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Average conductance coefficients in multiterminal chaotic cavities
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We calculate exactly the average conductance coefficients of a ballistic chaotic cavity coupled via tunnel
barriers to an arbitrary number of reservoirs. Explicit formulas are derived for several regimes of interest: ideal
contacts, strongly overlapping resonances, locally weakly absorbing limit, equivalent channels, and equivalent
terminals.
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I. INTRODUCTION

Coherent transport of waves in complex systems has b
a subject of much interest both theoretically and experim
tally. Application include light propagation in opaque med
such as white paint,1 transmission of radiation through inte
stellar clouds,2 microwave scattering by chaotic cavities3

and electron transport through disordered and ballistic me
scopic devices.4 An important feature of these systems is t
irregular behavior of the transport characteristics as a fu
tion of certain parameters, such as the energy of the inc
ing wave or the shape of the scattering potential. In exp
ments and numerical simulations, it is always possible
smooth out the irregularity by performing averages ove
sufficiently large interval of the relevant parameter asso
ated with the fluctuations. Such a procedure usually lead
very robust statistical laws and reveals a great degree of
versality~independence of microscopic details!. It has been a
challenge to the theorists in the field to explain and der
these universal statistical laws from microscopic approac

An interesting explanation for this universality can
produced by using arguments put forward in Ref. 5. In
universal continuum limit, the statistical models of th
above-mentioned systems flow to the same mathema
structure: Efetov’s supersymmetric nonlinears model.6,7 Us-
ing scaling arguments, the authors of Ref. 5 have shown
the observables obtained from the one-dimensional ver
of this model are given by universal scaling functions
dimensionless combinations of the unrenormalized coe
cients in the action~a phenomenon known as ‘‘no-scal
factor universality.’’!8,9 The universal scaling functions fo
the first and second moment of the two-terminal conducta
of a thick wire can be found in Ref. 10. More recently, usi
a stable numerical algorithm for large products of rand
matrices and finite size scaling, Plerou and Wang11 obtained
the universal scaling functions of several moments of
conductance.

In Ref. 12, we have studied in detail the universal scal
functions of arbitrary linear statistics of a disordered qua
one-dimensional conductor with broken time-reversal sy
metry and coupled ideally to two electron reservoirs via p
fectly conducting leads~labeled 1 and 2! with arbitrary
numbers of open channels:N1 andN2. In particular, we have
demonstrated, by explicit calculations, that the first three m
ments of the two-terminal conductance have the follow
0163-1829/2001/63~11!/115309~8!/$15.00 63 1153
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‘‘no-scale-factor’’ universal form:

^~G/G0!m&5 f m~N1 ,N2,2L/j!, ~1!

whereL is the length of the wire,j is the localization length
andG0[2e2/h is the conductance quantum. The results o
tained in Ref. 10 are recovered by taking the limitsN1 ,N2
→`. Interestingly, in the limitL/j→0 the system behave
as an open ballistic chaotic cavity~i.e., the classical dynam
ics of a confined particle that scatters only at its boundar
chaotic! and Eq.~1! can be interpreted as describing the u
versal quantum dot to disordered wire crossover. Import
extensions of this result would involve the inclusion of mo
terminals~typical experiments use four probes: two for vo
age and two for current measurements!, the presence of tun
nel barriers at the lead-wire contacts and dephasing effe

In this paper, we shall consider some of these extens
in the somewhat simpler but important case of the lim
L/j→0. Specifically, we calculate exactly the average co
ductance coefficients of a ballistic chaotic cavity coupled
tunnel barriers to an arbitrary number of electron reservo

An experimental realization of this system is a hig
mobility semiconductor quantum dot with many voltag
current terminals at very low temperature.13–22 In such de-
vices, conductance coefficients are usually measured
applying a very low frequency ac current through the syst
and observing the induced voltage differences between
various probes. The experimental and theoretical importa
of these coefficients was established by Bu¨ttiker in Refs. 23
and 24, where they were used to explain some observed
procity symmetries.25 A notable feature of the conductanc
coefficients is the fact that, at zero temperature, they
completely determined by states at the Fermi surface. T
property makes it possible to describe low-temperature tra
port in these systems as a scattering problem. This poin
view has been pioneered by Landauer26,27and was later gen-
eralized by Bu¨ttiker.23,24

