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Quasiparticle description for transport through a small interacting system
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We study the effects of electron correlation on transport through a small interacting system connected to
reservoirs using an effective Hamiltonian which describes the free quasiparticles of a Fermi liquid. The
effective Hamiltonian is defined microscopically with the value of the self-energy=a®. Specifically, we
apply the method to a Hubbard chain of finite sié€=1,2,3 . ..), andcalculate the self-energy within the
second order itJ in the electron-hole-symmetric case. When couplings between the chain and the reservoirs
on the left and right are small, the conductance for eMeatrecreases with increasigy showing a tendency
toward a Mott-Hubbard insulator. This is caused by the off-diagonal element of the self-energy, and this
behavior is qualitatively different from that in the special case examined in previous work. We also study the
effects of the asymmetry in the two couplings. While a perfect transmission due to the Kondo resonance occurs
for any oddN in the symmetric coupling, the conductance for dddecreases with increasiigin the case
of asymmetric coupling.
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I. INTRODUCTION Hubbard insulator of nanometer scale. Also, for srhalthe
system can regarded as a model for a series of quantum dots,
Effects of interelectron interaction on transport throughwhich has been examined by advanced numerical methods
small interacting systems are a subject of current interest. Fquch as the numerical renormalization-grdugnd quantum
instance, the Kondo effect, expected to be observed in Monte Carlo method$’?*?%It may also be considered as a
quantum dot 3 has been studied intensively from both model for a quantum wire, which has been studied with the
theoretical® and experimental sidés® Also, the bosonization approach, taking into account the umklapp scat-
Tomonaga-Luttinger behavior expected in one-dimensionaiering.*~2*We calculate all the elements of\ax N matrix
system&° has been investigated in a quantum wite. self-energy within second order id in the electron-hole-
For studying the quantum transport of small systems theosymmetric case. As in the perturbation theory for an Ander-
retically, a formulation which is able to treat both interactionson Model by Yamada and Yosidawe include the cou-
and interference effects in a unified way is necessary. Meipling between the Hubbard chain and two leads in the
and Wingreet? presented one such framework using theperturbed Hamiltonian. In a previous papemve reported
nonequilibrium Keldysh formalisn®In particular, Eq(6)  the results obtained in a special cage=vg=t, wherev
of Ref. 12 is a general formula for the total current, and is(vg) is the tunneling matrix element between the chain and
available for various systems. While the quantum transporthe left (right) lead, andt is the hopping matrix element of
theory for nonequilibrium states is important to understandhe chain. In this case, one can obtain the self-energy ana-
the physics in small systems, there are some ambiguities ilytically owing to the property that the noninteracting system
determining the stationary state. Thus, it seems to be meahas a translational invariance. However, this particular fea-
ingful to describe a formulation based on the linear-responsture is realized only in this case, and some behaviors seen in
theory. In the Kubo formalism, the conductance for nonin-the results seem to depend on it: the reduction of the con-
teracting electrons & =0 can be expressed in terms of the ductance for evel is proportional taJ* for smallU, and in
Green’s function at Fermi enerdy.'’ This is also true for the limit of large everN the conductance tends to be finite.
interacting electrons if the ground state is a Fermi ligditf In the present work, we examine the dependence of the
The purpose of this paper is to apply a quasiparticle descripsonductance on the coupling andvg, calculating the self-
tion of a Fermi liquid to the conductance of small interactingenergy numerically. In contrast to the special case mentioned
systems. AtT=0, an effective Hamiltonian for free quasi- above, the results obtained in weak-coupling casesvg
particles can be defined microscopically based on perturba<t show quite different behaviors: the reduction of the con-
tion theory, which reproduces the value of the Green’s funcductance for eveiN is proportional toU? for small U, and
tion at w=0. This kind of effective Hamiltonian has been the conductance tends to zero for large eXerPhysically,
introduced, for instance, for a single Anderson impurity andthe difference between the weak coupling casgs vg<t
for systems with a translational invariaf®eOne of the and the special casg =vg=t is caused by whether or nbt
characteristics of a small interacting system is that the selfrevels in the chain form distinguishable resonant states. The
energy has off-diagonal elements. This is because generalbffect of the interaction is enhanced for weak-coupling cases.
the system consists of a number of resonant states and has W also show generally, beyond second-order perturbation,
translational invariance. that a perfect transmission occurs for ddavhen the system
Specifically, we apply this method to a Hubbard chain ofhas both inversion symmetry, =vg (=v) and electron-
finite size N (=1,2,3...) connected to noninteracting hole symmetry. This is due to Kondo resonance, and is in-
leads. This system can be regarded as a model for a Mottlependent of the values of and U. We also examine the
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FIG. 1. Schematic picture of the system. HerecJ-TJ (cj,) createsdestroy$ an electron with spinr at
sitej, and is the chemical potentiat;; , tf}, andt are the
effects of the asymmetry in the coupling #vg, which intraregion hopping matrix elements in regidnsR, andC,
disturbs the perfect transmission. We note that preliminaryespectively. The coupling between the central region and
results were reported in a proceedifiys. the two leads are described by the mixing matrix element
In Sec. Il, we introduce the effective Hamiltonian, and 7¢.,;,. We assign the labels 1,2. . N to sites in the central
give an interpretation of the dc conductance and total charggegion. Specifically, we assign the labels 1 anhtb sites at
displacement in terms of the free quasiparticles. In Sec. llithe interface on the left and right, respectively. Correspond-
we show some properties of the quasiparticles in thangly, the labels 0 andN+ 1 are assigned to the sites at the
electron-hole symmetric case without specifying details ofieadside of the interface on the left and right, respectively
the model. In Sec. IV, we apply the method to a Hubbardsee Fig. 1 The interelectron interactior; ; ;i s
chain of finite size, and present the results obtained with theyyitched on in the central region, and has time-reversal sym-
second-order perturbation theory. A summary is given '”metry: Uasor is real andUyz.0= Uga1= U p.35= Usn.a

