements, used in Eqs.~3.5! and ~3.4!,
are

^n8X0uvaunX0&5ha

lvc

A2
~An11dn8,n11

1ha
2An811dn,n811!, ~A11!

with the notation (hx ,hy)5( i ,1).
One can directly show the following symmetries:

~Fa
ss8!mn* 5~Fa

2s82s!nm , ~A12!

for both a5x,y, and from the symmetries of the Hami
tonian, which in the Landau representation is a real, symm
ric matrix, and of the velocity operators, see Eq.~A11!, also

~Fx
ss8!mn52~Fx

s8s!nm ~A13!

and

~Fy
ss8!mn5~Fy

s8s!nm . ~A14!

Analog properties occur also for the matrix elements of

operatorsI @Fa
ss8#. In particular, ford impurities we have in

addition

~ I @Fa
ss8# !mn5~ I @Fa

ss8# !nm , ~A15!

which impliesI @Fx
ss#50.

APPENDIX B: SOME CNA RESULTS

The matrix elements of the electric modulation poten
V(x)5U cos(KX0) in the Landau representation are26
11532
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Vmn~X0!5U EmnS 1

2
l 2K2D cosS KX01~m2n!

p

2 D ,

~B1!

with Emn(z) defined in Eq.~A7!. For weak modulation, per
turbation expansion yields to lowest order inU

En,X0

(1) 5en1U Enn~ l 2K2/2!cos~KX0!, ~B2!

with en5\vc(n11/2). Since forRn[ lA2n11@1/K one
has the asymptotic expression4 Enn( l

2K2/2)'cos(KRn
2p/4)/(pKRn/2)1/2, one expects flat Landau bands, if th
flat-band condition 2Rn5a(l21/4) holds for a l
51,2, . . . . Thestates of the modulated basis are,4 to first
order inU,

unX0)(1)5unX0&1 (
n8Þn

un8X0&
Vn8n~X0!

en2en8

. ~B3!

In first order of U, this leads to a nonvanishing diagon
matrix element ofvy in the modulated basis, given b
(nX0uvyunX0)52(mvc)

21dEn,X0

(1) /dX0. For the off-

diagonal velocity matrix elements one obtains

z~mX0uvaunX0!z25 z^mX0uvaunX0& z21O~U/\vc!,

~B4!

where the leading contributionsz^mX0uvaunX0& z2 are inde-
pendent ofU and identical forvx and vy , see Eq.~A11!.
Thus, for weak modulation the scattering conductivitiessxx

scat

andsyy
scat are approximately the same. For stronger modu

tion this is no longer true, even within the CNA.
Within the CNA the imaginary part of Eq.~3.3! reads

Im S2~E!5
G0

2

2p (
n
E

0

adX0

a
Im Gnn

2 ~X0 ,E!, ~B5!

and the DOS is given byD(E)5D0Im S2(E)/(pG0
0). For

an estimate of the scattering and band conductivities we
sume that the collision broadening ImS2(E) of the spectral
functions ImGnn

2 (X0 ,E)/p is much smaller than the
modulation-induced bandwidth@;UuEnn( l

2K2/2)u#, and
that the latter is much smaller than\vc . Then the dominant
contribution to Eq.~3.8! comes from the Landau bands at th
energyE. Let us assume thatE lies in the bandnF , so that
uE2EnF ,X0

2ReS(E)u!\vc . Then, the leading-order con

tributions to the scattering conductivity are obtained forn
5nF and n85nF61 ~and n and n8 interchanged!, and we
may approximate

Im Gn8n8
2

~X0 ,E!'Im S2~E!/~\vc!
2. ~B6!

Inserting this and the off-diagonal velocity matrix elemen
from Eq. ~A11!, we obtain

saa
scat~E!'

e2

h
~2nF11!

G0
0

\vc
FD~E!

D0
G2

. ~B7!

This is a general result and holds for unmodulated system16

and for a 2DEG with a two-dimensional superlattice
well.27 It shows that the scattering conductivity is propo
tional to the scattering rate 1/tsc5G0

0/2\, and that its
maxima and minima follow those of the DOS.
2-11
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The band conductivitysyy
band is dominated by the term

containing the square of the spectral functi
Im GnFnF

2 (X0 ,E)/p. Considered as a function ofX0, the lat-

ter hasd-function-like peaks at the valuesXF satisfying

E2EnF ,XF
2ReS~E!50. ~B8!

To obtain an estimate~actually an upper limit! of syy
band, we

take the square of the velocity matrix elements and one
the ImGnFnF

2 (X0 ,E) factors atX05XF , i.e., we approximate

Im Gnn
2 (X0 ,E)'Im GnFnF

2 (XF ,E)51/ImS2(E). Then we

obtain with Eqs.~3.8! and ~3.9!

syy
band~E!'

e2

h
U2l

G0

dEnF ,X0

dX0
U

X05XF

2

, ~B9!

which according to Eq.~B8! depends onE ~at T→0 onEF ,)
via XF5XF(E). This shows already thatsyy

band(E) is propor-
tional to the scattering time2\/G0

0 , and that it becomes
small for flat bands and near the band edges, where the
ergy dispersion becomes flat. This is opposite to the D
which becomes large at flat bands and near the band e
~VHS!.

If Eq. ~B8! holds for E well within a Landau band,
i.e., sufficiently far from the band edges, we may appro
mate ImGnFnF

2 (X0 ,E)/p'd(X02XF)/udEn,X0
/dX0uX05XF

to obtain
s.

.
n

i.

,

ha

B

11532
of

n-
,
es

-

D~E!'2/@pal2udEnF ,X0
/dX0uX05XF

#, ~B10!

where we assumed that Eq.~B8! is satisfied atX056XF .
Inserting this into Eq.~B9! yields

syy
band~E!;

e2

h

\vc

G0
0 F 4lD 0

aD~E!G
2

, ~B11!

which is a reasonable estimate at energies well inside
modulation-induced Landau bands.

If we repeat the analysis of the band conductivity f
overlapping Landau bands, i.e., if we drop the condition
the bandwidthUuEnn( l

2K2/2)u!\vc we arrive at

syy
band~E!'

e2

h S 2l

G0
D 2

U(
n

dEn,X0

dX0
U

En,X0
5E

U(
n8

S dEn8,X0

dX0
D 21U

En8,X0
5E

.

~B12!

The difference of this expression to Eq.~B9! is the contribu-
tion of more than one Landau band at the same time to
total density of states~denominator! and of bands with dif-
fering group velocities to the conductivity~numerator!.
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