The most important simplifying aspect of the transp
regimes amenable to a scattering description is the existe
of widely separated time scales. There are two we
developed approaches that take benefit of this fact. The
one ~called ‘‘the Heidelberg approach’’! has been presente
in detail in Refs. 28 and 29, and builds on earlier work
scattering theory of resonant nuclear reactions.30 It basically
assumes that the coupling to the reservoirs leads to the
©2001 The American Physical Society09-1



ia
r-

-

il-

at
r
a
a

-

n
a
tic
-
il
ta

.
tri
of
tia
om
-

in
a
o
ca
e
e
o
w
io
re

th
try
g
r
la

or
te
m
ro

rix
ta

ting
on
ave

s of
cle
u-

y a

-
sing

er-
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pearance of two well-separated time scales, one assoc
with direct processes~described by the smooth energy ave
aged scattering matrix! and the other with long-living reso
nances~described by the strongly fluctuating part of theS
matrix!. The S matrix is expressed in terms of the Ham
tonian Hc of the cavity and a fenomenological matrixW
describing the coupling of the cavity to a continuum of sc
tering states. The HamiltonianHc is substituted by a membe
from the Gaussian random-matrix ensemble and energy
erages are replaced by ensemble averages, which are c
lated using the supersymmetry theory.6,7 This approach has
had remarkable success leading to both exact results31–34and
useful approximations.35,36 The second scattering formula
tion has been put forward in Refs. 37 and 38~for recent
reviews, see Refs. 39 and 40! and also uses the assumptio
of two widely separated time scales for direct and reson
processes, but unlike the Heidelberg approach, the statis
properties of theS matrix are derived using information the
oretical ideas, without ever refering to the underlying Ham
tonian. The equivalence of these two methods was es
lished in Ref. 29~see also Ref. 41!.

An independent and also very successful approach
transport in quantum dots has been developed by Efetov7 It
builds on the zero-dimensional limit of the supersymme
non-linears model and its connection with the problem
an electron in the presence of a random-impurity poten
The equivalence with the Heidelberg approach follows fr
Efetov’s proof6 of the microscopic validity of a random
matrix theory.

In this paper we adopt the Heidelberg approach, ma
because of its appealing physical transparency, which gre
facilitates the interpretation of the final results in terms
concepts from the theory of resonant quantum chaotic s
tering. In Sec. II we describe the physical system and giv
detailed introduction to the multiterminal version of th
Heidelberg approach. An exact formula for the average c
ductance coefficients is presented in Sec. III. In Sec. IV
derive some useful limits and give a physical interpretat
of our central result. A summary and conclusions are p
sented in Sec. V.

II. THE PHYSICAL SYSTEM AND THE HEIDELBERG
APPROACH

In this section we present the Heidelberg approach for
description of a ballistic chaotic cavity of arbitrary geome
coupled toM electron reservoirs via perfectly conductin
leads with an arbitrary number of propagating channels. P
vious works have been concerned mostly with the particu
cases:M51 andM52. As we shall demonstrate, even f
these particular situations, the study of the general multi
minal system offers additional insights, which can help i
prove the understanding of the physical aspects of the p
lem.

A. Scattering matrix

A central result in the formalism is the scattering mat
formula below, which describes the coupling of the me
11530
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stable states in the cavity to the asymptotic free propaga
states in the leads. A proof of this formula using projecti
operators can be found in Ref. 30. Simpler derivations h
been presented in Refs. 42,43, and 33. TheSmatrix is given
by

S5122p iW†GrW, ~2!

whereGr is the retarded Green’s function defined by

Gr5~E2Hc2S r !21, ~3!

in which Hc is the Nc3Nc Hamiltonian matrix describing
the dynamics of the closed cavity, and

S r52 ipWW† ~4!

is the self-energy function associated with the processe
particles entering into the cavity from the leads and parti
emission from the cavity into the leads. The nonideal co
pling between the cavity and the leads is described b
nonrandomNc3N matrix with the following structure:

Wmn55
~W1!m,n ; n51, . . . ,N1

~W2!m,n2N1 ; n5N111, . . . ,N11N2

A ; A

~WM !m,n2N1NM
; n5N2NM11, . . . ,N.