Sec. V. =U,3.,4 We take all the hopping matrix elements to be real,
and will use unitsh =1 unless otherwise noted.
Il. EFFECTIVE HAMILTONIAN AND GROUND-STATE In the limit N=1, the model reduces to a single Anderson
PROPERTIES impurity in which the perturbation expansion is valid for all
_ ) ) ) o values ofU.3? Our basic idea is to apply the perturbation
In this section, we introduce an effective Hamiltonian for theqry in H I following Yamada and Yosid®, regarding

free quas_iparticlt_as based. on perturbation theory in the int€kho central region as one large impurity. Therefore, we take
electron interaction. In this context, the dc conductance ang,o unperturbed part of the Hamiltoniad © to be con-

total charge displacement&t=0 are described by scattering ,acted by including the mixing terr

ix N it:
coefficients of the free quasiparticles. In what follows, we mix

will discuss the formulation, assuming single-mode leads for HO =, +Hot HO+H. 7
simplicity. The formulation can be generalized to the multi- LTOTRETRC T Thmie @
mode leads. Our working hypothesis is that the ground state is changed

We start with a system which consists of three regions; &ontinuously against the adiabatic switching on of the inter-

left (L) and right R). The central region consists bfreso-  the single-particle Green’s function

nant levels, and the interaction is switched on only for elec-

trons in this region. We assume that the two leads consist of 8 _

infinite degrees of freedom, respectively, and are connected Gjji(ig))= —f d7(T,Cj,( T)CJ-T,U(O)>e'8IT, 8
to the central region by the mixing matrix elementsand 0

vgr, as illustrated in Fig. 1. The complete Hamiltonian iswhere,@=1/‘l’, e=(21+1)7B, CjU(T):eTHCer—TH, and

given by (---) denotes the thermal average[a@r?™...]/Tre F",
_ The spin index has been omitted from the left-hand side of
H=H_+Hg+H+HE+Hnix, (1) Eq.(8), assuming the expectation value to be independent of
whether spin is up or down. Since the interaction is switched
on only for electrons in the central region, the Dyson equa-
HL=_2 > (—th —,u&i,-)cfgcj(,, (2)  tion is written as

ijeL o

Gi(2=G{ 2+ X G (2T (2)Gj(2). (9
He= 2, 2 (—t=1d))clyCj, 3) I"ee
e Here G{?(2) is the unperturbed Green’s function corre-
sponding toH (¥). The summations with respect tand |’
0_ _.Cc_ + run over the sites in the central region, abg.(z) is the
Hc_iz’c Z, (= #3y)CisCio @ self-energy correction due td¢{'. Note that Gjj(2)
=G;ji(2) and %j(2)=Zji(2) because of the time-reversal
1 symmetry ofH. In what follows, we will treatz as a complex
Hicnt:_ E 2 Ui cf UC-T /€. 5'Cj.or (5 variable, i.e.Gjj(z) is the analytic continuation d&;;(is).
2 (jfec 5o WIALTlar e 2T When the perturbation expansion is valid, the single-particle
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excitation at the Fermi energg=i0" does not decay af
=0, owing to a property of the Fermi liquit}: S=[

1 0} 2{&(0) 0 ][G11(0) Gi\(0)
0 1 7 0 TIw0)]|GHh0) G0

Im3,(0)=0. (10) (17)
. . ) Therefore, the conductance and charge displacement are de-
Here the superscrifitr) is the label for a retarded function: g;mined by the inter-boundary and intra-boundary elements
we will use a notatior®j (w) =X;;(@*i0").** Due to this ¢ the Green’s function such 8:,(0) andG,(0).
property, the Dyson e.quatlo[‘Eq. (9)] for w=0 can be. Next we discuss the structure of the Dyson equafieaq.
mapped onto a scattering problem of the free quasiparticlegy) ) fyrther in order to make the mathematical features of the

described by the effective Hamiltonian perturbation theory in the presence of the reservoirs clear.
- ~ For the Green’s functions in the central region, E®). is
Hqp=HL+Hr+He+ Hmix, (1) written in aNx N matrix form:
- - {G(2)} 1={g(2)} '~ 2(2). (18)
Ho= 2 2 (—T5—ud)cl,co,, (12) . . .
ijec o Here G(z) ={Gj;(2)}, with ij € C, and the inverse matrix of
the unperturbed part can be expressed @9)(z)} 1=z1
—tij=—tj+ReX(0). (13 —HE~ V2, with
The value of the Green'’s function correspondingifﬁg,)p and _tfl_ﬂ _tfz
the one correspondingy are the same af=0 andw=0. —tS —tS— 1
We now consider the conductance with the Kubo formal- 742 21 22 ,
ism. If the ground state is a Fermi liquid, the contributions of
the vertex corrections for the dc conductance vanisi at _t(N:N_:u“
=018 Therefore, the dc conductanceTat 0 is also writ- (19)
ten in terms of the Green'’s function at=0 for interacting
4 - -
electrons® v2g(2) 0
62 0 o -.--
gv="p4TR(O)GL(OT(0G(0). (14 va=| o+ o+ | o
2+ 0 0
Here I' (w)=—Imlv{g, (w)] and INr(w)= 2
—Im[v3gh (w)]. g (gi) is the Green’s function at the in- L 0 0 - 0 vRGR(Z)_
terfacei=0 (i=N+1) of the isolated lead, and it is deter-
mined byH, (Hg). Note that Eq(14) is also expressed in 211(2) 2442)
terms of the transmission probability of the free quasiparti- 251(2) 294(2)
cles, [T(0)|2=4Tr(0)G;:,(0)I' (0)G1y(0)143536 Corre- 2= . (22)
spondingly, the reflection probability is given Hy(0)|? S n(2)

=|1-2iT' (0)G;,(0)|>=|1—-2iT'r(0)G\(0)?, and the
unitarity [t(0)|2+[r(0)|?=1 is preserved owing to the prop- Here 1 is the NXN unit matrix. Y, corresponds to the
erty Eq.(10) [also see Eq(22)]. Another quantity which can contribution of the mixing with the reservoirs. In particular,

be related to the scattering coefficients is the displacement ¢he two nonzero elements'g, andvigg have finite imagi-
the total chargé®®’ nary parts corresponding B, and 'y defined just below

