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Average conductance coefficients in multiterminal chaotic cavities
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We calculate exactly the average conductance coefficients of a ballistic chaotic cavity coupled via tunnel
barriers to an arbitrary number of reservoirs. Explicit formulas are derived for several regimes of interest: ideal
contacts, strongly overlapping resonances, locally weakly absorbing limit, equivalent channels, and equivalent

terminals.
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I. INTRODUCTION “no-scale-factor” universal form:
Coherent transport of waves in complex systems has been ((GIGg)™ =f(Ny,Ny,2L/ &), (1)

a subject of much interest both theoretically and experimen-
tally. Application include light propagation in opaque mediawhereL is the length of the wire¢ is the localization length
such as white pairftfransmission of radiation through inter- andGy=2e?/h is the conductance quantum. The results ob-
stellar cloud$, microwave scattering by chaotic cavitiés, tained in Ref. 10 are recovered by taking the limits,N,
and electron transport through disordered and ballistic meso-sc0. Interestingly, in the limitL/é—0 the system behaves
scopic device§.An important feature of these systems is theas an open ballistic chaotic cavitie., the classical dynam-
irregular behavior of the transport characteristics as a funcics of a confined particle that scatters only at its boundary is
tion of certain parameters, such as the energy of the inconthaotig and Eq.(1) can be interpreted as describing the uni-
ing wave or the shape of the scattering potential. In experiversal quantum dot to disordered wire crossover. Important
ments and numerical simulations, it is always possible taextensions of this result would involve the inclusion of more
smooth out the irregularity by performing averages over germinals(typical experiments use four probes: two for volt-
sufficiently large interval of the relevant parameter associage and two for current measurementee presence of tun-
ated with the fluctuations. Such a procedure usually leads tnel barriers at the lead-wire contacts and dephasing effects.
very robust statistical laws and reveals a great degree of uni- In this paper, we shall consider some of these extensions
versality (independence of microscopic detaild has been a in the somewhat simpler but important case of the limit
challenge to the theorists in the field to explain and deriveL/é—0. Specifically, we calculate exactly the average con-
these universal statistical laws from microscopic approachesluctance coefficients of a ballistic chaotic cavity coupled via

An interesting explanation for this universality can betunnel barriers to an arbitrary number of electron reservoirs.
produced by using arguments put forward in Ref. 5. In the An experimental realization of this system is a high-
universal continuum limit, the statistical models of the mobility semiconductor quantum dot with many voltage/
above-mentioned systems flow to the same mathematicaurrent terminals at very low temperatdfe?? In such de-
structure: Efetov’s supersymmetric nonlineamodel®’ Us-  vices, conductance coefficients are usually measured by
ing scaling arguments, the authors of Ref. 5 have shown thatpplying a very low frequency ac current through the system
the observables obtained from the one-dimensional versioand observing the induced voltage differences between the
of this model are given by universal scaling functions ofvarious probes. The experimental and theoretical importance
dimensionless combinations of the unrenormalized coeffiof these coefficients was established byttiker in Refs. 23
cients in the actiona phenomenon known as “no-scale- and 24, where they were used to explain some observed reci-
factor universality.’®° The universal scaling functions for procity symmetrie$® A notable feature of the conductance
the first and second moment of the two-terminal conductanceoefficients is the fact that, at zero temperature, they are
of a thick wire can be found in Ref. 10. More recently, usingcompletely determined by states at the Fermi surface. This
a stable numerical algorithm for large products of randomproperty makes it possible to describe low-temperature trans-
matrices and finite size scaling, Plerou and Wamitained port in these systems as a scattering problem. This point of
the universal scaling functions of several moments of theview has been pioneered by Land&8éf and was later gen-
conductance. eralized by Bitiker.?>24

