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Quasiparticle description for transport through a small interacting system
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We study the effects of electron correlation on transport through a small interacting system connected to
reservoirs using an effective Hamiltonian which describes the free quasiparticles of a Fermi liquid. The
effective Hamiltonian is defined microscopically with the value of the self-energy atv50. Specifically, we
apply the method to a Hubbard chain of finite sizeN (51,2,3, . . . ), andcalculate the self-energy within the
second order inU in the electron-hole-symmetric case. When couplings between the chain and the reservoirs
on the left and right are small, the conductance for evenN decreases with increasingN, showing a tendency
toward a Mott-Hubbard insulator. This is caused by the off-diagonal element of the self-energy, and this
behavior is qualitatively different from that in the special case examined in previous work. We also study the
effects of the asymmetry in the two couplings. While a perfect transmission due to the Kondo resonance occurs
for any oddN in the symmetric coupling, the conductance for oddN decreases with increasingN in the case
of asymmetric coupling.
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I. INTRODUCTION

Effects of interelectron interaction on transport throu
small interacting systems are a subject of current interest.
instance, the Kondo effect, expected to be observed
quantum dot,1–3 has been studied intensively from bo
theoretical4,5 and experimental sides.6–8 Also, the
Tomonaga-Luttinger behavior expected in one-dimensio
systems9,10 has been investigated in a quantum wire.11

For studying the quantum transport of small systems th
retically, a formulation which is able to treat both interacti
and interference effects in a unified way is necessary. M
and Wingreen12 presented one such framework using t
nonequilibrium Keldysh formalism.13,14 In particular, Eq.~6!
of Ref. 12 is a general formula for the total current, and
available for various systems. While the quantum transp
theory for nonequilibrium states is important to understa
the physics in small systems, there are some ambiguitie
determining the stationary state. Thus, it seems to be m
ingful to describe a formulation based on the linear-respo
theory. In the Kubo formalism, the conductance for non
teracting electrons atT50 can be expressed in terms of th
Green’s function at Fermi energy.15–17 This is also true for
interacting electrons if the ground state is a Fermi liquid.18,19

The purpose of this paper is to apply a quasiparticle desc
tion of a Fermi liquid to the conductance of small interacti
systems. AtT50, an effective Hamiltonian for free quas
particles can be defined microscopically based on pertu
tion theory, which reproduces the value of the Green’s fu
tion at v50. This kind of effective Hamiltonian has bee
introduced, for instance, for a single Anderson impurity a
for systems with a translational invariance.20 One of the
characteristics of a small interacting system is that the s
energy has off-diagonal elements. This is because gene
the system consists of a number of resonant states and h
translational invariance.

Specifically, we apply this method to a Hubbard chain
finite size N (51,2,3, . . . ) connected to noninteractin
leads. This system can be regarded as a model for a M
0163-1829/2001/63~11!/115305~11!/$15.00 63 1153
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Hubbard insulator of nanometer scale. Also, for smallN, the
system can regarded as a model for a series of quantum
which has been examined by advanced numerical meth
such as the numerical renormalization-group21 and quantum
Monte Carlo methods.19,22,23It may also be considered as
model for a quantum wire, which has been studied with
bosonization approach, taking into account the umklapp s
tering. 24–28 We calculate all the elements of aN3N matrix
self-energy within second order inU in the electron-hole-
symmetric case. As in the perturbation theory for an And
son Model by Yamada and Yosida,29 we include the cou-
pling between the Hubbard chain and two leads in
perturbed Hamiltonian. In a previous paper,30 we reported
the results obtained in a special casevL5vR5t, wherevL
(vR) is the tunneling matrix element between the chain a
the left ~right! lead, andt is the hopping matrix element o
the chain. In this case, one can obtain the self-energy a
lytically owing to the property that the noninteracting syste
has a translational invariance. However, this particular f
ture is realized only in this case, and some behaviors see
the results seem to depend on it: the reduction of the c
ductance for evenN is proportional toU4 for smallU, and in
the limit of large evenN the conductance tends to be finit

In the present work, we examine the dependence of
conductance on the couplingvL andvR , calculating the self-
energy numerically. In contrast to the special case mentio
above, the results obtained in weak-coupling casesvL , vR
,t show quite different behaviors: the reduction of the co
ductance for evenN is proportional toU2 for small U, and
the conductance tends to zero for large evenN. Physically,
the difference between the weak coupling casesvL , vR,t
and the special casevL5vR5t is caused by whether or notN
revels in the chain form distinguishable resonant states.
effect of the interaction is enhanced for weak-coupling cas
We also show generally, beyond second-order perturbat
that a perfect transmission occurs for oddN when the system
has both inversion symmetryvL5vR ([v) and electron-
hole symmetry. This is due to Kondo resonance, and is
dependent of the values ofv and U. We also examine the
©2001 The American Physical Society05-1
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effects of the asymmetry in the couplingvLÞvR , which
disturbs the perfect transmission. We note that prelimin
results were reported in a proceedings.31

In Sec. II, we introduce the effective Hamiltonian, an
give an interpretation of the dc conductance and total cha
displacement in terms of the free quasiparticles. In Sec.
we show some properties of the quasiparticles in
electron-hole symmetric case without specifying details
the model. In Sec. IV, we apply the method to a Hubba
chain of finite size, and present the results obtained with
second-order perturbation theory. A summary is given
Sec. V.

II. EFFECTIVE HAMILTONIAN AND GROUND-STATE
PROPERTIES

In this section, we introduce an effective Hamiltonian f
free quasiparticles based on perturbation theory in the in
electron interaction. In this context, the dc conductance
total charge displacement atT50 are described by scatterin
coefficients of the free quasiparticles. In what follows, w
will discuss the formulation, assuming single-mode leads
simplicity. The formulation can be generalized to the mu
mode leads.