Eq(.) (14). These imaginary parts change the discrete levels of
H: to continuous peaks with finite level widths, and thus
ANtot:ng 2(:4 <ciT,,ci(,)+i§L 20: [(c],Cio) = (clyCio)] the unperturbed part of the Green’s functigh®(z) de-
scribes a system dfl resonant scatterers. Therefore, owing
N t to the contribution of the mixing, the mathematical structure
+i§R ; [(CisCio) = (CisCinIR]- (15 of the perturbation theory in the presence of the reservoirs
becomes similar to that of an Anderson model with a number
Here(---)_ and(---)g denote the ground-state average ofOf orbits rather than the usual Hubbard model without reser-
isolated leads described By, andHg, respectively. AtT  Voirs. In this matrix form, the quasiparticle description is
=0, AN, can be expressed in terms of tBenatrix for the ~ summarized as follows. Due to the property¥m(0)=0 at
quasiparticles, following the derivation of the Friedel sumT=0, the Green’s function atw=0 is written as
rule by Langer and Ambegaok"é"i'as {g+(0)}71=7(:—v,;ix(0), where IC is the renormalized
hopping matrix corresponding te Hc defined by Eq(12):

1
AN = log[ detS], (16) K=-[H2+ReX"(0)]. (22
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Then a relation corresponding to the optical theorememperature physics of mesoscopic systems, i.e., the Timit
can be obtained asG*(0)—G (0)=G"(0)[V.(0)  —0, keepingN finite. The ground state of the small system
—V,(0)]1G(0), which certifies the unitarity of the scat- belongs to this limit, and in the case of a small Hubbard
tering coefficients. Here the superscript(—) means a re- chain the even-odd behavior can be seen at low temperatures
tarded(advanced function. sinceTy is finite for smallN. This kind of mesoscopic limit
The quasiparticle approach cannot be applied to a noris expected to be realized in quantum dots or quantum wires
Fermi-liquid ground state where the perturbation theory withof nanometer size, and our aim here is to develop a Fermi-
respect to the interelectron interaction breaks down. Howliquid theory for the mesoscopic systems.
ever, in a finite interacting system connected to reservoirs, as Another possible non-Fermi-liquid state is the ground
illustrated in Fig. 1, a crossover from a high-temperaturestate of the multichannel Kondo systémShimizu, Sakai
phase to a low-temperature Fermi liquid phase is expected igind Suzuki showed, with a numerical renormalization-group
many cases. This is because, due to the connection with tiPproach, that a non-Fermi-liquid ground state is also real-
reservoirs, not only the energy scale corresponding to thiged in an extended version of the Anderson md@éihus,
level spacing of the isolated interacting system of $iZeut  if the parameters of the Hamiltonian equatidn satisfy cer-
also the level width introduced throudh andTg, i.e., the tain conditions, a similar situation seems to be realized.
imaginary part of the mixing term E@20), plays the role of
a cutoff. In this sense, as mentioned above, the system can be
regarded as a generalized Anderson impurity Wittesonant

states. . I o
When the interacting region is described by an one- The effective Hamiltonian has some notable properties in

dimensional chain, a Tomonaga-LuttingéfL) behavio?® the electron-hole-symmetric case, where the average number

seems to be seen for lartle However, as discussed by Kane ©f lectrons in each site is unity. In this section, we provide
and Fisher for a finite TL model of size connected to @ Simplified expression of the conductance in the electron-

Fermi-liquid reservoirS, the crossover from a high- 1ol symmetric case. Equatiof81) and (33) will be used
temperature TL phase to a low temperature Fermi quuiofor the finite Hubbard chain in Sec. IV. In particular, from
phase occurs at a characteristic enefgyvr /L, whereve ~ Ed- (31, we can deduce quite generally that perfect trans-
is the Fermi velocity. Since this simple discussion does nofhiSsion occurs for odéil when the system has an additional
take into account various effects such as the back and und?version symmetry. _ ,

Klapp scatterings, the characteristic energy will be different N the electron-hole-symmetric case, the off-diagonal ele-
depending on the details of the situations. Specifically, in thénent of the renormalized parametgt is zero wheri and;]
electron-hole-symmetric case of the Hubbard chain exambelong to the same sublattice, i_e_—,Tﬁ—,ua‘ij:o for
ined in the following sections, the characteristic energy deTi —j|=0,2,4..., and R&},,(0)=0. Thus the matrixC
pends on whetheN is even or odd, and it should be the defined by Eq.(22) has a checkered structure, and the

Mott-Hubbard gafEg or the Kondo temperaturg . Again,  Green’s function alf=0, w=0 is written in the form
due to the contribution of the mixing, the low-energy exci-

Ill. QUASIPARTICLES IN THE
ELECTRON-HOLE-SYMMETRIC CASE

tations below the characteristic energy scale are described by -0 T(fz 0 7524 -
Fermi liquid as far adl is finite. For everN, a Mott-Hubbard ~ _

gap opens in the thermodynamic limit of the usual Hubbard t5, 0 15 O

model without reservoirs, and a corresponding tendency (gton =l o ¢ o T
should be seen in the present system of filteHowever, 32 34

there still remains a finite density of states at the Fermi en- Tgl 0 "fgs 0

ergy caused by a mixing with the reservoirs, although the . . . . )
spectral weight in the region corresponding to the gap will - | | | o

decrease with increasing. For oddN, there is an additional

spectral weight at the Fermi energy in the Mott-Hubbard

gap, i.e., Kondo resonance of widitx . Thus an insulator-

like low conductivity should be seen at the temperature range
Tk<T<Eg, and a metallic behavior of the Fermi liquid will N ) . ) )

be seen at low temperatur@s<Ty . Note thatT, can be @andG;;(0) is obtained by taking the inverse of E®3).
defined only for open system connected to reservoirs, whil§pecifically, using the explicit form o&;y(0), the dccon-
Eg is a constant defined in the thermodynamic limit of theductancegy can be obtained from E414). ForN=1 and 2,
isolated system. Furthermor&, should decrease with in- the dc conductance is written in the forms

creasingN, and in most of case$y should vanish in the
limit of N— . Therefore, if the limitN— o is taken, keep-

iT(0)
+ 0 , (23
iTR(0)