The elements of the matricesWp not related toW are zero.
This implies that the self-energy can be decomposed as

S r5 (
p51

M

Sp
r ,

whereSp
r 52 ipWpWp

† . It is standard in the Heidelberg ap
proach to assume the absence of direct reactions by impo
the following orthogonality conditions:28

Wp
†Wq5

NcD

p2 wpdp,q , ~5!

where D is the mean level spacing andwp is a diagonal
matrix given by

wp5diag~wp,1 , . . . ,wp,Np
!. ~6!

B. Landauer-Büttiker Formula

Using a counting argument due to Landauer26,27 and
Büttiker23,24 one can show that the current in terminalp can
be written in terms of the voltage differences in the res
voirs DVpq[Vp2Vq as

I p5 (
q51

M

GpqDVpq ,

where

Gpq5G0(
n51

Np

(
m51

Nq

uSnm
pq u2; pÞq, ~7!
9-2



iv
a
o

ta

l
s

ta

th
-
th
a
e-
o

ity

in
th
a
e
oo

ant
tri-
so-
r of
his
-

the
m-
e-

is

flux
a-

h as

and
tely

ls

cal-

s
h as

AVERAGE CONDUCTANCE COEFFICIENTS IN . . . PHYSICAL REVIEW B63 115309
are the conductance coefficients of the open cavity. Der
tions of this multiterminal formula using a standard line
response theory can be found in Refs. 44,45, and 46. M
recently,47,48 the Keldysh technique has been used to es
lish its limits of applicability.

From Eq.~2! we obtain

Snm
pq 5dpqdnm22p i(

mn
~Wp

†!nm~Gr !mn~Wq!nm . ~8!

DefiningGa[(Gr)† andGp[2pWpWp
† we find, after insert-

ing Eq. ~8! into Eq. ~7! that

Gpq5G0Cpq , pÞq,

where

Cpq5Tr~GpGrGqGa!. ~9!

This last formula also applies forp5q.
There is an interesting sum rule~Ward identity! satisfied

by Cpq that can be obtained as follows.49 Define the spectra
functionA[ i (Gr2Ga), and observe that it can be written a
A5GrGGa5GaGGr , whereG5(p51

M Gp . Summing Eq.~9!
over q and using these results we get

(
q51

M

Cpq5 (
q51

M

Cqp5Tr~GpA!. ~10!

This relation is obviously a direct consequence of the uni
ity of the S matrix.

C. Random-matrix ensemble

Following the Heidelberg approach, we assume that
Hamiltonian matrixHc describing the dynamics of a nonin
teracting particle in the chaotic cavity, can be replaced in
universal regime, by a member from the Gaussian unit
ensemble~GUE!, which describes systems with broken tim
reversal symmetry. We are thus assuming the presence
weak magnetic field in the cavity region. The probabil
distribution is given by

P~Hc!5N expS 2
1

2C Tr~Hc
2! D , ~11!

whereN is a normalization constant,C5l2/Nc and conse-
quently

^~Hc!mn&50 ~12!

and

^~Hc!mn~Hc!m8n8&5Cdmn8dnm8 . ~13!

The random-matrix assumption is in fact a long-stand
problem in the field of quantum chaos, that goes under
name of ‘‘the Bohigas conjecture.’’ There is numeric
evidence50 for its validity and microscopic justifications hav
been put forward in Refs. 51,52, and 53, but a rigorous pr
is still missing.
11530
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D. Coupling parameters

The large separation of time scales for direct and reson
processes in the universal chaotic regime implies that dis
bution functions describing the stochastic nature of the re
nant response depend parametrically on a certain numbe
coupling coefficients associated with direct processes. T
fact has been formally justified by the information
theoretical model39 in terms of the analyticity-ergodicity
constraint that leads to the Poisson kernel distribution of
Smatrix. In the Heidelberg approach, these coupling para
eters have been called ‘‘sticking probabilities’’ and are d
fined as

Tpn512u^Snn
pp&u2. ~14!

The averageS matrix has been calculated in Ref. 28 and
given by

^Snm
pq &5dpqdnm tanh~apn/2!,

whereapn[2 ln wpn, with wpn defined in Eq.~6!. For the
tunnel probabilitiesTpn , we find

Tpn5sech2~apn/2!. ~15!

These coefficients measure the part of the incomming
that penetrates into the cavity and participates in the form
tion of long-living resonant states. Note that whenTpn51,
the coupling to the leads is ideal and direct processes, suc
prompt reflection, is absent. On the other hand, whenTpn
50 there is no coupling between the scattering channels
the resonances, and thus, the incomming flux is comple
backscattered.

