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Edge dynamics in quantum Hall bilayers: Exact results with disorder and parallel fields
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We study edge dynamics in the presence of interlayer tunneling, parallel magnetic field, and various types of
disorder for two infinite sequences of quantum Hall states in symmetric bilayers. These sequences begin with
the 110 and 331 Halperin states and include their fractional descendants at lower filling factors; the former is
easily realized experimentally while the latter is a candidate for the experimentally observed quantum Hall
state at a total filling factor of 1/2 in bilayers. We discuss the experimentally interesting observables that
involve just one chiral edge of the sample and the correlation functions needed for computing them. We
present several methods for obtaining exact results in the presence of interactions and disorder that rely on the
chiral character of the system. Of particular interest are our results on the 331 state, which suggest that a
time-resolved measurement at the edge can be used to discriminate between the 331 and Pfaffian scenarios for
the observed quantum Hall state at filling factor 1/2 in realistic double-layer systems.
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[. INTRODUCTION der, do not allow a complete solution in the sense of finding
distributions of correlation functions in interlayer fields and
The dynamics of the edge modes in quantum Hall systemat finite temperatures, the chiral character of the dynamics
has been a subject of great interest for some yedrits  still allows us to make substantial progress in ways that
appeal is multifold. The low-energy excitations of the idealshould be of considerable interest to readers with a back-
qguantum Hall states that give rise to the plateau in the Halground in the physics of interacting, disordered systems.
resistance exist only at the edges. There is a deep connecti@onsequently, we have included some amount of technical
between the structure of the bulk ground states and the “unieletail in the paper. In order not to lose sight of the principal
versal content” of the edge dynamics that is captured mathphysical results, especially those on the 331 state and the
ematically in a relation between ¢21)-dimensional Chern- double-layer Pfaffian state that are experimentally testable,
Simons theories and (1)-dimensional conformal field this introduction is followed by a summary of the “useful
theories*® This connection in turn implies a nontrivial content” of the paper. Readers primarily interested in this
charge dynamics at the edge, which is now supported bgummary may wish to stop their perusal at its end.
experiment$:’ Finally, this connection allows the logic to be  Before proceeding to that summary, a brief discussion of
turned around in deducing new quantum Hall states from athe observables and the relevant correlation functions is in
analysis of possible conformal field theorrds. order. As we will show in more detail below, we study sys-
In this paper we investigate the edge dynamics of twaems that possess one edge mode per layer so their single-
infinite sequences of quantum Hall states in statistically symlayer analogs are the Laughlin statesyat1/m with m odd.
metric bilayer systems in which we supplement the universaln those cases asingle edge presents three natural
content by the inclusion of interlayer electron tunneling, anobservables$? The first is the ground-state expectation value
additional magnetic field parallel to the layers and, most im-of the edge current, which can, in principle, be significant if
portantly, disorder. The chief interest of this problem is thatthe flux through the bulk is variett. The second is the tun-
interlayer tunneling is strongly affected by the nontrivial neling density of states, computed from the one-electron
charge dynamics and thus serves as an “internal probe” oGreen’s function, and the last is the edge mode velocity mea-
the latter. In a previous publicatidnhenceforth denoted I, sured in a time-resolved experiment done at the edge, which
we had studied the problem of the nondisordered system thanters the retarded density-density correlation function. In
gives rise to a chiral version of the sine-Gordon theory that iseality, the first is not experimentally relevant, while the third
exactly soluble for the two infinite families of states for is not remarkable when there is one mode that is unaffected
which interlayer tunneling is not irrelevant: these are theby disorder or temperature. The second has been experimen-
mm'n Halperin states wittm=m’=n+1 andm=m’=n tally investigateft’ to great effect if not theoretical satisfac-
+2. The second of these families was shown to exhibit &ion; see Ref. 12 and references therein.
remarkabletrifurcation of charged excitations on the edge  One of our central contentions is that the collective mode
with the appearance of two Majorana fermions with dynami-structureis interesting in double-layer systems, even in the
cally generated velocities. In this paper we consider the adminimal cases where there is only one edge mode per layer.
ditional effect of disorder and a nonzero temperature on th&his was already clear in the clean cases considered previ-
dynamics as well as the possibilities of modifying the tun-ously, as in the trifurcation alluded to above, and is also the
neling by means of an interlayer magnetic field or a gatedcase in the more involved and realistic cases studied here.
transfer of charge between the layers; the latter two proceConsequently, the computation of retarded density correla-
dures are essentially equivalent as we will see below. tors central to time- and layer-resolved measurements at the
While the additional complications, especially the disor-edges will be a central concern. In addition we will also
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wherez; , is the complex coordinate of electranin layeri.
mB The integerm determines the correlations within the layers
and the integen specifies the interlayer correlations. These
states are incompressible and thus the gapless excitations of
the system are confined to the droplet edges, which have
= lengthL and are parametrized by the coordinate
The edge theory contains two chiral Bose fields, a charged
mode ¢, and a neutral mode. We denote the velocities of
these modes by, ,, respectively. Excitations of the charged
mode correspond to charge being added to the edge from the
; , ulk, whereas excitations of the neutral mode correspond to
compute one-electron Green’s functions needed for tunnely ;. cter of charge between the edges of the two layers. We

ing measurements, but they will turn out to be essentially.ogyrict our discussion to states for which both edge modes
insensitive to the perturbations that we consider. We will no ove in the same direction, the “maximally chiral” case, by

compute edge currents, although our results on partitio'?equiringm>n

IuncUonsdm Itcan.be etas![I%/ extendedt tg_dg rslo n cIear|1 Sy:" In I it was shown that in the presence of interlayer single-

e_kTS' and extensions 1o the cases studied nere are aiso fegactron tunneling at the edge, the Hamiltonian of the edge

sibie. . . theory separates into a free chiral boson Hamiltonian for the
We should note that some of this work has technical Con'charged mode and a chiral sine-Gordon HamiltonigS@)

nections to earlier work on single-layer systé?ﬁé with g)r the neutral mode. The chiral sine-Gordon Hamiltonian

multiple-edge modes but the details are different, and one o epends on the scaled tunneling strength, denotethd the

our sequences, inclusive of the 331 Halperin state relevant to ~ . . .
experiments, has no analog in single layer systems. parametep3=y2(m-n), which sets the period of the inter-

The outline of the paper is as follows. We begin with a2ction term as well as the engineering dimension dkee
review of the edge theory of clean bilayer systems in the=d- (37)]- Since the neutral-mode Hamiltonian depends only
presence of uniform interlayer tunneling at the edgec. °"M—", the set of all maximally chiral bilayer states can be
Il A). Next we present our results for the effects of an inter-divided into sequences labeled by the value of this differ-
layer magnetic fieldSec. Il B, disorder(Sec. Il Q, and a  €NC€: In particular, we will concentrate on the 110 sequence,
finite temperature(Sec. 11D. The experimental conse- Which contains all states witm—n=1, and the 331 se-
quences are discussed in Sec. Il E, and the details of tHé/e€nce, composed of states with—n=2. The tunneling

calculations are presented in Sec. Il and the appendixes. Perturbation is relevant, in a renormalization grotRG)
sense, for the 110 sequence and marginal for the 331 se-

quence.
Il. SUMMARY OF RESULTS The 110 and 331 sequences were solved exactly in I. In

In thi . CParticular the single-electron Green’s function

n this section we present a summary of our results. Read-

ers interested in the details of the calculations will find them ) +

in Sec. 1ll, which also contains formal definitions of the pa- Gij(t,)= —I(T:W;(t,x)::¥(0,0) (2)

rameters of the model. We begin with a review of the edge

theory of clean bilayer systems. Next we consider the inclu@nd the two-point function of the density-fluctuation operator

sion of a parallel magnetic field, disorder, and a finite tem-

perature. We conclude with an experimental proposal for an  iD;;(t,x)=(Tp;i(t,x)p;(0,0) — (pi(t,x)){p;(0,0)), (3)

edge measurement that could determine the bulk state re-

sponsible for ther=1/2 plateau observed in bilayer systems.where ¥; and p; are the electron annihilation and charge

density operators on the edge of layerespectively, were

computed exactly at zero temperature &ane . We repro-

duce these results here, adopting a self-evident matrix nota-
The system under study consists of two parallel two-tion. For the 110 sequence we have

dimensional electron gas€3DEG’s) in a strong perpendicu-

lar magnetic field. The geometry is sketched in Fig. 1. Spe-

cifically, we are interested in the edge excitations of the G(t,x) =

FIG. 1. The overall geometry of the bilayer quantum Hall sys-
tem in a magnetic fiel@ with edge modes in both layers propagat-
ing in the same direction.

A. Review of clean bilayer edge theory

1cog\x/v,) +ic*sin(Ax/v,)

Halperin states described by themnwave function, [2m(Xx—vt+ie) ] Y2\ 2m(x—vt+ie)
(4)
Vnmn({Zia}) = H (21— 215)™(Z20— 225)" . 1 (1+ %)
a<p —iD(t,x)= -
22m=1) [27(x—vd+ie)]?
_ n _ 2
<1l @) ex;< 2 [z /4)’ L (=o")  cog2nduy .
1) 2 [2m(x—vttie)]?
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where1 is the 2x2 unit matrix, o* is the standard Pauli for the 331 sequence, where the prime denotes differentiation
matrix ande;=sgn()a, wherea is a short distance cutoff of with respect to the argument.

the order of the magnetic length. For the 331 sequence we We see that for the 110 sequence relevant tunneling
find produces spatial oscillations in the correlation functions,

while for the 331 sequence marginal tunneling leads to
two velocities ¢, ) in the neutral-mode sector, and hence

1 1[ 1+ o -

g(t,x)= = - a total ofthreevelocities for the system as a whole. Note that
[27(x—vt+ie)]™ 2|27 (X—vit+ie) even at zero temperature and in the absence of disorder

I— & the signal from the neutral mode in the density-density
+ (6) response function decays with distance because of

2m(X—vottie) tunneling. In the following section we shall investigate

how these correlation functions are modified by various

_ (1+ %) perturbations.
—iD(t,x)=
A4m=1) [27(x—v t+ie)]?
1 (1- o) B. Parallel field
* 4 2m(x—vittie)2m(X—vot+ie)’ We first discuss the effects of an interlayer magnetic field.
) If we take thez axis along the normal to the layers and recall

that thex axis is along the edges, we consider an additional

where we have defined the velocities,,=v =\ 7. magnetic field along the axis: B=By. The edge Hamil-

Each of these functions contains a part arising from th&. iz in the presence of a parallel field depends on the pa-
charged mode and a part from the neutral mode. For the

single-electron Green's functions the contributions from'@meterl'=v,Bdp/2, whered is the layer separation. We
each mode are combined multiplicatively, while for the remark that the effect of the interplane magnetic field con-
density-density correlation function they are combinedSidered here is distinct from the simple decreask traused
additively. by the reduction of the interlayer tunneling matrix element.
In addition to these time-ordered correlation functions, inAs noted by Chalker and Sondhi, these effects can be distin-

later sections we will be interested in the corresponding reguished by studying large-aspect-ratio sampfeEhe results

tarded functions that govern physical response measuremerit§re also apply to the case where we introduce an electric
at the edge. The density response function is potential difference between the layers instead of an inter-

plane magnetic field.

