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Excitation spectra of harmonic quantum dot lattices with Coulomb interaction between the dots
and the broken generalized Kohn theorem

M. Taut*
Institute for Solid State and Materials Research Dresden, POB 270016, 01171 Dresden, Germany

~Received 31 August 2000; published 1 March 2001!

Lattices of parabolic quantum dots with different dot species per unit cell and Coulomb interaction between
the dots are investigated. As examples, we solve the Schro¨dinger equation for square lattices with two different
dots per unit cell:~i! two different circular dots, and~ii ! two elliptical dots, which are rotated by 90 ° relative
to each other. The interaction between the dots is considered in a dipole approximation, and excitation spectra
are calculated. Forvanishingmomentum transfer (q50), the energy spectrum of the first case can be ex-
pressed as a superposition of two noninteracting dots with an effective confinement frequency, which includes
the effect of dot interaction. Only in the second case is there a splitting of degenerate absorption lines, and an
anticrossing occurs, which is a qualitative indication of interdot interaction. If the interaction becomes very
strong and if all lattice sites~not necessarily confinement potentials! are equivalent, then the contribution of the
dot interaction outweighs possible differences in the confinement potentials and the generalized Kohn theorem
gradually reenters, in the sense that one pair of excitation modes~pseudo-Kohn modes! becomes independent
of the interaction strength. Forfinite momentum transfer (q5” 0), we investigated mode softening and the
influence of changing the interaction strength between dots of different sublattices. The latter effect may be
implemented by putting different electron numbers in different dot species. It is shown that strengthening the
next-nearest-neighbor interaction versus the nearest-neighbor interaction stabilizes the square lattice.

DOI: 10.1103/PhysRevB.63.115319 PACS number~s!: 73.21.2b, 73.20.Mf
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I. INTRODUCTION

Quantum dots are frequently called ‘‘artificial atoms
and small interacting quantum dot arrays ‘‘artificial mo
ecules.’’ There are numerous exact~and approximate! calcu-
lations of these. ‘‘Artificial solids’’ are more complicated t
handle, because brute force calculations are not poss
here. We applied the dipole approximation for the interd
interaction and neglected overlap between the dots, whic
justified in the van der Waals limit. The Schro¨dinger equa-
tion for harmonic confinement potentials, and with a hom
geneous magnetic field perpendicular to the plane, can
be solved exactly. The generalized Kohn theorem1 ~GKTh!
plays a crucial role in quantum dot physics with far-reach
consequences. It considers interacting electron systems
harmonic confinement and a constant magnetic field, an
states that excitations by long-wavelength radiation are
affected by the electron electron (ee) interaction. This state-
ment applies to arrays ofidentical harmonic dot confine-
ments~with ee interaction between the dots! as well~see the
Appendix of Ref. 2!. This does not mean that all excitation
are independent ofee interaction, but only optically active
ones~Kohn modes!, and it does not mean thatee interaction
is not important for other excitations. However, this fact p
vents theee interaction from beeing seen and investigate
e.g., by far infrared~FIR! spectroscopy. The FIR absorptio
spectrum of the whole system agrees exactly with the sp
trum of a single particle. The GKTh does not hold for arra
of differentdot confinements, e.g., periodic dot lattices w
two different harmonic dot confinements per unit cell.2 Then
all collective modes are excited by FIR radiation and
fected byee interaction, or, in other words, there is no Koh
mode. The calculation and investigation of absorption f
0163-1829/2001/63~11!/115319~9!/$15.00 63 1153
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quencies and probabilities in the latter case is the subjec
this work.

In order to obtain a visual picture, let us first conside
classical model for the Kohn mode for a vanishing magne
field. ~This preliminary consideration will be replaced by
rigorous quantum-mechanical treatment in the followin!
Classically, the charge distributions of all dots oscillate r
idly in phase with the bare confinement frequency, and
ee interaction contributes only a constant term to the to
energy ~independent of elongation!. If we have more than
one identicaldot per unit cell, there are additional collectiv
modes, in which the individual dots oscillate out of pha
and which are affected by dot interaction, but which are
optically active. Consequently, the dot interaction is not o
servable with FIR spectroscopy in arrangements ofidentical
dots. One way to trick Kohn’s theorem is to includedifferent
dot species. Then there is no coherent oscillation mode
all dots, which does not change theee interaction energy of
the system in elongation, because there is no common
confinement frequency. As a consequence, all collec
modes~two modes per dot in the unit cell! are affected by
dot interaction and excited by FIR radiation with a fini
probability. In other words, the generalized Kohn theore
for dot arrays is broken. Other systems where Kohn’s th
rem does not hold comprise~i! anharmonic confinements3,5

