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Vertically coupled quantum dots in the local spin-density functional theory
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We have investigated the structure of double quantum dots vertically coupled at zero magnetic field within
local-spin-density functional theory. The dots are identical and have a finite width, and the whole system is
axially symmetric. We first discuss the effect of thickness on the addition spectrum of one single dot. Next we
describe the structure of coupled dots as a function of the interdot distance for different electron numbers.
Addition spectra, Hund’s rule, and molecular-type configurations are discussed. It is shown that self-interaction
corrections to the density-functional results do not play a very important role in the calculated addition spectra.
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I. INTRODUCTION

The study of systems with a small number~N! of elec-
trons confined to a quasi-two-dimensional~2D! semiconduc-
tor quantum dot~QD! constitutes a subject of growing inte
est ~see, for instance, Refs. 1 and 2, and references ther!.
One reason for this interest is that their electronic proper
can be selected with some freedom by tailoring the shap
the lateral confining potential. In this sense, they are of
referred to as artificial atoms. Recently, circular and ellip
cally disk-shaped QD’s have been built in a very clean w
and their properties have been thoroughly studied3–9 as a
function of N.

Usually, QD’s are described as true 2D systems. T
seems justified, as it has been widely tested by compa
theory with experiment. However, this comparison may
obscured by the fact that the parameters defining the con
ing potential are adjusted and might mask 3D effects. Ho
ever, complex 2D calculations have been carried out with
further restrictions or imposed symmetries.8–12 Full 3D cal-
culations also exist in Hartree or Hartree-Fock approxim
tions for very few electrons~see for instance Refs. 13 an
14!, and also within the density-functional theory.15–18

A systematic study of the role of dimensionality in Q
structure was presented by Rontaniet al.19,20 In spite of the
success of 2D models in describing the properties of Q
subjected to perpendicular magnetic fields, the width in
growth direction of most experimentally studied QD’s
around one order of magnitude smaller than their typi
radius. The effect of a small but finite vertical extension
the QD structure is worth studying, considering that a rec
extension of single QD studies to vertically coupled quant
dots21 may render including thez extension of the constituen
dots unavoidable when describing the experimental data4,5

Vertically coupled dots, also called artificial or quantu
dot molecules, were theoretically addressed in a numbe
works.22–27 Only in Ref. 22 was thez extension of the con-
stituent QD’s taken into account; in the other references
was neglected, and consequently their results cannot be
able when the interdot distance is comparable to theirz ex-
tension, which is an interesting physical situation.4,5
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In this work we present a study of vertically couple
cylindrical QD’s in the local-spin-density-functional theor
~LSDFT!. We restrict our description to axially symmetr
configurations and identical QD’s, and limit ourselves to
zero magnetic fieldB. While these two latter conditions ar
easy to relax without increasing the amount of numeri
work too much, axial symmetry breaking would require
more demanding 3D calculation.

Our scheme is based on the application of the so-calle28

imaginary-time method~ITM !. It requires a discretization o
the Kohn-Sham~KS! equations on a spatial mesh that can
straightforwardly implemented on a personal computer, a
avoids expansion of the single-particle~sp! wave functions
in a basis, large matrix diagonalizations and tests of the
bility of the results against changes in the size of the bas

In contrast to standard methods for computing molecu
structure,29 we do not postulate from the start that artifici
molecular orbitals can be expressed as linear combinat
of artificial atomic orbitals, and consequently we avoid ma
ing approximations such as complete neglect of differen
overlap where the individual wave functions of electrons
sociated with different artificial atoms are taken as be
orthonormal, as happens when the QD’s are either two
mensional or far apart.