DR(t,x)= o+ 5 t 1. 110
(t,x)= 27 | 22m=1) (x—vd) . sequence
(1= %) For the states in the 110 sequence we find that the spec-
0 Voo trum of the edge theory in the presence of an interlayer mag-
T oS 2AXug) (X v”t)} ® et field can be obtained from the spectrum with zero in-

for the 110 sequence and terlayer field via the replacement

ot)| (1+%
DR(tX0= 5 gm=1) © (X~ vd) NN = NEFT22; (10

(1=0%) . . L
m{vzﬁ(x—vzt)—vlé(x—vlt)} in particular, we see that the number of velocities is un-

(v1=v2 changed. The two-point function of the density-fluctuation

9 operator(3) is
|

Dt 1 (1+ o) .\ 1 (1— %) FZH2 S(zwx)] an

—iD(t,x)= — co .
22m=1) [2@(x—vg+ie)]? 2(N)2[2m(x—vt+ie)]? | 2 Un

Note that in the absence of tunneling=€0), the correlation function is unaffected by the parallel magnetic field, i.e., it is
independent of, as expected. For nonzero tunneling, the addition of an interlayer magnetic field increases the frequency and
decreases the amplitude of the spatial oscillations in the density-density correlation function. One can show that the effect of
the parallel field on the single-electron Green’s function is similar to its effect on the density two-point function; $88).Eq.
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2. 331 sequence

For the states in the 331 sequence we find that in the
presence of an interlayer magnetic field the spectrum of the
neutral-mode portion of the edge theory is

HB=% s(k):alak:, (12

where

e(K)=v K+ sgr(T)J(Nk/7)2+ T2,

where thea, are canonical Fermi operators. Note that in the

limit of vanishing parallel magnetic field,— 0", the energy

dispersion(for A>0) becomes: (k)= (v,+ N/ 7)k=vk for

k>0 and (k) =(v,— M mk=vok for k<0, which is the £ 2. The solid line is the dispersian(k) plotted for'>0.

spectrum of two right-moving Majorana fermions with split The gashed lines are=v,k ande=wv,k. Note thate(k) asymp-

velocities.(In the limit I'— 0", or for A <0, we get a similar  totically tends tov ;k ask—o andv,k ask— —c.

dispersion withv, and v, interchanged, but this does not

alter the excitation spectrum of the Hamiltoniafror any 514 the function

nonzero interplane field we find that the dispersion develops

some curvature, which corresponds to the two Majorana spe-

cies being mixed at distances large compared withI". cdw s x(w)X]

The dispersion is sketched in Fig. 2. p(T,x)EJ —glor— — ~ ~ -
The correlation functions for the 331 sequence with a par- 0 2m ()

allel field can be reduced to quadrature. If we define the

quantitiesr=sgnt) (v X —t),

: (14)

then the single-electron Green’s function and the density-
density correlation function can be expressed in terms of

X
X= ViU, w(w)=\op I+ (M m)Pe?, (13 P(r,X) and its derivatives. We find

G(t,x) —sont) ( A X)P( X)+ r(t)()‘l X))\P( X)—ivw,la?P(7,X) |, (15
,X)= Upl— — 0O T, S — =0 | —F AT, —lvqv ag 7, y
v [2m(x—vd+ie)]™ T m X S P e
(1+ %) (I=0"[ , N\, }
—iD(t,X)= — P2— —P%tuw r2p2 ’ (16)
(X)= 2 (m—1) [2m(x—vdi+ie)]? 4vwa| * = e
|
where the subscripts o denote partial differentiation. propagation velocities between andv, we find oscillatory
In Fig. 3 we plot the real and imaginary parts of the behavior not present &t=0.
neutral-mode part ofj;; at fixed X=10 as a function of .
—7 for v,=1, I'=0.5, and\/7=0.1. The corresponding C. Disorder
plot for the neutral mode part @, is given in Fig. 4. The We now consider the effects of disorder on the bilayer

singularities visible in these plots occur at the poimts system. Our primary interest is how the novel features of the
=x/v, andt=x/v,, corresponding to propagation at the Ma- correlation functions in the presence of tunneling, i.e., spatial
jorana velocities. We see that the parallel field does not desscillations in the 110 sequence and the splitting of the
stroy the velocity-split structure of the Green's function, neutral-mode Majorana velocities in the 331 sequence, are
which is somewhat remarkable. The parallel field is a RGmodified by disorder. Note that the quantities of physical
relevant perturbation that modifies the low-energy, long-interest are the correlation functions in a typical realization
wavelength properties of the system; see Fig. 2. Neverthesf disorder, whereas the readily calculable quantities are
less, the singularities at; andv, are completely unchanged, disorder-averaged correlation functions. The typical and av-
see Eq(166) below, since they arise from integrations over erage quantities may have very different behavior, and we
all frequencies. In Appendix B we will discuss the oppositewill discuss such differences at various points.

case: a RG irrelevant perturbation that does modify some In addition to the possibility of disorder in the tunneling
features of the Green’s function. At times corresponding tcamplitude,\, we consider random scalar potentiafg(x),
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I
0 7=
I/
4t I/ J
I/
Ift
2t | 4
|
al : Re(G)y, j
Mr=0.1, X=10, T=0.5 Mr=0.1, X=10, T=0.5 Im(G)y; ——~—
I 4 L 1
2 -1 0 1 2
—t=t-v, X —=t-v, X
FIG. 3. The realsolid line) and imaginarydashed lingparts of FIG. 4. The rea(solid line) and imaginarydashed lingparts of
the neutral-mode factor igq; [Eq. (74)] plotted as a function of  the neutral-mode factor ig,, [Eq. (74)] plotted as a function of
—r7forv,=1, M/7=0.1, X=10, andl'=0.5. —rforv,=1, N/7=0.1, X=10, andl'=0.5.

which couple to the edge charge densities in each layer. 1. 110 sequence

From a perturbative RG analysis we find that disordex is We consider a tunneling amplitude that has m&aand
relevant for the 110 sequence and irrelevant for the 331 serarianceA, and a disordered scalar potential with zero mean
quence, while the random scalar potentiggx), are rel- and varianceA,. We find that the disorder-averaged, re-

evant for both sequences. tarded density response function is
= o(t) | (1+0%) (1-07) . 2
R N — _ ’ ! ’ v —2|x—x |(A)\+A§/4)/vn
D (t,x,x") o {—Z(Zm—l)5 (X=x"—vd) + 5 S'(x—=x"—vb)e
2lx—x'IN| Ay [2lx=x'|X
X| co +——=-sin , (17
Un 4v N\ Un
where
~ Ag\2
x= >\2—<ﬁ) . (18)
n

The disorder in the tunneling amplitud& ) produces an exponential decay with distance in the neutral-mode part of the
disorder-averaged density response function. The random scalar potanjidias a similar effect, and in addition it produces

a shift in the frequency of the spatial oscillatiofi8). Using the fact that the neutral-mode partIdfn a given sample can be
expressed in terms of products of single-particle Green’s functions, whose absolute squares are longearadgebraically
decaying, we can conclude that in a given sample the density response function has the structure of the disorder-averaged
quantity (17), without the exponential decay in space of the neutral-mode piece.

2. 331 sequence

Above we remarked that for the 331 sequence only disorder in the scalar potential terms was a nonirrelevant perturbation.
We therefore consider only a disordered scalar potential with zero mean and va¥ianéée find that the disorder-averaged,
retarded density response functionTat O is

AR i TR 19
277_ 4(m_1) (X X UC) ( !ny )1 ( )

ﬁ(t,x,x’)z—

where the neutral-mode contribution is
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— ot
DR(t,X,O) — Qe—Afxlvlvz[
2

: e
(010, x W10 vi) m028(X=v a0} 57 ~ 0P =

X/U]_Uz A§
[

+ %Io()\A/—;\/E)H. (20)

Here z=(t—x/v,)(x/v,—t), |, are Bessel functions of form potential £&(x)=const, and the case of isolated
imaginary argument, anth=(x/v,+x/v,)2=v Xx/vv, IS o-function impurities¢(X) = 2 . qm (X — YY) - All of these re-
the mean arrival time. sults, discussed in detail in Sec. Ill C, lead us to the conclu-
Comparing this expression to the result for the neutrakjon thatDR(t,x,x’) in a typical configuration is given by an
mode in a clean system, the second term in@y.we find  expression similar to Eq20) for DR(t,x,x’), with the prin-
that theé-function peaks at the velocities, andv, remain  ¢ipa value factor replaced by a functié(t,x,x’), which is
sharp in the presence of disorder, but their amplitudes acs rapidly fluctuating function of time, antisymmetric about
quire an additional exponential decay. In the disorderype pointt=t,, and whose amplitude grows aspproaches
averaged result, Eq20), there is also a signal centered to. These conclusions about the behaviorDdt in a given

around the mean arrival tintg. If we write 7=to—t, thenin  sample have been verified by numerical simulations that are
the limit of large distances/v,v,>1/A,; for times near the  giscussed in Sec. Il E.

mean arrival time, £/\) 7<x/vv,, the central signal is as-

ymptotically
DR(t,x,0)~ /&p E) exd — Agav2 2. @ We now briefly consider the effects of a finite temperature
Y X 2x(N/)? T=1/B. For a single chiral edge mode we know that at zero

T
. . L . temperaturé R(t,x) < (t) 8’ (x—wvt). A straightforward cal-
This asymptotic form is similar .to a result obtalngd by Wenculation shows that this form is actually temperature inde-

for the case of twar=1 edges with unequal velocitiédThe pendent
reason for this similarity is that both problems are formally RecaI.I that for the 110 sequence the retarded density-
equivalent to a spin in a random magnetic field that under-de

N e . nsity correlation function is a sum of terms of the form
goes diffusion on the SW) group manifold; see Appendix 4y s/ 1y multiplied by a function independent df

A. The term |r.1 Eq.(21). deca.)%algebramally With dlsta}qce. This can be seen for the clean system in &8).and for the
Therefore, while the signal iD™ at the extremal velocities yisordered system in Eq17). We can therefore conclude
(v1,9) is exponentially suppressed by the disorder, there is agya; DR for the 110 sequence is temperature independent
addmongl signal with velocitw v, /v, that only falls off  oyen in the presence of a nonzero scalar potential.
algebraically. R _ o The situation is different for the 331 sequence. While the
_ To determine the behavior &" in a given reallz_anon o_f term in DR from the charged mode is temperature indepen-
disorder we have adopted several approaches. First, as in o§n; for the reasons given above, the neutral-mode term is

analysis of the 110 sequence, we can use the factlﬁa"an' not. At a finite temperature one finds for the neutral-mode in
be expressed in terms of single-particle Green’s functiong, cjean system:

whose second moments we can evaluate. Second, we have

D. Finite-temperature effects

found thatDR(t,x,x") exhibits an exact antisymmetry about DR(t,x)=— o) _ 1
the pointt=t, in each realization of disorder: ’ 2Bvyv sinf m(vy—v)X/ Buyvs]
DR(tg+1t,x,x")=—DR(tg—t,x,x"). (22) X[v28(X=vat) —v18(X—v1t)]. (23

This is an interesting result because it is an exact dynamicdfomparing this with the zero-temperature result, the second
symmetry(i.e., it is a relation between correlation functions term in Eq.(9), we find that the neutral-mode term, which
at different timey in a system with an arbitrary potential decays as ¥/atT=0, decays exponentially at>0.

