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Vertically coupled quantum dots in the local spin-density functional theory
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We have investigated the structure of double quantum dots vertically coupled at zero magnetic field within
local-spin-density functional theory. The dots are identical and have a finite width, and the whole system is
axially symmetric. We first discuss the effect of thickness on the addition spectrum of one single dot. Next we
describe the structure of coupled dots as a function of the interdot distance for different electron numbers.
Addition spectra, Hund's rule, and molecular-type configurations are discussed. It is shown that self-interaction
corrections to the density-functional results do not play a very important role in the calculated addition spectra.
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[. INTRODUCTION In this work we present a study of vertically coupled,
cylindrical QD’s in the local-spin-density-functional theory
The study of systems with a small numb@) of elec- (LSDFT). We restrict our description to axially symmetric
trons confined to a quasi-two-dimensio2D) semiconduc- configurations and identical QD’s, and limit ourselves to a
tor quantum dofQD) constitutes a subject of growing inter- zero magnetic field. While these two latter conditions are
est(see, for instance, Refs. 1 and 2, and references thereireasy to relax without increasing the amount of numerical
One reason for this interest is that their electronic propertiegvork too much, axial symmetry breaking would require a
can be selected with some freedom by tailoring the shape ahore demanding 3D calculation.
the lateral confining potential. In this sense, they are often Our scheme is based on the application of the so-Alled
referred to as artificial atoms. Recently, circular and ellipti-imaginary-time methodITM). It requires a discretization of
cally disk-shaped QD’s have been built in a very clean waythe Kohn-ShantKS) equations on a spatial mesh that can be
and their properties have been thoroughly stutiiééis a  straightforwardly implemented on a personal computer, and
function of N. avoids expansion of the single-partidigp) wave functions
Usually, QD’s are described as true 2D systems. Thisn a basis, large matrix diagonalizations and tests of the sta-
seems justified, as it has been widely tested by comparinbility of the results against changes in the size of the basis.
theory with experiment. However, this comparison may be In contrast to standard methods for computing molecular
obscured by the fact that the parameters defining the confirstructure?® we do not postulate from the start that artificial
ing potential are adjusted and might mask 3D effects. Howmolecular orbitals can be expressed as linear combinations
ever, complex 2D calculations have been carried out withouof artificial atomic orbitals, and consequently we avoid mak-
further restrictions or imposed symmetrfed? Full 3D cal-  ing approximations such as complete neglect of differential
culations also exist in Hartree or Hartree-Fock approxima-overlap where the individual wave functions of electrons as-
tions for very few electrongsee for instance Refs. 13 and sociated with different artificial atoms are taken as being

14), and also within the density-functional thedry!® orthonormal, as happens when the QD’s are either two di-
A systematic study of the role of dimensionality in QD mensional or far apart.
structure was presented by Rontanial 1*?° In spite of the The present approach to the description of vertically

success of 2D models in describing the properties of QD'soupled QD’s constitutes a clear improvement on previous
subjected to perpendicular magnetic fields, the width in thdSDFT calculationg! in which the electrons are located on
growth direction of most experimentally studied QD’s is one of the dots, and as a consequence, can only be electro-
around one order of magnitude smaller than their typicabtatically coupled, even when they lie at short distances.
radius. The effect of a small but finite vertical extension onWith respect to the generalized Hubbard model plus the di-
the QD structure is worth studying, considering that a recenagonalization scheme of Ref. 22, the present improvement is
extension of single QD studies to vertically coupled quantunthe possible application of the LSDFT to systems with large
dots* may render including theextension of the constituent numbers of electrons. Moreover, one could think of a trivial
dots unavoidable when describing the experimental ata. generalization to non-identical dots, paying the well known
Vertically coupled dots, also called artificial or quantum token that the LSDFT treats the exchange Coulomb term
dot molecules, were theoretically addressed in a number décally, and that LSDFT configurations are usually mixtures
works?2=2 Only in Ref. 22 was the extension of the con- of many-electron states with the same value of the total spin
stituent QD’s taken into account; in the other references, iprojectionS,, though with different total spirs For small
was neglected, and consequently their results cannot be rebystems, this drawbadkvhich is also inherent to the gener-
able when the interdot distance is comparable to theix-  alized Hubbard approath can be removed with a shell-
tension, which is an interesting physical situatfon. model calculation in a restricted sp valence space An-
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other difference between our approach and the Hubbard For a double QD the confining potenti&l.¢(r,z) has