The present approach to the description of vertica
coupled QD’s constitutes a clear improvement on previo
LSDFT calculations,27 in which the electrons are located o
one of the dots, and as a consequence, can only be ele
statically coupled, even when they lie at short distanc
With respect to the generalized Hubbard model plus the
agonalization scheme of Ref. 22, the present improveme
the possible application of the LSDFT to systems with lar
numbers of electrons. Moreover, one could think of a triv
generalization to non-identical dots, paying the well know
token that the LSDFT treats the exchange Coulomb te
locally, and that LSDFT configurations are usually mixtur
of many-electron states with the same value of the total s
projectionSz , though with different total spinS. For small
systems, this drawback~which is also inherent to the gene
alized Hubbard approach22! can be removed with a shell
model calculation in a restricted sp valence space.30,31 An-
©2001 The American Physical Society16-1
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other difference between our approach and the Hubb
model is that even if the exchange energy is treated locall
is not restricted to involving only electrons located on t
same dot. This might be advantageous in the strong-coup
case, when the dots are close together and the quan
mechanical coupling due to electron exchange is importa

This paper is organized as follows. In Sec. II we pres
the formalism and the essentials of the ITM. Results for o
single thick QD and for two coupled dots are presented
Sec. III, and a summary is presented in Sec. IV. In the A
pendix we present the self-interaction correction32 to the
density-functional results obtained for two extreme inter
distances and several electron numbers.

II. METHODOLOGICAL APPROACH

Within the LSDFT, the ground state of the system is o
tained by solving the Kohn-Sham equations. The problem
simplified by the imposed axial symmetry around thez axis,
which allows one to write the sp wave functions
fnls(r ,z,u,s)5unls(r ,z)e2 i l uxs with l 50,61,62...,
where2 l is the projection of the sp orbital angular mome
tum on the symmetry axis.

We have used effective atomic units\5e2/e5m51,
wheree is the dielectric constant, andm the electron effec-
tive mass. In units of the bare electron massme one hasm
5m* me . In this system, the length unit is the effective Bo
radiusa0* 5a0e/m* , and the energy unit is the effective Ha
tree H* 5Hm* /e2. In the numerical applications we hav
considered GaAs, for which we have takene512.4, and
m* 50.067. This yieldsa0* ;97.94 Å andH* ;11.86 meV.

In cylindrical coordinates the KS equations read

F2
1

2 S ]2

]r 2 1
1

r

]

]r
2

l 2

r 2 1
]2

]z2D1Vc f~r ,z!

1VH1Vxc1WxchhGunls~r ,z!5enlsunls~r ,z!,

~1!

wherehs511(21) for s5↑(↓), Vc f(r ,z) is the confining
potential,VH(r ,z) is the direct Coulomb potential, andVxc

5]Exc(n,m)/]nugs and Wxc5]Exc(n,m)/]mugs are the
variations of the exchange-correlation energy den
Exc(n,m) in terms of the electron densityn(r ,z) and of the
local spin magnetizationm(r ,z)[n↑(r ,z)2n↓(r ,z) taken at
the ground state~gs!.

As usual,Exc(n,m)[Ex(n,m)1Ec(n,m) has been built
from 3D homogeneous electron-gas calculations. This yie
a well-known,33 simple analytical expression for the e
change contributionEx(n,m). For the correlation contribu
tion Ec(n,m) we have used two different parametrization
both based on the results of Ceperley and Alder.34 The first
was proposed by Vosko, Wilk, and Nusair,35 and the second
by Perdew and Zunger.32 We have checked that they yiel
the same results, and all results presented in this work w
obtained with the exchange-correlation energy density p
posed by Perdew and Zunger.
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For a double QD the confining potentialVc f(r ,z) has
been taken to be parabolic with frequencyv0 in thexy plane,
plus a symmetric double quantum well in thez direction. For
a single QD we have also used a parabolic confining po
tial in the xy plane, together with a quantum well in thez
direction. Any other axially symmetricVc f(r ,z) can be
implemented as well.