In Ref. 12, we have studied in detail the universal scaling The most important simplifying aspect of the transport
functions of arbitrary linear statistics of a disordered quasitegimes amenable to a scattering description is the existence
one-dimensional conductor with broken time-reversal symof widely separated time scales. There are two well-
metry and coupled ideally to two electron reservoirs via per-developed approaches that take benefit of this fact. The first
fectly conducting leadglabeled 1 and P with arbitrary  one(called “the Heidelberg approach’has been presented
numbers of open channel; andN,. In particular, we have in detail in Refs. 28 and 29, and builds on earlier work on
demonstrated, by explicit calculations, that the first three moscattering theory of resonant nuclear reactifhs basically
ments of the two-terminal conductance have the followingassumes that the coupling to the reservoirs leads to the ap-
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pearance of two well-separated time scales, one associatsthble states in the cavity to the asymptotic free propagating
with direct processefdescribed by the smooth energy aver- states in the leads. A proof of this formula using projection
aged scattering matnxand the other with long-living reso- operators can be found in Ref. 30. Simpler derivations have
nances(described by the strongly fluctuating part of tBe been presented in Refs. 42,43, and 33. Blmeatrix is given
matrix). The S matrix is expressed in terms of the Hamil- by

tonian H; of the cavity and a fenomenological matri) )

describing the coupling of the cavity to a continuum of scat- S=1-27iW'G'W, 2
tering states. Th_e Hamiltoniath, is_ substituted by a member |\ hereG' is the retarded Green’s function defined by

from the Gaussian random-matrix ensemble and energy av-
erages are replaced by ensemble averages, which are calcu- G'=(E-H.-3")"1 ®)
lated using the supersymmetry the8ryThis approach has ] ) o ] .
had remarkable success leading to both exact réstifand  in Which H is the No XN Hamiltonian matrix describing
useful approximation®3® The second scattering formula- the dynamics of the closed cavity, and

tion has been put forward in Refs. 37 and @6r recent P t

reviews, see Refs. 39 and )4@nd also uses the assumption 2= —imWW @

of two widely separated time scales for direct and resonan the self-energy function associated with the processes of
processes, but unlike the Heidelberg approach, the statisticghrticles entering into the cavity from the leads and particle
properties of theS matrix are derived using information the- emission from the cavity into the leads. The nonideal cou-

oretical ideas, without ever refering to the underlying Hamil-pjing between the cavity and the leads is described by a
tonian. The equivalence of these two methods was estalnrandomN,x N matrix with the following structure:

lished in Ref. 29(see also Ref. 41

An independent and also very successful approach to (W1) un ;on=1,...N;
transport in quantum dots has been developed by Efetov. (W,) = N.+1 N.+N
builds on the zero-dimensional limit of the supersymmetric 2Jmn=Ny L e

non-linearo model and its connection with the problem of #n
an electron in the presence of a random-impurity potential.
The equivalence with the Heidelberg approach follows from

Efetov's proof of the microscopic validity of a random- The elements of the matrical, not related tow are zero

matrix theory. . _This implies that the self-energy can be decomposed as
In this paper we adopt the Heidelberg approach, mainly

(Wm)un-n+n,, 5 N=N—=Ny+1,...N.

because of its appealing physical transparency, which greatly M

facilitates the interpretation of the final results in terms of 3= 2 30,

concepts from the theory of resonant quantum chaotic scat- p=1

tering. In Sec. Il we describe the physical system and give %hereE;ﬁ —inpWJ‘Q. It is standard in the Heidelberg ap-

det.ailed introduction to the multiterminal version of the proach to assume the absence of direct reactions by imposing
Heidelberg approach. An exact formula for the average cong,q following orthogonality condition®

ductance coefficients is presented in Sec. lll. In Sec. IV we
derive some useful limits and give a physical interpretation ) N A
of our central result. A summary and conclusions are pre- Wqu=7Wp5p,q, 6)

sented in Sec. V.
where A is the mean level spacing and, is a diagonal

matrix given by
Il. THE PHYSICAL SYSTEM AND THE HEIDELBERG

APPROACH wy=diagwp 1, . . . ,wp,Np). (6)
In this section we present the Heidelberg approach for the
description of a ballistic chaotic cavity of arbitrary geometry B. Landauer-Buittiker Formula

