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Lattices of parabolic quantum dots with different dot species per unit cell and Coulomb interaction between
the dots are investigated. As examples, we solve the 8iriger equation for square lattices with two different
dots per unit cell{i) two different circular dots, andi) two elliptical dots, which are rotated by 90 ° relative
to each other. The interaction between the dots is considered in a dipole approximation, and excitation spectra
are calculated. Fovanishingmomentum transferg=0), the energy spectrum of the first case can be ex-
pressed as a superposition of two noninteracting dots with an effective confinement frequency, which includes
the effect of dot interaction. Only in the second case is there a splitting of degenerate absorption lines, and an
anticrossing occurs, which is a qualitative indication of interdot interaction. If the interaction becomes very
strong and if all lattice sitegot necessarily confinement potentjase equivalent, then the contribution of the
dot interaction outweighs possible differences in the confinement potentials and the generalized Kohn theorem
gradually reenters, in the sense that one pair of excitation m@desido-Kohn modédecomes independent
of the interaction strength. Fdinite momentum transferq#0), we investigated mode softening and the
influence of changing the interaction strength between dots of different sublattices. The latter effect may be
implemented by putting different electron numbers in different dot species. It is shown that strengthening the
next-nearest-neighbor interaction versus the nearest-neighbor interaction stabilizes the square lattice.
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[. INTRODUCTION quencies and probabilities in the latter case is the subject of
this work.
Quantum dots are frequently called “artificial atoms,”  In order to obtain a visual picture, let us first consider a

and small interacting quantum dot arrays “artificial mol- classical model for the Kohn mode for a vanishing magnetic
ecules.” There are numerous ex&ahd approximatecalcu-  field. (This preliminary consideration will be replaced by a
lations of these. “Artificial solids” are more complicated to rigorous quantum-mechanical treatment in the following.
handle, because brute force calculations are not possiblélassically, the charge distributions of all dots oscillate rig-
here. We applied the dipole approximation for the interdotidly in phase with the bare confinement frequency, and the
interaction and neglected overlap between the dots, which igse interaction contributes only a constant term to the total
justified in the van der Waals limit. The Scldinger equa- energy(independent of elongatipnif we have more than
tion for harmonic confinement potentials, and with a homo-oneidenticaldot per unit cell, there are additional collective
geneous magnetic field perpendicular to the plane, can themodes, in which the individual dots oscillate out of phase,
be solved exactly. The generalized Kohn thedré@®KTh) and which are affected by dot interaction, but which are not
plays a crucial role in qguantum dot physics with far-reachingoptically active. Consequently, the dot interaction is not ob-
consequences. It considers interacting electron systems insgrvable with FIR spectroscopy in arrangementglentical
harmonic confinement and a constant magnetic field, and ots. One way to trick Kohn’s theorem is to includiéferent
states that excitations by long-wavelength radiation are nodot species. Then there is no coherent oscillation mode for
affected by the electron electror€) interaction. This state- all dots, which does not change the interaction energy of
ment applies to arrays dflentical harmonic dot confine- the system in elongation, because there is no common bare
ments(with eeinteraction between the dotas well(see the confinement frequency. As a consequence, all collective
Appendix of Ref. 2. This does not mean that all excitations modes(two modes per dot in the unit cglare affected by
are independent afe interaction, but only optically active dot interaction and excited by FIR radiation with a finite
ones(Kohn modey and it does not mean thae interaction  probability. In other words, the generalized Kohn theorem
is not important for other excitations. However, this fact pre-for dot arrays is broken. Other systems where Kohn’s theo-
vents theee interaction from beeing seen and investigated,rem does not hold compriggé) anharmonic confinemenritd
e.g., by far infraredFIR) spectroscopy. The FIR absorption (circular dots withr* and higher-order terms in the radial
spectrum of the whole system agrees exactly with the spedependence or square dots with terms of typg?), and(ii)
trum of a single particle. The GKTh does not hold for arrayshole dots with different effective mass&€ne point of this

of differentdot confinements, e.g., periodic dot lattices with paper is that the GKTh can be brokelespitean exactly
two different harmonic dot confinements per unit éllhen  harmonic Hamiltonian. A further possibility for observing
all collective modes are excited by FIR radiation and af-the ee interaction in the excitations is to consider a finite
fected byeeinteraction, or, in other words, there is no Kohn wavelengtt?:® which is also considered in the present work.
mode. The calculation and investigation of absorption fre-The most interesting issue in this case is mode softening due