£(x). Finally, we have calculated the behavior of the corre- In the presence of disorder one finds that the finite-
lation functions for two simple potentials: the case of a uni-temperature form obR is

= 0O s o (7l Bvvz) o B (7l Bvvy)
DR(t’X’O)_Ee ‘ 2{sinf[w(vl—vz)xlﬁvlvz]{vlé(x 01t ~v20(X v+ AH(2)P sinH 27 (to—1)/B]
X/U1U2 A§ w Ag )
X% '1(mﬁ +x'°(mﬁ” o
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This result was obtained using the formalism given in Ap-

pendix A. _T_
Comparing this with the zero-temperature result in Eq. V 1%
(200 we see that the amplitudes of thefunctions at the Q" in out

extremal velocities acquire an additional exponential decay

because of the finite temperature. However, the replacement _ .
FIG. 5. The experimental geometry showing the quantum Hall

bilayer in a magnetic fiel® with two spatially separated contacts.
1 (27 B) A density disturbance is produced at one electrodg) (and mea-
P to—t = sinf 27 (to—1)/ 8] (25 sured at the other electrod¥ ().

_ DEL(t,x, X )=~ 0(t)(1+ ) &' (Xx—v )
indicates that the structure DR centered on the mean ar-
rival time sharpensat a finite temperature. f(t,x,x’,B) F{ (t—tg)?

+o(t)(1—o )——I(x—x’) i v

E. Experimental ramifications (27)

One of the primary results of the previous sections is thgyhere the functiorf(t,x,x’, 8) is the finite-temperature ver-
unusual structure of the retarded density-density correlatiogjon of the function introduced at the end of Sec. Il C, &nd
function for the 331 sequence. The first state in the 331 sgg 5 length scale set by the potential. We exgdétix,x’, 3)
quence, the state 331 itself, has a filling factor of 1/4 pekg haye the same properties as the zero-temperature function,
layer, for a total filling factor of 1/2. A plateau in the Hall 5nq to have its support more strongly concentrated hear
conductance has been experimentally observed=t/2 in =1, as the temperature increases.
bilayer systems® Another candidate state that has been pro- Tpe experiment we propose involves creating a density
posed to explain this plateau is the Pfaffian stdtandard  gisturbance at one point along the edge of the bilayer system
experimental probes of the edge states, such as the nonlinegsqy measuring the signal some distance downstream. The
[-V characteristic, cannot be used to distinguish the 331 fro”@zxperimental geometry is sketched in Fig. 5. Basic linear
the Pfaffian state since both states give the same power laygsponse theory states that if the density disturbance is pro-

exponent® In this section, we argue that the retardedgyced in layef via an external potential(t,x) and mea-
density-density correlation function of the Pfaffian state isgyreq in layer, then the signal is

sufficiently different from that predicted for the 331 state

such that, even in the presence of a finite temperature and LR , ) .,

disorder, a measurement of this correlation function at the (Pi(t,X)>ex=f dt’dx' Dij(t—t",x, X" ) Ve t',x").

edge could distinguish between these two bulk states. (29
For the Pfaffian edge theory we find that the retarde

density response function at a finite temperature and in trii/

presence of disorder is

the external potential is turned on at a point, i.e.,
ot X")=68(x")0(t"), then the measured signal is

t
1 <pi(tnx)>ex:f mdt"Dﬁ(t',X,O). (29
Dﬁf(t,x)=—4—e(t)5'(x—v¢t). (26)
m For the Pfaffian state one would see a single sharp signal;
see EQq.(26). In contrast, for the 331 state, in addition to a
We see that there is only a single velocity present. sharp signal from the charged mode there would be a second
Recall from Sec. Il A, Eq(9), that for the 331 edge there signal from the neural mode. To illustrate the neutral-mode
are three velocities present in the clean system at zero temsignal one would expect in this case we have performed nu-
perature, one for the charged mode;)( and two for the merical simulations. A typical trace, computed at zero tem-
neutral mode ¢, ), whose splitting is due to tunneling. The perature for v,=1, A 7=0.1, X=10, A,=0.1 with
signal at the two neutral-mode velocities decays asatT  stepwise-constant disorder potential wk=2" values is
=0 in the clean system. In Sec. Il C we saw that a disorshown in Fig. 6 with a solid line. As expected, it is a rapidly
dered scalar potential suppresses the signal at the extrenfalctuating function, but it exhibits an exact symmetry about
velocities by a factor that decays exponentially with distancethe mean arrival time. This symmetry follows from the anti-
However, we found that there is a broad signal in the neutrabymmetry of DR [Eq. (22)] and the time integratiofiEq.
mode, centered on a velocity distinct from the charged-modé29)]. Although the signal is very noisy, a measurement with
velocity, which decays only algebraically. In Sec. 1l D we finite resolution(dashed lingproduces a curve that does not
saw that a finite temperature actually sharpens the signal ceaverage to zero. The amplitude of the smoothened signal is
tered on the mean arrival time. From the results and discugnaximal at the mean arrival time as was predicted in Sec.
sion in Secs. Il C and Il D, we expect that for the 331 edge inll C. In Fig. 7 we show the result of numerically averaging
a given realization of disorder, the structure of the retardedver 1600 impurity configurationsolid line), as well as the
finite-temperature density-density correlation function is  analytic averagédashed lingevaluated using Eq20). The
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FIG. 6. The neutral-mode contribution to the integra®d, FIG. 8. The neutral-mode contribution to the integra®@§,
[Eq. (29] atT=0 forv,=1, M/m=0.1, X=10, andA,=0.1. The  [Eq.(29)] atT=0 forv,=1, \/w=0.1, X=10, andA,=1.0. The
horizontal axis is time measured from the mean arrival time. Thehin solid line is for a given realization of disorder, the dashed line

solid line is for a given realization of disorder, and the dashed lineassumes a measurement with a finite time resolution, and the thick
assumes a measurement with a finite time resolution. solid line is the analytical average.

two curves are in excellent agreement. The finite width of the There are several requirements that must be met to make

neutral-mode signal is a novel feature of the 331 state; in théhe measurement useful. First, one must be able to separately
110 sequence the neutral mode propagates with only on@r at least differentially contact the edges of the bilayer
velocity. system. If each electrode used in the measurement couples
In F|g 8 we show a similar trace, but with the disorderidentica”y to both edgeS, one cannot hope to probe the dy_
stronger by an order of magnitudd,=1.0. Note that the npamics of the neutral mode. Indeed, the sum of the elements
amplitude of the signal near the extremal arrival times  of the matrix density-density correlation function for the 331
+1 is suppressed relative to the case with a smaller disordeytate[Eq_ (19)] is identical in form to that of the Pfaffian
strength, but the signal near the mean arrival time Q) is  state[Eq. (26)]. The relative strength of the signal from the
not. In Fig. 9 we show the result fax,=0.1 at a high tem-  neutral mode, compared to the charged mode, would be
peratureT/A,=2000. The signal in a given realization of maximized by applying a voltage that is antisymmetric be-
disorder (thin solid ling is as noisy as in the zero- tween the layers. Second, the experiment must involve a
temperature caséFig. 6); however, the amplitude of the time-resolved measurement in order to distinguish signals
smoothened signatiashed lingis down by roughly an order that differ by their propagation velocities. Third, the elec-

of magnitude. At this high temperature the disorder-averageg¢todes must be close enough together so that the decay of the
result(thick solid line is essentially zero everywhere except

very close to the mean arrival time.

. T r
o1r Wn=0.1,X=10, A=0.1, large T ——
0.08 | smoothened ———
01 F 4 average (N=4000) ——
0.06 |
0 & 004
o
jo3
N T 002}
Q.01 g
3 E
g
o
L2t -0.02 |
-0.04 |
03 F
0.06 |
0.4} average (N=1600) —— 4 -1 05 Y —=t-v, X 05 1
l}\/n=0.1,X=10, A§=0.1 analyfic average — — —
-1 -05 0 epp,x 05 1 FIG. 9. The neutral-mode contribution to the integra®@§,
[Eq. (29)] at T/A;=2000 forv,=1, M/7=0.1, X=10, andA;
FIG. 7. The neutral-mode contribution to the integra®f, =0.1. The thin solid line is for a given realization of disorder, the

[Eq.(29)] at T=0 forv,=1, N/w=0.1, X=10, andA,=0.1. The  dashed line assumes a measurement with a finite time resolution,

solid line is the numerical average over 1600 impurity configura-and the thick solid line is the result of averaging over 4000 impurity
tions and the dashed line is the analytical result. configurations.
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neutral-mode signal with distance does not cause it to be 1 1 _
undetectable, but they must be far enough apart so that the  p;(x)= 5—Kja,u;(x), W¥l(x)= ——5e ", (32
charged- and neutral-mode signals are well separated in time. 2m L™

We believe that the length and time scales needed in a
realistic measurement would require a careful choice of fab®
rication techniques. To give more specific estimates, let us L
take the drift velocity of the charge mode to beg~ 107 Ho:j dx
cm/s!®? |n a clean system at a finite temperature the ~L12
strength of the neutral-mode signal decays exponentially
with distance; see E¢23). The separation between the elec- N[ W (X)PI(x): +H.c]l,
trodes here cannot be taken to be much larger than the tem-
perature coherence lengthy~#%v/T, which is 102 cm at h
10 mK. Assuming the neutral-mode velocity is smaller than'/"€"€
the charged-mode velocity by an order of magnitude, the (v g)

and the Hamiltonian as

1

477_VIJ 10xUidyU;

(33

arrival time difference between the two modes is on the order
of 10 ns. In the presence of disorder, the temperature coher-
ence length loses its importance, as one can see from the 9
second term in Eq(24). In this case, let us assume a mean'S & symmetric, positive definitegf<v?) matrix that in-
free path ofl ~1/A,~105 cm, and require that the elec- cludes the effect of the confining potentials and interactions
trodes need to be gapproximately 16410 um apart for the at the edgg, and, is the interlayer 'electron tunneling anm-
neutral-mode signal to be detectable. The arrival time differp“tUde' which we.tak'e to 'be real without loss qf generality.
ence between the signals from the neutral and charged mod&2e normal (_)rd_ermg is with respect to the oscillator modes
is then around 1 ns. If an experimental measurement like th@ Epﬁ bgson_:c f|<_alds. d . lati be i
one described here detected the neutral-mode signal, it Woulqf deb ag“ tonlar; an qommutatlon relations can be sim-
conclusively show that the=1/2 plateau in bilayer systems ied Dy the transformation:
is the 331 state rather than the Pfaffian state.

ym+n —\/m—n) ( ¢>C>

Jmn Jmon

in terms of which we have
In this section we present the detailed calculations of the

results summarized in the previous section. We begin with a . (xXV=i78 oy 36
review of the clean edge theofgec. Ill A), and then discuss (400, (X ]=1m 5y sgrix=x") (36
the addition of a parallel magnetic fie{@ec. Il B) and dis- gnd

order(Sec. Il ©. Finally we discuss the Pfaffian ed¢®ec.