26> T Tq

ing T finite, the even-odd behavior disappears, andrat 91 h [(I' +T'r)/2]%’ (4
<Eg the insulating behavior meeting with an intuitive pic-

ture is expected to be seen. This limit corresponds to the 2¢2 I\ TR{T5)2

thermodynamic limit of the macroscopic system. However, g,= (25

there is another nontrivial limit which describes the low- h [(T Tr+{t5))/2]7
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HereI' =I"| (0) andI'g=I"g(0), and wewill use this sim-
plified notation in what follows. FON=3, G;(0) is writ-
ten in the forms

det/Cy1

Gin(0)=(~ 1)N+1W,

(26)

il detiC+il'gdetiCyy  forodd N
de{g'(0)} '=

—TI' I'rdetic)N+detlC  for even N.
(27)
HereIC;j is a (N— 1)< (N—1) matrix obtained fronfC by

deleting theith row and theth column. Similarly }CV is a

(N—2)X(N—2) matrix obtained from/C by deleting the
first andNth rows, and the first andth columns. Due to the

checkered structure of E@23), the determinants satisfy a

relation

detiC, detiCyy  forodd N

2:
(dethnn)™=1 _ gerrc detic)N  foreven N.

(28

Although the details are given in Appendix A, the origin of
the even-odd dependence can be understood just seeing ty

cal examples:

[0 TS 0
th 0 tx O
K=|0 15 0

0T 0

0 T, 0

G 0]
15
5 0
s

FC
AN

for N=5, (29

0 1, 0 1§ o T¢
tix 0 1 0 15 O

0 5 0 15, O
0 15, 0 G O
0 i 0 IS o

s tss
3C 3C TC
L et 0 tg 0 tg O i

for N=6.

(30)

The antidiagonal elementk;; \,,—j for j=1,2,... N, are
zero for oddN, while they are not for eveN. Furthermore,
det/C is zero for oddN, while it is finite and can be divided
into two determinants for eveN. Using Eqs(26)—(28) with
Eq. (14), the dc conductance for oddl(=2M + 1) is written
in the form

P 11 S (31)
M (P TR)
whereT' =\T',, Tr=Tr/\, and
detrCq;
=V ek 32)
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We note that the parametar can be simplified as in Eq.
(A10) by using the checkered structure further. If the system
has an inversion symmetry’, =I's in addition to the
electron-hole symmetry, the parameter is fixed &sl. This

is because the matri)C becomes symmetric with respect to
the antidiagonal line. Therefore, due to the combination of
the symmetries, the perfect transmission occurgat. 1
=2¢€?/h, independent oM and the details of the interaction,
as far as the perturbation expansion is valid. Physically, this
is caused by the Kondo resonance appearing at the Fermi
energyw=0. On the other hand, for evéth(=2M), the dc
conductance is written in the form

22 T Tgrud
—_— (33
MR (T Tt 03)/2P
~> det1C (34
U= — .
© detkcN

We note that the parametef. can also be simplified as Eq.
(A6). The two expressions for the dc conductafiegs.(31)
de (33)], are the main results of this section.

We next examine the Friedel sum rule. Using the property
Eqg. (27) and the expression of the total charge displacement
[Egs. (16) and (17)], we obtain deS=1 for evenN, and
detS= —1 for oddN. This is consistent with the fact that the
average number of electrons in each site is unity. In order to
realize the electron-hole symmetry, the bare matrix element
tﬁ should also have a checkered structure, as assumed for the

renormalized paramet&ﬁ, i.e., the system must be classi-
fied into two sublattices. Note that, since only symmetry is
assumed so far, the bare hopping matrix element is not nec-
essarily restricted to the nearest-neighbor element. Further-
more, the system may possibly be disordered through the
randomness in the off-diagonal elementtg)t

IV. TRANSPORT THROUGH A FINITE HUBBARD CHAIN

In this section, we will use the effective Hamiltonian to
investigate the conductance of a finite Hubbard chain con-
nected to two semi-infinite leads. The system is considered
as a model for a series of quantum dots or atomic wires of
nanometer size. We calculate the renormalized hopping ma-

trix elementt{; up to second order itJ, and obtain the dc
conductance using expressions given in Sec. lll. We note
that the second-order perturbation theory was used by several
groups for studying transport properties of a single
impurity>*1~*3and systems consisting of a number of reso-
nant levelg**° For N=2, the off-diagonal part of the self-
energy plays an important role in the conductancé a0,
as seen below. To our knowledge, however, effects of the
off-diagonal part have not been examined sufficiently so far.
The schematic picture of the model is illustrated in Fig. 2:
the system consists & interacting sites at the centexli
<N, and two noninteracting leads ate<<i<0 andN+1
<i<+. The explicit form of the Hamiltonian is given by

H:H0+H|, (35)
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+ o

H0: o 2 E ti(CiT+l(rCi(r+CiT¢rCi+lrr) El(Jz)(|0+): _U2f7

I=—% o

» dede’
—=(2m)?
xGP(ie+ie) (38)

GP(ie)GMie)

+ o0 N
SDIDIEHCED AP
T i=1 o

j=—x

€0t ;)nia, (36
for 1<i,j<N. Here Gi(jo)(ie) is the unperturbed Green’s
function corresponding tél,, and thuss(?(i0") depends
, (37) onv_ anduvg throughGi(jO). Note that the value of the re-
tarded function atv=0 can be obtained from the Matsubara
function, i.e. 3{2(10%)=3((i€)|. .q+. The imaginary part
on-site energy, andio:CiTaCizr- We take the hopping matrix of thg self—en?zrgy v+an|shes owing to the(;e_rny—hqmd prop-
element to bet;=t for every link except for the coupling MY, i-€. ImMx{(i0 320_' Furthermore 2. (O'Q )=0 for
between the chain and leads, i®=v, andty=vg. Thus even|i—jl, since G )(._'6):(_1)“7”“@% i€) in the
the level width caused by the coupling with the leads is giverflectron-hole-symmetric case. We have performed the inte-
by TI,0)=7v2D(0) for a=L,R with D(0) gratlon(§8) numerically to estimate the renormalized matrix
= 42— 2/(27t?). In what follows, we concentrate on the €lementt defined by Eq.(13) within second order, and
electron-hole-symmetric case taking the parameters ta be obtained the dc conductangg using Egs(31) and(33). As