model is that even if the exchange energy is treated locally, ibeen taken to be parabolic with frequengyin thexy plane,

is not restricted to involving only electrons located on theplus a symmetric double quantum well in theirection. For

same dot. This might be advantageous in the strong-coupling single QD we have also used a parabolic confining poten-

case, when the dots are close together and the quanturtial in the xy plane, together with a quantum well in tlze

mechanical coupling due to electron exchange is importantdirection. Any other axially symmetrid/:(r,z) can be

This paper is organized as follows. In Sec. Il we presenimplemented as well.

the formalism and the essentials of the ITM. Results for one V"(r,z) was obtained solving the Poisson equation using

single thick QD and for two coupled dots are presented irthe conjugate gradient metHdd’ (CGM). This requires a

Sec. Ill, and a summary is presented in Sec. IV. In the Apknowledge ofVH(r,z) at the mesh boundary, which can be

pendix we present the self-interaction correctforo the  obtained by direct integration. Due to axial symmetry

density-functional results obtained for two extreme interdot
. o + o0

distances and several electron numbers. VH(r,z)=2L r’dr’f 4z An(r)[(r+17)2

Il. METHODOLOGICAL APPROACH +(z—2' 2]1/2E( az) 2)

Within the LSDFT, the ground state of the system is ob-
tained by solving the Kohn-Sham equations. The problem |s
simplified by the imposed axial symmetry around ghexis,
which allows one to write the sp wave functions as
bnio(r,z,0,0)=un,(r,2e ", with 1=0+1,+2..,
where—1 is the projection of the sp orbital angular momen-
tum on the symmetry axis.

We have used effective atomic units=e?*/ e=m=1,
wheree is the dielectric constant, and the electron effec-
tive mass. In units of the bare electron massone hasm

whereE is the complete elliptic integral of the second kitfd,
nda?=4rr'[[(r+r")2+(z—2')?].

We have discretized the KS and Poisson equations using
k-point Lagrange formulas for the and z derivatives, and
(k+1)-point Lagrange formulas for the integratiotisThe
mesh size has to be such that the discretized wave functions
u(ri,z;) at the mesh boundary can be safely taken as zero.
This is one boundary condition for physically acceptable so-
lutions to Eq.(1), the other one is the regularity of the sp
- . L . wave functions at =0. In our scheme thar andAz steps
—m me*. In this system, the length un!t IS the effect!ve Bohr may have different values. The high precision demanded by
radiusag =aoe/m and the energy unitis the effective Har- the calculation imposes restrictions on the possible values of
tree H* =Hm* /€. In the numerical applications we have k, Ar, and Az, and will be discussed below. This space
ccln5|dered GaAs, for which we have tfke'ﬁr 12.4, and dlscret|zation scheme offers an efficient calculation of sp

m*=0.067. This yieldsag ~97.94A andH ~11.86meV.  \yave functions, and thus of the electron densities and direct
In cylindrical coordinates the KS equations read Coulomb and exchange-correlation potentials.

The imaginary time method is described in detail in Ref.

1/0° 10 12 42 28. It is based on the observation that the discretized time-
St ra 2t a2 )+ch(r 2) evolution operatorH(t) for the time-dependent KS equa-
tions
+VH+VXC+WXC7777 Un|o.(r,Z):6n|o.Un|U(r,Z), ad)(t)
[ =H(t) ¢;(1), (3