0163-1829/2001/631)/1153199)/$15.00 63 115319-1 ©2001 The American Physical Society



M. TAUT PHYSICAL REVIEW B 63 115319
to dot interaction, and how it can be controlled.

In Sec. Il we discuss the magnetophonon Hamiltonian O Q O Q
used here. In Sec. Il the eigensolutions including excitation
spectra are found. Section IV is devoted to a calculation of O O
the oscillator strength for FIR absorption, and in Sec. V ana-
lytical and numerical results foq=0 andq#0 are given. O Q O O
Sec. VI is a summary. A preliminary paper of the results for

q=0 has been published elsewhére.

FIG. 1. Minimum unit cells for the two dot architectures con-

sidered in this paper, with two different circular dgksft) and two
IIl. MAGNETOPHONON HAMILTONIAN identical, but rotated, ellipsoidal dotsght).

The first part of the calculation of the eigenstates of the
Hamiltonian closely follows the procedure described in Ref
2. We have only to consider thabw the confinement poten-

A unitary transformation to collective magnetophonon co-
‘ordinates

tials and electron numbers can be differemtdifferent dots. 1 BZ o

After introducing center-of-mas&.m. and relative coordi- U, =— 2 e 1aRy Ug.a (4)
nates in each dot, and, applying the dipole approximation for N ’

the Coulomb interaction between the dots, do we observe 67

that the Hamiltonian of all c.m. coordinates is decoupled B 1 +ig-RO

from individual dot Hamiltonians in the relative coordinates. Pn,a‘\/?c 5 e " Poas ®)

That is why all excitations can be classified ifitpcollective
(c.m) excitations, andii) intradot excitations. The latter are whereN. is the number of unit cells, leaves us with a sum on
not consiqlereq he_re because they are not optically {ictivéxlc decoupled subsystents; , =2 H,,

The Hamiltonian in the c.m. coordinateR, , reads, in

.
atomic unitsh=m=e=1 (also see Sec. IV A in Ref.)2 1 |Pgo Ng Pgo  VNg
He= 2> +—SAUE )| |2
) @ 2m*|\N, ¢ LN,
1 |Poa N,
Hom=2 —— | ==+ "A(Un,) 1
e 2m* | YN, XAUS ) |+ 5 > NN UE Chaar Ugar s
1 uz,a'
+5 nz YNGNLUp o Chanrar-Unrars (1) (6)
0ol which includes the dynamical matrix

whereU, ,=R, ,— R is the elongation of the c.m. at lat- RO o o

tice site (1,«) andP, ,=—iVy_ is the corresponding ca- Cq;a,a’:; €9 C, o (RY),  Coroa(RY)=Cp a0
nonical momentum operatar.runs over the unit cells, and (7)
over the dot species within a ceM, is the number of elec- ) .

trons in dota, andm™* the effective mass. It is clear already With Egs.(2) and(3), we obtain
from inspection of Eq(1) that the eigenvalues df ., do

not depend on the explicitly shown electron numbks, Chaa=Qt e N, E T(a,—a,)
because the factordN,, can be considered just as a rescaling ' (+a)
factor of the coordinated, ,. However, the eigenfunctions .
(and quantities derived from therdo depend on the explicit +> | > T(RO+ aa_aa,)_eiQ-R(n )T(REIO)) G))
N, . The force-constant tensor reads n#0 | o
R e iq.R©
Cn,a;n,a:Qa+€71Na 2 T(RE?Q—RES)Q,) (2) Cq;a,a/’:_e ! NaNa’Z elq'Rn
n’,a'(#n,a) ' n
XT(RO+a,—a,) for a#a’, (9

Cranar=—€ "WNNLT(RO-RQ ) for
' ' whereR{"Y) =R®)+a,, andn+0 under the sum means that
(n,a)#(n’,a’), 3 the termR{Y=0 is excluded.