VH(r ,z) was obtained solving the Poisson equation us
the conjugate gradient method28,37 ~CGM!. This requires a
knowledge ofVH(r ,z) at the mesh boundary, which can b
obtained by direct integration. Due to axial symmetry

VH~r ,z!52E
0

`

r 8dr8E
2`

1`

dz8Dn~r 8!@~r 1r 8!2

1~z2z8!2#1/2E~a2!, ~2!

whereE is the complete elliptic integral of the second kind36

anda2[4rr 8/@(r 1r 8)21(z2z8)2#.
We have discretized the KS and Poisson equations u

k-point Lagrange formulas for ther and z derivatives, and
(k11)-point Lagrange formulas for the integrations.36 The
mesh size has to be such that the discretized wave funct
u(r i ,zj ) at the mesh boundary can be safely taken as z
This is one boundary condition for physically acceptable
lutions to Eq.~1!, the other one is the regularity of the s
wave functions atr 50. In our scheme theDr andDz steps
may have different values. The high precision demanded
the calculation imposes restrictions on the possible value
k, Dr , and Dz, and will be discussed below. This spa
discretization scheme offers an efficient calculation of
wave functions, and thus of the electron densities and di
Coulomb and exchange-correlation potentials.

The imaginary time method is described in detail in R
28. It is based on the observation that the discretized tim
evolution operatorH(t) for the time-dependent KS equa
tions

i\
]f j~ t !

]t
5H~ t !f j~ t !, ~3!

which formally yields

C j
~n11!5expS 2

i

\
DtH~n!Df j

~n! , ~4!

whereDt is the time step andn indicates the step iteration
for imaginaryDt52 iDt (Dt.0) produces a decrease o
the KS energy. In imaginary time, the wave functio
$C j

(n11)% are no longer orthonormal, and a Gram-Schm
orthonormalization has to be carried out after each itera
to obtain$f j

(n11)% from $C j
(n11)%. To first order inDt, Eq.

~4! becomes

C j
~n11!5S 12

H~n!Dt

\ Df j
~n! , ~5!

which shows the simplicity of the method and its practic
implementation: after discretizing the KS Hamiltonian a
wave functions, it essentially reduces to repeated applica
6-2
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of the KS Hamiltonian to the previous wave function
Moreover, it is easy to check from Eq.~5! that, upon con-
vergence,

e j
~n11!5

\

Dt
@12^f j

~n!uC j
~n11!&# ~6!

coincide with the KS sp energies. Equation~5! shows that
the ITM belongs to the general class of relaxation meth
employed to solve partial differential equations. This p
vides a simple criterion for fixingDt in such a way that the
imaginary time evolution is stable,37 namely,
\2Dtmax/(2mD2),1/4, withD the smallest between ther and
z steps. In actual calculations we have takenDt
50.1Dtmax.

To start the ITM iteration one needs a set of sp wa
functions and energies to build the initial sp level schem
We have used two such sets. The first consists of the w
functions of an axially symmetric, 3D harmonic oscillat
potential of frequenciesv0 andvz in the radial andz direc-
tions, respectively. This potential gives rise to analytical
lutions even in the presence of a constant magnetic fiel
the z direction, and is a suitable confining potential for
single QD. In this case, the sp Hamiltonian is separable
the wave function can be written asu(r ,z)5R(r )Z/A2p,
with

R~r !5
1

a
A nr !

2u l u~nr1u l u!! S r

aD u l u

e2~r /2a!2
Lnr

u l u S r 2

2a2D ,

~7!

Z~z!5A z

Ap2nznz!
Hnz

~zz!e2z2z2/2,

wherea[A\/2mv0, z[Amvz /\, andLnr

u l u andHnz
are gen-

eralized Laguerre and Hermite polynomials,36 respectively.
The sp energies areEnr ,nz ,l5\v0@2nr1u l u11#1\vz@nz

11/2#, with nr andnz equal to 0, 1,... .
For a double QD, we have found it convenient to choo

Z(z) as the lowest energy eigenfunctions of a 1D dou
quantum well. The QD thickness is such that for not t
many electrons, only the two lowest states are needed. I
double dot is symmetric, these solutions are either even
odd under reflectionz→2z. Actually, for one QD,Z(z) can
also be the wave function in the 1D quantum well.