)

wherer,=+1(—1) foro=1(]), V¢¢(r,z) is the confining

potential, V(r,z) is the direct Coulomb potential, and<® (1) i -

= 9E(n,m)/dnlgs and WX=9&,(n,m)/dm|ys are the A& =exp( - %AtH(”)) ", 4

variations of the exchange-correlation energy density

&(n,m) in terms of the electron density(r,z) and of the  whereAt is the time step and indicates the step iteration,

local spin magnetizatiom(r,z)=n'(r,z) —n!(r,z) taken at  for imaginaryAt=—iA7 (A7>0) produces a decrease of

the ground stat€gs). the KS energy. In imaginary time, the wave functions
As usual, &, (n,m)=&,(n,m)+E(n,m) has been built {‘P(”“)} are no longer orthonormal, and a Gram-Schmidt

from 3D homogeneous electron-gas calculations. This ylelderthonormahzanon has to be carried out after each iteration

a well-known® simple analytical expression for the ex- tg obtaln{qs(””)} from {q;(nﬂ)} To first order inAr, Eq.

change contributior€,(n,m). For the correlation contribu- (4) becomes

tion £.(n,m) we have used two different parametrizations,

both based on the results of Ceperley and AffeFhe first

was proposed by Vosko, Wilk, and Nus&irand the second Y= ( 1-

by Perdew and Zungéf.We have checked that they yield

the same results, and all results presented in this work wenehich shows the simplicity of the method and its practical

obtained with the exchange-correlation energy density proimplementation: after discretizing the KS Hamiltonian and

posed by Perdew and Zunger. wave functions, it essentially reduces to repeated application

which formally yields

H<”>AT

)dn , ®)
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of the KS Hamiltonian to the previous wave functions. To check the numerical scheme we have carried out ex-
Moreover, it is easy to check from E¢b) that, upon con- tensive and systematic tests. A first test on the discretization
vergence, and iteration procedure consisted in numerically solving an
axially deformed harmonic oscillator potential. We have ex-

actly reproduced the spectruﬁar .l given after Eqs(7).

The implementation of the CGM has been successfully

o . . . tested comparing results computed for a spherical Gaussian
coincide with the KS sp energies. Equati(s) shows that charge distribution with the analytical results.

the ITM belongs to the general class of relaxation methods As another test of the numerical code, we have compared

e.r(rj]ployed' tol sol\(te part:cal (fd'lfferentllal equ:atlons. t-lr—]h'tsthpro'the total energy calculated from a straightforward integration
vides a S|mp? criterion ?rt' |xmg&7_- In Suf b%way a | € of the energy density with the expression in terms of the sp
m;agmary |2me evolution -~ 1S~ stable, —namely, energies derived from the KS equations. Writing the corre-
hA Thay/ (2MAS)<1/4, WlthAthe_ smallest between theand lation energy densif#3® as £n,m]=n&.,[n,&], where

z steps. In actual calculations we have takexr £.,[n,é] is the correlation energy per electron and

=0.1A 7 ax- = ; i i7ati i
. . =m/n is the local-spin polarization, one obtains
To start the ITM iteration one needs a set of sp Waveg pin p

h
(Mt _ " 11 ¢ pMpn+l)
R E ST S ®)

functions and energies to build the initial sp level scheme. 1 1

We have used two such sets. The first consists of the wave E=Y - dr[EVH(r)n(r)Jr 3 &n.m]
functions of an axially symmetric, 3D harmonic oscillator J

potential of frequenciesy and w, in the radial andz direc- IEcolnE]

tions, respectively. This potential gives rise to analytical so- + ﬁ—nn (r)]. €)

lutions even in the presence of a constant magnetic field in

the z direction, and is a suitable confining potential for a We have checked that in the worst case, the energies calcu-

single QD. In this case, the sp Hamiltonian is separable anthted with either method agree to within one part irf f6r

the wave function can be written agr,z)=7R(r)Z/\2,  our combination ofkk=7 formulas and the valuedr=Az

with =0.12a% used in this work® Simpler three-point formulas
(k=3) turned out to be inaccurate for reasonable spatial

B 1 n,! r\ll —r2a)?y 1| r2 steps, ank=9 and 11 formulas, which allow larger steps,
R(r)= a V2l +htla e Lo, 2a2)’ did not appreciably reduce the computing time. It might be