We finish this section by remarking that since

^Tr~GpA!&522 Im Tr~Gp^G
r&!,

one can use Eq.~10! to derive the following useful sum rule
for the average coefficientŝCpq&

(
q51

M

^Cqp&5 (
q51

M

^Cpq&5 (
n51

Np 4

eapn11
. ~16!

This identity will be used later to simplify some integra
obtained with the supersymmetry technique.

III. GENERAL FORMULA FOR THE AVERAGE
CONDUCTANCE COEFFICIENTS

In this section we use the supersymmetry method to
culate the average conductance coefficients,^Gpq&
5G0^Cpq&, for pÞq. For a pedagogical introduction to thi
method and to the basic definitions of superalgebra, suc
the superdeterminant~Sdet! and the supertrace~Str!, we refer
to the recent review by Zuk.54

From Eq.~9! one can see that

^Cpq&5
]2

]hp1B]hq2B
^Z~h!&U

h50

, ~17!

where
9-3
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Z~h!5Sdet21@11J~h!G#.

We have introduced the following block diagonal matrix
retarded and advanced Green’s functions:

G5diag~Gr ,Gr ,Ga,Ga!.

The source field is represented by the matrix

J~h!5 (
q51

M

(
a51

2

(
s5B,F

hqasGq^ Fas ,

where

F1s5S 0 0

ks 0D ,

and

F2s5S 0 ks

0 0 D .

The submatricesks are defined as

kB5S 1 0

0 0D
and

kF5S 0 0

0 1D .

Following the standard procedure we representZ(h) as a
Gaussian superintegral

Z~h!5E DwDw̄ exp@ i w̄~A2B!w#,

where w is a supervector with componentswam
a (a50,1,

a51,2, and m51 . . .Nc) and (w̄)am
a

5(21)(12a)(11a)(wam
a )* . The matricesA andB are defined

as

A5
i

2
G ^ L1J~h!

and

B5Hc^ 14 .

We have also defined the following auxiliary matrixL
5diag(1,1,21,21). The ensemble average is perform
with the help of the identity

^exp~2 i w̄Bw!&5expF2
C
2

Str~S 2!G , ~18!

where

S ab
ab5 (

m51

Nc

wam
a ~w̄ !bm

b .
11530
Inserting Eq.~18! into ^Z(h)&, linearizing the quadratic de
pence onS via a Hubbard-Stratonovitch transformation a
performing the integral over the vector variablesw and w̄,
we get the following exact representation

^Z~h!&5E dseiL(s,h)

where

iL~s,h!52
Nc

2l2
Str~s2!2Str ln~A2s ^ 1Nc

!.

In the regimeNc@M , this integral can be further simplified
by using the saddle-point method. We end up with an in
gral over Efetov’s coset spaceU(1,1u2)/@U(1u1)
^ U(1u1)#, whose points are parametrized by supermatri
Q satisfying the constraintQ251,

^Z~h!&5E dQ)
p51

M

)
n51

Np

Sdet21~11wpnQKp!, ~19!

in which we have introduced the following supermatrix:

Kp5L22i(
as

hpasFas .

We can calculatêCpq& by inserting Eq.~19! into Eq. ~17!.
We find

^Cpq&524(
n51

Np

(
m51

Nq

^Str~Qpn
1B!Str~Qqm

2B !&Q

24dpq(
n51

Np

^Str~Qpn
1BQpn

2B!&Q , ~20!

where

Qpn
as5wpn~wpn1LQ!21LFas

and the averagê. . . &Q is defined as

^ f ~Q!&Q5E dQ f~Q!)
p51

M

)
n51

Np

Sdet21~11wpnQL!.