Both for a single QD and for a symmetric double dot, t
single-electron wave functions are characterized by the
ues ofl z ,sz , and parity, i.e., they must be either symmet
or antisymmetric under inversionr→2r , and be either even
or odd when reflectingz→2z. All these symmetries are
included in the starting separable wave functions. Indeed,
Hermite polynomials are even or odd depending onnz , and
the parity of a sp level is simply (2)nz1u l u. As the KS Hamil-
tonian and the ITM preserve these symmetries, in the co
of the iteration procedure the sp wave functions, which
no longer separable, keep their initial quantum numbers~or-
bital and spin projection on thez axis, parity, and reflection
symmetry with respect to thez50 plane! which are con-
served quantities.
11531
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To check the numerical scheme we have carried out
tensive and systematic tests. A first test on the discretiza
and iteration procedure consisted in numerically solving
axially deformed harmonic oscillator potential. We have e
actly reproduced the spectrumEnr ,nz ,l given after Eqs.~7!.
The implementation of the CGM has been successfu
tested comparing results computed for a spherical Gaus
charge distribution with the analytical results.

As another test of the numerical code, we have compa
the total energy calculated from a straightforward integrat
of the energy density with the expression in terms of the
energies derived from the KS equations. Writing the cor
lation energy density32,35 as Ec@n,m#[nEcor@n,j#, where
Ecor@n,j# is the correlation energy per electron an
j[m/n is the local-spin polarization, one obtains

E5(
j

e j2E dr H 1

2
VH~r !n~r !1

1

3
Ex@n,m#

1
]Ecor@n,j#

]n
n2~r !J . ~8!

We have checked that in the worst case, the energies ca
lated with either method agree to within one part in 104 for
our combination ofk57 formulas and the valuesDr 5Dz
50.12a0* used in this work.38 Simpler three-point formulas
(k53) turned out to be inaccurate for reasonable spa
steps, andk59 and 11 formulas, which allow larger step
did not appreciably reduce the computing time. It might
interesting to remark that most of this disagreement ar
from the integral of the external confining potential for
quantum well in thez direction, due to the sharp discontinu
ity in the given potential. We have checked that for a pa
bolic confining potential in thez direction, both methods o
evaluating the total energy agree to within one part in 107.

In the case of double QD’s, we have also checked that
results coincide irrespective of whether we start the iterat
from pure harmonic oscillator wave functions, or from th
better choice of double quantum well eigenfunctions in thz
direction. For even-N systems we have always started t
iteration with nonidentical sp potentials for spin-up a
-down electrons, to avoid artificial configurations withSz
50.

III. RESULTS

A. Single quantum dot

We have first addressed the addition energies of
quantum dot hosting up toN521 electrons. The confining
potential in thez direction is a quantum wellW512 nm
wide, which corresponds to the experimental well,4 and V0
5200 meV deep.19 Electrons are laterally confined by th
parabolic potentialmv0

2r 2/2 for which we have tried differ-
ent v0 values.

Figure 1 shows the addition spectrumDA(N)[E(N
11)22E(N)1E(N21) for v053, 5, and 10 meV. In addition
to local maxima at shell filling valuesN52, 6, 12, and 20,
other peaks appear at half-filling valuesN54 and 9. This is
a consequence of Hund’s rule, which establishes that de
6-3
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erate electronic states in a shell are filled with parallel sp
up to half-shell, in order to maximize the exchange inter
tion.