(7) interesting to remark that most of this disagreement arises
from the integral of the external confining potential for a
Z(7)= _f H o (7212 quantum well in thez direction, due to the sharp discontinu-
z n nz z ’ . . . .
V2", ity in the given potential. We have checked that for a para-

" bolic confining potential in the direction, both methods of
wherea= \h/2mwo, {=mw, /%, andLp andH, are gen-  eyaluating the total energy agree to within one part if. 10

eralized Laguerre and Hermite polynomidistespectively. In the case of double QD’s, we have also checked that the
The sp energies aré, 'nzy|:hwo[2nr+|I|+1]+ﬁwz[nz results coincide irrespective of whether we start the iteration
+1/2], with n, andn, equal to 0, 1,... . from pure harmonic oscillator wave functions, or from the

For a double QD, we have found it convenient to choosdetter choice of double quantum well eigenfunctions inzhe
Z(Z) as the lowest energy eigenfunctions of a 1D doubledirection. For everN systems we have always started the
quantum well. The QD thickness is such that for not tooitération with nonidentical sp potentials for spin-up and
many electrons, only the two lowest states are needed. If th&lown electrons, to avoid artificial configurations wig)
double dot is symmetric, these solutions are either even or 0
odd under reflectior— —z. Actually, for one QD,Z(z) can
also be the wave function in the 1D quantum well. . RESULTS

Both for a single QD and for a symmetric double dot, the
single-electron wave functions are characterized by the val-
ues ofl,,s,, and parity, i.e., they must be either symmetric ~We have first addressed the addition energies of one
or antisymmetric under inversian- —r, and be either even quantum dot hosting up td=21 electrons. The confining
or odd when reflectingg— —z. All these symmetries are potential in thez direction is a quantum welW=12nm
included in the starting separable wave functions. Indeed, theide, which corresponds to the experimental Wedind V,,
Hermite polynomials are even or odd dependingngn and =200 meV deeﬁ? Electrons are laterally confined by the
the parity of a sp level is simply{)"z*/'l. As the KS Hamil-  parabolic potentiamw3r2/2 for which we have tried differ-
tonian and the ITM preserve these symmetries, in the coursent wg values.
of the iteration procedure the sp wave functions, which are Figure 1 shows the addition spectruA(N)=E(N
no longer separable, keep their initial quantum numiers  +1)—2E(N)+E(N—1) for wy=3, 5, and 10 meV. In addition
bital and spin projection on theaxis, parity, and reflection to local maxima at shell filling valuesl=2, 6, 12, and 20,
symmetry with respect to the=0 plang which are con- other peaks appear at half-filling valuds=4 and 9. This is
served quantities. a consequence of Hund'’s rule, which establishes that degen-

A. Single quantum dot
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A W=12nm w=mwo,=3meV N<12 N
A = = gy 4
12k /) R V, =200 meV eei =5meV | . Vo =300 meV
< Fd \ A A A4 0 =10 meV | N 2+ W =12nm — V,=200meV
> \ / A =
é 8_ “,\ — *I\cgo
3 ‘ 3
=
4 4 - .
0 | | | | |
0 4 8 12 16 20 0 . , . | . , .
N =20 -10 0 10 20
. . . . z(nm)
FIG. 1. Addition energied A as functions oN for a 3D single

dot with V=200 meV,W=12nm, and differents, values. FIG. 3. n(2) densities[(a}) '] for a 3D single dot withN

=12, width W=12nm, and well depth¥/,=200 and 300 meV.

erate electronic states in a shell are filled with parallel spinghe vertical lines indicate the limits of the quantum well.
up to half-shell, in order to maximize the exchange interac-
tion. Fig. 2, 2D and 3D results are very similar, and qualitatively