coupled toM electron reservoirs via perfectly conducting . .
leads with an arbitrary number of propagating channels. Pre- "U.smg3za}1 counting argument due to L.andéﬁé? and
vious works have been concerned mostly with the particula littiker***! one can show that the current in termipatan
casesM=1 andM=2. As we shall demonstrate, even for °€ Written in terms of the voltage differences in the reser-
these particular situations, the study of the general multiterY0'S AVpe=V,—Vq as
minal system offers additional insights, which can help im-

M
rove the understanding of the physical aspects of the prob- _
Ioem_ g Py P P Ip_q§=:1 GpqAVpq:
where

A. Scattering matrix N

q
A central result in the formalism is the scattering matrix G.. =G Spa)2. = 7
formula below, which describes the coupling of the meta- pa Onzl mEzl ISanl™s - PG, @)
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are the conductance coefficients of the open cavity. Deriva- D. Coupling parameters

tions of this multiterminal formgla using a standard linear pe large separation of time scales for direct and resonant
response theory can be found in Refs. 44,45, and 46. Morg,cesses in the universal chaotic regime implies that distri-

7,48 H
recently,”* the Keldysh technique has been used to estabgiion functions describing the stochastic nature of the reso-

lish its limits of applicab_ility. nant response depend parametrically on a certain number of
From Eq.(2) we obtain coupling coefficients associated with direct processes. This
fact has beenépformally justified by the information-
SPA= 5, Snm— 27 2, (W), (G, ,(Wy),n. (8  theoretical model in terms of the analyticity-ergodicity
m AT wv prnK . am constraint that leads to the Poisson kernel distribution of the
Smatrix. In the Heidelberg approach, these coupling param-

. _ + _ i H H _ Lo
Defining G*=(G")" andI",=27W,W, we find, after insert-  otor< have been called “sticking probabilities” and are de-

ing Eq. (8) into Eq.(7) that

fined as
Gpq=GoCpq, P#0, Ton=1—[(SEP)|%. (14)
where The averages matrix has been calculated in Ref. 28 and is
given by

Cpq=Tr(I',G'T(G?). (9)

This last formula also applies fgr=q. (Shw = Fpqdnm tanM apn/2),

There is an interesting sum ru(@/ard identity satisfied where apn=—Inw,,, with w,, defined in Eq.(6). For the
by Cpq that can be obtained as folloWSDefine the spectral tynnel probabilitiesT ,,,, we find
functionA=i(G"—G%), and observe that it can be written as
A=G'TG*=GTG', wherel' =3}, T",. Summing Eq(9) Ton=sech(a,y/2). (15)
over g and using these results we get

pn>

These coefficients measure the part of the incomming flux
M M that penetrates into the cavity and participates in the forma-
> Cpq= > Cop=Tr(I',A). (10)  fion of long-living resonant states. Note that wheg,=1,

q=1 a=1 the coupling to the leads is ideal and direct processes, such as
prompt reflection, is absent. On the other hand, wiigp

=0 there is no coupling between the scattering channels and
the resonances, and thus, the incomming flux is completely
backscattered.

C. Random-matrix ensemble We finish this section by remarking that since

Following the Heidelberg approach, we assume that the
Hamiltonian matrixH. describing the dynamics of a nonin- (Tr(I'pA)) = —2Im THI,(GT)),
teracting particle in the chaotic cavity, can be replaced in thene can use Eq10) to derive the following useful sum rule
universal regime, by a member from the Gaussian unitaryor the average coefficient<
ensemblé GUE), which describes systems with broken time-
reversal symmetry. We are thus assuming the presence of a M M Np
weak magnetic field in the cavity region. The probability > (qu)zE (Cpq)=z - .
distribution is given by a=1 a=1 n=1e%n+1

This relation is obviously a direct consequence of the unitar
ity of the S matrix.