We start with a system which consists of three regions
finite central region~C! and two noninteracting leads on th
left ~L! and right (R). The central region consists ofN reso-
nant levels, and the interaction is switched on only for el
trons in this region. We assume that the two leads consis
infinite degrees of freedom, respectively, and are conne
to the central region by the mixing matrix elementsvL and
vR , as illustrated in Fig. 1. The complete Hamiltonian
given by

H5HL1HR1H C
0 1H C

int1Hmix , ~1!

HL5 (
i j PL

(
s

~2t i j
L 2md i j !cis

† cj s , ~2!

HR5 (
i j PR

(
s

~2t i j
R2md i j !cis

† cj s , ~3!

H C
0 5 (

i j PC
(
s

~2t i j
C2md i j !cis

† cj s , ~4!

H C
int5

1

2 (
$ j %PC

(
ss8

U j 4 j 3 ; j 2 j 1
cj 4s

† cj 3s8
† cj 2s8cj 1s , ~5!

FIG. 1. Schematic picture of the system.
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Hmix52(
s

vL~c1s
† c0s1c0s

† c1s!

2(
s

vR~cN11s
† cNs1cNs

† cN11s!. ~6!

Herecj s
† (cj s) creates~destroys! an electron with spins at

site j, andm is the chemical potential.t i j
L , t i j

R , andt i j
C are the

intraregion hopping matrix elements in regionsL, R, andC,
respectively. The coupling between the central region a
the two leads are described by the mixing matrix elem
Hmix . We assign the labels 1,2, . . . ,N to sites in the centra
region. Specifically, we assign the labels 1 andN to sites at
the interface on the left and right, respectively. Correspo
ingly, the labels 0 andN11 are assigned to the sites at th
leadside of the interface on the left and right, respectiv
~see Fig. 1!. The interelectron interactionU j 4 j 3 ; j 2 j 1

is
switched on in the central region, and has time-reversal s
metry: U43;21 is real andU43;215U34;125U12;345U42;31
5U13;24. We take all the hopping matrix elements to be re
and will use units\51 unless otherwise noted.

In the limit N51, the model reduces to a single Anders
impurity in which the perturbation expansion is valid for a
values ofU.32 Our basic idea is to apply the perturbatio
theory in H C

int following Yamada and Yosida,29 regarding
the central region as one large impurity. Therefore, we t
the unperturbed part of the HamiltonianH (0) to be con-
nected by including the mixing termHmix in it:

H (0)5HL1HR1H C
0 1Hmix . ~7!

Our working hypothesis is that the ground state is chan
continuously against the adiabatic switching on of the int
actionH C

int . The perturbation expansion can be done us
the single-particle Green’s function

Gj j 8~ i« l !52E
0

b

dt^Ttcj s~t!cj 8s
†

~0!&ei« lt, ~8!

whereb51/T, « l5(2l 11)p/b, cj s(t)5etHcj se2tH, and
^•••& denotes the thermal average Tr@e2bH

•••#/Tr e2bH.
The spin index has been omitted from the left-hand side
Eq. ~8!, assuming the expectation value to be independen
whether spin is up or down. Since the interaction is switch
on only for electrons in the central region, the Dyson eq
tion is written as

Gi j ~z!5Gi j
(0)~z!1 (

l l 8PC

Gil
(0)~z!S l l 8~z!Gl 8 j~z!. ~9!

Here Gi j
(0)(z) is the unperturbed Green’s function corr

sponding toH (0). The summations with respect tol and l 8
run over the sites in the central region, andS l l 8(z) is the
self-energy correction due toH C

int . Note that Gi j (z)
5Gji (z) and S i j (z)5S j i (z) because of the time-reversa
symmetry ofH. In what follows, we will treatz as a complex
variable, i.e.,Gi j (z) is the analytic continuation ofGi j ( i« l).
When the perturbation expansion is valid, the single-part
5-2
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excitation at the Fermi energyz5 i01 does not decay atT
50, owing to a property of the Fermi liquid:33

Im S i j
1~0!50. ~10!

Here the superscript~1! is the label for a retarded function
we will use a notationS i j

6(v)[S i j (v6 i01).33 Due to this
property, the Dyson equation@Eq. ~9!# for v50 can be
mapped onto a scattering problem of the free quasiparti
described by the effective Hamiltonian

H̃qp5HL1HR1H̃C1Hmix , ~11!

H̃C5 (
i j PC

(
s

~2 t̃ i j
C2md i j !cis

† cj s , ~12!

2 t̃ i j
C52t i j

C1ReS i j
1~0!. ~13!

The value of the Green’s function corresponding toH̃qp and
the one correspondingH are the same atT50 andv50.

We now consider the conductance with the Kubo form
ism. If the ground state is a Fermi liquid, the contributions
the vertex corrections for the dc conductance vanish aT
50.18,19 Therefore, the dc conductance atT50 is also writ-
ten in terms of the Green’s function atv50 for interacting
electrons:34

gN5
2e2

h
4GR~0!GN1

1 ~0!GL~0!G1N
2 ~0!. ~14!