Up to N=12 the results look very similar to the experi- better than those from other different 2D mod®l#\s one
mental values, especially for medium and weakconfine-  increases the confinement in the direction up to V,
ment. For largerN values we have found a conspicuous=300 meV, the addition energies become indistinguishable
even-odd effect, instead of the weak maxima experimentallyn the scale of Fig. 1. We shall see that this is not the case for
found atN=20, and especially dl=16. This result does double dots, and that even qualitative differences appear if
not mean that Hund’s rule is violated within this shell. In- the dots are strongly coupled.
deed, we have found spin alignment upNe=16, but the In spite of this quasi-two-dimensional behavior, the elec-
associated energy gain is not enough to produce the loc#ion density spreads beyond the well up to distances that are
maximum atN = 16. It is worth pointing out that the energies relevant for vertically coupled dots. This is illustrated in Fig.
involved in the definition ofAA(N) are very large, com- 3, where we have plotted titgz) electron density defined as
pared with the second energy difference. For example, for
ﬁg/S meV andE(16)=1.048eV, wheread A(16) is ~3 n(z)= foxdrrn(r,z) )

For strongr confinement, our results are quite similar to
those in Ref. 19, except for medium and small values. This igorresponding tdN=12, W= 12 nm, andV,=200 and 300
not surprising, since in this Ref. the 3D electron-electronmeV [note thatN=27[dzn(z)]. The electron densities spill
energy is treated in first-order perturbation thefrgnd thus ~ out of the quantum well, the smaller the confinement, the
one should not expect it to hold if the confinement is notlarger the effect.
strong enough. The two-dimensionB(N+1)—E(N) re- Finally, in Fig. 4 we represent the density of a 2D dot
sults atB=0 coincide with those in Ref. 41 whem, hosting 12 electrons, and tinér) density of the correspond-
=5meV. ing 3D dot defined asn(r)=/dzn(r,z) [note thatN

Our 3D dot is rather strongly confined in tedirection, =2z fdrrn(r)], both forwy=5 meV. These radial densities
and the results foA A(N) are similar to those obtained for

pure 2D dots. We have computed the addition energies using ' ' ' ' ' '
the 2D dot model described in detail in Ref. 39; as shown in

VO =200 meV
16 T T T T T T T T T B
A LR YO 3 meV
12F ¢ ‘\ 2D H0)0=5meV o
— | a0 =10meV |
% | A A
E8regt A/ A - I
< |
<
4 [ ]
1 0 L | L | ' L
0 20 40 60 80
0 N | L | L | L | L |
0 4 8 12 16 20 r(nm)

FIG. 4. n(r) densitieq (a}) 2] for 2D and 3D single dots with
N=12 and wg=5 meV. The 3D well width and depth ar&/
=12 nm andV,=200 meV, respectively.

FIG. 2. Addition spectrum as a function Nffor a 2D single dot
and differentw values.
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. Vo =300 meV
— V,=200meV
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Va\ aN
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T
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AS AS(meV)

-]

FIG. 6. Agadd) for the lowestl=0 sp levels of a double dot
with N=1 and 20. The inset shows the enerdiesandE » s defin-
ing Agas,Asa=Eas— Eg, for one of the cases presented here.

o]

n(z)(a

Due to the characteristics of our double quantum well,

0 | . . Asas depends exponentially od, Agadd)=Aqexp(—d/

-20 -10 0 10 20 d). For V,=200meV we have dy,Ap)
Z(nm) =(1.79nm, 19.2 meV) foN=1 and(1.76 nm, 17.6 meY

FIG. 5. n(2) densities[(a%) '] for an N=12 double dot of for N=20, whereas for V,=300meV, @y,A0)

width W=12nm, well depthV,, and barrier thickness. Top  =(1.44nm, 17.9 meV) foN=1 and(1.42 nm, 16.5 meyY
panel,d=7.5nm. Bottom paneld=2.5nm. The vertical lines in- for N=20. These values are similar to those in Refs. 4 and
dicate the limits of the double quantum well. 27. It can be seen from Fig. 5 that for a given interdot dis-

o N tance, enlarginy/, decreases the coupling between the dots,
are very similar. The 3D densitiey(r) for Vo=300meV, a5 the density overlap diminishes. Figure 7 shows the densi-
instead of 200 meV, are indistinguishable within the scale otiesn(r,z) for N=12 and for twod values corresponding to

the figure. ~quantal =2.5nm) and to electrostaticd&7.5nm) cou-
These comparisons allow one to infer that the experimenp|ing.