Now we consider a simple square lattice, alternatively
wheree™ ! is the inverse background dielectric constant andoccupied by two different dot species. The minimum unit
Q, the bare confinement tensor, which produces a harmonicell is face centered squafsee Fig. 1 with lattice constant
confinement. The dipole tensor is defined d4a) a. For long-wavelength modeghe indexq=0 is dropped
=1/a°[3aca—a?l ], where ¢) denotes the dyad product and henceforth and after performing the lattice sum involved in
| the unit tensor. Observe th&t depends omN,, implicitly, Eq. (7) numerically, we obtain the four:22 dynamical ma-
which affects the energy eigenvalues. trices
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C1;=Q,+dpyl, (10 the untilded quantities.Now the total Hamiltonian can be
written in matrix notation in the compact form
C22: Qz'f'dpzl y (11) a
H=[a"a]-H- , (19
C1o=Cy=—dpydl, (12 a’
with d=1.460 and the interaction parameters where
pi=2N;e Ya® (i=1,2), (13 [a*a]=[a;581,821855@118128018], (20)

B and[a‘i] is the transposed and Hermitian conjugate of Eq.
P1=2VNiNoe Y/ (a/2)*=p. (14 (21). The 8x8 Hamiltonian matrix is not unique, but can be

The dynamical matrix fog#0 is more complicated, and is €ast into the form

not given explicitly. o

B*

Now we are going to find the eigenvalues and eigenfuncf:OnSIStIng of the %4 matrices

H=

B
o with a*=a, B'=p8 (21
I1l. EIGENSTATES

tion of Eq. (6). For avoiding divergences f@=0, we add . C
. . . . 2,12 . . llw 0 1 Cj_j_ 12
an isotropic oscillator potentigi= ,wgU? to the kinetic en- a=— +—= +, _|'E, (22)
ergy in Eq.(6), and subtract it from the interaction termg 210 o] 40} Ca Cyy
is in principle arbitrary, but we chose the mean value of the _
bare confinement frequencies included(ln and(,. Now 1 . C;; Cp .
we replace the coordinates in E@) (for g=0) by boson B= 4~—*E e, & B, (23)
ladder operators. This is analogous to the usual textbook @e 21 22
transformation(see, e.g., Ref. 7, Sec. 3.8part from the with E=[£ °] and the 22 matrices
factors\N,. It is obvious that this modification can be taken
into account by introducing scaled coordinates— U, Bz Co— = 02l _| @+ 0 _ 11
B R = kk= “kk™ 5 @ols - @7 &7 _il
=N_U,, (which impliesP,—P,=P,/\N,), w_ i
(24)
1 /2 with
\/N_aU a'X:E W(a21+a;2+aal+aa2)v (15)
e = 2, ﬁ 2+ w_: (25)
@rT N @ 7] =172

[ 2
NLU = — CAY, =@~ a,—a,1ta.;), (16  Finding the eigenstates of the boson Hamiltor{igq. (19)]
@e is provided by mathematical physics, and described in Ref. 9

where the first subscripta(=1,2) indicates the dot number in full detail. The goal is to find a linear transformation
' b

and the second the component. The transformation of thk,: 1=A-[.:], which preserves boson commutators and di-

c.m. momentum operators is analogous: agonalizeH. We shall only summarize the recipe here.
The eigenvaluesare given byEy, . n.n, =" A0y
P .x _i Zu: N N + 3)wy with n, being non-negative integers arngl =217,
\/N__E V T(aal"'aaz_aal_aaz)’ (17 with y, being the fourpositive eigenvalues of the matrix
@ H-J. The 8x8 matrix J=[¢ %] is made up of &4 unit
= matrices. All eigenvalues dfi-J come in pairs ., — ).
P 1 [k i i
ay c, 4 + The eigenfunctionsof H are constructed as usual for
\/— - E 7( a1~ aa2+ ap1— aaZ) . (18) b .
N, 0osons:
; * * ~ % @ 4 b )M
The cyclotron frequency is wi=B/m*c and wg INy.Np.Ng.ng)= H (by) 10) 26
= Jw¥Z+4w32. First, it is clear that the Hamiltonian in these LieeeT N

ladder operators no longer shows an explitjt dependence , ) . )
(apart from that implicit in the dynamical matjixThis im- The four eigenvectors belonging to the positive eigenvalues

plies that the eigenvalues of the Hamiltonian do not dependre written in the f0fm<k=[z';]- The column vectors oA™
on thoseN,, which are seen explicitly in Eq6). Second, the
commutators of the ladder operators are not influenced b

the N,, factors, and agree with those of bosofa;,.a,]  which are the eigenvectors belonging-ay, . The eigenvec-
=1, and all other commutators vani$kiThis is because the tors have to be properly orthonormalizegl - J- x,= &, .