Here GL(v)52Im@vL
2gL

1(v)# and GR(v)5

2Im@vR
2gR

1(v)#. gL
1 (gR

1) is the Green’s function at the in
terfacei 50 (i 5N11) of the isolated lead, and it is dete
mined byHL (HR). Note that Eq.~14! is also expressed in
terms of the transmission probability of the free quasipa
cles, u t̃ (0)u254GR(0)GN1

1 (0)GL(0)G1N
2 (0).14,35,36 Corre-

spondingly, the reflection probability is given byu r̃ (0)u2

5u122iGL(0)G11
1 (0)u25u122iGR(0)GNN

1 (0)u2, and the

unitarity u t̃ (0)u21u r̃ (0)u251 is preserved owing to the prop
erty Eq.~10! @also see Eq.~22!#. Another quantity which can
be related to the scattering coefficients is the displacemen
the total charge:33,37

DNtot5 (
i PC

(
s

^cis
† cis&1(

i PL
(
s

@^cis
† cis&2^cis

† cis&L#

1(
i PR

(
s

@^cis
† cis&2^cis

† cis&R#. ~15!

Here ^•••&L and ^•••&R denote the ground-state average
isolated leads described byHL andHR , respectively. AtT
50, DNtot can be expressed in terms of theSmatrix for the
quasiparticles, following the derivation of the Friedel su
rule by Langer and Ambegaokar,33 as

DNtot5
1

p i
log@detS#, ~16!
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S5F1 0

0 1G22i FGL~0! 0

0 GR~0!
GF G11

1 ~0! G1N
1 ~0!

GN1
1 ~0! GNN

1 ~0!
G .

~17!

Therefore, the conductance and charge displacement are
termined by the inter-boundary and intra-boundary eleme
of the Green’s function such asGN1

1 (0) andG11
1 (0).

Next we discuss the structure of the Dyson equation@Eq.
~9!# further in order to make the mathematical features of
perturbation theory in the presence of the reservoirs cl
For the Green’s functions in the central region, Eq.~9! is
written in aN3N matrix form:

$G~z!%215$G(0)~z!%212S~z!. ~18!

HereG(z)5$Gi j (z)%, with i j PC, and the inverse matrix o
the unperturbed part can be expressed as$G(0)(z)%215z1
2HC

0 2Vmix(z), with

HC
0 5F 2t11

C 2m 2t12
C

•••

2t21
C 2t22

C 2m

A �

2tNN
C 2m

G ,

~19!

Vmix~z!5F vL
2gL~z! 0 ••• 0 0

0 0 ••• 0 0

A A � A A

0 0 ••• 0 0

0 0 ••• 0 vR
2gR~z!

G , ~20!

S~z!5F S11~z! S12~z! •••

S21~z! S22~z!

A �

SNN~z!

G . ~21!

Here 1 is the N3N unit matrix. Vmix corresponds to the
contribution of the mixing with the reservoirs. In particula
the two nonzero elementsvL

2gL andvR
2gR have finite imagi-

nary parts corresponding toGL and GR defined just below
Eq. ~14!. These imaginary parts change the discrete level
HC

0 to continuous peaks with finite level widths, and th
the unperturbed part of the Green’s functionG(0)(z) de-
scribes a system ofN resonant scatterers. Therefore, owi
to the contribution of the mixing, the mathematical structu
of the perturbation theory in the presence of the reserv
becomes similar to that of an Anderson model with a num
of orbits rather than the usual Hubbard model without res
voirs. In this matrix form, the quasiparticle description
summarized as follows. Due to the property ImS1(0)50 at
T50, the Green’s function atv50 is written as
$G1(0)%215K2Vmix

1 (0), whereK is the renormalized

hopping matrix corresponding to2H̃C defined by Eq.~12!:

K52@HC
0 1ReS1~0!#. ~22!
5-3
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Then a relation corresponding to the optical theor
can be obtained asG1(0)2G2(0)5G1(0)@Vmix

1 (0)
2Vmix

2 (0)#G2(0), which certifies the unitarity of the sca
tering coefficients. Here the superscript1 (2) means a re-
tarded~advanced! function.

The quasiparticle approach cannot be applied to a n
Fermi-liquid ground state where the perturbation theory w
respect to the interelectron interaction breaks down. Ho
ever, in a finite interacting system connected to reservoirs
illustrated in Fig. 1, a crossover from a high-temperat
phase to a low-temperature Fermi liquid phase is expecte
many cases. This is because, due to the connection with
reservoirs, not only the energy scale corresponding to
level spacing of the isolated interacting system of sizeN but
also the level width introduced throughGL andGR , i.e., the
imaginary part of the mixing term Eq.~20!, plays the role of
a cutoff. In this sense, as mentioned above, the system ca
regarded as a generalized Anderson impurity withN resonant
states.

When the interacting region is described by an o
dimensional chain, a Tomonaga-Luttinger~TL! behavior38