Up to N512 the results look very similar to the exper
mental values,3 especially for medium and weakr confine-
ment. For largerN values we have found a conspicuo
even-odd effect, instead of the weak maxima experiment
found atN520, and especially atN516. This result does
not mean that Hund’s rule is violated within this shell. I
deed, we have found spin alignment up toN516, but the
associated energy gain is not enough to produce the l
maximum atN516. It is worth pointing out that the energie
involved in the definition ofDA(N) are very large, com-
pared with the second energy difference. For example,
v055 meV andE(16)51.048 eV, whereasDA(16) is ;3
meV.

For strongr confinement, our results are quite similar
those in Ref. 19, except for medium and small values. Thi
not surprising, since in this Ref. the 3D electron-electr
energy is treated in first-order perturbation theory,40 and thus
one should not expect it to hold if the confinement is n
strong enough. The two-dimensionalE(N11)2E(N) re-
sults at B50 coincide with those in Ref. 41 whenv0
55 meV.

Our 3D dot is rather strongly confined in thez direction,
and the results forDA(N) are similar to those obtained fo
pure 2D dots. We have computed the addition energies u
the 2D dot model described in detail in Ref. 39; as shown

FIG. 1. Addition energiesDA as functions ofN for a 3D single
dot with V05200 meV,W512 nm, and differentv0 values.

FIG. 2. Addition spectrum as a function ofN for a 2D single dot
and differentv0 values.
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Fig. 2, 2D and 3D results are very similar, and qualitative
better than those from other different 2D models.42 As one
increases the confinement in thez direction up to V0
5300 meV, the addition energies become indistinguisha
in the scale of Fig. 1. We shall see that this is not the case
double dots, and that even qualitative differences appea
the dots are strongly coupled.

In spite of this quasi-two-dimensional behavior, the ele
tron density spreads beyond the well up to distances that
relevant for vertically coupled dots. This is illustrated in Fi
3, where we have plotted then(z) electron density defined a

n~z![E
0

`

drrn~r ,z! ~9!

corresponding toN512, W512 nm, andV05200 and 300
meV @note thatN52p*dzn(z)#. The electron densities spil
out of the quantum well, the smaller the confinement,
larger the effect.

Finally, in Fig. 4 we represent the density of a 2D d
hosting 12 electrons, and then(r ) density of the correspond
ing 3D dot defined asn(r )5*dzn(r ,z) @note that N
52p*drrn(r )#, both forv055 meV. These radial densitie

FIG. 3. n(z) densities@(a0* )21# for a 3D single dot withN
512, width W512 nm, and well depthsV05200 and 300 meV.
The vertical lines indicate the limits of the quantum well.

FIG. 4. n(r ) densities@(a0* )22# for 2D and 3D single dots with
N512 and v055 meV. The 3D well width and depth areW
512 nm andV05200 meV, respectively.
6-4
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are very similar. The 3D densitiesn(r ) for V05300 meV,
instead of 200 meV, are indistinguishable within the scale
the figure.

These comparisons allow one to infer that the experim
tal dots are quasi-two-dimensional systems to a large ex
with moderate lateral confinement,v0<5 meV.

B. Double quantum dots

We have modeled a symmetric double dot by a parab
confining potential with frequencyv055 meV in ther di-
rection, and a symmetric double quantum well in thez direc-
tion. Each quantum well has a width equal to 12 nm, and
separated from the other by a barrier of thicknessd that
varies from 1 to 9 nm. Some experimental results
available4 for this system atd>2.5 nm. Results for well
depthsV05200 and 300 meV will be discussed.

Figure 5 shows then(z) density profiles corresponding t
a quantum-mechanically coupled configurationd
52.5 nm), and to an electrostatically coupled configurat
(d57.5 nm). Only in the former case, are the electrons
localized. A quantitative measure of this localization is p
vided by the energy splitting between symmetric and a
symmetric sp states~more precisely between even and o
states with respect to specular reflectionz→2z), DSAS. In-
deed, forN51 and large distances, the symmetric and a
symmetric states are degenerate, andDSAS approaches zero
As d decreases, the coupling increases and so doesDSAS.
This effect depends weakly onN. We have plottedDSASas a
function of d in Fig. 6, for the lowestl 50 sp levels of
systems withN51 and 20.