~circular dots withr 4 and higher-order terms in the radia
dependence or square dots with terms of typex2y2), and~ii !
hole dots with different effective masses.6 One point of this
paper is that the GKTh can be brokendespitean exactly
harmonic Hamiltonian. A further possibility for observin
the ee interaction in the excitations is to consider a fini
wavelength,2,3 which is also considered in the present wor
The most interesting issue in this case is mode softening
©2001 The American Physical Society19-1
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to dot interaction, and how it can be controlled.
In Sec. II we discuss the magnetophonon Hamilton

used here. In Sec. III the eigensolutions including excitat
spectra are found. Section IV is devoted to a calculation
the oscillator strength for FIR absorption, and in Sec. V a
lytical and numerical results forq50 andq5” 0 are given.
Sec. VI is a summary. A preliminary paper of the results
q50 has been published elsewhere.4

II. MAGNETOPHONON HAMILTONIAN

The first part of the calculation of the eigenstates of
Hamiltonian closely follows the procedure described in R
2. We have only to consider thatnow the confinement poten
tials and electron numbers can be differentin different dots.
After introducing center-of-mass~c.m.! and relative coordi-
nates in each dot, and, applying the dipole approximation
the Coulomb interaction between the dots, do we obse
that the Hamiltonian of all c.m. coordinates is decoup
from individual dot Hamiltonians in the relative coordinate
That is why all excitations can be classified into~i! collective
~c.m.! excitations, and~ii ! intradot excitations. The latter ar
not considered here because they are not optically ac
The Hamiltonian in the c.m. coordinatesRn,a reads, in
atomic units\5m5e51 ~also see Sec. IV A in Ref. 2!,

Hc.m.5(
n,a

1

2m*
F Pn,a

ANa

1
ANa

c
A~Un,a!G 2

1
1

2 (
n,a

n8,a8

ANaNa8Un,a•Cn,a;n8,a8•Un8,a8 , ~1!

whereUn,a5Rn,a2Rn,a
(0) is the elongation of the c.m. at la

tice site (n,a) andPn,a52 i“Un,a
is the corresponding ca

nonical momentum operator.n runs over the unit cells, anda
over the dot species within a cell.Na is the number of elec-
trons in dota, andm* the effective mass. It is clear alread
from inspection of Eq.~1! that the eigenvalues ofHc.m. do
not depend on the explicitly shown electron numbersNa ,
because the factorsANa can be considered just as a rescali
factor of the coordinatesUn,a . However, the eigenfunction
~and quantities derived from them! do depend on the explici
Na . The force-constant tensor reads

Cn,a;n,a5Va1e21Na (
n8,a8(Þn,a)

T~Rn,a
(0) 2Rn8,a8

(0)
! ~2!

Cn,a;n8,a852e21ANaNa8T~Rn,a
(0) 2Rn8,a8

(0)
! for

~n,a!Þ~n8,a8!, ~3!

wheree21 is the inverse background dielectric constant a
Va the bare confinement tensor, which produces a harm
confinement. The dipole tensor is defined asT(a)
51/a5@3a+a2a2I #, where (+) denotes the dyad product an
I the unit tensor. Observe thatC depends onNa implicitly,
which affects the energy eigenvalues.
11531
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A unitary transformation to collective magnetophonon c
ordinates

Un,a5
1

ANc
(

q

BZ

e2 iq•Rn
(0)

Uq,a ~4!

Pn,a5
1

ANc
(

q

BZ

e1 iq•Rn
(0)

Pq,a , ~5!

whereNc is the number of unit cells, leaves us with a sum
Nc decoupled subsystemsHc.m.5(qHq ,

Hq5(
a

1

2m*
F Pq,a

ANa

1
ANa

c
A~Uq,a* !G †

•F Pq,a

ANa

1
ANa

c

3A~Uq,a* !G1
1

2 (
a,a8

ANaNa8Uq,a* •Cq;a,a8•Uq,a8 ,

~6!

which includes the dynamical matrix

Cq;a,a85(
n

eiq•Rn
(0)

Ca,a8~Rn
(0)!, Ca,a8~Rn

(0)!5Cn,a;0,a8 .