seems to be seen for largeN. However, as discussed by Kan
and Fisher for a finite TL model of sizeL connected to
Fermi-liquid reservoirs,9 the crossover from a high
temperature TL phase to a low temperature Fermi liq
phase occurs at a characteristic energyT0.vF /L, wherevF
is the Fermi velocity. Since this simple discussion does
take into account various effects such as the back and
klapp scatterings, the characteristic energy will be differ
depending on the details of the situations. Specifically, in
electron-hole-symmetric case of the Hubbard chain ex
ined in the following sections, the characteristic energy
pends on whetherN is even or odd, and it should be th
Mott-Hubbard gapEG or the Kondo temperatureTK . Again,
due to the contribution of the mixing, the low-energy ex
tations below the characteristic energy scale are describe
Fermi liquid as far asN is finite. For evenN, a Mott-Hubbard
gap opens in the thermodynamic limit of the usual Hubb
model without reservoirs, and a corresponding tende
should be seen in the present system of finiteN. However,
there still remains a finite density of states at the Fermi
ergy caused by a mixing with the reservoirs, although
spectral weight in the region corresponding to the gap w
decrease with increasingN. For oddN, there is an additiona
spectral weight at the Fermi energy in the Mott-Hubba
gap, i.e., Kondo resonance of widthTK . Thus an insulator-
like low conductivity should be seen at the temperature ra
TK,T,EG , and a metallic behavior of the Fermi liquid wi
be seen at low temperaturesT,TK . Note thatTK can be
defined only for open system connected to reservoirs, w
EG is a constant defined in the thermodynamic limit of t
isolated system. Furthermore,TK should decrease with in
creasingN, and in most of casesTK should vanish in the
limit of N→`. Therefore, if the limitN→` is taken, keep-
ing T finite, the even-odd behavior disappears, and aT
,EG the insulating behavior meeting with an intuitive pi
ture is expected to be seen. This limit corresponds to
thermodynamic limit of the macroscopic system. Howev
there is another nontrivial limit which describes the lo
11530
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temperature physics of mesoscopic systems, i.e., the limT
→0, keepingN finite. The ground state of the small syste
belongs to this limit, and in the case of a small Hubba
chain the even-odd behavior can be seen at low tempera
sinceTK is finite for smallN. This kind of mesoscopic limit
is expected to be realized in quantum dots or quantum w
of nanometer size, and our aim here is to develop a Fer
liquid theory for the mesoscopic systems.

Another possible non-Fermi-liquid state is the grou
state of the multichannel Kondo system.39 Shimizu, Sakai
and Suzuki showed, with a numerical renormalization-gro
approach, that a non-Fermi-liquid ground state is also re
ized in an extended version of the Anderson model.40 Thus,
if the parameters of the Hamiltonian equation~1! satisfy cer-
tain conditions, a similar situation seems to be realized.

III. QUASIPARTICLES IN THE
ELECTRON-HOLE-SYMMETRIC CASE

The effective Hamiltonian has some notable properties
the electron-hole-symmetric case, where the average num
of electrons in each site is unity. In this section, we prov
a simplified expression of the conductance in the electr
hole symmetric case. Equations~31! and ~33! will be used
for the finite Hubbard chain in Sec. IV. In particular, from
Eq. ~31!, we can deduce quite generally that perfect tra
mission occurs for oddN when the system has an addition
inversion symmetry.

In the electron-hole-symmetric case, the off-diagonal e
ment of the renormalized parametert̃ i j

C is zero wheni and j

belong to the same sublattice, i.e.,2 t̃ i j
C2md i j 50 for

u i 2 j u50,2,4, . . . , and ReVmix
1 (0)50. Thus the matrixK

defined by Eq.~22! has a checkered structure, and t
Green’s function atT50, v50 is written in the form

$G1~0!%215F 0 t̃ 12
C 0 t̃ 14

C
•••

t̃ 21
C 0 t̃ 23

C 0 •••

0 t̃ 32
C 0 t̃ 34

C
•••

t̃ 41
C 0 t̃ 43

C 0 •••

A A A A �

G
1F iGL~0!

0

iGR~0!
G , ~23!

and Gi j
1(0) is obtained by taking the inverse of Eq.~23!.

Specifically, using the explicit form ofG1N
1 (0), the dccon-

ductancegN can be obtained from Eq.~14!. For N51 and 2,
the dc conductance is written in the forms

g15
2e2

h

GLGR

@~GL1GR!/2#2 , ~24!

g25
2e2

h

GLGR$ t̃ 12
C %2

@~GLGR1$ t̃ 12
C %2!/2#2

. ~25!
5-4
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HereGL[GL(0) andGR[GR(0), and wewill use this sim-
plified notation in what follows. ForN>3, G1N

1 (0) is writ-
ten in the forms

G1N
1 ~0!5~21!N11

detKN1

det$G1~0!%21
, ~26!

det$G1~0!%215H iGL detK111 iGR detKNN for odd N

2GLGR detK11
NN1detK for even N.

~27!

HereKi j is a (N21)3(N21) matrix obtained fromK by
deleting thei th row and thej th column. Similarly,K11

NN is a
(N22)3(N22) matrix obtained fromK by deleting the
first andNth rows, and the first andNth columns. Due to the
checkered structure of Eq.~23!, the determinants satisfy
relation

~detKN1!25H detK11detKNN for odd N

2detK detK11
NN for even N.

~28!

Although the details are given in Appendix A, the origin
the even-odd dependence can be understood just seeing
cal examples:

K53
0 t̃ 12

C 0 t̃ 41
C 0

t̃ 12
C 0 t̃ 23

C 0 t̃ 52
C

0 t̃ 23
C 0 t̃ 34

C 0

t̃ 41
C 0 t̃ 34

C 0 t̃ 45
C

0 t̃ 52
C 0 t̃ 45

C 0

4 for N55, ~29!

K53
0 t̃ 12

C 0 t̃ 41
C 0 t̃ 61

C

t̃ 12C 0 t̃ 23
C 0 t̃ 52

C 0

0 t̃ 23
C 0 t̃ 34

C 0 t̃ 63
C

t̃ 41
C 0 t̃ 34

C 0 t̃ 45
C 0

0 t̃ 52
C 0 t̃ 45

C 0 t̃ 56
C

t̃ 61
C 0 t̃ 63

C 0 t̃ 56
C 0

4 for N56.

~30!