“\lg v (34)

(39

Ill. DETAILS OF THE CALCULATIONS Uz \/E

[11 D) and the numerical computations performed for the 331 L2 1 1
edge(Sec. Il B). HO_J dx — Uc ((9x¢c) +_Un (dx ¢n)
A. Edge theory of clean bilayer systems 2\ R
In this section we review the edge theory of clean bilayer +(27Ta)B2/2 cod B |, (37)

guantum Hall systems with interlayer electron tunneling. For
a more detailed discussion see I. The edge theory correvhere in¢;, the index i runs over the two values¢, n,
sponding to the Halperin stat&) contains two chiral Bose which denote the charged and neutral modes, respectively,

fields, u;(t,x) (i=1,2), with compactification radiR;=1 and we have introduced the parameté’rs J2(m—n), A

(i.e.,u~u+2m), and equal-time commutation relations: =\oL ", the velocitiesv = (m=n)(v+g), and the short
_ distance cutoff. The Hamiltonian separates into a free chi-
[ui(t,x),u;(t,x")]=i7K;j; sgnx—x"), (30)  ral boson Hamiltonian for the charged mode and a chiral

sine-Gordon Hamiltonian for the neutral-mode.
whereK is a symmetric, integer-valued matrix that charac-  For future reference we record the expression for the elec-
terizes the topological properties of the edge and is comtron and density operators in terms of the newly introduced
pletely determined by the exponents in the bulk wavebosons
functior?*

m n 12()()_ |\(m+ni7 b (x)e+|B¢n(x)/2 (38)
( ) (31

In terms of these fields we can write the charge density and X)= ———— (x)+ Ay pn(X),
electron creation operators as p1A 2m\2(m+n) Bucbe 2B o

115301-9
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which follow from Egs.(32) and (35). In the remainder of poson isR,=1/y/2 and therefore we can define a triplet of
the paper we will suppress the subscript on the neutral bosog{(z)1 Kac-Moody (KM) currents
ie., ¢=do,.

The time-ordered correlation functions given in Sec. Il A
follow from Egs. (37), (38), and (39); for details see I. To (%)= 1 3, b(X)
transform from the time-ordered correlation functions to the 2m\2 " ’
retarded response functions we note that if the time-ordered (44)
function is expressed as

1
Ji(X)ZJXiinz—e“\“Zﬁ(x),
C(t)=6(t)C™(t)+ 6(—t)C~(t), (40) 5

where 6(t) is the Heaviside step function, then the corre-in terms of which the Hamiltonian reads
sponding retarded correlation function is

27v

3 T IX) ]2 + V2T 3%(X) + 20 I4(x) |,

(45

i N ) _ L/2
CR(t)=6(t)[C™(t)—C=(1)]. (41) HB‘] L,zdx

B. Parallel field

We consider a parallel magnetic field along thexis:

B=By. This corresponds to a vector potenti(z) =Bz, L w21

where we take the origin of theaxis midway between the f dX:[JZ(X)]2:|,y>:f dx=:[I(x)1%]y), (46)

layers, whose separation &6 We incorporate this parallel -L/2 -2 3

field into our edge theory by modifying the charge density

operator via the replacement valid for any statgy) in the Hilbert space. Next, we can
define a new set of current&(x)=R*J"(x), which also

(42) obey an s(2), algebra providedR e SO(3). Inparticular if
we choose

where we have used the identity

1
pi(X)—>pi(X)— EAX(Zi),

wherez, ,= =d/2. Using this along with the definition of the
charge density(32), and the transformatiori35) gives a
Hamiltonian R=| 0 1 o [, (47)

sina 0 cosa

cosa 0 -—sina

r r?
Eé’xq&"_

L/2
HBEH0+ j dx
—L/2

, (43

where sine=M\2+T?2/2, and express the rotated(&),

. currents in terms of a new radil®=1/\/2 chiral boson,

wherel’=v,Bd B/2. The second term is a constant, and thusf(x), we then have

produces only an overall shift in the energy spectrum, and

we will henceforth ignore it. The interlayer magnetic field Li2 ~

couples only to the neutral mode, and therefore we will not H5=f dx{2mv,:[J4(X)]% + 2 N2+ T2/237(x)}

write the terms involving the charged mode explicitly except L2 48

when considering correlation functions. (48)
As remarked in Sec. Il B, the analysis here also applies to

the case where we introduce an electric potential difference JL/2

4mv,

1

1
4—vn:(ax9)2:+—\/>\7+r2/2axa .
™ T2

between the layers instead of an interplane magnetic field. A =
potential differenceV, between the layers adds a term
Ve(p1(X) = pa(X))xVedyd to the Hamiltonian. This is the (49

same form as the interplane field perturbatidB). The only  note that this final form of the Hamiltonian is identical to the
difference is that in the case of a potential difference betweefgtral-mode Hamiltonian in the absence of a parallel mag-
the layers the density operators are not modified as they atg.iic field with the replacement

in the interplane magnetic field ca$42). However, since

D;i(t,x) involves the density fluctuation operater,—(p;), . o
se]e Eq.(3), our results below for the density-densié/ c>orre- NN =N,
lation function apply for either a parallel magnetic field or an
electric potential difference.

dx
—L2

(50

The above diagonalization of the Hamiltonian also allows us

to find correlation functions. In particular, consider the two-

point function of the density-fluctuation operatdp; (t,x)

. [Eg. (3)]. Using the minimal coupling prescriptidd?2), the
The states in the 110 sequence correspong’te2. In 1  transformation(47), the definitions of the charge density

it is shown that at this value g the radius of the neutral (39), and si§2); currents(44), we can write

1. 110 sequence

115301-10



EDGE DYNAMICS IN QUANTUM HALL BILAYERS: ... PHYSICAL REVIEW B 63 115301

1| T 1T
[ . (51

1
X)= Gy F o | — =+ — 1| =
pl,2( ) ’—8772(2m—1) X¢C+27T l)n\/i , 2

Using this expression for the charge density operators in terms of the fighasd 6, along with the Hamiltoniai48), we can

readily find
rz.- . (ax
— +\“co X]|i. (52
2 Up

3,0— %cos( \/50)]

1 (1+ o) . 1 (1- o)
(2m=1) [27(x—vdt+ie)]? 2(N)2[27(x—v t+ie)]?

—iD(t,x)= 5

The evaluation of the single-electron Green’s function isHere #; are the original edge electron annihilation operators
more involved because the electron operafd¥s(x)] can-  given by EQ.(32) with m=1 andn=0. If we perform the
not be expressed in terms of the fields and 6. Following  following canonical transformation
the method used in I, we can use the independence of the
charged and neutral modes to write the Green’s function, " " \
Gij(t,x) [Eq. (2)], for all states in the 110 sequence as (1//1) :eiwy( *), sin(2¢)=— —, (56)
2 —
getx)

(tx) = GOt ) e 53 I
Gij (LX) =G A(tX) gg)(t,x) (53 then the Hamiltoniar{55) becomes
whereG ("% is the Green’s function for the special case L
~1.n=0and HEO= f_uzdx:[—iv(wlaxwﬁwiax¢_>
1 y L /
G (LX) = el ™ TRt g T mTa20400) t2mgyl Ly N (Why =yl )l
(57)
1
(54)

- 2m(x—vd+ie) ™ M2 By transforming into boson form according t¢..(x)

_[_ et : =¢'=(M/\27ra, and definingd, =(¢, + ¢_)/\2, andg_
The decompositiorf{53) is useful because for thencorre- E(¢+—¢,)/\/§— \/Eh’x/v we can exactly evaluate the
lated integer 110 state there exists a chiral fermion descrip'single-electron Green’s furq(,:tion
tion of the edge theory including tunneling and a parallel

field:
1
110 L/2 ) + . : g(llO)(t,X): : :
HE ):f dx:| —iv i dxihi+2mQihy bbb, 2m(Xx—vd+ie)(x—vt+ie)
r XeX[{i(—aZ—H\a—X —. (59)
—x(¢£</f1+¢1¢z>—E(wlwl—w&az)]:. 2 on

(55) Combining Eqs(53), (54), and(58), we finally arrive at

1

[27(x—vd+ie)]™ Y2\ 2m(x—vt+ie)

Gg(t,x)= . (59

r
—a’z-l-)\ax) sin(\"x/v )

V2

i
chos()\’x/vn)+;

2. 331 sequence

The states in the 331 sequence correspon@e4. In | it is shown that at this value g8 we can transform the neutral
boson into fermion form using

, 1 i
=y, Sohb=, S ome=yay. (60

115301-11
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With these identities, the neutral-mode part of the Hamil-Employing the Bogoliubov transformation
tonian (43) becomes

L/2 N _qj
He= f x| —iv!axts—i o (' o)+ o) S ][ o e | S (65
-L2 2m ¢’ \sine cosa/la’,)’
+F¢*4: (61) o o
where a_ .= — ., the Hamiltonian is diagonalized via the
) ] choice
L/2 | | .
:J' dx:| — §U1X107xX1_ §U2X2axX2+|FX1X2 5
—L/2
(62 Ak
. . . L tan2a,) = —=, (66)
where we have written the chiral Dirac fermion in terms of wl’

its Majorana components:(x)=[ x1(X) +ix2(X)1/2,
wherexfr:)(i, and recalledv; ,=v,* N/ 7. The tunneling

term splits the velocities of the two Majorana fermions andalong with the restriction akg[_ 77/.2’7/2]’ req_wre_d 0
the parallel field term couples them. produce the correct spectrum in the limit>0. This yields