pq>

(16)

This identity will be used later to simplify some integrals
P(H )=/\/’exp( _ iTr(Hz)) (11) obtained with the supersymmetry technique.
¢ 2C el

Ill. GENERAL FORMULA FOR THE AVERAGE

where N is a normalization constan€=\?/N, and conse-
CONDUCTANCE COEFFICIENTS

quently
In this section we use the supersymmetry method to cal-
((He) ) =0 (12 culate the average conductance coefficientG )
and =G(Cpq), for p#q. For a pedagogical introduction to this

method and to the basic definitions of superalgebra, such as
Ho) o (Ho) yr ) =C8,00 8,0 . 13  the superdeterminaide} and the supertradqétr), we refer
((Ho)ualHe) 1) =Cpyr Oy 13 to the recent review by Zu¥

The random-matrix assumption is in fact a long-standing From Eq.(9) one can see that
problem in the field of quantum chaos, that goes under the
name of “the Bohigas conjecture.” There is numerical _
evidencé® for its validity and microscopic justifications have (Cpg)= ahplBathB<Z(h)> h—o' 17
been put forward in Refs. 51,52, and 53, but a rigorous proof B
is still missing. where

2
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Z(h)=Sdet [1+J(h)G]. Inserting Eq.(18) into ( Z(h)), linearizing the quadratic de-
pence onS via a Hubbard-Stratonovitch transformation and
performing the integral over the vector variabkesand ¢,

we get the following exact representation

We have introduced the following block diagonal matrix of
retarded and advanced Green'’s functions:

G=diag G',G',G?,G?).

_ iL(c,h)
The source field is represented by the matrix (2() f doe

M 2 where
J(h):qzl Z‘ ; qao q®Faaa
iL(o,h)= 2)—StrinfA—o®1y ).
where ¢
0 0 In the regimeN.>M, this integral can be further simplified
F1g:( ) by using the saddle-point method. We end up with an inte-
k, O gral over Efetov's coset spaceU(1,12)/[U(1|1)
and ®U(1|1)], whose points are parametrized by supermatrices
Q satisfying the constrain?=1,
- 0 k Np
22710 o) (Z(h))= f dQH H Sdef 1(1+w,,QK,), (19
=1 n=1

The submatricek,, are defined as in which we have introduced the following supermatrix:

1 0
Ke=lg o Kp=A~2i2 NpaFe
and We can calculatéC,,) by inserting Eq.(19) into Eq. (17).
We find
0 O
k':= ( 0 1) . Np Nq
(Cop=—42 X (St(O)SMOI))q
Following the standard procedure we repres&gh) as a n=1m=1
Gaussian superintegral Np
—45pq2 (S(O203%))q. (20)
20~ | DD extiv(4-B)g),
where
where ¢ is a supervector with components;, (a—O 1, ®arr Won(Wpn+ AQ) ™ IAF,,

a=1,2, and w=1...Np) and @)%,
—(—1)@ a)(1+a)(¢ )* The mamcesét andB are defined and the averageg. . . )q is defined as
as

M Np
f(Q)>Q=f de(Q)pE[l nl:[1 Sdet 1(1+wp,QA).

i
A=-T'®A+J(h)

2 Equation(20) can be made explicit by means of Efetov’s
coordinates, defined by the parametrization

_ cos®  isind e¢. 0
B=H®1,. o-u-t| . an u:( ) )
—isingd —cosé# 0 Uy

and

We have also defined the following auxiliary matrix
=diag(1,1-1,—1). The ensemble average is performed

where  #=diag(i6y,6,); 6,>0, 0<@y<m, ¢
with the help of the identity 9061.60); 61 AT