The antidiagonal elements,Kj ,N112 j for j 51,2, . . . ,N, are
zero for oddN, while they are not for evenN. Furthermore,
detK is zero for oddN, while it is finite and can be divided
into two determinants for evenN. Using Eqs.~26!–~28! with
Eq. ~14!, the dc conductance for oddN (52M11) is written
in the form

g2M115
2e2

h

G̃LG̃R

@~ G̃L1G̃R!/2#2
, ~31!

whereG̃L5lGL , G̃R5GR /l, and

l5A detK11

detKNN
. ~32!
11530
pi-

We note that the parameterl can be simplified as in Eq
~A10! by using the checkered structure further. If the syst
has an inversion symmetryGL5GR in addition to the
electron-hole symmetry, the parameter is fixed asl51. This
is because the matrixK becomes symmetric with respect
the antidiagonal line. Therefore, due to the combination
the symmetries, the perfect transmission occurs atg2M11
52e2/h, independent ofM and the details of the interaction
as far as the perturbation expansion is valid. Physically,
is caused by the Kondo resonance appearing at the F
energyv50. On the other hand, for evenN (52M ), the dc
conductance is written in the form

g2M5
2e2

h

GLGRṽC
2

@~GLGR1 ṽC
2 !/2#2

, ~33!

ṽC
2 52

detK
detK11

NN
. ~34!

We note that the parameterṽC can also be simplified as Eq
~A6!. The two expressions for the dc conductance@Eqs.~31!
and ~33!#, are the main results of this section.

We next examine the Friedel sum rule. Using the prope
Eq. ~27! and the expression of the total charge displacem
@Eqs. ~16! and ~17!#, we obtain detS51 for evenN, and
detS521 for oddN. This is consistent with the fact that th
average number of electrons in each site is unity. In orde
realize the electron-hole symmetry, the bare matrix elem
t i j
C should also have a checkered structure, as assumed fo

renormalized parametert̃ i j
C , i.e., the system must be class

fied into two sublattices. Note that, since only symmetry
assumed so far, the bare hopping matrix element is not n
essarily restricted to the nearest-neighbor element. Furt
more, the system may possibly be disordered through
randomness in the off-diagonal element oft i j

C .

IV. TRANSPORT THROUGH A FINITE HUBBARD CHAIN

In this section, we will use the effective Hamiltonian
investigate the conductance of a finite Hubbard chain c
nected to two semi-infinite leads. The system is conside
as a model for a series of quantum dots or atomic wires
nanometer size. We calculate the renormalized hopping
trix element t̃ i j

C up to second order inU, and obtain the dc
conductance using expressions given in Sec. III. We n
that the second-order perturbation theory was used by sev
groups for studying transport properties of a sing
impurity5,41–43and systems consisting of a number of res
nant levels.44,45 For N>2, the off-diagonal part of the self
energy plays an important role in the conductance atT50,
as seen below. To our knowledge, however, effects of
off-diagonal part have not been examined sufficiently so

The schematic picture of the model is illustrated in Fig.
the system consists ofN interacting sites at the center 1< i
<N, and two noninteracting leads at2`, i<0 andN11
< i ,1`. The explicit form of the Hamiltonian is given by

H5H01HI , ~35!
5-5
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H052 (
i 52`

1`

(
s

t i~ci 11s
† cis1cis

† ci 11s!

2m (
i 52`

1`

(
s

cis
† cis1(

i 51

N

(
s

S e01
U

2 Dnis , ~36!

HI5U(
i 51

N Fni↑ni↓2
1

2
~ni↑1ni↓!G , ~37!

whereU is the repulsive interaction in the chain,e0 is the
on-site energy, andnis5cis

† cis . We take the hopping matrix
element to bet i5t for every link except for the coupling
between the chain and leads, i.e.,t05vL and tN5vR . Thus
the level width caused by the coupling with the leads is giv
by Ga(0)5pva

2D(0) for a5L,R with D(0)
5A4t22m2/(2pt2). In what follows, we concentrate on th
electron-hole-symmetric case taking the parameters to bm
50 ande052U/2.

Within second order, the self-energy correction is d
scribed by Fig. 3, and the value atT50 andv50 is ob-
tained from the expression
as

v

II

o

11530
n

-

S i j
(2)~ i01!52U2E

2`

` E
2`

` dede8

~2p!2
Gi j

(0)~ i e!Gi j
(0)~ i e8!

3Gji
(0)~ i e1 i e8! ~38!

for 1< i , j <N. Here Gi j
(0)( i e) is the unperturbed Green’

function corresponding toH0, and thusS i j
(2)( i01) depends

on vL and vR throughGi j
(0) . Note that the value of the re

tarded function atv50 can be obtained from the Matsuba
function, i.e.,S i j

(2)( i01)5S i j
(2)( i e)ue→01. The imaginary part

of the self-energy vanishes owing to the Fermi-liquid pro
erty, i.e., ImS i j

(2)( i01)50. Furthermore,S i j
(2)( i01)50 for

even u i 2 j u, since Gi j
(0)(2 i e)5(21)u i 2 j u11Gi j

(0)( i e) in the
electron-hole-symmetric case. We have performed the i
gration~38! numerically to estimate the renormalized matr
element t̃ i j

C defined by Eq.~13! within second order, and
obtained the dc conductancegN using Eqs.~31! and~33!. As
an example, we show the result of the self-energy forN56:

S(2)~ i01!52tS U

2pt D
2

S̃(2), ~39!
S̃(2)53
0 0.8596 0 20.1642 0 0.0783

0.8596 0 0.3969 0 20.0352 0

0 0.3969 0 0.7543 0 20.1642

20.1642 0 0.7543 0 0.3969 0

0 20.0352 0 0.3969 0 0.8596

0.0783 0 20.1642 0 0.8596 0

4 . ~40!
de a

the

n
ix

,
q.
Here the coupling is taken to bevL /t5vR /t50.8. The ma-
trix element for a given distanceu i 2 j u shows an oscillatory
behavior, i.e.,S l ,l 12m11

(2) ( i01) is an oscillatory function ofl.
In contrast, in the special casevL5vR5t, S l ,l 12m11

(2) ( i01) is
independent ofl and the integration Eq.~38! can be done
analytically.30 Note that S i j

(2)( i01) is also an oscillatory
function of u i 2 j u, and the absolute value tends to decre
with increasingu i 2 j u.