commutators ofJ, andP,, agree with the commutators of Without degeneracy, the orthogonality is guaranteed auto-

9re given by the vectors,, and by the vectorsik=[z,'t],
k
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matically. The inverse of this particular transformation is ob- V. RESULTS
tained from A"1=J.A*.J, which shows that the linear
transformation is not unitargbut unitary in a non-Euclidian
metric).

Now the two simplest cases are discussed in more detalil:
two different circles and two identical, but rotated, ellipses.
The ratio of the two bare confinement frequencies involved
in either case is 1:1.5 which means that the two confinement
frequencies in units of the mean frequensy are 1.2 and

Optical oscillator strengthgfor q=0) between the states 0-8. In our figures, all frequenciegnergiey are given in
Iny=|n;,n,,n3,n,) and|n’y=|nj,n%,n5,n}) for polariza-  UNIS of the mean confinement frequengy and the interac-

IV. OSCILLATOR STRENGTH

tion in the 7= (x or y) direction are defined as j[ion parameterp in unjts ofwg. The magnetic figld i; given
in terms of the effective cyclotron frequenay} in units of
frnt: y=2MF wn,n’|<n|Un;tot|nl>|2x 27 @0 (upper scaleand in T (lower scale. The conversion be-

tween both scales is provided by
where w, ,» is the corresponding excitation energy, and
U,,.tot Is the » component of the total c.m. of the electrons in
a unit cell (apart from a constant tepmin formulas, this 0.9134x 10 2
means U= (N1 /N;o) Us+ (N5 /Nio) Up, Where Nyo=Ny wg[wo] =
+N,. After expressing the vectots by ladder operatorby

and b, and using Eq(26), we obtain the usual selection .
K g Eqi(26 In our figures we used=0.2 a.u* =2.53 meV andm*

rules, i.e., only one quantum with energy can be absorped . _ .

or emitted, so that we obtain only four absorption lines. TheOf GaA? forhth_ls cofrflvetrsmn(lwteh want to ;s_tref_ssi dthat fh's q

result for the oscillator strength for the four possible transi-Parameter cnoice attects only thé magnetic field scale an
not the curves.The definitions of the interaction parameters

—— BJ[T]. (31
m* wo[ a.u¥ ]

tions (=1,...,4) and fory polarization reads (13) for GaAs in more convenient units reads
m* wy 5 (ne+1) absorption
fip=———=5Skql for o 2.26< 10N,
Niotwe emission, o . i @2
(28) pi[wOJ_ A 3 2"
(a[A])*(wo[ meV])

wheren, denotes the initial state, and
(For a more detailed discussion of order-of-magnitude esti-

(1.2) (3.4) N mates, see Ref. .
1 2
Sk,ﬁZ N_(uki_vki)+2i N (Ui~ ki),
ot ot (29 A. Zero wave number
For two differentcircular dotswith bare confinement fre-
(1,2) quenciesw, and w, and N;=N,, the absorption spectrum
Scy= > 1 (=) DU+ o) and the oscillator strength are shown in Fig. 2. Althoadjh
[ Niot absorption lines are affected by the dot interactiogpre-
(3.4) sented by the interaction paramefgr, andall modes are
n 2 2 (— 1) D (U +oy). (30) optically _active, there is nqgalita_\tiveeffect of interaction_in
i Nitot the position of the absorption lines. The reason for this can

be understood easily. In this particular case, the four eigen-

In the last definitiony,; anduv,; fori=1, ... ,4 are theom- modes can be calculated analytically providing

ponents of the vectong, andv,, respectively. The oscillator
strength defined in Eq(27) fulfills the following exact
f—sum ruleZ,f, ,=1/Ny. It is worth pointing out that for
equal electron numbers in either ddt,(=N,=N), the os-
cillator strength depends explicitly d (contrary to the op-
tical excitation energigsIn all figures presented below the
oscillator strengths are fd¥;=N,=N. where