~7!

With Eqs.~2! and ~3!, we obtain

Cq;a,a5Va1e21Na (
a8(5” a)

T~aa2aa8!

1 (
nÞ0 F(

a8
T~Rn

(0)1aa2aa8!2eiq•Rn
(0)

T~Rn
(0)!G , ~8!

Cq;a,a852e21ANaNa8(
n

eiq•Rn
(0)

3T~Rn
(0)1aa2aa8! for aÞa8, ~9!

whereRn,a
(0) 5Rn

(0)1aa , andn5” 0 under the sum means tha
the termRn

(0)50 is excluded.
Now we consider a simple square lattice, alternativ

occupied by two different dot species. The minimum u
cell is face centered square~see Fig. 1! with lattice constant
a. For long-wavelength modes~the indexq50 is dropped
henceforth! and after performing the lattice sum involved
Eq. ~7! numerically, we obtain the four 232 dynamical ma-
trices

FIG. 1. Minimum unit cells for the two dot architectures co
sidered in this paper, with two different circular dots~left! and two
identical, but rotated, ellipsoidal dots~right!.
9-2
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EXCITATION SPECTRA OF HARMONIC QUANTUM DOT . . . PHYSICAL REVIEW B 63 115319
C115V11dp1I , ~10!

C225V21dp2I , ~11!

C125C2152dp12I , ~12!

with d51.460 and the interaction parameters

pi52Nie
21/a3 ~ i 51,2!, ~13!

p1252AN1N2e21/~a/A2!35p. ~14!

The dynamical matrix forq5” 0 is more complicated, and i
not given explicitly.

III. EIGENSTATES

Now we are going to find the eigenvalues and eigenfu
tion of Eq. ~6!. For avoiding divergences forB50, we add
an isotropic oscillator potential12 (av0

2Ua
2 to the kinetic en-

ergy in Eq.~6!, and subtract it from the interaction term.v0
is in principle arbitrary, but we chose the mean value of
bare confinement frequencies included inV1 andV2. Now
we replace the coordinates in Eq.~6! ~for q50) by boson
ladder operators. This is analogous to the usual textb
transformation~see, e.g., Ref. 7, Sec. 3.3! apart from the
factorsANa. It is obvious that this modification can be take
into account by introducing scaled coordinatesUa→Ũa

5ANaUa ~which impliesPa→P̃a5Pa /ANa),

ANaUax5
1

2A 2

ṽc*
~aa1

1 1aa2
1 1aa11aa2!, ~15!

ANaUay52
i

2A 2

ṽc*
~aa1

1 2aa2
1 2aa11aa2!, ~16!

where the first subscript (a51,2) indicates the dot numbe
and the second the component. The transformation of
c.m. momentum operators is analogous:

Pax

ANa

5
i

2
Aṽc*

2
~aa1

1 1aa2
1 2aa12aa2!, ~17!

Pay

ANa

5
1

2
Aṽc*

2
~aa1

1 2aa2
1 1aa12aa2!. ~18!

The cyclotron frequency is vc* 5B/m* c and ṽc*
5Avc*

214v0
2. First, it is clear that the Hamiltonian in thes

ladder operators no longer shows an explicitNa dependence
~apart from that implicit in the dynamical matrix!. This im-
plies that the eigenvalues of the Hamiltonian do not dep
on thoseNa, which are seen explicitly in Eq.~6!. Second, the
commutators of the ladder operators are not influenced
the Na factors, and agree with those of bosons:@aa i ,aa i

1 #
51, and all other commutators vanish.8 ~This is because the
commutators ofŨa and P̃a8 agree with the commutators o
11531
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the untilded quantities.! Now the total Hamiltonian can be
written in matrix notation in the compact form

H5@a1a#•H•F a

a1G , ~19!

where

@a1a#5@a11
1 a12

1 a21
1 a22

1 ua11a12a21a22#, ~20!