tal dots are quasi-two-dimensional systems to a large extent, Figure 8 shows the addition spectrum for quantum-
with moderate lateral confinemenio<5 meV. mechanically coupled d=2.5nm), and electrostatically
coupled @=7.5nm) dots, as well as the results correspond-
ing to the single 3D dot. They have been obtained \fgr
We have modeled a symmetric double dot by a parabolic=200meV. Figure 9 shows the same spectrum Yoy
confining potential with frequencwy=5 meV in ther di- =300meV. As expected, changes mostly appear in the
rection, and a symmetric double quantum well in frdirec-  strong-coupling cased&2.5nm). Unexpectedly enough,
tion. Each quantum well has a width equal to 12 nm, and igshese changes are qualitative, with, for example, maxima in
separated from the other by a barrier of thicknesthat ~ AA(N) changed into minima.
varies from 1 to 9 nm. Some experimental results are Figure 6 indicates that al=7.5nm the dots are well
availablé for this system atd=2.5nm. Results for well apart, only influenced by the electrostatic coupling, and the
depthsVy=200 and 300 meV will be discussed. addition energies are insensitive to the valuevgt There
Figure 5 shows tha(z) density profiles corresponding to are no experimental results in the literature Aok(N) at this
a quantum-mechanically coupled configurationd ( interdot distance. However, the experimental anafysishe
=2.5nm), and to an electrostatically coupled configurationderivative of the drain intensity with respect to the drain
(d=7.5nm). Only in the former case, are the electrons devoltage versus drain voltage indicates that the electrons in
localized. A quantitative measure of this localization is pro-the dots are indeed delocalized fdr=2.5nm, and rather
vided by the energy splitting between symmetric and anti{ocalized ford=7.5nm.
symmetric sp state@nore precisely between even and odd The weak coupling ai=7.5 nm allows us to interpret the
states with respect to specular reflectionr —z), Agps. IN-  appearance of several peaksAA(N), such as those at
deed, forN=1 and large distances, the symmetric and anti-=4, 8, and 12, as due to the fact that two, four, and six
symmetric states are degenerate, anrg sapproaches zero. electrons on each dot already yield maxima in the addition
As d decreases, the coupling increases and so degs. spectrum of a single QD. The remaining peakNat 2 now
This effect depends weakly dvi We have plotteddgpsas a  corresponds to half-filling the first shell in each dot, which
function of d in Fig. 6, for the lowestl=0 sp levels of would close atN=2. This is caused by the localization of
systems withN=1 and 20. one electron on each constituent &bt.

B. Double quantum dots
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FIG. 7. n(r,z) densities[(a}) 3] for a double dot withN
=12, width W=12nm, well depthV,=200meV, and barrier
thicknessd. Top paneld=2.5 nm. Bottom paneld=7.5nm.

Experimental results have been publishedfor d
=2.5nm. We have not attempted to Ugg as a fitting pa-
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eo-e Single
8d=25nm
~ed=75nm

V, =300 meV

A
1

o 4 8 12 16 20
FIG. 9. Same as Fig. 8 foar,=300 meV.

ment with experiment. Note, however, that the experimental
AA(N) for the strongly coupled double dots approxi-
mately half that corresponding to the single dot, especially
whenN=10. This feature is not reproduced by the calcula-
tions.

Globally, the results fod=2.5nm are better reproduced
with Vy=200 meV up toN=12, and withVy= 300 meV for
larger N values. Probably, a value &fy in between might
improve the agreement with experiment. Other possibilities
such as aN-dependeniv, might also be considerétd,’ or
even some asymmetry in the double wWéllWwe have not
tried these possibilitie¥’ but we have checked that self-
interaction correctiongSIC’s), which are usually not in-
cluded in these kind of calculations, do not change the addi-
tion spectrum. The results are presented in the Appendix.