_ 2
w1234 \/ Werrit

S5 -
7 = 7 (I—1,2) (33)

(wi+w)) N (p1+p2)
2 2

(The upper and lower sign belongs déQ¢; and wesr, respectively. Consequently, if we had to interpret an experimental
spectrum, we could do this using formu(@4) for noninteracting dots, but with the effectiee., interaction affected
confinement parameters defined into E2p). Only if we take the intensities into account can we see some qualitative effect.

, (efted) (pi+py) \/
d=

w = +
eff,1,2 2 2

2
d} —(wipzd-i- w%pld-l- w%w%) . (34
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(Dc [('00]
0 1 2 3

two different circular dots

N,=N,

(a) B [Tesla]

o, [m]
0 1 2 3

two different circular dots

o4t P=0

lowest mode
———- second mode
—-—-- third mode

0k highest mode

3
(b) B [Tesla]

®, [o]

two different circular dots

ost p=0.5

03 1 lowest mode
- ———- second mode

¢ —-—-- third mode
o \ ------ highest mode

01 r

fN
\

2 3
(c) B [Tesla]

FIG. 2. Excitation modes¢a) and oscillator strengttmultiplied
with N) for p=0 (b) andp=0.5(c) for a lattice with two different
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Whereas for noninteracting dofwith p=0) and forB=0
the oscillator strength of all modes agréer a single oscil-
lator, f is independent of the oscillator frequengcthere is a
large difference for interacting dots at=0.5. This large
difference can be understood as follows. In the limit
—oo, the upper pair of modes develops into a spurious
Brillouin-zone boundary mode, which has a vanishing oscil-
lator strength, and the sum rule has to be fulfilled only by the
lower pair(also see the discussion belpow

In Fig. 2 both dot species bare the same number of elec-
trons. Therefore, only one interaction paramepeis in-
volved. Calculations with differen¥l; (andp;) do not show
any qualitative difference. In the limit of large (and equal
electron numbeyjs from Eq.(34) we obtain

(m%-l—wg) 2pd (wi—w%) B
wéff,l,zz—z + 0 t—8pd +0(p~3).
(35

Consequently, the square of the smaller effective confine-
ment frequencywhich is the only one giving rise to modes
with a finite oscillator strength for largp) approaches the
mean value of both squared bare confinement frequencies,
whereas the larger one grows continously for lapge

In Figs. 3 and &) we show the results for two identical,
but mutually rotatedelliptical dots Without dot interaction
(p=0), we have two doubly degenerate lines. With increas-
ing interaction strength, we observe a splitting of degenerate
modes and an anticrossing behavior for firlteAs in the
case of circular dots, the oscillator strengtiBat 0 for non-
interacting dots §=0) agree for all four modes. The dot
interaction lifts this degeneracy. Additionally, pt=0.5 we
observe that the oscillator strength in the limits of small and
large magnetic fields is considerable only for two of the
modes, except in the gap region, where three modes contrib-
ute. By comparison of Figs.(8& and 4b), we see that the
magnetic field for minimum gagbetween the second and
third mode increases with increasing, whereas the gap
width decreases. Consequently, the location and width of the
gap provides information on the interaction strength.

By comparison of Figs. 2 and 3 with Fig. 4, and more
clearly by consideration of formulé36) and Fig. 5, it be-
comes clear that in either case the lower pair of degenerate
modes atB=0 converges to a constafthe mean-square
bare confinement frequency(wler wg)/z, which amounts
to 1.02v, in our numerical examp)eEven for finiteB, there
are two branches, which converge to a finiiedependent
value forp—oo, or, in other words, which become indepen-
dent of p in this limit. At first sight this looks surprising
because thee interaction does not show any saturation, if
we increase the interaction parameter, but it continues to
compress the dot state. However, there is a simple visual
explanation for this feature: Generally, the dot interaction
adds an additional second-order contribution to the confine-
ment, which has the same symmetry as the lattice, i.e., it is
circular for a square lattice. For large this additional term

circular dots, as described in the text. The radius of the circlégin outweighs the bare confinement, and the effective confine-
is proportional to the oscillator strength, and provides a rough overment in both dots becomes isotropic and equal. Thus we

view.