and @a1
a

# is the transposed and Hermitian conjugate of E
~21!. The 838 Hamiltonian matrix is not unique, but can b
cast into the form

H5F a b

b* a* G with a15a, bT5b ~21!

consisting of the 434 matrices

a5
1

2 Fv 0

0 v
G1

1

4ṽc*
E1

•F C̃11 C12

C21 C̃22
G •E, ~22!

b5
1

4ṽc*
E1

•F C̃11 C12

C21 C̃22
G •E* , ~23!

with E5@0 «
« 0# and the 232 matrices

C̃kk5Ckk2
1

2
v0

2I , v5Fv1 0

0 v2
G , «5F1 1

i 2 i G ,
~24!

with

v65Avo
21S vc*

2 D 2

6S vc*

2 D . ~25!

Finding the eigenstates of the boson Hamiltonian@Eq. ~19!#
is provided by mathematical physics, and described in Re
in full detail. The goal is to find a linear transformatio
@b1

b
#5A•@a1

a
#, which preserves boson commutators and

agonalizesH. We shall only summarize the recipe here.
The eigenvaluesare given byEn1 ,n2 ,n3 ,n4

5(k
(1, . . . ,4)(nk

1 1
2 )vk with nk being non-negative integers andvk52gk

with gk being the fourpositive eigenvalues of the matrix
H•J. The 838 matrix J5@0 2I

I 0 # is made up of 434 unit
matrices. All eigenvalues ofH•J come in pairs (gk ,2gk).

The eigenfunctionsof H are constructed as usual fo
bosons:

un1 ,n2 ,n3 ,n4&5 )
k

(1, . . . ,4)
~bk

1!nk

Ank!
u0&. ~26!

The four eigenvectors belonging to the positive eigenval
are written in the formxk5@vk

uk#. The column vectors ofA1

are given by the vectorsxk , and by the vectorsx̂k5@
u

k*
vk* #,

which are the eigenvectors belonging to2gk . The eigenvec-
tors have to be properly orthonormalizedxi

1
•J•xk5d i ,k .

Without degeneracy, the orthogonality is guaranteed au
9-3
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M. TAUT PHYSICAL REVIEW B 63 115319
matically. The inverse of this particular transformation is o
tained from A215J•A1

•J, which shows that the linea
transformation is not unitary~but unitary in a non-Euclidian
metric!.

IV. OSCILLATOR STRENGTH

Optical oscillator strengths~for q50) between the state
un&5un1 ,n2 ,n3 ,n4& and un8&5un18 ,n28 ,n38 ,n48& for polariza-
tion in theh5(x or y) direction are defined as

f n,n8;h52m* vn,n8z^nuUh;totun8& z2, ~27!

where vn,n8 is the corresponding excitation energy, a
Uh;tot is theh component of the total c.m. of the electrons
a unit cell ~apart from a constant term!. In formulas, this
meansUtot5(N1 /Ntot)U11(N2 /Ntot)U2, where Ntot5N1
1N2. After expressing the vectorsU by ladder operatorsbk

and bk
1 and using Eq.~26!, we obtain the usual selectio

rules, i.e., only one quantum with energyvk can be absorped
or emitted, so that we obtain only four absorption lines. T
result for the oscillator strength for the four possible tran
tions (k51, . . . ,4) and forh polarization reads

f k,h5
m* vk

Ntotṽc*
uSk,hu2

•H ~nk11!

nk
for H absorption

emission,
~28!

wherenk denotes the initial state, and

Sk,x5 (
i

(1,2) A N1

Ntot
~uki2vki!1 (

i

(3,4) A N2

Ntot
~uki2vki!,

~29!

Sk,y5 (
i

(1,2) A N1

Ntot
~21!( i 11)~uki1vki!

1 (
i

(3,4) A N2

Ntot
~21!( i 11)~uki1vki!. ~30!