FIG. 5. n(z) densities@(a0* )21# for an N512 double dot of
width W512 nm, well depthV0 , and barrier thicknessd. Top
panel,d57.5 nm. Bottom panel,d52.5 nm. The vertical lines in-
dicate the limits of the double quantum well.
11531
f

-
nt,

ic

is

e

n
-

-
i-

i-

Due to the characteristics of our double quantum w
DSAS depends exponentially ond, DSAS(d)5D0 exp(2d/
d0). For V05200 meV we have (d0 ,D0)
5(1.79 nm, 19.2 meV) forN51 and~1.76 nm, 17.6 meV!
for N520, whereas for V05300 meV, (d0 ,D0)
5(1.44 nm, 17.9 meV) forN51 and~1.42 nm, 16.5 meV!
for N520. These values are similar to those in Refs. 4 a
27. It can be seen from Fig. 5 that for a given interdot d
tance, enlargingV0 decreases the coupling between the do
as the density overlap diminishes. Figure 7 shows the de
tiesn(r ,z) for N512 and for twod values corresponding to
quantal (d52.5 nm) and to electrostatic (d57.5 nm) cou-
pling.

Figure 8 shows the addition spectrum for quantu
mechanically coupled (d52.5 nm), and electrostatically
coupled (d57.5 nm) dots, as well as the results correspo
ing to the single 3D dot. They have been obtained forV0

5200 meV. Figure 9 shows the same spectrum forV0

5300 meV. As expected, changes mostly appear in
strong-coupling case (d52.5 nm). Unexpectedly enough
these changes are qualitative, with, for example, maxima
DA(N) changed into minima.

Figure 6 indicates that atd57.5 nm the dots are wel
apart, only influenced by the electrostatic coupling, and
addition energies are insensitive to the value ofV0 . There
are no experimental results in the literature forDA(N) at this
interdot distance. However, the experimental analysis4 of the
derivative of the drain intensity with respect to the dra
voltage versus drain voltage indicates that the electron
the dots are indeed delocalized ford52.5 nm, and rather
localized ford57.5 nm.

The weak coupling atd57.5 nm allows us to interpret the
appearance of several peaks inDA(N), such as those atN
54, 8, and 12, as due to the fact that two, four, and
electrons on each dot already yield maxima in the addit
spectrum of a single QD. The remaining peak atN52 now
corresponds to half-filling the first shell in each dot, whi
would close atN52. This is caused by the localization o
one electron on each constituent dot.43

FIG. 6. DSAS(d) for the lowestl 50 sp levels of a double do
with N51 and 20. The inset shows the energiesES andEAS defin-
ing DSAS,DSAS[EAS2ES , for one of the cases presented here.
6-5
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Experimental results have been published4,5 for d
52.5 nm. We have not attempted to useV0 as a fitting pa-
rameter, so when comparing with experiment one sho
bear in mind both the sensitivity ofDA(N) on the value of
V0 in the strong coupling limit and the results displayed
Figs. 8 and 9. Published calculations correspond to de
lying in between these two values.22,27

One can see that maxima ofDA(N) decrease on the av
erage when compared to the isolated QD. This is in ag

FIG. 7. n(r ,z) densities@(a0* )23# for a double dot withN
512, width W512 nm, well depthV05200 meV, and barrier
thicknessd. Top panel,d52.5 nm. Bottom panel,d57.5 nm.

FIG. 8. Addition spectrum as a function ofN for a 3D single dot
~circles!, and for two coupled dots atd52.5 nm ~squares! and d
57.5 nm~diamonds!. The depth of the double quantum well isV0

5200 meV.
11531
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ment with experiment. Note, however, that the experimen
DA(N) for the strongly coupled double dot4 is approxi-
mately half that corresponding to the single dot, especia
whenN>10. This feature is not reproduced by the calcu
tions.