N
1
H|:U|21 niTnu—E(niﬁ-nil)

whereU is the repulsive interaction in the chaig, is the

=0 andey=—U/2. an example, we show the result of the self-energyNer6:
Within second order, the self-energy correction is de- )

scribed by Fig. 3, and the value &&=0 and w=0 is ob- 3@)(j0*)= —t(i) $@ (39)

tained from the expression 27t '

0 0.8596 0 —0.1642 0 0.0783]
0.8596 0 0.3969 0 —0.0352 0
0 0.3969 0 0.7543 0 —0.1642
$@= (40)
—0.1642 0 0.7543 0 0.3969 0
0 —0.0352 0 0.3969 0 0.859¢
| 0.0783 0 —0.1642 0 0.8596 0

Here the coupling is taken to hg /t=vgr/t=0.8. The ma- nance appearing at the Fermi energy. Thus, we have made a
trix element for a given distandé— j| shows an oscillatory numerical calculation only for eveN. The result ofgy is
behavior, i.e.Zf’Z,LZmH(iO*) is an oscillatory function of. plotted as a function of the siz¢ in Fig. 4, where the pa-

In contrast, in the special casg=vg=t, %{7, ,,1(i0%) is  rameters are taken to het=0.8 andU/(2wt)=0.4. The
independent of and the integration EQ38) can be done result shows a typical even-odd oscillatory behavior, and the
analytically*® Note thatEi(jz)(iO*) is also an oscillatory conductance for evel decreases with increasing. This
function of |i —j|, and the absolute value tends to decreasaeduction is caused by the oscillatorydependence of the
with increasing|i —j|. self-energy (), ,., 1 - In Fig. 5, the envelope d for even

N (=2M) is plotted vsM for several values of the repulsion
U/(2#t)=0.0,0.2,0.4,0.6, and 0.8, taking the mixing matrix

: ~ element to be/t=0.8. The conductanag,,, decreases with
We now examine the case where the system has an invejcreasingM and increasingJ. In the noninteracting case,

sion symmetryy =vg=v, in addition to an electron-hole ¢, is independent ok, since the parameter defined by Eq.
symmetry. In this case, as shown generally in the Sec. I,

perfect transmission occurs for odd independent ofU.
Physically, this is due to the contribution of the Kondo reso-

A. Symmetric connectionv, =vg

t t t vttt vt t t
0 1 2 .- NNH

FIG. 2. Schematic picture of the mode®] interacting region;
(O) ideal leads. FIG. 3. Second-order self-energf?(iw).
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= fvete 08 vi/t=vg/t=1.0
o Vi /t=Vgr/l= (. —
‘© 08} ] gha VR (N=2, 4,...60)
Q
0.6}
D04}
0.2}
v/t = vg/t = 0.8, U/2nt) = 0.4
0 1 1 L 1
0 10 20 30 40 .
N U/(2rt)
FIG. 4. Conductancg, as a function of the siz&l in the FIG. 6. Conductance v&J, for evenN (=2,4,6...). Here
inversion-symmetric case. Hetét=0.8 andU/(27t) =0.4. v/t=0.8 for dashed lines, ang/t=1.0 for solid lines. Totally, 20

dashed lines and 30 solid lines are plotted.

(34) is simply vc=t. The reduction of the conductance
seems to show a tendency toward a Mott-Hubbard insulatod” for small U, i.e., gou=(2e°/h)[1-C{U/(2nt)}*
However, the result shows a rather moderate decay, i.e., it - --]. This is because the unperturbed system described by
does not show an exponential dependence. Since the rangetdf has a translational invariance accidentally in this case,
U in which the second-order perturbation theory is able taand the reflection probability is zero dt=0. The solid lines
provide quantitatively reliable results depends on the Bize for N=10 in Fig. 6 almost overlap each other. In Fig.G3,
contributions of higher-order terms should be examined ins plotted vsM. This result is also exact, and the coefficient
order to clarify the correct asymptotic behavior for lalge  C, converges to a finite value for lardéd: C,~=0.5293 for

In Fig. 6, the conductance is plotted as a functioddbr ~ N=250. In Appendix B, the convergence ©f, in the limit
a number of eveN (=2,4,6 . . .) taking the parameters to of M—« is confirmed with another approach. Therefore,
bewv/t=0.8 (dashed linesandv/t=1.0(solid lineg. As can  whenv =t, g,y is finite even in the limit of largéV at least
be seen in the behavior of the dashed lines, the reduction @by small U.>° For large values ofJ, both the dashed and
gom is proportional toU? for smallU when|v/t|<1.0. The  solid lines in Fig. 6 tend to zero, showing aUf/ depen-
curvature increases with sia@. In order to see this quanti- dence. However this behavior depends on the approximation:
tatively, we expand the conductance in powersJodisgoy as can be confirmed from EqE33) and (34), c<U" and

=(26?/h)[Co—C{U/(2mt)}?+ -], and plot the ratio gom>1/U?" for large U when the self-energy is estimated
C,/C, as a function oM in Fig. 7 for several values af/t within an nth order perturbation itJ.

8.20'1’0:2 h IO9) (f:T increasEs W.ith siz#, anc: se(—:)mks] to The mixing matrix element determines the bare level
iverge in the limit of largeM, showing a power-law behav- g, of the resonant states, which in the present case is

ior. Note that the transmlssmn_p_robablllty in the nonlnt(_aract-given byl =wv2/t. Since we are now considering an electron-
ing caseC, depends on the mixing matrix elemantbut is

) . ) hole-symmetric case, the Fermi level for evidris located
mdependent of the S'ZM as mentioned above. Furthermore, between the two resonant states corresponding to the highest
since .the self-energy IS calcul_ated up to o_rdlér the regult occupied and lowest unoccupied levels. In Fig.g9y, is

of C, is exact. The rati®C,/C, increases with decreasing otted vs U for several values of o/t

This means that the effect of the interaction is enhanced_ 4 g 5 0.6...,1.0), where soliddashed lines are the
when the coupling between the sample and leads is weak. . /1t forN=40 (,Nzl,l). The value of the conductance it-
the special case=t, the reduction ofy,, is proportional to