Equation ~20! can be made explicit by means of Efetov
coordinates, defined by the parametrization

Q5U21S cosû i sinû

2 i sinû 2cosû
D U; U5S ei ŵv1 0

0 v2
D ,

where û[diag(iu1 ,u0); u1.0, 0,u0,p, ŵ
[diag(w1 ,w0); 0,w1 ,w0,2p and v1 , v2 are given re-
spectively by

v15expS 0 2h1*

h1 0
D ; v25expS 0 2 ih2*

ih2 0
D ,

whereh1 ,h2 ,h1* , andh2* are complex anticommuting vari
ables. In these coordinates the invariant integration mea
reads
9-4
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dQ5
dl1dl0

~l12l0!2 dw1dw0dh1* dh2* dh1dh2 ,

wherel15coshu1 andl05cosu0.
To simplify the presentation of the final expressions,

us define the following functions:

P~$g%;$l%!5 )
p51

M

)
n51

Np l01gpn

l11gpn
,

wheregpn5coshapn,

Q nm
pq ~$l%!5~l01l1!~11gpngqm!

1~11l0l1!~gpn1gqm!,

and

R nm
pq ~$l%!5)

r 50

1

~l r1gpn!~l r1gqm!.

Using Efetov’s coordinates, together with Zirnbauer’s in
gral theorem55 to account for the contribution of boundar
terms, we obtain from Eq.~20! the following result:

^Cpq&5 (
n51

Np

(
m51

Nq E
$l%

P~$g%;$l%!

~l12l0!

Q nm
pq ~$l%!

R nm
pq ~$l%!

1dpq(
n51

Np E
$l}

~gpn
2 21!P~$g%;$l%!

R nn
pp~$l%!

1dpq(
n51

Np 4

~eapn11!2
, ~21!

where

E
$l%

[E
1

`

dl1E
21

1

dl0 .

The average conductance coefficients can be obtained
the above expression by using the conditionpÞq. The final
formula is the central result of this paper

^Gpq /G0&5 (
n51

Np

(
m51

Nq E
$l%

P~$g%;$l%!

~l12l0!

Q nm
pq ~$l%!

R nm
pq ~$l%!

.

~22!

IV. PHYSICAL ANALYSIS AND USEFUL RESULTS

We can obtain considerable understanding of the phys
meaning of Eq.~22! by studying some important particula
regimes and situations.

~a! Ideal contacts.
When the contacts between the cavity and the leads

ideal, the tunnel probabilities have maximum value, i.
Tpn51. Substituting this condition into Eq.~22! we get

^Gpq /G0&5E
$l%

2NpNq~11l0!N21

~l12l0!~11l1!N11
5

NpNq

N
, ~23!
11530
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in agreement with the maximum-entropy formulation of R
39. Physically, it means that as we vary the incident ener
the S matrix explores with equal probability all parts of it
available manifold.

For the important particular case of two terminals, i.
M52 andN5N11N2, there are a number of known resul
in the literature,7,40 both for the average conductance~and its
variance! and for the average density of transmission eig
values defined as

r~t!5^Trd~t2tt†!&,

where t is the transmission matrix. From the Landauer fo
mula,G5G0Tr(tt†), we can see that

^G/G0&5E
0

1

dtr~t!t. ~24!

For ideal coupling, Ref. 56 obtained

r~t!5t r (
n50

s21

~2n1r 11!$Pn
(r ,0)~122t!%2, ~25!

wherer 5uN12N2u, s5min$N1,N2%, andPn
(a,b)(x) is the Ja-

cobi polynomial. Inserting Eq.~25! into Eq. ~24! we get
^G/G0&5N1N2 /N in agreement with Eq.~23!.

~b! Strongly overlapping resonances.
As analyzed in Ref. 29, this is the regime where semicl

sical methods work very well. It is defined by the conditio
Ttot@1, whereTtot[(pnTpn is the total tunnel probability
for the electron to get from the leads into the cavity. We c
obtain the average conductance coefficients in this regime
expanding Eq.~22! in inverse powers ofTtot . Using the
expansion scheme described in Ref. 57 we find

^Gpq /G0&.
TpTq

Ttot
1Ttot

23~Tp
(3)Tq1TpTq

(3)1Tp
(2)Tq

(2)!

2Ttot
23~Tp

(2)Tq1TpTq
(2)!2Ttot

23m3TpTq

1Ttot
23m2~TpTq2Tp

(2)Tq2TpTq
(2)!, ~26!

where Tp[(n(Tpn), Tp
(k)[(n(Tpn)

k and mk[Ttot
21(pTp

(k)

are parameters of order unity. This expansion is correct u
the orderTtot

24 and we have checked that^Cpq& calculated
within the same scheme and to the same order satisfies
sum rule of Eq.~16!.