For a given electron number, the gs configuration may
change as a function of the barrier thickness. The new
“phases,” i.e., gs configurations which appear as a function

rameter, so when comparing with experiment one shoulg d, have been thoroughly discuss&d’ To label them, we

bear in mind both the sensitivity & A(N) on the value of

have adopted the standard convention of molecular physics

Vj in the strong coupling limit and the results displayed in¢,, sp electronic orbitals as, , §,..., if =0, 1, 2,..., and
Figs. 8 and 9. Published calculations correspond to depthgyner case Greek letters are used for the total orbital angular

lying in between these two valués?’

momentum. We have also used an adapted vetsiafnor-

One can see that maxima AA(N) decrease on the av- ginary spectroscopic notatiof?* 'L ;, whereSis the total
erage when compared to the isolated QD. This is in agreqSZL andL is the total|L,|. The superscript- (—) refers to

8 T " T ' T ' ' l
oo Single
mmd=25nm
sl +~ed=75nm V, =200 meV
s
© i
£ !
;5 1
4_‘
2 ' ' ' | I
0 4 8 12 16 20
N

FIG. 8. Addition spectrum as a function Nffor a 3D single dot
(circles, and for two coupled dots at=2.5nm (squares and d
=7.5nm(diamond$. The depth of the double quantum well\ig

=200 meV.

even(odd) states under reflection with respect to the0
plane, and the subscrigf(u) refers to positive(negative
parity states.

We show the evolution with barrier thickness of the en-
ergy and gs molecular configuration for sevexabalues in
Fig. 10. The vertical lines have been drawn to guide the eye,
and different symbols have been used to identify different
phases. All panels in the figure display some common trends.
Initially, E(d) increases wittd. The reason for this is two-
fold. On the one hand, at smallall occupied sp levels are
specularly symmetric about ttze= 0 plane(* +” states, the
specularly antisymmetric levelg’ —" stateg lie at much
higher energieg¢see Fig. & On the other hand, the energies
of the symmetric and antisymmetric state, respectively, in-
crease and decrease with and eventually both states be-
come degenerate at large interdot distances. This is a well-
known feature of the one particle, one-dimensional double-
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150——F——F—+—"F—+—+—— FIG. 11. Difference between SIC and LSDFT addition energies
140 .oL'l_‘ i ¢ o ] m(N)=E(N)—E(N—1) for a double quantum dot ofV,
s o, ¢ ] =200 meV depth and barrier thicknedgor N=1-13.
130 .
C N=4 ]
110f L2 1 models, in the case of double dots their vertical extension is
100E - - 1 essential for a quantitative description of their quantum cou-
r o?® #hE = 1 pling, which influences the addition spectrum at short dis-
90 m Nes 1 tances. For one single dot the calculated addition spectrum
e T T compares well with experiment, whereas for two coupled
0 2 4 6 8 10 dots the agreement is qualitative. This possibly reflects the
d(nm) fact that in the latter case the spectrum is more sensitive to

the actual form of the bare confining potential.

FIG. 10. Energy and ground-state molecular configurations of The phase sequence of ground-state configurations which
the double dot as functions of the bar_rier thicknessNot3—7. appear as a function of interdot distance is quite similar to
The depth of the double quantum well\l=200 meV. that found in previous work&:?’ evolving from the “atomic
. . . . phase” of two strongly coupled dots to the atomic phase of
quantum-well problem(see the inset in Fig. )6 which 4, \veakly coupled dots through a series of “molecular-

remains valid in the'i'nteracting many-electron f:alcula.tion.type phases” at intermediate distances. This is a rather ro-
The first phase transition takes place when the first antisymy ¢ picture, as it arises from the underlying single-electron

metric sp state becqmes occupied. At large d'StarE(*t) structure of the bare confining potential. Indeed, the vertical

slowly decreases witd due to the decrease of the interdot ;onfinement is so strong that at short distances only symmet-
Coulomb energy. These trends are also present in thg, ¢ siates are occupied, the antisymmetric ones lying at
Hubbard-like calculations of Ref. 22, but only the lowering ¢ te high energies. This originates the atomic phase of two

of E(d) due to the interdot Coulomb energy is qualitatively girong1y coupled dots. As the interdot distance increases, the
reproduced by the calculatlor)s of Ref. 27, which fail to y'eIdASASgap decreases, and the symmetric and antisymmetric sp
the energy growth at short distances. states eventually become degenerate, originating the atomic