Globally, the results ford52.5 nm are better reproduce
with V05200 meV up toN512, and withV05300 meV for
larger N values. Probably, a value ofV0 in between might
improve the agreement with experiment. Other possibilit
such as anN-dependentv0 might also be considered,9,27 or
even some asymmetry in the double well.43 We have not
tried these possibilities,44 but we have checked that sel
interaction corrections~SIC’s!, which are usually not in-
cluded in these kind of calculations, do not change the ad
tion spectrum. The results are presented in the Appendix

For a given electron number, the gs configuration m
change as a function of the barrier thickness. The n
‘‘phases,’’ i.e., gs configurations which appear as a funct
of d, have been thoroughly discussed.22,27 To label them, we
have adopted the standard convention of molecular phy
for sp electronic orbitals ass, p, d,..., if l 50, 1, 2,..., and
upper case Greek letters are used for the total orbital ang
momentum. We have also used an adapted version22 of or-
dinary spectroscopic notation2S11Lg,u

6 whereS is the total
uSzu, andL is the totaluLzu. The superscript1 ~2! refers to
even ~odd! states under reflection with respect to thez50
plane, and the subscriptg(u) refers to positive~negative!
parity states.

We show the evolution with barrier thickness of the e
ergy and gs molecular configuration for severalN values in
Fig. 10. The vertical lines have been drawn to guide the e
and different symbols have been used to identify differ
phases. All panels in the figure display some common tren
Initially, E(d) increases withd. The reason for this is two-
fold. On the one hand, at smalld all occupied sp levels are
specularly symmetric about thez50 plane~‘‘ 1’’ states!, the
specularly antisymmetric levels~‘‘ 2’’ states! lie at much
higher energies~see Fig. 6!. On the other hand, the energie
of the symmetric and antisymmetric state, respectively,
crease and decrease withd, and eventually both states be
come degenerate at large interdot distances. This is a w
known feature of the one particle, one-dimensional doub

FIG. 9. Same as Fig. 8 forV05300 meV.
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quantum-well problem~see the inset in Fig. 6!, which
remains valid in the interacting many-electron calculatio
The first phase transition takes place when the first antis
metric sp state becomes occupied. At large distances,E(d)
slowly decreases withd due to the decrease of the interd
Coulomb energy. These trends are also present in
Hubbard-like calculations of Ref. 22, but only the lowerin
of E(d) due to the interdot Coulomb energy is qualitative
reproduced by the calculations of Ref. 27, which fail to yie
the energy growth at short distances.

In spite of the difference between the values of the
energies reported in Refs. 22 and 27, and also with respe
the present work, which has to be mostly attributed to
different confining potentials in each calculation, up toN
56 the phases are the same but appear at differentd values.
In this respect, our results are in closer agreement with th
of Ref. 27, possibly because the radial frequenciesv0 are
similar in both calculations. We wish to point out that th
phase diagram obtained forV05300 meV is qualitatively
similar to the one shown in Fig. 10, but the phase transiti
are shifted;0.5 nm to the left.

IV. SUMMARY

We have used local-spin-density-functional theory to
vestigate the zero-magnetic-field structure of one single
two identical, vertically coupled QD’s of finite thicknes
While for one single dot, whose thickness corresponds
that of actual experimental devices, the addition spectrum
quite similar to that predicted by purely two-dimension

FIG. 10. Energy and ground-state molecular configurations
the double dot as functions of the barrier thickness forN53 – 7.
The depth of the double quantum well isV05200 meV.
11531
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models, in the case of double dots their vertical extensio
essential for a quantitative description of their quantum c
pling, which influences the addition spectrum at short d
tances. For one single dot the calculated addition spect
compares well with experiment, whereas for two coup
dots the agreement is qualitative. This possibly reflects
fact that in the latter case the spectrum is more sensitiv
the actual form of the bare confining potential.