There are two interesting features in Eq.~26!. The first
concerns the physical interpretation of the leading te
SinceTq /Ttot is the probability of emission from the cavit
into leadq andTp is the probability of entry into the cavity
from leadp, the factorized expressionTp(Tq /Ttot) ~known
in nuclear physics as the Hauser-Feshbach formula58! indi-
cates the statistical independence of these processes.
second feature is the absence of the term of orderTtot

22 . This
can be understood by considering the single channel lim
After appropriate reinterpretation of channel indices as
minal indices, Refs. 57 and 59 obtained the following res
9-5
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^uSpqu2&GOE5
TpTq

Ttot
2

TpTq~Tp1Tq2m2!

Ttot
2

1O~Ttot
23!,

for a system with time-reversal symmetry. On the oth
hand, Eq.~26! gives

^uSpqu2&GUE5
TpTq

Ttot
1O~Ttot

23!. ~27!

Both expressions are valid only forpÞq and GOE stands fo
Gaussian orthogonal ensemble. The term of orderTtot

22 in
^uSpqu2&GOE represents the weak-localization contributio
which is a decrease in magnitude caused by the cohe
backscattering of waves in the cavity. The absence of
contribution in^uSpqu2&GUE and in Eq.~26! indicates the sup-
pression of this effect by the breaking of time-reversal sy
metry. Weak-localization effects have been observed
many experiments in ballistic chaotic cavities60 and has re-
cently been the subject of detailed theoretical analysis.34

We conclude by remarking that for the particular case
two terminals, the leading term of Eq.~26! agrees with the
perturbative calculation of Ref. 61.

~c! The locally weak absorption limit.
This regime has been studied in mesoscopic physic

Ref. 62. It corresponds to the case of small transmiss
coefficientsTpn!1 and large number of channels,N@1. In
Eq. ~22!, it implies the substitutions

P~$g%;$l%!→expF2
1

2
~l12l0!TtotG ,

and

Q nm
pq ~$l%!

R nm
pq ~$l%!

→ 1

4
TpnTqm~l11l0!.

The remaining double integral is straightforward and yiel

^Gpq /G0&.
TpTq

Ttot
, ~28!

which is again the Hauser-Feshbach fromula and thus
physical interpretation of the statistical independence of
processes of entry into the cavity and emission from it a
applies here. This result is in agreement with Eq.~20! of Ref.
62.

~d! Equivalent channels.
In this case, we haveapn5a for all modes in all termi-

nals. From Eq.~22! one gets

^Gpq /G0&5E
$l%

NpNq~g1l0!N22Q~l0 ,l1!

~l12l0!~g1l1!N12

5NpNqFN~g!,

where Q(l0 ,l1)5(11g2)(l01l1)12g(11l0l1). The
double integral defining the functionFN(g), although help-
ful in numerical estimations, is too unwieldly for direct an
lytical calculations. Fortunately, we can use the sum rule
11530
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Eq. ~16! to determineFN(g) as follows. Using the simplify-
ing assumptionapn5a in Eq. ~21! we find

^Cpq&5NpNqFN~cosha!1dpq

4Np

~ea11!2

1dpqNp

tanh2~a/2!2tanh2N~a/2!

N221
.

From Eq.~16! we get the identity

(
q51

M

^Cpq&5
4Np

~ea11!
.

Using this result in the previous equation we obtain

FN~cosha!5
N2 sech2~a/2!1tanh2N~a/2!21

N~N221!
.

From this expression and the relationT5sech2(a/2) we get
the simple formula

^Gpq /G0&5
NpNq

N~N221!
@N2T1~12T!N21#. ~29!

This equation is a new result and represents the generic
ation of mildly overlapping resonances. It can be interpre
as describing the smooth crossover between two extr
limits: strongly overlapping resonances, whereNT@1 and
the following asymptotic expansion applies

^Gpq /G0&5
NpNq

N S T1
T21

N2 1
T21

N4 1@O~NT!#26D ,

and isolated resonances, whereNT!1 and Eq.~29! yields

^Gpq /G0&.
NpNq

N11
T. ~30!