The Hamiltonian is quadratic and hence readily diagonal-
izable. If we take antiperiodic boundary conditions for the

Zce;égqucfilr?édig(ﬁ L) == $(x). and expand in Fourier modes Hg= 2 [vok+sgnT)V(Nk/7)2+T?]:a]ay:

k

P(X)= % ; e”‘"ck, (63) EE s(k):alak:. (67)

wherek e (27/L)(Z+ 1/2), the Hamiltoniar{61) becomes
To calculate correlation functions, we first use the transfor-

AK i | ith th ions fax [Eq. (66)] and
Ho=S v kclei+Tele+ —(clct . —cc ) |- mation(65), along with the expressions faf [Eq. (66)] an
B Ek Ok Kok 277( Co CC-w) ¥(x) [Eq. (63)] to express the Fermi field in terms of the
mode operators that diagonalize the Hamiltonian
R vnk+F Nkl Cyx . 64
IR T vek—T/\ct, )™ (64

ikx

)= — 2 °
i oL [0/ T2

[VVONK )2+ T2+ a— sgnTAK) VVONK ) 2+ T2— [T at .. (68)

To compute the single-electron Green'’s functi@ we use
the transformation(35) and the fermionization prescription Qw(t,x)z—i(
(60) to write the electron operatof82) as

(Ty(t,x)47(0,0) <T¢(t,x>w<o,0>>)
(Tt ¢'(0,0) (Ty'(t,x)¥(0,0))

(72)
L The correlation function of the fermionized neutral mode can
L A= Tde s gte s be reduced to quadrature. Using E(&) and(68) we obtain
i (2wa)<m*1>/ze (Bt + Siz9h). (69 (in the limit L — )

—i
Since the charged and neutral-modes are not coupled, Wg,(t,x)=—-—

1+ (i/t)(alaT) ()\/ﬂ'Ft)(ﬁzl&xﬁF))

find 4\ (M 7Tty (9%1oxdl)  1—(i/t)(alaT")
(72)
1 where there remains the integral
[2m(x—vt+ie)]™ ! 'EJ dk{sgr(t)cog kx—e(k)t]
where we have defined the matrix +i sgnk—kg)siMkx—e(k)t]}, (73
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and the “Fermi momentum,” defined by(kg) =0, is given bykg=—T'/\viv,. To simplify the result, we first change the
variable of integration taw=¢&(k) for k>kr andw= — (k) for k<kg. With these substitutions and some algebra, the matrix
Green’s function can be written

—i
Gy(t,x)= Esgr(t)

(anl— £O'X) Px(7,X) +Sgr(t)(£Jl—vno'x>EPT( 7,X)—ivqv,l d?P(71,X) |, (74
T T T

where we have defined=x/v,v,, r=sgnt)(v,X—t), and  using an SW2) gauge transformation to separate the Green’s
the function functions into products of clean Green'’s functions and terms
_ involving only the random fields. After this step, the disor-
P(7,X)= fmd_“’eim sin x(w)X] (75  dered problem is shown to be equivalent to a spin-1/2 par-
' 0 2m k(o) ticle in a random magnetic field and the disorder averaging is
wherex(w)=\vv,I'?+ (N m)?w?, and the subscripts dp

performed nonperturbatively. The solution for the 331 se-
in Eq. (74) denote partial differentiation. Although we have

quence involves an exact summation of the disorder-
been unable to evalua®(r,X) explicitly, the real part of averaged perturbation theory, which is possible because of
this function can be calculated in closed form. This is dis-

the chirality of the system. In Appendix A we present an

cussed below in Sec. Il C when we consider the retarde&"temative method for obtaining disorder-averaged correla-
version ofg,. tion functions for the 331 sequence based on the spin anal-

Turning now to the density-density correlation function, 99Y-

we can use the fermionizatiai80) to write the density op- If we consider a general perturbation to the Hamiltonian
erators(39) as of the form
L hbeF 2y (76)
pro=—F—— oo . L2
4mm—1775 2 Hff dx £(x)O(x), (79)
—L/2

Since the Hamiltonian in terms af [Eq. (61)] is quadratic,
Wick’s theorem holds for this field and the density two-point

function can be expressed in terms of the single-particleyhere(©(x) is an operator of scaling dimensighand £(x)

Green’s function. Using Eq¢76) and(3) one finds is a Gaussian random variable with variandg i.e.,
1 (1+ 0%) Z(X)¢(x")=A8(x—x"), where the bar denotes disorder av-
—iD(t,x)= eraging, then a lowest-order perturbative RG analysis &ives
4m=1) [27(x—vt+ie)]?
(1-0%)
dA
+ 7 detG,(t,x). (77 W=(3—25)A, (80)
Along with Eq.(74), this gives an expression for the density-
density correlation function in terms of the single function ] ] ]
P(7,X) and its derivatives: where the short-distance cutoff increases msreases.
Consider first the possibility of disorder in the velocity-
(1409 interaction matrixV in the Hamiltonian(33). Since theV

—iD(t,x)=

_ P matrix multiplies an operator of scaling dimensiés 2, we
Am-1) [2m(x—vdtie)] see from the flow equatiof80) that 5-correlated disorder is
(I=0"] , N\, - RG irrelevant. Therefore we can ignore randomness irvthe
Px— ?Pﬁvlv 2I“P7. matrix and interpret the values appearing in E84) as
disorder-averaged mean values. Note that\theatrix must
(78)  be symmetric, since it multiplies a symmetric operator in the
Hamiltonian, and the positive-definiteness \¢fis required
C. Disorder for the Hamiltonian to be bounded from below. However, the
1(plssumption thaV,,=V,, is made for technical reasons and
It can be relaxed t&,=V,,, a weaker criterion.

4vv,

We now consider the effects of adding several types o
disorder to the Hamiltonian of the bilayer syst€@8). We . . .
begin by considering the relevancy of various random terms . Next we turn to the case of disorder n the _tunnel_mg am-
within a renormalization grougRG) analysis. We then plitude ”’T the Ham|ltor?|an(37?. '.I'he.scaIAmg d|mgn3|on of
present exact results for the 110 and 331 sequences, concdR€ tunneling operator it multiplies i8=?/2. Using Eq.
trating on the retarded density response function because 680, we find that disorder in the tunneling amplitude is rel-
its relevancy for experiments. The 110 case is solved byvant for the 110 sequendke., 3?=2), and irrelevant for
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the 331 sequence.e., ,5’2:4). The former case will be dis- 1 1 (
cussed later in this section and the latter case in Appendix B. §=———=(61182), &==(&-6). (82
Finally we consider adding random scalar potentials that 2(m+n) B

couple to the edge charge densities in each layer: If we assume tha¢, Ax) are independent Gaussian random

L2 variables, then so ar& (x). Since these terms involve op-
H§=J dX[ £1(X) p1(X) + Ex(X) pa(X)] erators of scaling dimensiofi=1 they are relevant pertur-
-L2 bations for both the 110 and 331 sequences.
L2 1 1
:f L/de §C(X)Zo'?xqﬁc(x)-i-gn(x)zﬁ)((ﬁ(x) , 1. 110 sequence

In the discussion above we found that for the 110 se-

(82) quence @2=2), disorder both in the tunneling and in the
where we have used the definition of the charge density opscalar potential terms is relevant. We therefore consider the
erators(39), and Hamiltonian

L/2
HD: f dx

—L/2

v v 1 - - 1 1
c. . n. . iV2¢h(X) * —iV2¢(x)
2 ()% 52 (0xh) % 5N () ZI 1N ()@ £4(X) 5— dxbe(X) + €n(X) 5— dxb(X) |,
(83

where\(x) is a complex random tunneling amplitude. The (lﬂl(x))
presence of disorder breaks translation invariance and hence P (x)= ,

the current algebra method used to solve the clean problem Pa(X)

in Sec. Il B is inapplicable because the transformation 1

J3(x) =R2PJ°(x) must be a global rotation to map between B(x)=—(—REN(X)],— IM[N(X)],£,(X)/\2), (89)

sets of KM generators. However, an alternative approach to Un

the problem developed in | is useful in the disordered caseand the indexa runs overx,y,z. The fermionic part of this
We add to the Hamiltonia(83) an auxiliary free chiral bo- Hamiltonian describes a pseudo-spin-1/2 fermion coupled to

son (¢) with a velocity equal to the velocity of: a random S(R) gauge field.
We now perform a change of variables that absorbs the
L2 1 -~ disordered terms into the definitions of the field operators.
Hp—=Hp+ Jl ldeEUn:(&xd’) . (84 For the charged mode we define
perform the canonical transformation _ 1 (x
n(X)=d(X)+ | dy&dy), (89
C
d\ 1(1 1\(6,
- , (85  and for the neutral mode we use an(8lgauge transforma-
o) 2\1 —1]16, tion
and then transform to fermion form according to W (x) =S¥ (X), (90)
" where S(x) e SU(2) is a solution of the matrix differential
Pi(x)= e, (86)  equation
27a
The details required to make this mapping rigordus., dS(x) = —iB3(x)0?S(X). (91)
compactification radii, topological charges, Klein facjare dx

discussed in I. The result of this procedure is a quadrati§itn these definitions. the Hamiltoni&87) becomes
Hamiltonian ’

L2 1 1 - o~
Li2 H =J dx| — v (dym)% — ——E2—iv Wi W: |
Ho= [ dX vt B+ £X) 5ol R EE AR T
_L2 |4 2 (92)
) Since the second term only involves the disordered scalar
+:[—iv ¥, +v BAX)¥To? W] |, (87)  potential, it does not affect correlation functions and will
henceforth be neglected. Note that in going from Hamil-
where we have defined tonian(87) to Hamiltonian(92) we have used a gauge trans-
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formation on a chiral Fermi fiel®0) without accounting for : (X
the chiral anomaly. This is valid because the gauge field isa U(X,X")=S(x)S'(x")=T, exr( —i Jx/dy Ba(Y)Ua>

guenched random variable; in this case the anomaly associ- 99)
ated with the chiral gauge transformati®0) cancels in the
average. is a unitary matrix. Using Eq97) we find that the neutral-

Our primary goal is to understand the behavior of themod_e part of the density-density correlation function is pro-
density-density correlation function in a given sample, i.e. portional to
for a given realization of disorder. We begin by expressing , ,
the density operator€39) in terms of the fieldsy and W, ~ oGt x,x") ofG(—t, X' X)]
with the help of Eqs(85), (86), and(89):

trf o?U(x,x")a?UT(x,x")],

C[2m(x—xX' —vt+i€)]?