A. Symmetric connectionvLÄvR

We now examine the case where the system has an in
sion symmetry,vL5vR[v, in addition to an electron-hole
symmetry. In this case, as shown generally in the Sec.
perfect transmission occurs for oddN independent ofU.
Physically, this is due to the contribution of the Kondo res

FIG. 2. Schematic picture of the model: (d) interacting region;
(s) ideal leads.
e

er-

I,

-

nance appearing at the Fermi energy. Thus, we have ma
numerical calculation only for evenN. The result ofgN is
plotted as a function of the sizeN in Fig. 4, where the pa-
rameters are taken to bev/t50.8 andU/(2pt)50.4. The
result shows a typical even-odd oscillatory behavior, and
conductance for evenN decreases with increasingN. This
reduction is caused by the oscillatoryl dependence of the
self-energyS l ,l 12m11

(2) . In Fig. 5, the envelope ofgN for even
N (52M ) is plotted vsM for several values of the repulsio
U/(2pt)50.0,0.2,0.4,0.6, and 0.8, taking the mixing matr
element to bev/t50.8. The conductanceg2M decreases with
increasingM and increasingU. In the noninteracting case
g2M is independent ofM, since the parameter defined by E

FIG. 3. Second-order self-energyS i j
(2)( iv).
5-6
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~34! is simply ṽC5t. The reduction of the conductanc
seems to show a tendency toward a Mott-Hubbard insula
However, the result shows a rather moderate decay, i.e
does not show an exponential dependence. Since the ran
U in which the second-order perturbation theory is able
provide quantitatively reliable results depends on the sizeM,
contributions of higher-order terms should be examined
order to clarify the correct asymptotic behavior for largeM.

In Fig. 6, the conductance is plotted as a function ofU for
a number of evenN (52,4,6, . . . ) taking the parameters t
bev/t50.8 ~dashed lines! andv/t51.0 ~solid lines!. As can
be seen in the behavior of the dashed lines, the reductio
g2M is proportional toU2 for small U when uv/tu,1.0. The
curvature increases with sizeM. In order to see this quanti
tatively, we expand the conductance in powers ofU asg2M
5(2e2/h)@C02C2$U/(2pt)%21•••#, and plot the ratio
C2 /C0 as a function ofM in Fig. 7 for several values ofv/t
(50.1,0.2, . . . ,0.9). C2 increases with sizeM, and seems to
diverge in the limit of largeM, showing a power-law behav
ior. Note that the transmission probability in the nonintera
ing caseC0 depends on the mixing matrix elementv but is
independent of the sizeM, as mentioned above. Furthermor
since the self-energy is calculated up to orderU2, the result
of C2 is exact. The ratioC2 /C0 increases with decreasingv.
This means that the effect of the interaction is enhan
when the coupling between the sample and leads is wea
the special casev5t, the reduction ofg2M is proportional to

FIG. 4. ConductancegN as a function of the sizeN in the
inversion-symmetric case. Herev/t50.8 andU/(2pt)50.4.

FIG. 5. Conductance for evenN (52M ) as a function of the
size M. Here v/t50.8, and the repulsionU/(2pt) is taken to be
(d) 0.0, (j) 0.2, (l) 0.4, (m) 0.6, and (!) 0.8.
11530
r.
it
of

o
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d
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U4 for small U, i.e., g2M5(2e2/h)@12C4$U/(2pt)%4

1•••#. This is because the unperturbed system describe
H0 has a translational invariance accidentally in this ca
and the reflection probability is zero atU50. The solid lines
for N*10 in Fig. 6 almost overlap each other. In Fig. 8,C4
is plotted vsM. This result is also exact, and the coefficie
C4 converges to a finite value for largeM: C4.0.5293 for
N5250. In Appendix B, the convergence ofC4 in the limit
of M→` is confirmed with another approach. Therefo
whenv5t, g2M is finite even in the limit of largeM at least
for small U.30 For large values ofU, both the dashed and
solid lines in Fig. 6 tend to zero, showing a 1/U4 depen-
dence. However this behavior depends on the approximat
as can be confirmed from Eqs.~33! and ~34!, ṽC}Un and
g2M}1/U2n for large U when the self-energy is estimate
within an nth order perturbation inU.

The mixing matrix elementv determines the bare leve
width of the resonant states, which in the present cas
given byG5v2/t. Since we are now considering an electro
hole-symmetric case, the Fermi level for evenN is located
between the two resonant states corresponding to the hig
occupied and lowest unoccupied levels. In Fig. 9,g2M is
plotted vs U for several values of v/t
(50.4,0.5,0.6, . . . ,1.0), where solid~dashed! lines are the
results forN540 (N54). The value of the conductance i

FIG. 6. Conductance vsU, for even N (52,4,6, . . . ). Here
v/t50.8 for dashed lines, andv/t51.0 for solid lines. Totally, 20
dashed lines and 30 solid lines are plotted.