; v/t
) = - 08 b 35F T T T 7 % 01
- vuft =veit = 0.8, Uj2nt) = 0.0 LA RILA 02
N\aa_.::ooooooooooooooooo_ 30+ *KXAA”Q" -
C% . -...._______-_0..2.. 251 ttxft‘.".lll— 0.4
N’ | | N a @
0.6 a ’0.‘ S 20} tfo’_-". es e 05
= a tey N | M ec**
o~ * A ISP 0.4 O 15} ) SO e®® 4
o 04 AA ® 00004 ‘:.'..o ******** 0.6
* La 10} a.°*"’ Y Rl .
02 * x AAAAA‘AAA 06 - g.:’***:AAAAAAAA‘A‘A 0.7
******** AA'AAA 5F K:AAAA”“QQQQQQOO; 0.8
0 " " * x T * * * * 0 M : : 3 B § B A S §FgEEESR 0.9
0 5 10 15 20 0 5 10 16 20
M (N=2M) M (N=2M)
FIG. 5. Conductance for evel (=2M) as a function of the FIG. 7. The ratio C,/Cy is plotted for severalv/t
size M. Herev/t=0.8, and the repulsio)/(2t) is taken to be (=0.1,0.2...,0.9) as a function of the sizeM. Here g,y
(@) 0.0, () 0.2, (¢#) 0.4, (A) 0.6, and &) 0.8. =(2e?/h)[Co— Co{U/(2mt)}2+ - - -].
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0.6F T T T T T ™3 1—.:00..00..0.006.0?0
0.5} :‘:.."l.-...VL‘(ivﬁ/t.:.-o-.
¥ ] 08F % a 0‘,”“ 09
0.4l | @E :*AAAA ’000“‘9.8‘.
. So6F e, faal,,, !
© o03r 1 \E :o* * 4 AAAA‘AAA
o~ 0.4 s ® P L * % 1
o2 - S Ilseliirreants,
02} Feaa e es S
0.1} vi/t=vg/t=10 A : Uj2rt) = 0.3; "eag 54- u
0 - - - - - : 0 : : : :
0 20 40 60 80 100 120 0 5 10 15 20
M (N=2M) M (N=2M)
FIG. 8. The coefficien€, in the case ofi/t=1.0 is plotted asa /G- 10. Conductance for evei (=2M) as a function of the
function of the sizeM. Here goy=(2€%/h)[1—C,{U/(2mt)}? sizeM. HereU/(2=t)=0.3, and the conductance is normalized by
I the value foru=0, i.e.,g{3)=(2€?/h)C,. The mixing matrix ele-

mentu/t is taken to be @) 0.4, (@) 0.5 (x) 0.6, (A) 0.7, (¢)

self decreases with, but the qualitative feature of the 0.8, (W) 0.9, and @) 1.0

dependence is similar in the cases|oft|<1.0. In Fig. 10,  for odd N. In Fig. 12,gy is plotted as a function dfl for a

we show the conductance as a functiorVbfor severalv/t  ymper ofN (=1,2,3 . . .,40). ForevenN, the qualitative
(=0.4,05...,1.0) taking the repulsion to b&/(27t)  features of the results are similar to those in the inversion-
=0.3. In this figure, the conductance is normalized by thesymmetric casdsee Fig. 6. On the other hand, for odH,
noninteracting valugy)=(2e%/h)C, which depends om.  the features of the curves are somewhat different. However,
The normalized conductance decreases withThis also  the results for large values &f have some limitations, be-
means that the effect of the interaction is enhanced when theause the parametardefined by Eq(32) tends to show an

level width of the resonant states is small. incorrect limit for largeU when the self-energy is estimated
within a finite order inU, i.e., A tends to the ratio of the
B. Asymmetric connectionv, #vg highest-order term of the numerator and that of the denomi-

nator of Eq.(A10). In the noninteracting case the conduc-
Yances for even and od, Oom andg,y - 1, are independent

of the sizeM, respectively, sincEC:t andA=1. For small

We next examine the case where the inversion symmetr
is broken,v, #vg, but the electron-hole symmetry is still
preserved in the equilibrium state by the condits 0 and
€o=—U/2. As one typical example, we take the mixing pa-

1F

rameters to be /t=0.8 andvr/t=0.6 in this subsection. In = @
Figs. 11a) and 11b), the conductance is plotted as a func- ~T 08k
tion of the sizeN, takingU/(27t) to be(a) 0.2 and(b) 0.4, &
respectively. The result shows an even-odd oscillatory be- 061
havior like that in the case af, =vg discussed above. How- =z
ever, in the case af_#vr, perfect transmission does not 04
occur, as can be deduced from E81), so that we have also 0.2
made a numencgl calculation for oditd Alt_hough the.Kondo V/t= 0.8, vjt= 06 Uj2at) =02
resonance is still present at the Fermi level owing to the 0 ) X ) ) X . . .
electron-hole symmetry, the conductance is reduced. Never- 0 10 20 30 40
theless, the Kondo state contributes to higher transmission N
1 ]
= (b)
t\l\ 0 8 L
8
06} N
Z
D04}
0.2t
v/t=08, vp/t=06; Uj2rt)=04 .
00 10 20 30 40

N

U/(2rnt)

FIG. 11. Conductancgy as a function of the siz& in the
FIG. 9. Conductance W, for N=4 (dashed linesand N=40 inversion asymmetric case. Here /t=0.8, vg/t=0.6, and
(solid lineg. Herev/t is taken to be 0.4,0,5..,0.9, and 1.0. U/(27t) is taken to bga) 0.2 and(b) 0.4.
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1F Odd: Vi)t = 0.8, Vet = 0.6; N=1 ] evenN tends to zero for larg®&\. This behavior is qualita-

tively different from that in the special casg=vgz=t. This
seems to be caused by the difference in the structure of the
resonant states. Quantitatively, the rangdJoih which the
second-order perturbation theory is able to provide reliable
results tends to be narrow with increasiMgand thus higher-
order terms should be included in order to refine the results
obtained for largeJ, and to clarify the asymptotic behavior
for largeN.