1
p1AX)= o dxn(X)— U—C§C(X)

2(2m—1) (99
1 where we have used the propedy(x,x")=U(x’,x), which
Fo:PUT(x) P (X):. (93)  follows from the definition(98). In Eq. (99 we have written
2 a correlation function in the disordered system as the product
Using this expression in the definition of the density two-Of the corresponding function in the clean system and a fac-
point function(3) we have tor that depends only on the random potential.
If we interpret the coordinatg appearing in the definition
1 (1+ o) of U as a fictitious time, then the matrbx(x,x") is exactly
— ; . the time evolution operator between timesand x’ for a
2(2m=1) [2m(x—x"~vd+ie)]? zero-dimensional system with time-dependent Hamiltonian
(1—0%) B2(y)o?. This is the Hamiltonian for a spin-1/2 object in a
~ 2 trl o*G(t,x,X")a*G(—1,X",x)], random magnetic fiel8(y). The quantity appearing in the
trace in Eq(99) can then be interpreted as t®&,(x)S,(x’))
(94) correlation function for this spin.
where we have used the single-particle matrix Green’s funcl- 'To understand thg behavior of the d'ens.,lty-densny corre-
tion ation function in a given sample we W|II_ first Calculat_e its
disorder average, which involves averaging the quantity ap-
- N ] t / pearing on the right hand side.h.s) of Eq. (99). Toward
Gij (LX) = =T (. X) 9 (0X)). (95) this end, consider the following vector quantity:
We have explicitly included two spatial arguments in these Aot ettt ors "
correlation functions because of the lack of translation in- FAOGXT) =t UT(x,x") o U (x,x") o). (100
variance in a given realization of disorder. Note that al-By differentiating with respect tox we find that this is a
though the charged modé, is coupled in Eq(81) to @  solution of the differential equation
disorder potential¢., the charged-mode part of the above
correlation function(94) is identical to the result in the ab- dFa(x;x")
sence of disorder. This result is true for every realization of dx
disorder and is essentially equivalent to the loop-cancellation abron abome )
theorem, which states that for linearly dispersing fermioné"’_h_ere'\/la (x)=—2e aBZ(X)' SquJeCt to the boundary con-
[£(k)<k] in 1+1 dimensions the connectegpoint func-  dition FA(x";x") =tr(c%0*) = 25°* The solution of this dif-
tion of the density operator vanishes identically for223  ferential equation can also be written as
To determine the effect of disorder on the neutral mode .
Tyexp( J’X,dy M(y)) FP(x";x").
(102

we first note that the differential equati¢®l) has a solution Fa(x;x")=
S(x)=Tyexp{—ifxdy Ba(y)aa), (96) We have expressed the quantity we deskFé(x;x’), in

—iD(t,x,x")=

=M3P(x)FP(x;x"), (102)

ab

in terms of a coordinate-ordered exponential
terms of a single coordinate-ordered matrix exponential,
whereT, is the y-ordering operator. Since the matr$(x) \;vtr;?jse disorder average we now show can be readily evalu-
can be taken outside quantum expectation values, we can ., . . .
; . ) . We assume the tunneling amplitude and scalar potential
express the Green'’s function of the field (95) in terms of - -
. ~ . are o-correlated Gaussian random variables and denote the
the Green'’s function of théfree) ¥ field and thus write mean and variance @a(x) by Ma and A2, respectively.
Since the exponential appearing in E4j02) is ordered iny,
U , 9 and the elements d¥1(y) are independently distributed for
i (xx), (97) eachy, we can consider breaking up the interjal,x] into
N intervals of lengthe=|x—x’|/N and then taking the limit
where N—oo. Therefore we can write

Gij(t,X,X/):

2m(X—X"—vt+ie€)
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X -
Tyexp( J ,dy M(y))z lim
X N—o
(103

where the probability distribution is X 2x—x'| 1
Tyexp<f dy M(y))z lim [1— N W+O(W)
XI

63 N—o
P(B)AB=\ 53a%avaz

N Expanding theeS9"¢~X)eM factor in Eq.(103 and perform-
ing the integration gives

J dB P(B)esantx)eM

N

=exp(—2|x—x"|W), (105
13 e
= — - 2ldB. (10
F{ 2 2 A (104 where
|
AY+AZ 0 0 0 unt =Y
W= 0 A%+ AX 0 +sgnx—x")| —u* O W (106
0 0 A+ AY uw —u* 0
From Egs.(100), (102, and(105), we finally arrive at
tr[UT(x,x")o?U(x,x" ) o] =2[ e 2x—X'IWjzz (107

While it is in principle possible to evaluate the exponentiaMéffor arbitrary u? and A?, for simplicity we shall restrict
ourselves to the case of a real tunneling amplitude. If the tunneling amplitude has\raedrvariance\, , and the disordered
scalar potential has mean zero and variafige then from the definition oB(x) [Eq. (88)] we have

A
w=——, w=0, u?’=0,
Un
(108
A, Ag
A'=—, AY=0, A*=—
vh 202
In this case the sector of the matriX106) is separated,
W Ag IA)\+A§/4+ , A Y sar )A
=|— —— — tof——ioYsgnx—x")—
2vﬁ vﬁ vn 9 Un (109
and from Eqgs(94), (99), and(107) we find
iD(t,x,x") ! 1+ e (1-o9 2= |(A T A J4)
—iD(t,x,x")= = ex
22m=1) [27(x—x'—vd+ie)]? 2 [2m(x—x'—vt+ie)]? p2 N
2lx—=x'IN| Ay [2lx—=x'|X
X| co +—=sin , (110
Un 4v,\ Un

where

<« Ag\?
A= )\2—<4—vn . (111

Transforming to the corresponding retarded function using EgB.and(41) we arrive at Eq(17).

The question remains as to what the behavioDgf,x,x") is in a given sample. Instead of attempting to evaluate higher
moments of this correlation function, we shall exploit the fact that it can be expressed in terms of the single-particle Green’s
function, whose second moment we will compute. Writing out the trace i ®.explicitly we find

tr o?G(t,x,X" ) * G (—t,X',X) = G11(t,X,X")G11( —1,X",X) = G15(t,X, X" ) Gy —t,X",X) — Gy (t,X,X" ) G —1,X’,X)
+G22(t,X,X,)Gz2(_t,X,,X). (112)
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From Eq.(97) and the result —|Gij(t,x’xl)|2

A
lcos<v—n(x—xr)) 1 U, (xx)UTxx). (116

— X=X’
U(x,x’)=exp(—%(Ax+A§/2)) =
2 |27m(x—x"—vt+ie)|?

n

, (113 By the unitarity ofU(x,x") we have

X ()\ I)
+io”sin U—n(x—x)

T T_
which can be obtained via the same procedure used to evalu- UnbutUala=1, (119
ate the average in Eq103), we find the disorder-averaged where we have suppressed the spatial arguments. Using the
single-particle Green’s functions are also exponentially deexplicit form of U that follows from Eqgs.(99), (88), and
caying in space: Im[\(x)]=0, one may showYUTo¥Y=U", which implies

—|x=X"|(Ay+Ag2) 12
e Mxlanradayn, UnUi=Uslgs  UsU=UpU1, (118

Guy(t,X,X) =Gyl t,X,X') =

2m(x—x' —vpt+ie) Finally, from Eq.(107) we have

A’ !
XCOE(U_n(X_X )] (114 UUl = UpUT,— U Ul + U U d,=2[ e 21X ‘W](Z]Z-lg)
Gyt %X ) =Goy(t,x,X") Equations(117)—(119 are four equations in four unknown
o X8+ A g2 \ guantities that can be solved to yield
=i ; ——sin| v—(x—x’) . 1
2’7T(X_X _Unt'Hft) n Ulluz[l:U22U;2:§(1+[e—2|)(—x’|W]ZZ)1
(119
To investigate whether this exponential decay is an artifact — — 1 .
of the disorder averaging.e., it arises from averaging over UiUz=UaUs=5(1—-[e X Wpzg) (120

random phasesor whether we expect it to hold in a given

realization of disorder, we comput@ij(t,x,x’)|2, which is  This result, combined with Eq(116), gives the disorder-
clearly insensitive to phase fluctuations. From Ej/) we  averaged absolute magnitudes of the elements of the single-

see that particle Green’s function
—_— 1 . 2|x—x'| 2|x—x'|x
|Gjj (t,x,x")[*= - 1+(—1)"lex ——— (A +AJ4) ||cog ———
22m(x—x"—v t+ie)|? ve Un
Ay [2]x=x'|X
+—=-sin . (121
4v N\ Un

The structure of this result is interesting. Ea@h, | is the sum of two terms, one of which is identical to the square of the free

[i.e., A\(x)=&,(x)=0] Green’s function, and the other of which has spatial oscillations at the shifted frequency and an
exponential decay in space from the disorder. The fact| m@tz has a long-ranged pafite., a term that decays algebraically

rather than exponentiallyndicates that in a given sampf&; is not exponentially damped, and thus from ELl2) we can

conclude that the neutral-mode portion of the density-density correlation function is also long-ranged for a given realization of
disorder. We therefore expect that in a given sample the density two-point function has the structure of the disorder-averaged
quantity (110, without the exponential decay in space of the neutral-mode piece. As a functior=at—x’ we expect two

peaks at the pointd&x=uv ., with the second peak modulated in space at a frequency that varies with the local scalar potential
[see Eq(11D)].

2. 331 sequence

In the analysis at the beginning of this section we determined that for the 331 seqBérct)( only disorder in the scalar
potential terms was a nonirrelevant perturbation. We therefore consider the Hamiltonian

L2 1 2., L 2 N 20 4 ami2é(0) 1 1
HD:J /2dX Evc:(ax(ﬁc) H'Evn:(&xd’) H‘%(e +e )+§C(X)E‘9x¢c(x)+gn(x)zaxﬁé(x) )

(122
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which, with the help of the fermionizatiof®0) for the neu- quantum expectation values by explicitly constructing solu-
tral boson and the transformati¢89) for the charged boson, tions to the Heisenberg equations of motion. This procedure
can be written involves some technical subtleties not present in the 110 so-
) . lution, and is discussed in detail in Appendix A. In this sec-
1 (8, m)2— I Govn— ! s tion we use a different approach; we find the disorder-
A U OXM T VX191 5 U2X20xX2 averaged correlation functions of the above Hamiltonian by
an exact summation of the disorder-averaged perturbation
theory.
The chirality of the fermions in the neutral-mode part of
the Hamiltonian allows a great simplification in the structure
where we have dropped the constg@tterm. The charged- ¢ e diagrammatic perturbation theory in powers of the

mode portion of this Hamiltonian is identical to that o_f EQ. gisorder potentiak, (x). This was first noted by Chalker and
(92) for the 110 sequence, and hence all results pertaining t8,nqhj in the context of a single-particle description of the
the charged mode can be imported from the previous dlSCU%—dgel

; oo e e 15 Consider the matrix Green’s function of the Majo-
sion. The Hgmlltqn|an is now quadratic; however, the lack of, 54 fields for the free case, i.€,(x)=0:
translation invariance prevents us from employing the