FIG. 7. The ratio C2 /C0 is plotted for several v/t
(50.1,0.2, . . . ,0.9) as a function of the sizeM. Here g2M

5(2e2/h)@C02C2$U/(2pt)%21•••#.
5-7



th

t

et
ll

a-

c-

b
-
t

th
ve
si

on-

ver,
-

d

mi-
c-
t

by

AKIRA OGURI PHYSICAL REVIEW B 63 115305
self decreases withv, but the qualitative feature of theU
dependence is similar in the cases ofuv/tu,1.0. In Fig. 10,
we show the conductance as a function ofM for severalv/t
(50.4,0.5, . . . ,1.0) taking the repulsion to beU/(2pt)
50.3. In this figure, the conductance is normalized by
noninteracting valueg2M

(0)[(2e2/h)C0 which depends onv.
The normalized conductance decreases withv. This also
means that the effect of the interaction is enhanced when
level width of the resonant states is small.

B. Asymmetric connectionvLÅvR

We next examine the case where the inversion symm
is broken,vLÞvR , but the electron-hole symmetry is sti
preserved in the equilibrium state by the conditionm50 and
e052U/2. As one typical example, we take the mixing p
rameters to bevL /t50.8 andvR /t50.6 in this subsection. In
Figs. 11~a! and 11~b!, the conductance is plotted as a fun
tion of the sizeN, takingU/(2pt) to be~a! 0.2 and~b! 0.4,
respectively. The result shows an even-odd oscillatory
havior like that in the case ofvL5vR discussed above. How
ever, in the case ofvLÞvR , perfect transmission does no
occur, as can be deduced from Eq.~31!, so that we have also
made a numerical calculation for oddN. Although the Kondo
resonance is still present at the Fermi level owing to
electron-hole symmetry, the conductance is reduced. Ne
theless, the Kondo state contributes to higher transmis

FIG. 8. The coefficientC4 in the case ofv/t51.0 is plotted as a
function of the sizeM. Here g2M5(2e2/h)@12C4$U/(2pt)%2

1•••#.

FIG. 9. Conductance vsU, for N54 ~dashed lines! andN540
~solid lines!. Herev/t is taken to be 0.4,0.5, . . . ,0.9, and 1.0.
11530
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for odd N. In Fig. 12,gN is plotted as a function ofU for a
number ofN (51,2,3, . . . ,40). ForevenN, the qualitative
features of the results are similar to those in the inversi
symmetric case~see Fig. 6!. On the other hand, for oddN,
the features of the curves are somewhat different. Howe
the results for large values ofU have some limitations, be
cause the parameterl defined by Eq.~32! tends to show an
incorrect limit for largeU when the self-energy is estimate
within a finite order inU, i.e., l tends to the ratio of the
highest-order term of the numerator and that of the deno
nator of Eq.~A10!. In the noninteracting case the condu
tances for even and oddN, g2M andg2M11, are independen
of the sizeM, respectively, sinceṽC5t andl51. For small

FIG. 10. Conductance for evenN (52M ) as a function of the
sizeM. HereU/(2pt)50.3, and the conductance is normalized
the value forU50, i.e.,g2M

(0)[(2e2/h)C0. The mixing matrix ele-
ment v/t is taken to be (j) 0.4, (d) 0.5 (!) 0.6, (m) 0.7, (l)
0.8, (j) 0.9, and (d) 1.0.

FIG. 11. ConductancegN as a function of the sizeN in the
inversion asymmetric case. HerevL /t50.8, vR /t50.6, and
U/(2pt) is taken to be~a! 0.2 and~b! 0.4.
5-8
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U, the reduction of the conductance is proportional toU2 and
the curvature increases with the sizeM, except for the single-
impurity caseN51. In Fig. 13, the coefficientC2 defined by
gN5(2e2/h)@C02C2$U/(2pt)%21•••# is plotted as a
function of N. In the figure, the envelops for evenN is up-
ward from that for oddN. The coefficientC2 increases with
sizeN, showing an oscillatory behavior, and it probably d
verges in the limit of largeN.

V. SUMMARY

We have applied a quasiparticle description of a Fe
liquid to transport through a small interacting system co
nected to reservoirs. With this approach, we have studied
properties of quasiparticles in an electron-hole-symme
case. In this case, effects of electron correlation come in
theory through the off-diagonal part of the self-energy, a
the conductance can be written in a simplified form@Eq. ~31!
or ~33!# depending on whether the number of the interact
sites N is even or odd. It is shown, using Eq.~31!, that
perfect transmission occurs quite generally for oddN if the
system has an inversion symmetry in addition to an electr
hole symmetry. We apply the method to a small Hubb
chain of finite sizeN, with second-order perturbation theo
in U, and examine the conductance as a function ofN andU,
and the coupling between the chain and the leads, i.e.,vL and
vR . Effects of electron correlation are enhanced in the we
coupling casevL ,vR,t. In this case, the conductance f

FIG. 12. Conductance vsU, for a number of N
(51,2,3, . . . ,40). HerevL /t50.8 andvR /t50.6.

FIG. 13. The coefficientC2 as a function of the sizeN. Here
vL /t50.8, vR /t50.6, and gN5(2e2/h)@C02C2$U/(2pt)%2

1•••#.
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evenN tends to zero for largeN. This behavior is qualita-
tively different from that in the special casevL5vR5t. This
seems to be caused by the difference in the structure of
resonant states. Quantitatively, the range ofU in which the
second-order perturbation theory is able to provide relia
results tends to be narrow with increasingN, and thus higher-
order terms should be included in order to refine the res
obtained for largeU, and to clarify the asymptotic behavio
for largeN.