In spite of the difference between the values of the gs,556 of two weakly coupled dots. The molecular-type con-
energies reported in Refs. 22 and 27, and also with respect to

the present work, which has to be mostly attributed to the
different confining potentials in each calculation, upNo -
=6 the phases are the same but appear at diffetgatues. == d=25nm |
In this respect, our results are in closer agreement with those ", Vo =200 meV Eé g _ ;g 2: sic

of Ref. 27, possibly because the radial frequencigsare :_4?‘ H ? <><>d=7:5 nm SIC
similar in both calculations. We wish to point out that the ;

AA(meV)
(2]
T
2]
|

phase diagram obtained for,=300meV is qualitatively I 0/ \‘\ / ‘\ ,/IE\ ® ]
similar to the one shown in Fig. 10, but the phase transitions ak M4 éﬁl\\ /.." m % / Vo
are shifted~0.5 nm to the left. @,@\Q/. R ﬁ/ 5@ |
IV. SUMMARY 20 : "‘ : EIS : 1'2
We have used local-spin-density-functional theory to in- N

vestigate the zero-magnetic-field structure of one single and g, 12. Addition spectrum as a function Nffor two coupled
two identical, vertically coupled QD’s of finite thickness. dots atd=2.5 nm(squaresand 7.5 nm(diamonds. The depth of
While for one single dot, whose thickness corresponds t@he double quantum well i¥,=200 meV. Solid symbols represent
that of actual experimental devices, the addition spectrum iSSDFT results, and empty symbols the results obtained after SIC’s
quite similar to that predicted by purely two-dimensional have been included.
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figurations appear at intermediate distances, whefggis  mization far more cumbersome. Since SIC’s are relatively

similar to the other energy scale of the system, narfiely, more important for few-electron systems, which is the

and when the number of electrons is large enough so that tHgresent case, we have tested their effect on the results shown

system can minimize its energy populating antisymmetridn the body of this paper, in two extreme configurations. We

states. The larger the number of electrons, the larger theefer the reader to Refs. 32 and 45 for a thorough description

number of populated antisymmetric states. This causes tH¥ SIC. Here we only give the essential details of the appli-

number of intermediate molecular phases to increaseMith Cation of the method to our physical problem. _
In spite of the mentioned qualitative agreement with pre-  Within the method of Perdew and Zunger, the sp potential

vious results, the calculated phase diagrams are as sensitifkEd- (1) becomes orbital dependent with the change

to the shape of the bare_ confining potential. as the additiorq/H+ch+ch%_)VeﬁEVH+ch+ch770_VH[nm0]

spectra. It would be desirable that any prediction of the ac-

tual appearance of the phase diagrams should be based on a V¥ 1o Mite] = W N1 Nt ] 70 »

model that describes, at least qualitatively, the corresponding (A1)

experimental addition spectrum. _ . .
where n,,=|un,(r,z)|? is the “orbital density” and
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nlo

=2 | dré&dMoie Moo ]. (A2)
APPENDIX nlo
It is well known that the “exact” density functional for In Fig. 11 we show the difference between SIC and

the gs energy is self-interaction frésee for instance Ref. LSDFT addition energies defined as(N)=E(N)—E(N

45), but it is not the case of its current approximations, such—1) corresponding to thé&/y=200meV double quantum
as the LSDFT. One possible way of removing this drawbacldot. The average difference is small, of the order of 0.4-0.5
is to use the SIC’s proposed by Perdew and Zurigehich  meV. This difference almost cancels out in the addition spec-
introduces an orbital-dependent single-particle potential, thatrum AA(N), as can be seen in Fig. 12. This constitutes an
improves the total energy of the electronic system and yielditeresting result in itself, indicating that if one only wishes
sp eigenvalues which approximate the physical removal ento obtain the addition spectrum, LSDFT does not need to be
ergies more closely, at the price of rendering the KS mini-corrected for self-interaction effects.
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