=diag(e1,90); 0<¢q,9o<27 andv,, v, are given re-
spectively by

— C
i — _Z 2
vi=6ex , ULo=e€eX ,
where m 0 i, 0O
N, wheren, 7,77 , and»; are complex anticommuting vari-
E ables. In these coordinates the invariant integration measure
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dn,dhg . in agreement with the maximum-entropy formulation of Ref.
Q= md%d%d n1dn;dndy,, 39. Physically, it means that as we vary the incident energy,
Lono the S matrix explores with equal probability all parts of its
where\ ;=coshf; and\ = cosé,. available manifold.
To simplify the presentation of the final expressions, let For the important particular case of two terminals, i.e.,
us define the following functions: M =2 andN=N;+N,, there are a number of known results
v in the literature*° both for the average conductan@ad its
i T Mot ¥pn variance and for the average density of transmission eigen-
PAyhINh=11 Nty values defined as
p=1n=1 /N1 ')/pn
where y,,= coshay,, p(7)=(Trs&( T_tt’r)>,
QRm({A) = (Aot A1) (14 Ypnyqm) wheret is the transmission matrix. From the Landauer for-
+ (14 XA ) (Ypnt Yam)» mula, G=G,Tr(tt"), we can see that
and 1
1 (GIGy)= fo drp(7)7. (29

Rﬁ%({)\}): ]:.[ (N '}’pn)()\r'l' 'qu)-
r=0 For ideal coupling, Ref. 56 obtained
Using Efetov’s coordinates, together with Zirnbauer’s inte-

gral theorer® to account for the contribution of boundary st
terms, we obtain from Eq20) the following result: p(1)= TrnEO @2n+r+D){PT1-27}2, (25
Np N . Pq
(Cpg)= JBS f PAYEM) Qan({M) wherer =|N; —N,|, s=min{N;,N,}, andP{*#)(x) is the Ja-
i=tm=1Jy (\a—Xo) RPI(AND cobi polynomial. Inserting Eq(25) into Eq. (24) we get
N ) _ (GIGp)=N;N,/N in agreement with E¢(23).
s i (Ypn= DPHvHAND) (b) Strongly overlapping resonances.
PA=t oy RPPUND) As analyzed in Ref. 29, this is the regime where semiclas-
sical methods work very well. It is defined by the condition
Np 4 Tio>1, wWhereT, =% ,,T,, is the total tunnel probability
+ 5panl W, (2D for the electron to get from the leads into the cavity. We can

obtain the average conductance coefficients in this regime by
where expanding Eq.(22) in inverse powers ofT;,;. Using the
expansion scheme described in Ref. 57 we find
S 1
oy J1 -1

The average conductance coefficients can be obtained from
the above expression by using the condit#g. The final T TOT + T TV T3, T.T
formula is the central result of this paper ot (Te Tt TpTg™) = TioriaTp Ty

ToT
_'p'q -3,4(3 3 2)(2
(GpalGo)= Tt (TOT+ T, T+ TOTY)

+T7-3 _T7@)T _ (2)
6o ley=S S [ PUvD QR Tt Tp Ty oot (29
(Gpa °>_n:1 a1t Jpg (\=No) RPIUNY) where Tp=S(Tpn), T=3,(Ton)"* and u =TS, TH
(22) are parameters of order unity. This expansion is correct up to
the orderT,,; and we have checked thaC,,) calculated
IV. PHYSICAL ANALYSIS AND USEEUL RESULTS within the same scheme and to the same order satisfies the

sum rule of Eq.(16).

We can obtain considerable understanding of the physical There are two interesting features in Eg). The first

meaning of Eq(22) by studying some important particular concerns the physical interpretation of the leading term.
aning Qi) Dy ying P P SinceT, /T, is the probability of emission from the cavity
regimes and situations. q

(a) Ideal contacts. into leadq and T, is the probability of entry into the cavity

When the contacts between the cavity and the leads arf(r%onm lctla::rp’ rt]hi'gzc;gitzheed ﬁ;p;eesrii:ﬁégg é -k:t?(t)) ﬁ%.(j}g\ém
ideal, the tunnel probabilities have maximum value, ie,nnu physi u !