Note that the assumption of a large number of probesM
@1) is sufficient to recover the Hauser-Feshbach law
equivalent channelŝGpq /G0&.NpNqT/N, in both limits
sinceN5(p51

M Np would also be large.
Let us compare our general results with those of previ

works for the particular case of two terminals. In Ref. 56 t
density of transmission eigenvaluer(t), has been calculated
as a function ofg52/T21. Using this result we find

^G/G0&5
1

3
T1

1

6
T2, ~31!

for N1515N2 and

^G/G0&5
4

5
T1

2

5
T22

4

15
T31

1

15
T4, ~32!

for N1525N2. Both expressions are in agreement with E
~29!. Note also that forT!1, we get ^G/G0&.T/3 and
^G/G0&.4T/5 from Eqs.~31! and~32!, respectively, which
agree with Eq.~30!.
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~e! Equivalent terminals.
Let us now consider the case of equivalent probes,

apn5an andNp5N1 for all p. From Eq.~21! we get

^Cpq&5F~$g%!1dpq(
n51

N1 S 4

~ean11!2
1~gn

221!AnBnD ,

where

An5E
21

1

dx~x1gn!M22 )
m(Þn)

~x1gm!M,

and

Bn5E
1

`

dx~x1gn!2M22 )
m(Þn)

~x1gm!2M.

The functionF($g%) can be evaluated via the sum rule
Eq. ~16! with apn5an for all p, we find

F~$g%!5
1

M (
n51

N1 S 4ean

~ean11!2
1~12gn

2!AnBnD .

This implies that the average conductance coefficients for
case of equivalent terminals, which from Eq.~22! is given by
^Gpq /G0&5F($g%), read

^Gpq /G0&5
1

M (
n51

N1 S Tn24~12Tn!
AnBn

Tn
2 D . ~33!

The coefficientsAn and Bn can be calculated explicitly bu
the final form is too cumbersome. In the limit of strong
overlapping resonances, whereTn.1 andTtot@1, the con-
tribution of the second term is irrelevant and we recover
Hauser-Feshbach law for nonequivalent channels

^Gpq /G0&.
S (

n51

N1

TnD S (
m51

N1

TmD
Ttot

5
1

M (
n51

N1

Tn ,

as expected.
As a consistency check of Eq.~33!, let us setTn5T

~equivalent channels!, then we get

^Gpq /G0&5
N1

M S T24~12T!
AB

T2 D ,

where

A5
2N21@12~12T!N21#

~N21!TN21
,

u

11530
.,

e

e

and

B5
TN11

2N11~N11!
.

After substititution, we end up with

^Gpq /G0&5
N1

2

N~N221!
@N2T1~12T!N21#,

in agreement with Eq.~29! for Np5N15Nq .

V. SUMMARY AND CONCLUSIONS

In this paper, we have calculated exactly the average c
ductance coefficients of a ballistic chaotic cavity coupled
continua via tunnel barriers, for an arbitrary number
propagating channels. We have employed the Heidelberg
proach, which builds on resonant quantum scattering the
and relates the scattering matrix of the open system to
dynamical Hamiltonian of the closed cavity, which is r
placed by a member from the Gaussian unitary ensembl
large random matrices. Our central result, Eq.~22! has been
obtained by using the standard mapping of the problem o
the supersymmetric nonlinears model. Several importan
physical limits have been studied in detail, namely: ide
contacts, strongly overlapping resonances, locally wea
absorbing limit, equivalent channels, and equivalent ter
nals.

From a theoretical point of view, our results constitute
step forward in the complete characterization of the unive
scaling functions for the quantum dot to disordered w
crossover problem, since it represents the limitL/j→0. Ex-
perimentally, we expect that our explicit expressions m
help improve the understanding of the universal features
the transport regimes in low temperature ballistic quant
dots.

We conclude by remarking that there are several ext
sions of this work that are both physically important a
mathematically tractable. These include other ensembles~or-
thogonal, symplectic, and crossovers!, parametric correla-
tions, dephasing effects, and time dependent response.
crucial feature of our approach to these problems is thege-
ometrizationof its mathematical aspects through the m
onto the supersymmetric coset space, or equivalently o
the classical symmetric space of the random-matrix form
ism.
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24M. Büttiker, IBM J. Res. Dev.32, 317 ~1988!.
25S. Washburn and R.A. Webb, Adv. Phys.35, 375 ~1986!.
26R. Landauer, IBM J. Res. Dev.1, 223 ~1957!.
27R. Landauer, Philos. Mag.21, 863 ~1970!.
28J.J.M. Verbaarschot, H.A. Weidenmu¨ller, and M.R. Zirnbauer,

Phys. Rep.129, 367 ~1985!.
29C.H. Lewenkopf and H.A. Weidenmu¨ller, Ann. Phys.~N.Y.! 212,

53 ~1991!.
30C. Mahaux and H.A. Weidenmu¨ller, Shell Model Approach in

Nuclear Reactions~North-Holland, Amsterdam, 1969!.
31P.B. Gossiaux, Z. Pluhar, and H.A. Weidenmu¨ller, Ann. Phys.