approach the case of a lattice of identical dots, for which a
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oz b F highest mode
0.1
0.0
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FIG. 3. Excitation mode$a) and oscillator strengttmultiplied
with N) for p=0 (b) andp=0.5(c) for a lattice with two identical,
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— p0
— p=2

Pseudo Kopy, mode

(a) B [Tesla]
o, [o]

[N
T

—— p=0 {two—fold degenerate)
— p=2

Pseudo Kohn m.

2
(b) B [Tesla]

FIG. 4. Excitation modes for a lattice with two different circular
dots (a) and two rotated elliptical dotéb) for a large interaction
parameter §=2). The radius of the circles is proportional to the
corresponding oscillator strength.

pair of Kohn modes exists. Because these Kohn modes do
not exactly agree with the modes of noninteracting dots, we
call thempseudeKohn modes. In a sense, the generalized
Kohn theorem reenters for dot lattices with strong interdot
interaction. In other lattices with lower symmetry, the effec-
tive confinement in the strong-interaction limit might be el-
liptical, leading to pseudo-Kohn modes with a gapBat
=0. The other pair of modeéwhich diverge forp— «)
turns into in-folded modes at the Brillouin-zofBZ) corner
(because the units cell halves if all dots become equivalent
These modes become spurious in the long-wavelength and

but rotated, elliptical dots, as described in the text and shown in Figlarge{ limits, and the oscillator strengths converge to zero.

1. The radius of the circles ife) is proportional to the oscillator

strength, and provides a rough overview.

In Figs. 3a) and 4b) we observe an additional qualitative
effect of dot interaction. For isolated elliptical dots we ex-
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14

o, [0,

0 1 2 3
two perpendicular elliptical dots 4 : : g
I J 5 two different circular dots 2
owest modes at B=0
1t
3 -
X
=
q -
0o | 52 o
D S
e
08 ——. ... R =
0 0.5 12 15 2 T
plew, | TTTT——TTmmeeee T ]
FIG. 5. Pseudo-Kohn mode B=0 as a function of interaction % 1 2 B [Tes! 3 n 5
parameteip for a lattice with two perpendicular elliptical dots per @ [Teslal
unit cell.
w, [w,]
pect a gap between the two excitation branche8at0. 0 ! 2 S
However, for largeip only the pseudo-Kohn mode might be two different circular dots P ::_,/:

observable, because the oscillator strength of the BZ bound
ary mode decrease rapidly. On the other hand, the two lowe
modes for finitep develop out of the degenerate lower mode st
for p=0, whereby the degeneracy B0 survives. There-
fore, atB=0 it looks as if we had a circular dot. The closing P
of the gap between the two most intensive brancheBat - | .- e .
=0 is nota gradual effect proceeding with increasipgout T

is caused by symmetry.

q=(1/2,1/2)

T

B. Finite wave number 1L

"~ —— I T e,

~— T

In Figs. 6 and 7 the excitation energies at two symmetry e SRR S T T e

points in the Brillouin zone are shown for the two lattice
types shown in Fig. 1. These figures supplement Figs. 2 ‘ .
and 3a), which belong to the center of the BZ. The most ° ® B [Tesi)

important conclusion focircular dots seems to be that for

finite g the spectrum cannot be described by effective con- FIG. 6. Excitation modes for a lattice with two different circular
finement frequencies anymoras for q=0). Second, for dots for finite-momentum transfer on two symmetry points in the
small p, the crossing of the second and third modegjat Brillouin zone:q=(1/2,0) (a) andq=(1/2,1/2) (b).