In the last definition,uki andvki for i 51, . . . ,4 are thecom-
ponents of the vectorsuk andvk , respectively. The oscillato
strength defined in Eq.~27! fulfills the following exact
f –sum rule(kf k,h51/Ntot . It is worth pointing out that for
equal electron numbers in either dot (N15N25N), the os-
cillator strength depends explicitly onN ~contrary to the op-
tical excitation energies!. In all figures presented below th
oscillator strengths are forN15N25N.
11531
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V. RESULTS

Now the two simplest cases are discussed in more de
two different circles and two identical, but rotated, ellipse
The ratio of the two bare confinement frequencies involv
in either case is 1:1.5 which means that the two confinem
frequencies in units of the mean frequencyv0 are 1.2 and
0.8. In our figures, all frequencies~energies! are given in
units of the mean confinement frequencyv0 and the interac-
tion parametersp in units ofv0

2. The magnetic field is given
in terms of the effective cyclotron frequencyvc* in units of
v0 ~upper scale! and in T ~lower scale!. The conversion be-
tween both scales is provided by

vc* @v0#5
0.913431022

m* v0@a.u.* #
B@T#. ~31!

In our figures we usedv050.2 a.u.* 52.53 meV andm*
of GaAs for this conversion.~We want to stress that thi
parameter choice affects only the magnetic field scale
not the curves.! The definitions of the interaction paramete
~13! for GaAs in more convenient units reads

pi@v0
2#5

2.263107Ni

~a@Å # !3~v0@meV# !2
. ~32!

~For a more detailed discussion of order-of-magnitude e
mates, see Ref. 2.!

A. Zero wave number

For two differentcircular dotswith bare confinement fre-
quenciesv1 and v2 and N15N2, the absorption spectrum
and the oscillator strength are shown in Fig. 2. Althoughall
absorption lines are affected by the dot interaction~repre-
sented by the interaction parameterp), and all modes are
optically active, there is noqualitativeeffect of interaction in
the position of the absorption lines. The reason for this c
be understood easily. In this particular case, the four eig
modes can be calculated analytically providing

v1,2,3,45Ave f f,i
2 1S vc*

2 D 2

6S vc*

2 D ~ i 51,2! ~33!

where
tal

ffect.
ve f f,1,2
2 5

~v1
21v2

2!

2
1

~p11p2!

2
d6AF ~v1

21v2
2!

2
1

~p11p2!

2
dG 2

2~v1
2p2d1v2

2p1d1v1
2v2

2! . ~34!

~The upper and lower sign belongs tove f f,1 andve f f,2 , respectively!. Consequently, if we had to interpret an experimen
spectrum, we could do this using formula~34! for noninteracting dots, but with the effective~i.e., interaction affected!
confinement parameters defined into Eq.~35!. Only if we take the intensities into account can we see some qualitative e
9-4
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EXCITATION SPECTRA OF HARMONIC QUANTUM DOT . . . PHYSICAL REVIEW B 63 115319
FIG. 2. Excitation modes~a! and oscillator strength~multiplied
with N) for p50 ~b! andp50.5 ~c! for a lattice with two different
circular dots, as described in the text. The radius of the circles in~a!
is proportional to the oscillator strength, and provides a rough o
view.
11531
Whereas for noninteracting dots~with p50) and forB50
the oscillator strength of all modes agree~for a single oscil-
lator, f is independent of the oscillator frequency!, there is a
large difference for interacting dots atp50.5. This large
difference can be understood as follows. In the limitp
→`, the upper pair of modes develops into a spurio
Brillouin-zone boundary mode, which has a vanishing os
lator strength, and the sum rule has to be fulfilled only by
lower pair ~also see the discussion below!.

In Fig. 2 both dot species bare the same number of e
trons. Therefore, only one interaction parameterp is in-
volved. Calculations with differentNi ~andpi) do not show
any qualitative difference. In the limit of largep ~and equal
electron numbers!, from Eq. ~34! we obtain

ve f f,1,2
2 5

~v1
21v2

2!

2
1H 2pd

0
6

~v1
22v2

2!

8pd
1O~p23!.

~35!

Consequently, the square of the smaller effective confi
ment frequency~which is the only one giving rise to mode
with a finite oscillator strength for largep) approaches the
mean value of both squared bare confinement frequenc
whereas the larger one grows continously for largep.