The phase sequence of ground-state configurations w
appear as a function of interdot distance is quite similar
that found in previous works,22,27evolving from the ‘‘atomic
phase’’ of two strongly coupled dots to the atomic phase
two weakly coupled dots through a series of ‘‘molecula
type phases’’ at intermediate distances. This is a rather
bust picture, as it arises from the underlying single-elect
structure of the bare confining potential. Indeed, the vert
confinement is so strong that at short distances only symm
ric sp states are occupied, the antisymmetric ones lying
quite high energies. This originates the atomic phase of
strongly coupled dots. As the interdot distance increases,
DSASgap decreases, and the symmetric and antisymmetr
states eventually become degenerate, originating the ato
phase of two weakly coupled dots. The molecular-type c

FIG. 11. Difference between SIC and LSDFT addition energ
m(N)5E(N)2E(N21) for a double quantum dot ofV0

5200 meV depth and barrier thicknessd for N51 – 13.

FIG. 12. Addition spectrum as a function ofN for two coupled
dots atd52.5 nm ~squares! and 7.5 nm~diamonds!. The depth of
the double quantum well isV05200 meV. Solid symbols represen
LSDFT results, and empty symbols the results obtained after S
have been included.
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figurations appear at intermediate distances, whereDSAS is
similar to the other energy scale of the system, namely\v0 ,
and when the number of electrons is large enough so tha
system can minimize its energy populating antisymme
states. The larger the number of electrons, the larger
number of populated antisymmetric states. This causes
number of intermediate molecular phases to increase witN.

In spite of the mentioned qualitative agreement with p
vious results, the calculated phase diagrams are as sen
to the shape of the bare confining potential as the addi
spectra. It would be desirable that any prediction of the
tual appearance of the phase diagrams should be based
model that describes, at least qualitatively, the correspon
experimental addition spectrum.
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APPENDIX

It is well known that the ‘‘exact’’ density functional fo
the gs energy is self-interaction free~see for instance Ref
45!, but it is not the case of its current approximations, su
as the LSDFT. One possible way of removing this drawba
is to use the SIC’s proposed by Perdew and Zunger,32 which
introduces an orbital-dependent single-particle potential,
improves the total energy of the electronic system and yie
sp eigenvalues which approximate the physical removal
ergies more closely, at the price of rendering the KS m
d L
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mization far more cumbersome. Since SIC’s are relativ
more important for few-electron systems, which is t
present case, we have tested their effect on the results sh
in the body of this paper, in two extreme configurations. W
refer the reader to Refs. 32 and 45 for a thorough descrip
of SIC. Here we only give the essential details of the app
cation of the method to our physical problem.

Within the method of Perdew and Zunger, the sp poten
in Eq. ~1! becomes orbital dependent with the change

VH1Vxc1Wxchs→Veff[VH1Vxc1Wxchs2VH@nnls#

2Vxc@nnls ,nnls#2Wxc@nnls ,nnls#hs ,

~A1!

where nnls5uunls(r ,z)u2 is the ‘‘orbital density’’ and
VH@nnls# is obtained solving the Poisson equatio
DVH@nnls#524pnnls(r ,z) as indicated in Sec. II. After
self-consistency is achieved, the total energy can be obta
from Eq. ~8!, which has been written as

E→E2
1

2 (
nls

E drVH@nnls#nnls~r !

2(
nls

E drExc@nnls ,nnls#. ~A2!

In Fig. 11 we show the difference between SIC a
LSDFT addition energies defined asm(N)5E(N)2E(N
21) corresponding to theV05200 meV double quantum
dot. The average difference is small, of the order of 0.4–
meV. This difference almost cancels out in the addition sp
trum DA(N), as can be seen in Fig. 12. This constitutes
interesting result in itself, indicating that if one only wishe
to obtain the addition spectrum, LSDFT does not need to
corrected for self-interaction effects.
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