L/2
Hp= dx:
—L/2

Fié(X) x1xz | (123

method used in Sec. Il B, where we essentially solved the gi(jo)(t,X,X’)=—i<TXi(t,X)X,—(0,X')>

special case in whiclf(x) is independent ok. In addition

we cannot absorb the disorder into the definition of the field 1

operators via a gauge transformation as we did for the 110 =6 (124

ij ; PN
sequence, because the Majorana fields are real and therefore 2m(x=x'—vjttie)

neutral. However, we can still separate the disorder andourier transforming with respect to time gives

! =5 '—eiw(x—X’Vvi[o(—w)a(x’ —x)— 0(w)0(x—x")]. (125

O(w,x,x")= 5--f dteet
9i . 2m(X—X'—vjt+ie) vj

To obtain this result note that the integrand has a pole in theum. We first observe that because the scalar potential is
complext plane att=(x—x")/v;+O(e€). Therefore forx  time-independenty is conserved and hence it has the same
—x'>0, Ret>0 at the pole and hence the pole lies in thesign in every propagator. This, along with the chirality of
upper half-plane while foxr—x’ <0, Ret<0 at the pole and g (w,x,x’) evident in Eq.(125), implies that any disorder-

it is therefore in the lower half-plane. We find that for posi- averaged diagram in which impurity lines cross vanishes

tive frequencies ¢>0) the function vanishes for—x’<0, identically. Therefore, for each term in the sum in ER6)
while for negative frequenciesw(<0) it vanishes forx  there is a single nonzero disorder-averaged diagram, i.e., the
—x'>0. one in which successive insertions &f are pairwise con-

Next consider the single-particle Majorana Green’s functracted. The resulting series can be summed to give
tion with the disorder potential present in E&23. Working
perturbatively in powers of,(x), we have _ P ) ,
gij(w,x,x')= 5” v_elw(x—x )/Uje_A§|X_X [l2v1v5

gul0XX)= 2, f Ay dYangi (@ X V) E(Y) X[0(— ) (X' —X) — 6(w) B(x—X")].

X g (@,Y1,Y2) En(Y2) - - - 9 (@,Y2n,X'), (127)

3 (126 We see that the disorder-averaged Green’s function retains
gio( @, XX ) =i > f dy;- - - dyons19P(w,x,y1) the chiral structure of the free Green’s function. While the
n=0 exponential decay of the function involves the geometric
X £y - 9w,y X' mean of the two Majorana velocitiegp ,v,, the frequency
M1 22\t 1 dependence only contains ) for gy1(2z). This is a direct
with similar expressions for the remaining components. Eacleconsequence of the fact that all terms with crossed impurity
time the particle scatters off the impurity potential its veloc-lines vanish when we perform a disorder average of the chi-
ity changes fromy 4 to v, or vice versa. When we perform a ral Green’s function. Therefore, for the averaged single-
disorder average of the above equations, we must tie togethparticle Green’s function, if the particle begins propagating
insertions ofé,(x) in all possible ways for each term in the with velocity v, it never propagates with velocity,, and
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w, @, @,
— ———— . .
| I 1
Foym,,x,x7) = -0, - ’:‘_w + X —® S -
| 2 | 2
> , > 7 , ,
X x X % X X » Y, x

FIG. 10. Ladder sum for the neutral-mode density-density correlation function. The thin solid lines regigsehe thick solid lines
represend,,, and the dashed lines represent the disorder potential and carry a fadter of

the other velocity enters only through the density of statesrom which we find
when scattering off the potential. Transforming back to the
time domain we find _ 1 (1+ %)
—iD(t,x,x")= A(m=1) ; —
B o Ax—x'li2010, [2m(X—X"—vtt+ie)]
9 (XX =3 2m(x—X'—vjt+ie) (129 _,Uz9Y
4

D(t,x,x"), (132

From the relation between the Dirac and Majorana fields, o
w=(x1+ix2)/ 2, we find that the Green's function of the where we have denoted the neutral-mode contribution by

neutral-mode fermiong,, [Eq. (71)], can be obtained frorg LD (X ) =(Tex1 (650 X206 )2 10X )y 0X'):).

via a unitary transformation (133
N Nt 11 To evaluateD, we first Fourier transform with respect to
Gy(t,x,x")=0g(t,x,x")0", 0= 201 i time in order to exploit the chirality in the mixed frequency-

(129 space domain. Computing the expectation value in(E83)

] . using Wick’s theorem and taking the disorder average then
Thus from Eqgs(70), (127), and(129 we find, after Fourier gives

transforming, that the single-electron Green’s function for

the 331 sequence in the presence of disorder is _ R
—iD(w,x,x’)z—ij dte“'D(t,x,x")

Git.x.0 1 1 1+ o*
,X,0)= — - ’ ’ ’r_
[2m(x—vt+ie)]™ L 2|27 (X—vyt+ie) Efdi otewze
41 2 2 )
+ L e Adxl/2v1vy (130 (134
2m(X—vottie) '

) . where we have defined
We see that for the single-electron Green’s function the ve-

locity split of the neutral mode remains in the presence of

disorder, but the function acquires an exponential decay with

distance. _912((1)1!)(1)(,)921(_wZ!Xixl)-

We next consider the calculation of the density-density

correlation function. As a first step toward understanding the (139

behavior of this correlation function in a given sample, weif one uses Eq(126) to write the single-particle Green’s

will calculate its disorder average. We can use the transfofynctions in the above expression in terms of the free

mation (89) and the expression for the Fermi density opera-green’s function, i(jO), and the disorder potentiak,, one

tor in terms of the Majorana fieldsy!y:=tix1x2:, to write  finqs upon disorder averaging that the chirality of EIR5)

the density operator§’6) as implies that all nonvanishing diagrams are of the form of
ladder diagrams with the legs of the ladder constructed out of

Fw1,02,%X")=011(®1,%X" )P — @2,X,X")

1 i } il
e P : 131 the disorder-averaged propagatgys.
P12 477\/m—1( X chc) 2 Xz (133 The legs of the ladder are given by

0(w1) 0(— w3)
[ 1%) k—w1/v1+w2/vz—iA§/vlvz
_ 0(—w1) O(wy)
k_w1/U1+w2/l)2+iA§/U1U2 '

h(wy,w; k)= f dx & ™G 4(w1,X,0F2o — @2,X,0) =

(136

which was evaluated with the help of E(L27) for gj;. The segments of the ladder shown in Fig. 10 alternate between
h(wq,w5,k) andh(—w,,— wq,k). Performing the ladder sum gives
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dk n| h(wg,05,K)—Ah(wq,0,,K)h(—wy,— w4,k
F(wl,wz,x,x’)zf—e'k(xfx) (w1, 0, 2) (o, 02, Kh(—w;,—w1,k) . (137
27T 1_A§h(wlyw21k)h(_w21_wlik)
Using the result foh(wq,w,,k) in this expression foF (wq,w,,X,X") gives, after some algebra,
Flaop )= 5 [ 5560 ) o)
et 0 ,) 2w VT =z, (A Tk—2- (A )]
—0(— w1) 8(wy) k-w(— 4y } (139
VOO =z (—Alk—z (—A9])
where we have defined the parameters
W(Ag)E(l)l/UZ_(1)2/Ul+2iA§/U102, (139)
U1t U2 . ) , (V1—v2)°
Zi(Ag)EUlUZ 2 (wl_w2)+|A§i| \/Af_T(wl—'_wZ)z . (140)

From the expression far. (A,) we see that in the first term in EGL38) both poles are in the upper half-plane while in the
second term both poles are in the lower half-plane. Performing ihtegration by the residue theorem and using the resulting
expression folF in Eq. (134) gives

— 1 . B o do'
—iD(@,X,X)=——[6(—w)B(X' —X) — O(w) B(x—x")]evneX Aflxlf ——| cosliA(w')X]

%% —w 4

+ 25 gintA o)) (141)
sin ® ,
Alw")
where we have used the rescaled coordinéate(x—x")/vqv,, and defined

A —\/A2 ! 2 2—\/A2 N o 142
(w)= g_Z(Ul_Uz) 0= g_?w . (142

The experimentally measurable quantity is the retarded density-density correlation function. SittcélEg.not in the time
domain, we cannot use Eqg0) and(41) to obtainDR(t,x,x’) directly. However, inw-k space we have the relations

ReDR(w,k)=ReD(w,k),

ImDR(w,k)=sgnw)Im D(w,k), (143
which in turn yield
DR(w,X)= (@)D (w,X)+ 6(— w)[D(w,—x)]*, (144

where the asterisk denotes complex conjugation. Using [#d44) and(144) and Fourier transforming back to the time domain
we find

A
cosli A (w)X]+ Fi) sinf A (w)X]|, (145

— A(x—x") 1 * do .
R 1y — 7A§X io(vX—t)
DRt xX)=—5"—e P(an—t) f,m om ©

where P denotes the principal value. The remaining integral is computed in Appendix C, and froi@ &@sd(C8) we find
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X/Ulvz A§
|1(m\/E

Jz
Ag

|

1 Ag
_—02))({015(X—01t)—025(X—vzt)}+ H(Z)P(an/vlvz—t>

— o(t)
R — —Agxlvqvy
DH(t.x.0 27're ) [(vl 20105

e _ . If we define the advanced correlation functiorg®
wherez=(t—x/v)(x/v,—1t), andl,, are Bessel functions of _ 9(—1)(g=—g~), then one can show~=g—g® andg~

imaginary argument. Note that as expected this function is; YA . . ; :
real. This result can also be found using the formalism in g—g", which when substituted into Eq149 give

Appendix A. o
We have compute®R, but what we are really interested DR=i6(1)[ (91195~ 91:95) + (95,920~ 97921
in is the behavior oDﬁn a given realization of disorder. A R R _R.R
surprising feature oDR is that it has a(principal value ~ (911020~ 91920 |- (149

singularity at the mean arrival timg=uv X/v1v,. An imme-
diate question is whether this singularity is present in eachVe see that the retarded density-density correlation function
sample, and if not, how does it arise in the average. in a given sample can be expressed in terms of the time-

To investigate the behavior &R in a given realization of ~ordered and retarded single-particle Green’s functions.
disorder we have adopted several approaches. First, as in our We have already evaluated the average time-ordered
analysis of the 110 sequence, we use the factDffatan be  single-particle Green’s function; see Ed.28. Using Egs.
expressed in terms of single-particle Green’s functions(40) and (41) we find for the corresponding retarded func-
whose second moments we evaluate. Second, we show tHan:
in a given sampl®R(t,x) exhibits an exact symmetry about
the pointt=t,. Finally we shall consider the behavior of the
correlation functions in some simple model potentials.