~N.Y.! 268, 273 ~1998!.
32Y.V. Fyodorov, D.V. Savin, and H.-J. Sommers, Phys. Rev. E55,

R4857~1997!.
11530
,

.

.

.

.

,

33Y.V. Fyodorov and H.-J. Sommers, J. Math. Phys.38, 1918
~1997!.

34Z. Pluhar, H.A. Weidenmu¨ller, J.A. Zuk, C.H. Lewenkopf, and
F.J. Wegner, Ann. Phys.~N.Y.! 243, 1 ~1995!.

35Z. Pluhar and H.A. Weidenmu¨ller, Ann. Phys.~N.Y.! 272, 295
~1999!.

36K.M. Frahm, Europhys. Lett.30, 457 ~1995!.
37H.U. Baranger and P.A. Mello, Phys. Rev. Lett.73, 142 ~1994!.
38R.A. Jalabert, J.-L. Pichard, and C.W.J. Beenakker, Europh

Lett. 27, 255 ~1994!.
39P.A. Mello and H.U. Baranger, Waves Random Media9, 105

~1999!.
40C.W.J. Beenakker, Rev. Mod. Phys.69, 731 ~1997!.
41P.W. Brouwer, Phys. Rev. B51, 16 875~1995!.
42P. Seba, Phys. Rev. B53, 13 024~1996!.
43S. Albeverio, F. Haake, P. Kurasov, M. Kus, and P. Seba

Math. Phys.37, 4888~1996!.
44A.D. Stone and A. Szafer, IBM J. Res. Dev.32, 384 ~1988!.
45H.U. Baranger and A.D. Stone, Phys. Rev. B40, 8169~1989!.
46M. Janssen, Solid State Commun.79, 1073~1991!.
47R. Lake and S. Datta, Phys. Rev. B45, 6670~1992!.
48A.P. Jauho, N.S. Wingreen, and Y. Meir, Phys. Rev. B50, 5528

~1994!.
49S. Datta, Electronic Transport in Mesoscopic Systems~Cam-

bridge University Press, Cambridge, 1995!.
50O. Bohigas, M.J. Giannoni, and C. Schmidt, Phys. Rev. Lett.52,

1 ~1984!.
51M. Berry, Proc. R. Soc. London, Ser. A400, 229 ~1985!.
52B.A. Muzykantskii and D.E. Khmelnitskii, Pis’ma Zh. E´ksp.

Teor. Fiz.62, 76 ~1995! @JETP Lett.62, 76 ~1995!#.
53A.V. Andreev, O. Agam, B.D. Simons, and B.L. Altshuler, Phy

Rev. Lett.76, 3947~1996!.
54J.A. Zuk, cond-mat/9412060~unpublished!.
55M.R. Zirnbauer, Nucl. Phys. B265, 375 ~1986!.
56J.E.F. Arau´jo and A.M.S. Maceˆdo, Phys. Rev. B58, R13 379

~1998!. Note that there is a misprint in the first paragraph
section~iii !. One should readTn

(1)52/(11g)5Tn
(2) instead of

Tn
(1)51/(11g)5Tn

(2) .
57J.J.M. Verbaarschot, Ann. Phys.~N.Y.! 168, 368 ~1986!.
58W. Hauser and H. Feshbach, Phys. Rev.87, 366 ~1952!.
59H.A. Weidenmu¨ller, Ann. Phys.~N.Y.! 158, 120 ~1984!.
60C.M. Marcus, A.J. Westervelt, P.F. Hopkins, and A.C. Gossa

Phys. Rev. Lett.69, 506 ~1992!.
61P.W. Brouwer and C.W.J. Beenakker, J. Math. Phys.37, 4904

~1996!.
62M.R. Zirnbauer, Nucl. Phys. A560, 95 ~1993!.
9-8