L . S ‘cates the statistical independence of these processes. The
T,,=1. titut th t to Eq22 t . .
pn Substituting this condition into Eq22) we ge second feature is the absence of the term of ofggr. This

2Nqu(1+)\O)N—1 NN can be under_stood _by consid_ering the single_ channel limit.

(GpglGo)= = , (23 After appropriate reinterpretation of channel indices as ter-
pa’ =0 _ N+1 N . A . .

NN = Ag)(1+Ay) minal indices, Refs. 57 and 59 obtained the following result
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T Ty ToTo(Tot To— o) Eq. (16) to determineFy(y) as follows. Using the simplify-
(1P s or= _lf’ a__Pd pTz d +O(TY), ing assumptiony,,= a in Eq. (21) we find
tot tot
for a system v_vith time-reversal symmetry. On the other <Cpq>=NquFN(COSha)+5pq—pz
hand, Eq.(26) gives (e"+1)
T.T - tant?(a/2) —tanttN(a/2)
(IS")gue= -IPt tq+(’)(Tmf). (27) + SpgNp NZ—1 :
o _

Both expressions are valid only fpr~ g and GOE stands for From Eq.(16) we get the identity

Gaussian orthogonal ensemble. The term of offigf in "

(|SP9?)soe represents the weak-localization contribution, 4N,

which is a decrease in magnitude caused by the coherent qz«l <Cpq>—m-

backscattering of waves in the cavity. The absence of this

contribution in{|SP92)sue and in Eq.(26) indicates the sup-  Using this result in the previous equation we obtain

pression of this effect by the breaking of time-reversal sym-

metry. Weak-localization effects have been observed in ~ N?secti(a/2) +tant™(a/2) -1

many experiments in ballistic chaotic cavifiéand has re- Fn(cosha)= N(N2-1) '

cently been the subject of detailed theoretical anaffsis.
We conclude by remarking that for the particular case ofFrom this expression and the relatidr- secif(«/2) we get

two terminals, the leading term of E(26) agrees with the the simple formula

perturbative calculation of Ref. 61. N
(c) The locally weak absorption limit. _ pNg
This regime has been studied in mesoscopic physics in (Gpq/Go) = N(Nz_l)[N2T+(1_T)N_1]' (29)

Ref. 62. It corresponds to the case of small transmission

coefficientsT,,<1 and large number of channel$>1. In This equation is a new result and represents the generic situ-

Eq. (22), it implies the substitutions ation of mildly overlapping resonances. It can be interpreted

as describing the smooth crossover between two extreme

1 limits: strongly overlapping resonancewhereNT>1 and
PAyEIN) —exm = 5 (M= Ao) Tior |, the following asymptotic expansion applies
and NpN T-1 T-1 .
(Gpg/Go)=—y | T+ gz + @ T[ONT)]®],
N N N
Qhm{AD) : .
————— = T Tgm(A 1T Xo). andisolated resonancesvhereNT<1 and Eq.(29) yields
Rom(Nh) 4
N,N
The remaining double integral is straightforward and yields (Gpq/Go)= N‘:rfT_ (30
(G ol Go) = ToTq (28) Note that the assumption of a large number of probds (
PalEOT T L >1) is sufficient to recover the Hauser-Feshbach law for

o . equivalent channelgG,q/Go)=NyN4T/N, in both limits
which is again the Hauser-Feshbach fromula and thus thginceN=E,';"=le would also be large.

physical interpretation of the statistical independence of the Let us compare our general results with those of previous

Processes of entry into t.he. cavity and em_ission from it aISQ/\/orks for the particular case of two terminals. In Ref. 56 the
applies here. This result s in agreement with &) of Ref. density of transmission eigenvalpér), has been calculated