In Figs. 3 and 4~b! we show the results for two identica
but mutually rotated,elliptical dots. Without dot interaction
(p50), we have two doubly degenerate lines. With incre
ing interaction strength, we observe a splitting of degene
modes and an anticrossing behavior for finiteB. As in the
case of circular dots, the oscillator strength atB50 for non-
interacting dots (p50) agree for all four modes. The do
interaction lifts this degeneracy. Additionally, atp50.5 we
observe that the oscillator strength in the limits of small a
large magnetic fields is considerable only for two of t
modes, except in the gap region, where three modes con
ute. By comparison of Figs. 3~a! and 4~b!, we see that the
magnetic field for minimum gap~between the second an
third mode! increases with increasingp, whereas the gap
width decreases. Consequently, the location and width of
gap provides information on the interaction strength.

By comparison of Figs. 2 and 3 with Fig. 4, and mo
clearly by consideration of formula~36! and Fig. 5, it be-
comes clear that in either case the lower pair of degene
modes atB50 converges to a constant~the mean-square
bare confinement frequencyA(v1

21v2
2)/2, which amounts

to 1.02v0 in our numerical example!. Even for finiteB, there
are two branches, which converge to a finite (B-dependent!
value forp→`, or, in other words, which become indepe
dent of p in this limit. At first sight this looks surprising
because theee interaction does not show any saturation,
we increase the interaction parameter, but it continues
compress the dot state. However, there is a simple vis
explanation for this feature: Generally, the dot interacti
adds an additional second-order contribution to the confi
ment, which has the same symmetry as the lattice, i.e.,
circular for a square lattice. For largep, this additional term
outweighs the bare confinement, and the effective confi
ment in both dots becomes isotropic and equal. Thus
approach the case of a lattice of identical dots, for whic

r-
9-5
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FIG. 3. Excitation modes~a! and oscillator strength~multiplied
with N) for p50 ~b! andp50.5 ~c! for a lattice with two identical,
but rotated, elliptical dots, as described in the text and shown in
1. The radius of the circles in~a! is proportional to the oscillator
strength, and provides a rough overview.
11531
pair of Kohn modes exists. Because these Kohn modes
not exactly agree with the modes of noninteracting dots,
call them pseudo-Kohn modes. In a sense, the generaliz
Kohn theorem reenters for dot lattices with strong interd
interaction. In other lattices with lower symmetry, the effe
tive confinement in the strong-interaction limit might be e
liptical, leading to pseudo-Kohn modes with a gap atB
50. The other pair of modes~which diverge forp→`)
turns into in-folded modes at the Brillouin-zone~BZ! corner
~because the units cell halves if all dots become equivale!.
These modes become spurious in the long-wavelength
large-p limits, and the oscillator strengths converge to ze

In Figs. 3~a! and 4~b! we observe an additional qualitativ
effect of dot interaction. For isolated elliptical dots we e

g.

FIG. 4. Excitation modes for a lattice with two different circula
dots ~a! and two rotated elliptical dots~b! for a large interaction
parameter (p52). The radius of the circles is proportional to th
corresponding oscillator strength.
9-6



e
n
w
de

g
t

tr
e

2
st
r
on

t
g
he

ie

m

re
o
la
h

e

Fig.

igh-

ion
is

est-

on
her
that

r

r
he

EXCITATION SPECTRA OF HARMONIC QUANTUM DOT . . . PHYSICAL REVIEW B 63 115319
pect a gap between the two excitation branches atB50.
However, for largerp only the pseudo-Kohn mode might b
observable, because the oscillator strength of the BZ bou
ary mode decrease rapidly. On the other hand, the two lo
modes for finitep develop out of the degenerate lower mo
for p50, whereby the degeneracy atB50 survives. There-
fore, atB50 it looks as if we had a circular dot. The closin
of the gap between the two most intensive branches aB
50 is not a gradual effect proceeding with increasingp, but
is caused by symmetry.

B. Finite wave number

In Figs. 6 and 7 the excitation energies at two symme
points in the Brillouin zone are shown for the two lattic
types shown in Fig. 1. These figures supplement Figs.~a!
and 3~a!, which belong to the center of the BZ. The mo
important conclusion forcircular dots seems to be that fo
finite q the spectrum cannot be described by effective c
finement frequencies anymore~as for q50). Second, for
small p, the crossing of the second and third modes aq
5(1/2,0) persists, whereas it develops into an anticrossin
q5(1/2,1/2). For elliptical dots, dot interaction removes t
degeneracy without a qualitative difference betweenq
5(1/2,0) andq5(1/2,1/2).