Throughout this work, we have assumed that the interac-
tion is switched on only in the sample region at the center.
U/(2nt) When the interaction is also switched on in the two leads, a
description in terms of the quasiparticles is still possible if
the ground state is changed continuously against this inter-
action. However, some modifications are necessary. The in-
teraction in the leads will cause a renormalization of the
incoming and outgoing fields corresponding to initial and
final states of the scattering matrix, i.e., a renormalization of
the external lines. Furthermore, the quasiparticle description
can be extended to finite temperatures by taking into account
the residual interaction among the quasiparticles or the con-
tributions of vertex corrections. In particular, an overall pic-
ture of the even-odd property described in the last part of
Sec. Il will be confirmed microscopically based on finite-
temperature theory.

FIG. 12. Conductance vsU, for a number of N
(=1,2,3...,40). Herev /t=0.8 andvg/t=0.6.

U, the reduction of the conductance is proportiondlfoand
the curvature increases with the sieexcept for the single-
impurity caseN=1. In Fig. 13, the coefficient, defined by
gn=(2€%/h)[Co— C,{U/(2mt)}?+---] is plotted as a
function of N. In the figure, the envelops for evéis up-
ward from that for oddN. The coefficientC, increases with
size N, showing an oscillatory behavior, and it probably di-
verges in the limit of large\.

V. SUMMARY

We have applied a quasiparticle description of a Fermi ACKNOWLEDGMENTS
liquid to transport through a small interacting system con-
nected to reservoirs. With this approach, we have studied thl%
properties of quasiparticles in an electron-hole-symmetricdi
case. In this case, effects of electron correlation come in th
theory through the off-diagonal part of the self-energy, ancf%I
the conductance can be written in a simplified fdi@a. (31)
or (33)] depending on whether the number of the interacting
sites N is even or odd. It is shown, using E@1), that
perfect transmission occurs quite generally for dddf the
SyStem has an inversion Symmetry in addition to an electron- Here we summarize properties of the renormalized hop_
hole symmetry. We apply the method to a small Hubbarching matrix’C, and provide the derivation of E€8). In the
chain of finite sizeN, with second-order perturbation theory gjectron-hole-symmetric cas# has a checkered structure
in U, and examine the conductance as a functioN @hdU, a5 shown in Eqs(29) and (30). Thus de?C=0 for odd N.

and the coupling between the chain and the leadspi.@nd  For evenN (=2M), the determinant can be divided into two
vr- Effects of electron correlation are enhanced in the weakparts:

coupling casev, ,ug<t. In this case, the conductance for

We would like to thank H. Fukuyama, H. Ishii, W. Izu-
ida, N. Nagaosa, S. Nonoyama, and O. Sakai for valuable
scussions. This work was partially supported by the Grant-
-Aid for Scientific Research from the Ministry of Educa-
ion, Science and Culture, Japan.

APPENDIX A: I MATRIX IN THE
ELECTRON-HOLE-SYMMETRIC CASE

FC TC
T T T T T T T 0 t12 O tl4
5 w/t=08, vg/t=06 1, 0 15 o0
4 Even 7 0T, 0 TS .| =(—1)MdetQdetQ'.
b ] g{e C
(3' 3 ts 0 tss 0
2 -
(A1)
1t 4
Odd HereQ and Q' areM XM matrices defined by
0 4 1 1 L 1 1 1 I i
0 10 20 30 40 TC =C TC TC
N tp tgy - ty1 133
= ~C ~C ) ,: ~C ~C
FIG. 13. The coefficienC, as a function of the siz&l. Here Q= tn ta - Q tn g
v /t=0.8, vg/t=0.6, and gy=(2e%/h)[Cy— Co{U/(2mt)}? : : ) : P
Py (A2)
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Since the renormalized parameter is real afie-t|; owing
to the time-reversal symmetry, det=detQ’. Consequently,
for even N (=2M), the determinant of the matrice€,
1IN, andICy; can be factorized as

det’C=(—1)"{detQ}?, (A3)
det’C'= (- 1)M "~ H{detQy"}?, (Ad)
det’Cy,; = detQdetQ)) (A5)

HereQ}Vis a (M — 1) X (M — 1) matrix extracted fromC}*
ina S|m|lar way as was done for extracti@gfrom 7C. Usmg
Egs. (A3)—(A5), we obtain Eq.(28) for even N, i.e.,

(detiCy;)%= —detiC detiC)N . Furthermorey ¢, defined by
Eq. (34), is simplified as

detQ
detQyY"

Uc=

(AB)

For oddN (=2M +1), the 2V X2M matricesiC,; and

ICnn have properties similar to those described above. Con-

sequently, the determinants can be factorized as

det’Cy;=(—1)"{detQ,}?, (A7)
det/Cyn=(—1)M{detQun}?, (A8)
det’Cle dethl detQNN . (Ag)

Here Q;; and Qyy are M XM matrices extracted frorC,;
and KCyy, respectively, as done above. Using E47)—
(A9), we obtain Eq.(28) for odd N, ie., (detkCy;)?
=detIC, 1 detICy . Also, N defined by Eq(32) is simplified
as

| detQyy
 |detQun|”

(A10)

APPENDIX B: REFLECTION COEFFICIENT
IN A SPECIAL CASE

PHYSICAL REVIEW B 63 115305

(9) is written, in terms of the scattering matri ., , as

=G+ E 67, G, . (B1)

I,I'=1
The transmission and reflection coefficients are also written
in terms of 7, as t(0)=1-i7 (i0")/ve andT(0)=
T 4 (107)/vg ,***¥ wherev g =2t, ke=m/2, and

N

i AN
7T(k’: Z e Iklr]ﬂ,elkl )
I1"=1

(B2)

Since the unperturbed system has a translational invariance
in the present case, the lowest-order scattering matrix is
given by?*z)— (2) Thus, using a wave-number represen-

=2
tation of 3 (2) 3 the lattice sum Eq(B2) can be done explic-

||! l
itly, and the reflection coefficient is expressed as

[
T(2)— _ _ Akp(N+1)12
e Uf (2n)?