=(1/2,0) persists, whereas it develops into an anticrossing 3
g=(1/2,1/2). For elliptical dots, dot interaction removes the

degeneracy without a qualitative difference betwegn interaction between the dots of different sublattices, grto
=(1/2,0) andq=(1/2,1/2). _ . __the interaction between dots of the same sublattices. In Fig.
In Fig. 8 we show_the dispersion of the eXC|tat_|(_)n energiesyy) these parameters ar@y,=p=3.449 and p;=p,
atB=0 for both lattice types. In both cases thetical in-  _1 219 As seen in Fig. 9, strengthening next-nearest neigh-
teraction parameter was chosen, where the lattice becomggs interacting in sublattice 2 by increasipgstabilizes the
unstable. One conclusion is that a lattice of circular dots igattice, because the softeningegt (1/2,1/2) is reduced. This
more stable than from eIIipticaI dots. In all cases Considereqis eas”y understood. If the nearest_neighbor interaction
so far the electron numbers in either dot species agree. Nodominates, we have virtually a simple square lattice which is
we manipulate this parameter in the case of different circulaelectrostatically unstable. Increasing the next-nearest-
dot confinements in order to obtain additional effects. If theneighbor interaction(at least in one sublattitemimics an
electron number in the shallowélargen dot is four times environment for one sublattice with a larger coordination
that of the other one, but the interaction parameter betweenumber, which is more stable against deformation. A further
nearest neighbor€.e., different dot specigss unchanged, numerical result, which is not seen in the figures, states that

ﬁe interaction parameters defined in E@<l) and(13) read
p1o=p=3.449,p,=0.697, andp,=2.439.p,, refers to the
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FIG. 8. Magnetophonon dispersion on the symmetry lines of the
o5 ! 5 3 . s Brillouin zone for the critical interaction strengtta) For two dif-
(b) B [Tesla] ferent circular dots(b) For two identical, but rotated, elliptical dots
per unit cell.

FIG. 7. Excitation modes for a lattice with two identical, but
rotated, elliptical dots for finite-momentum transfer on two symme- 7
try points in the Brillouin zoneq=(1/2,0) (a) andq=(1/2,1/2) (b).

6l two circular dots

the critical p is independent oB. This agrees with the cor- -~
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We investigate harmonic dot lattices, where the general-" 3 ;43//“\\ // p=0 TN
ized Kohn theorem does not hold, and we show that breaking S~/ === p=2,N,=4 N,
the GKTh by constructing quantum dot lattices with at least 2| TN o~
two different dot confinements per unit cell has experimen- |~ TN e N
tally observable consequences. T P ——

As to zero momentum transfethere are no longer any
Kohn modeg(interaction independent mode# both of the 0 ‘ ‘

0,0) (1/2,0) (1/2,1/2) (0,0

considered lattice types, the degeneracy in the far-infrarec (@,,%)
intensitiesat B=0 between the upper and lower absorption "

lines is lifted. For two mutually rotated elliptical dotper FIG. 9. As Fig. &a), but with different electron numbers in
cell), we also observe a splitting of formerly degenerate abeither dot:N,=4N,.
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sorption frequenciesand the appearance of an anticrossing Only in the case of two circular dots amg=0 is there a
due to dot interaction. For two different circular dots no simple analytical closed-form solution. However, with the
qualitative effect ofeeinteraction in the absorption frequen- formulas presented above, the absorption frequeneied
cies is observed. Instead, the absorption spectrum can her q=0 also the oscillator strengttior any square lattice
reproduced by two noninteracting dots with modifieffec-  with two harmonic dot species can be easily calculated. The
tive) confinements. We also point out that an extensivelyonly numerical task is to find the eigenvalues of an explicitly
strong interaction destroys the effect of interaction by Pro-given non-Hermitian & 8 matrix (and to perform a special

ducing pseudo-Kohn modes. Although this limit can hardlysum over the eigenvector components in order to obtain the
be reached experimentally, it might be important to take thisyscillator strength

tendency into consideration.

The excitation spectra fdimite momentum transfeshow
mode softening and a lattice instability. The critical interac-
tion strength for the instability is independent of magnetic
field, but can be affected by manipulating the electron num- | am indebted to D. Heitmann, J. Kotthaus, and H. Es-
ber per dot, which can change the ratio of nearest- and nexthrig, and their groups, as well as G. Paasch for helpful
nearest-neighbor interaction strength. discussions.
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