Throughout this work, we have assumed that the inter
tion is switched on only in the sample region at the cen
When the interaction is also switched on in the two leads
description in terms of the quasiparticles is still possible
the ground state is changed continuously against this in
action. However, some modifications are necessary. The
teraction in the leads will cause a renormalization of t
incoming and outgoing fields corresponding to initial a
final states of the scattering matrix, i.e., a renormalization
the external lines. Furthermore, the quasiparticle descrip
can be extended to finite temperatures by taking into acco
the residual interaction among the quasiparticles or the c
tributions of vertex corrections. In particular, an overall p
ture of the even-odd property described in the last part
Sec. II will be confirmed microscopically based on finit
temperature theory.
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APPENDIX A: K MATRIX IN THE
ELECTRON-HOLE-SYMMETRIC CASE

Here we summarize properties of the renormalized h
ping matrixK, and provide the derivation of Eq.~28!. In the
electron-hole-symmetric case,K has a checkered structur
as shown in Eqs.~29! and ~30!. Thus detK50 for odd N.
For evenN (52M ), the determinant can be divided into tw
parts:

U 0 t̃ 12
C 0 t̃ 14

C
•••

t̃ 21
C 0 t̃ 23

C 0 •••

0 t̃ 32
C 0 t̃ 34

C
•••

t̃ 41
C 0 t̃ 43

C 0 •••

A A A A �

U5~21!M detQdetQ8.

~A1!

HereQ andQ8 areM3M matrices defined by

Q5F t̃ 12
C t̃ 14

C
•••

t̃ 32
C t̃ 34

C
•••

A A �

G , Q85F t̃ 21
C t̃ 23

C
•••

t̃ 41
C t̃ 43

C
•••

A A �

G .

~A2!
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Since the renormalized parameter is real andt̃ i j
C5 t̃ j i

C owing
to the time-reversal symmetry, detQ5detQ8. Consequently,
for even N (52M ), the determinant of the matricesK,
K11

NN , andKN1 can be factorized as

detK5~21!M$detQ%2, ~A3!

detK11
NN5~21!M21$detQ11

NN%2, ~A4!

detKN15detQdetQ11
NN. ~A5!

HereQ11
NN is a (M21)3(M21) matrix extracted fromK11

NN

in a similar way as was done for extractingQ fromK. Using
Eqs. ~A3!–~A5!, we obtain Eq. ~28! for even N, i.e.,
(detKN1)252detK detK11

NN . Furthermore,ṽC , defined by
Eq. ~34!, is simplified as

ṽC5U detQ

detQ11
NNU . ~A6!

For oddN (52M11), the 2M32M matricesK11 and
KNN have properties similar to those described above. C
sequently, the determinants can be factorized as

detK115~21!M$detQ11%
2, ~A7!

detKNN5~21!M$detQNN%2, ~A8!

detKN15detQ11detQNN . ~A9!

Here Q11 and QNN are M3M matrices extracted fromK11
andKNN , respectively, as done above. Using Eq.~A7!–
~A9!, we obtain Eq. ~28! for odd N, i.e., (detKN1)2

5detK11detKNN . Also, l defined by Eq.~32! is simplified
as

l5U detQ11

detQNN
U. ~A10!

APPENDIX B: REFLECTION COEFFICIENT
IN A SPECIAL CASE

Here we show another approach to clarifying t
asymptotic behavior of the coefficientC4 introduced in Sec.
IV in the case ofvL5vR5t. In this case, the Dyson equatio
h-

11530
n-

~9! is written, in terms of the scattering matrixTl l 8 , as

Gj j 85Gj j 8
(0)

1 (
l ,l 851

N

Gjl
(0)Tl l 8Gl 8 j 8

(0) . ~B1!

The transmission and reflection coefficients are also writ
in terms of Tl l 8 as t̃ (0)512 iTkFkF

( i01)/vF and r̃ (0)5

2 iT2kFkF
( i01)/vF ,18,19 wherevF52t, kF5p/2, and

Tkk85 (
l ,l 851

N

e2 iklTl l 8e
ik8 l 8. ~B2!

Since the unperturbed system has a translational invaria
in the present case, the lowest-order scattering matrix
given byT l l 8

(2)
5S l l 8

(2) . Thus, using a wave-number represe
tation ofS l l 8

(2) ,30 the lattice sum Eq.~B2! can be done explic-
itly, and the reflection coefficient is expressed as

r̃ N
(2)52

i

vF
eikF(N11)U2E dk3dk2dk1

~2p!3

3
coskFN2cos@~k11k22k3!N#

coskF2cos~k11k22k3!

3P
f k3

~12 f k2
!~12 f k1

!1~12 f k3
! f k2

f k1

jk3
2jk2

2jk1

. ~B3!

Here jk522t cosk, f k5@ebjk11#21, and P denotes the
Cauchy principal value. It can be confirmed from Eq.~B3!

that r̃ N
(2)50 for oddN. For large evenN, the contribution of

the fast varying cos@(k11k22k3)N# part becomes small, an
the dominant contribution comes form the coskFN part.
Thus, for large evenN (52M ), the reflection coefficient is
written in the form limM→` r̃ 2M

(2) 5AC4
`$U/(2pt)%2 with

AC4
`[

1

4p
PE

2p/2

p/2 dk3dk2dk1

@cosk11cosk21cosk3#cos~k11k21k3!
.

~B4!

The coefficientAC4
` is finite, and estimated numerically a

AC4
`.0.729. Thus, in the limit of large evenN, the dc con-

ductance in the case ofvL5vR5t is written in the form
limM→` g2M5(2e2/h)@12C4

`$U/(2pt)%41•••#.
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