coskeN—cog (k;+k,—k3)N]
coskg—cogk; +ky,—kg)

fi(1~ fi) (1~ Fi) (1~ i f,

X P (B3)

ik~ k&g

Here &,=—2tcosk, f,=[ef%+1]"1, and P denotes the
Cauchy principal value. It can be confirmed from EB3)
thatt{?)=0 for oddN. For large evem, the contribution of
the fast varying cdgk; +k,—ks)N] part becomes small, and
the dominant contribution comes form the &pNl part.
Thus, for large evemN (=2M), the reflection coefficient is

written in the form limy,_..r 3 = \/C;{U/(27t)}? with

\/F— 1 nj""/z dk3dk2dkl
4" 4x ) _ [ cosk,+cosk,+ cosks]cog Ky +ky+ks)'

(B4)

The coefficientyCj is finite, and estimated numerically as

dksdkydk,

Here we show another approach to clarifying the\C;=0.729. Thus, in the limit of large eveN, the dc con-

asymptotic behavior of the coefficie@, introduced in Sec.

ductance in the case af, =vg=t is written in the form
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1T. K. Ng and P. A. Lee, Phys. Rev. Lefil, 1768(1988.

2L. 1. Glazman and M. E. Raikh, Pis'ma Zhk&p. Teor. Fiz47,
378(1988 [JETP Lett.47, 452(1988].

3A. Kawabata, J. Phys. Soc. J@0, 3222(199).

4Y. Meir, N. S. Wingreen, and P. A. Lee, Phys. Rev. L&,
3048(1991); 70, 2601(1993.

5S. Hersfield, J. H. Davies, and J. W. Wilkins, Phys. Revi®
7046 (1992.

5p. C. Ralph and R. A. Buhrman, Phys. Rev. LetR, 3401
(1994.

’D. Goldharber-Gordon, H. Shtrikman, D. Mahalu, D. Abusch-

Magder, U. Meirav, and M. A. Kastner, Natufeondon 391,
156 (1998.

8S. M. Cronenwett, T. H. Oosterkamp, and L. P. Kouwenhoven,
Science281, 540(1998.

9C. L. Kane and M. P. A. Fisher, Phys. Rev. L&8, 1220(1992.

10A. Furusaki and N. Nagaosa, Phys. Rev4B 4631(1993.

115, Tarucha, T. Honda, and T. Saku, Solid State Comragn413
(1995.

12y Meir and N. S. Wingreen, Phys. Rev. Lef8, 2512(1992.

3L, V. Keldysh, Zh. Ksp. Teor. Fiz47, 1515(1964) [Sov. Phys.
JETP20, 1018(1969].

115305-10



QUASIPARTICLE DESCRIPTION FOR TRANSPOR . .

14C. caroli, R. Combescot, P. Nozés, and D. Saint-James, J.

Phys. C4, 916 (1971).

1SE. N. Economou and C. M. Soukoulis, Phys. Rev. L46,. 618
(1981).

18D, s, Fisher and P. A. Lee, Phys. Rev2B, 6851(1981).

P A. Lee and D. S. Fisher, Phys. Rev. Léf, 882 (1981).

8. Oguri, J. Phys. Soc. JpB6, 1427 (1997).

19A. Oguri, Phys. Rev. B56, 13 422(1997); 58, 1690E) (1998.

20A. C. Hewson, Adv. Phy#43, 543(1994; The Kondo Problem to

PHYSICAL REVIEW B 63 115305

(1970; K. Yamada, Prog. Theor. Phy53, 970(1975.
30A. Oguri, Phys. Rev. B59, 12 240(1999.
3IA. Oguri, Physica B284-288 1932 (2000).
32y, Zlatic and V. Horvatic Phys. Rev. B8, 6940(1983.

333, S. Langer and V. Ambegaokar, Phys. RE21, 1090 (1967).
34We note that Eq(14) has been derived for noninteracting systems
by Caroliet al'* Also, Pernaset al. obtained a similar expres-
sion for interacting systems with the single-site approximation,

neglecting the off-diagonal part of the self-enef@Ref. 44.

Heavy Fermions(Cambridge University Press, Cambridge, 3R, Landauer, Philos. Ma@1, 863 (1970

1993.
21W. 1zumida, O. Sakai, and Y. Shimizu, J. Phys. Soc. &6n717
(1997); 67, 2444(1998.

220, sakai, S. Suzuki, W. Izumida, and A. Oguri, J. Phys. Soc. Jp

68, 1640(1999.

2. Oguri, H. Ishii, and T. Saso, Phys. Rev.3, 4715(1995.

24y, V. Ponomarenko and N. Nagaosa, Phys. Rev. |&%t.2304
(1998.

25A. A. Odintsov, Y. Tokura, and S. Tarucha, Phys. Rev5®
R12 729(1997.

260. A. Starykh and D. L. Maslov, Phys. Rev. Le80, 1694
(1998.

2’M. Mori, M. Ogata, and H. Fukuyama, J. Phys. Soc. Jp6..
3363(1997.

283, Fujimoto and N. Kawakami, J. Phys. Soc. J@5, 3700
(1996.

29K, Yosida and K. Yamada, Suppl. Prog. Theor. PH48. 244

36M. Biittiker, Y. Imry, R. Landauer, and S. Pinhas, Phys. Rev. B
31, 6207(1985.
3'D. C. Langreth, Phys. Rel50, 516 (1966.

n >
38See, for instance, J."§om, Adv. Phys.28, 201 (1979.

395ee, for instance, D. L. Cox and A. Zawadowski, Adv. Py&.
599 (1998.

40y, Shimizu, O. Sakai, and S. Suzuki, J. Phys. Soc. 8@n2395
(1998.

4IA. Yeyati, A. Marfn-Rodero, and F. Flores, Phys. Rev. Lé&t,
2991 (1993.

42T Mii and K. Makoshi, Jpn. J. Appl. Phy85, 3706(1996.

430. Takagi and T. Saso, J. Phys. Soc. %#).1997(1999.

4p_ L. Pernas, F. Flores, and E. V. Anda, J. Phys. Condens. Matter
4, 5309(1992.

45y, Kawahito, H. Kasai, H. Nakanishi, and A. Okiji, J. Appl. Phys.
85, 947 (1999.

115305-11