In Fig. 8 we show the dispersion of the excitation energ
at B50 for both lattice types. In both cases thecritical in-
teraction parameter was chosen, where the lattice beco
unstable. One conclusion is that a lattice of circular dots
more stable than from elliptical dots. In all cases conside
so far the electron numbers in either dot species agree. N
we manipulate this parameter in the case of different circu
dot confinements in order to obtain additional effects. If t
electron number in the shallower~larger! dot is four times
that of the other one, but the interaction parameter betw
nearest neighbors~i.e., different dot species! is unchanged,

FIG. 5. Pseudo-Kohn mode atB50 as a function of interaction
parameterp for a lattice with two perpendicular elliptical dots pe
unit cell.
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the interaction parameters defined in Eqs.~14! and~13! read
p125p53.449, p150.697, andp252.439. p12 refers to the
interaction between the dots of different sublattices, andpi to
the interaction between dots of the same sublattices. In
8~a! these parameters arep125p53.449 and p15p2
51.219. As seen in Fig. 9, strengthening next-nearest ne
bors interacting in sublattice 2 by increasingp2 stabilizes the
lattice, because the softening atq5(1/2,1/2) is reduced. This
is easily understood. If the nearest-neighbor interact
dominates, we have virtually a simple square lattice which
electrostatically unstable. Increasing the next-near
neighbor interaction~at least in one sublattice! mimics an
environment for one sublattice with a larger coordinati
number, which is more stable against deformation. A furt
numerical result, which is not seen in the figures, states

FIG. 6. Excitation modes for a lattice with two different circula
dots for finite-momentum transfer on two symmetry points in t
Brillouin zone:q5(1/2,0) ~a! andq5(1/2,1/2) ~b!.
9-7
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the criticalp is independent ofB. This agrees with the cor
responding conclusion in lattices with one dot per unit ce2

VI. SUMMARY

We investigate harmonic dot lattices, where the gene
ized Kohn theorem does not hold, and we show that break
the GKTh by constructing quantum dot lattices with at le
two different dot confinements per unit cell has experim
tally observable consequences.

As to zero momentum transfer, there are no longer an
Kohn modes~interaction independent modes!. In both of the
considered lattice types, the degeneracy in the far-infra
intensitiesat B50 between the upper and lower absorpti
lines is lifted. For two mutually rotated elliptical dots~per
cell!, we also observe a splitting of formerly degenerate

FIG. 7. Excitation modes for a lattice with two identical, b
rotated, elliptical dots for finite-momentum transfer on two symm
try points in the Brillouin zone:q5(1/2,0) ~a! andq5(1/2,1/2)~b!.
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FIG. 8. Magnetophonon dispersion on the symmetry lines of
Brillouin zone for the critical interaction strength.~a! For two dif-
ferent circular dots.~b! For two identical, but rotated, elliptical dot
per unit cell.

FIG. 9. As Fig. 8~a!, but with different electron numbers in
either dot:N254N1.
9-8
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sorption frequenciesand the appearance of an anticross
due to dot interaction. For two different circular dots
qualitative effect ofee interaction in the absorption frequen
cies is observed. Instead, the absorption spectrum ca
reproduced by two noninteracting dots with modified~effec-
tive! confinements. We also point out that an extensiv
strong interaction destroys the effect of interaction by p
ducing pseudo-Kohn modes. Although this limit can har
be reached experimentally, it might be important to take
tendency into consideration.

The excitation spectra forfinite momentum transfershow
mode softening and a lattice instability. The critical intera
tion strength for the instability is independent of magne
field, but can be affected by manipulating the electron nu
ber per dot, which can change the ratio of nearest- and n
nearest-neighbor interaction strength.
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Only in the case of two circular dots andq50 is there a
simple analytical closed-form solution. However, with th
formulas presented above, the absorption frequencies~and
for q50 also the oscillator strength! for any square lattice
with two harmonic dot species can be easily calculated. T
only numerical task is to find the eigenvalues of an explici
given non-Hermitian 838 matrix ~and to perform a specia
sum over the eigenvector components in order to obtain
oscillator strength!.
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