62'(d) Equivalent channels as a function ofy=2/T—1. Using this result we find

In this case, we have,= «a for all modes in all termi-

11
nals. From Eq(22) one gets (GIGy)=3T+ ETZ, (31)
(G, /Go)= NpNg(¥+Xo)N"2Q(N g, 1) for Ny=1=N, and
T I (a—h) (y AN 4 2 4 . 1
_- “cr2 T3, — 4
=NpNgFn(y), (GIGy) sTHeT - T+ T (32

where Q(Ng, A1) =(1+y?)(No+ A1) +2y(1+Ag\;). The for N;=2=N,. Both expressions are in agreement with Eq.
double integral defining the functidfy(y), although help- (29). Note also that forT<1, we get(G/Gy)=T/3 and
ful in numerical estimations, is too unwieldly for direct ana- (G/Gy)=4T/5 from Egs.(31) and(32), respectively, which
lytical calculations. Fortunately, we can use the sum rule ofgree with Eq(30).
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and

Let us now consider the case of equivalent probes, i.e.,

apn=a, andNy=Nj for all p. From Eq.(21) we get
Ny

(Cog=F({¥h+ 5pqn§1 +(¥2—1)A.B, |,

(e*n+1)?

where

1
An:f dX(X+7n)M72 H (X+')’m)My
-1 m(#n)

and

Bn:f dX(X+7n)7M72 H (X+7m)7M-
1 m(#n)

The functionF({y}) can be evaluated via the sum rule of P

Eq. (16) with ap,= a, for all p, we find

Ny

F({v})z% >

n=1

an

+(1-%3)AB,

(e*n+1)?

TN+1
B=—7——.
2NTY(N+1)
After substititution, we end up with

N

N(N?—1)
in agreement with Eq29) for N,=N;=N,.

(Gpq/Go)= [N?’T+(1-T)N-1],

V. SUMMARY AND CONCLUSIONS

In this paper, we have calculated exactly the average con-
ductance coefficients of a ballistic chaotic cavity coupled to
continua via tunnel barriers, for an arbitrary number of
ropagating channels. We have employed the Heidelberg ap-
proach, which builds on resonant quantum scattering theory
and relates the scattering matrix of the open system to the
dynamical Hamiltonian of the closed cavity, which is re-
placed by a member from the Gaussian unitary ensemble of
large random matrices. Our central result, E22) has been

This implies that the average conductance coefficients for th@Ptained by using the standard mapping of the problem onto

case of equivalent terminals, which from Eg2) is given by
(Gpq/Go)=F({7}), read

Ny

1 A.B,
Gpq/Go)= 17 . 33
(Gpa/Ga) =17 2, T2> (33

n

Th—4(1-Tp)

the supersymmetric nonlinear model. Several important
physical limits have been studied in detail, namely: ideal
contacts, strongly overlapping resonances, locally weakly
absorbing limit, equivalent channels, and equivalent termi-
nals.

From a theoretical point of view, our results constitute a

The coefficientsA,, and B, can be calculated explicitly but step_ forward i_n the complete characterization_of the univer;sal
the final form is too cumbersome. In the limit of strongly Scaling functions for the quantum dot to disordered wire
overlapping resonances, whefe=1 andT,,>1, the con-  Crossover problem, since it represents _the I|h7h§—>0_. Ex-

tribution of the second term is irrelevant and we recover thePerimentally, we expect that our explicit expressions may

Hauser-Feshbach law for nonequivalent channels

PAIPAS

Ttot

Ny

1
> Ta,

Mi&

<qu/GO>2
as expected.

As a consistency check of E@33), let us setT,=T
(equivalent channelsthen we get

N AB
<qu/GO>:V T—4(1—T)? y
where

2V - (1-T)N 1]
A=
(N—1)TN"?

help improve the understanding of the universal features of
the transport regimes in low temperature ballistic quantum
dots.

We conclude by remarking that there are several exten-
sions of this work that are both physically important and
mathematically tractable. These include other ensenibles
thogonal, symplectic, and crossoverparametric correla-
tions, dephasing effects, and time dependent response. The
crucial feature of our approach to these problems isgée
ometrizationof its mathematical aspects through the map
onto the supersymmetric coset space, or equivalently onto
the classical symmetric space of the random-matrix formal-
ism.
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