The relation between the time-ordered correlation func-
tions D andg;; follows from the definition(133):

R (X, X") = =18, 6(t) 3(x— X’ —vjt)e el X2z,
(150

Next consider the absolute squares of the single-particle
D(t,x,x")=i detg(t,x,x"). (147 Green’s  functions. The disorder average  of

! * ! ’ H
Using Eg.(40), we then conclude from the above equationgii(t’x'x )g;; (", x,x") can be evaluated by the same dia-

thatD> =i detg” andD<=i detg~. Thus from Eq(41) we grammatic procedure used to obtain the average density-
have ' ' density correlation function. The disorder average of

g5 (6X,X)gi* (t',x,x") can be readily computed using the
DR(t,x,x")=i6(t)[detg™ (t,x,x") —detg=(t,x,x")]. formalism presented in Appendix A.
(148 Omitting the details of these calculations we find

ofi(—ToNm)+ oA,
UinA(w)

1 e 2 fw do . e Sij
1e” —glo(X=—(erisnlalid T oo A (w)X]+
2T e+iAt ) . 27 vJ2

gij (t,X,O)gI’: (tl !Xvo) =

X sinH A(w)X] (151

Wheret_E(t+t’)/2 is the average timeAt=t—t’ is the time difference, and>0 is an infinitesimal regulator. For the

retarded functions we find
’7TA§ A§ X/UZ_t
S(xlvi—0)+ K“Z)'l(mﬁ) Vi,

o(t
g(t,x,00% (t',x,00= (—z)amt)e—ﬁf‘x‘
U1

(152

o(t) TA A
R Rx (17 _ —A x| 12E ¢
07.(t,x,00975 (t',%,0) Ulvzb‘(At)e £ ox 6(2)|O<)\/Tr\/z>,
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by interchanging ; anduv,. ) (154
One should first observe the dependence of these quanti-

ties on the time differenc&t=t—t’. In the time-ordered Equation (153 is analogous to Eq(97) for the 110 se-

case(151) the dependence is approximatelhA1l/ while in  quence. Both equations express the Green’s function in terms

the retarded cas€l52) it is §(At). This suggests that in a of a coordinate-ordered exponential. The expression for the

given configuration botly andgR are rapidly varying func- 331 sequence is more complicated because the term in Eq.

tions of time. The remaining integral in the time-ordered(154) describing propagation in the absence of disorder,

case(151) can be evaluated for the special case of equabQ !, does not commute with the random field term,

timesAt=0, see Eqs(C7), (C8), and(C9). One finds that £&(y) o™

|9ij (t,x,0)[? is the same alg; (t,x,0)|?, provided one makes SinceQ ™= (1/v1v,)[val— (M 7)0*], we can factor out

the replacemen®(t) 5(0)— 1/2me. Comparing Eqgs(146  an overall phase frorS(x,x’; w):

and(152 we see that the structure of the equal-time expres-

sions,|g;; (t,x,0)|* and |gj}(t,x,0)[?, is similar to the result

for DR(t,x,0), up to an infinite prefactor. In particular, the p( JX
xXexp —i

where we have again usez= (t—x/vq)(X/v,—t). Note

[(* &(y)
021951 =91.013 » andgz,gz; can be obtained frong3igry S(X'X’:w)ﬂyexp(' fx,dy

VU1U2

O_Z

wal—

S(X,X, : w) — eiwvn(x—x/)/vlvay

d

' = : _ oh Ey)

diagonal elements dfg|?> and |gR|? have § functions with y ot ———=o0

exponentially decaying amplitudes, and all elements have a TU1b2 V1b2

term that decays algebraically at large o =¢lvlog(x, X" w). (155
In comparing the expressions B (146) and|gR|? [Eq. _ , ,

(152)], one obvious difference is the presence of the factol/Sing this result and Eq129) to transformG,, to g, we find

F 1/(t,—1t)] in the density-density correlation function. One

X/

) . : e Y do .
consequence of this factor is that it mak@%(t,x,0) at fixed g(t,x,x")=[Q 2O]"f Te""(to O o(t)n(— w)
x an odd function about=t,. We shall now demonstrate m
that this antisymmetry is present in each realization of disor- —0(—t)n(w)]s(x,x";0)[Q~Y20]. (156)

der, not just in the averaged quantity. . . ]
The derivation of this antisymmetry relies on some of theFrom this equation we find
results derived in Appendix A that allow us to express the de
Green’s function for the disordered 331 sequence in terms of* (t,+t,x,x’)= _[Q*1/20]Tf —e“h(ty+t)n(—w)

a coordinate-ordered exponential. We begin with an expres- 2i

sion for the time-ordered, single-particle matrix Green’s a4 * ’ — 112~
function in the presence of an arbitrary scalar poteria), 6(~to=O)n(w)]s" (x.X";0)[QH0)".
[Eq. (A16)], (157

From the form of the matris [Eq. (155], one can show

do .
GytxX) = f 99 e o gtyn(— w)

2mi s*(x,X";w)=0dYs(x,x";w) Y. (158
—0(—t)n(w)]Q Y25(x,x"; w)Q 2, Combining this with the fact that fdit|<|t,
(153 O(to+t)N(—w)— O(—tg—t)n(w)

wheren(w)=[exp(Bw)+1] tis the usual Fermi distribution _ _ ) — O —tot
function (with B the inverse temperatureand from Egs. B(to=t)n(=w) = 6(—to+)n(w), (159
(A5) and(A10), Q=v,l+ (N/m)c* and implies that Eq.(157) can be rewritten

g*(to+t,x,x’>=—[Q‘”ZOJTUVJ ;—;eiwt[ﬁ(to_t)n(—w)—9(_to+t)n(w)]5(X,X';w)Uy[Q_llzo]*
=—[Q*0]"o¥([Q™"?0]") "tg(to—t.x,x)[Q~ 0] "*¢¥[Q~YOT*. (160
Therefore, if we define the matrix
C=[Q "0]"¢¥([Q *0]") '= \/% _@ : (161)
we have the final result that
g(to+t,x,x")=—Cg*(to—t,x,x")CT, for [t|<]|t. (162
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FIG. 11. The imaginary part o plotted forv,=1, x=10, FIG. 12. The imaginary part of?, plotted forv,=1, x=10,
M a=0.1, andl’=3. The horizontal axis is time measured from the \/7=0.1, andl’=3. The horizontal axis is time measured from the
mean arrival time. mean arrival time.

One can show by an ana|ogous derivation that the Corref.ound that the retarded denSity'denSity correlation function
sponding retarded functiorgR(t,x,x’), obeys exactly the N & given sample is antisymmetric about the mean arrival

same relation. time, indicating that the poirtt=t, is special, independent of
Using the relation betweeB andg [Eq. (147)] and the ~ én(X). This result is true at any temperature. If we include
fact that deC=1, Eq. (162 implies for |t|<|t,| disorder in the velocity so that, is a function ofx, the
symmetry(164) would be absent and the principal value sin-
ReD(tg+t,x,x")=—ReD(ty—t,x,x"), gularity in DR would be rounded out; cf. Appendix B.
Next we consider the behavior of correlation functions for
ImD(ty+1t,x,X")=ImD(ty—t,x,x"). (163 some simple potentialg,(x). We first consider the case of a

r  uniform potential. As we remarked in Sec. Il B, the correla-
tion functions in the presence of a parallel magnetic field can
be reinterpreted as those in the presence of a uniform scalar
potential difference between the lay&gx) =1I". Using Egs.
DR(tg+1,x,x")=—DR(to—t,%,x"), (164) (40) and (41) tp go from the result in Sgc. Il B for the

time-ordered single-particle Green’s functi@f, [Eq. (74)],
where we can drop the restrictigt] <ty since outside this to the corresponding retarded function, and EtR9 to
interval DR is identically zero from Eq(146. We have transform this to the Majorana basis, we find

Similarly, using the expression f@R® in terms ofg andg
[Eq. (149], Eq. (162 and the corresponding relation fgF
gives

2i6(1)

gR(t,x)=— E[ . (165

VA
val— —o
n ar

A A
RePy(7,X)+ (;ﬂ—vn(rz);RePT(T,X)+ivlv2F0y ReP(7,X)

The quantity Ré?(7,X) and its derivatives are evaluated in Appendix C, and from Eg§0), (C11), and(C12) we find

I’ r [X—vot
5(X—Ult)—X@(Z)Jl(m\lvlvzz) vt—x

gR(t,x)=—i6(t)

(166)
R . Il r
g7.(t,x)=—1i6(t) XH(Z)JO m\/vlvzz ,
|
where theJ, are standard Bessel functions. Nog§1= Since the quantityz=(t—x/v{)(X/v,—1t) is maximal att
—g¥, andg}, can be obtained frorgf; by interchanging;  =to, we see that the frequency of the oscillationsgf is
anduv,. These functions are plotted in Figs. 11 and 12. minimal at the mean arrival time and increases as we ap-

We see that theS functions present in the diagonal ele- proach the extremal arrival times. This feature is evident in
ments ofgR in the case of zero potentigiq. (150 evaluated Figs. 11 and 12.
atA;=0] remain in the case of a uniform potential. In addi-  Finally, we consider the case of a scalar potential made up
tion to theseés functions we find oscillatory terms in all of isolated impurities located at the poinfy/,,} with
elements ofgR(t,x) considered as functions ofat fixed x. strengthg{q,,}, i.e., we take the potential to be

115301-23



J. D. NAUD, L. P. PRYADKO, AND S. L. SONDHI PHYSICAL REVIEW B3 115301

where ¢;;=1l;, c,=i/\viv,=—C,, are overall coeffi-

fn(X)Z% Amd(X—Ym).- (169 cients,p,=n,mod2 is the parity oh,,, and
Note that the white-noise potential used in the previous cal- * i0m 2n 1
culations can be approached by the form given in @§7) M mo= > 11/ ;
if we take the number of impurities to infinity and thg, to n=0 \ Vu1v2 Am/v1v2
be random variables. Using E{.26), one can computg for N (170
this potential by an exact summation of the perturbation ex- i ( i0m ) " igm/\vivs
pansion. Once again, it is the chirality gf) that makes the m1= & m 1+qﬁ1/vlvz

calculation tractable.

If there areN impurities betweenx andx’, then the non-  here we have assumégl/v,v,|<1 for all m. The coeffi-
vanishing terms in the perturbation expansionggfare in cient r o1 is the sum of the amplitudes for scattering off
one-to-one correspondence with the set of Nlluples of 10 mith 'impurity an evenodd number of times.

nonnegative integers. For example, X <y;<y,<--- For a given realization of the potential in E(.67), the
<Yn<X, then fort>,0 the nonvanishing terms correspond 0 Green’s functions in Eq(168), considered as functions of
propagation fromx’ to y, followed by scattering1; times  {ime have an exponentially large number of singularities.
off |mp.ur|ty da, foIIowgd by propagatlon frony, to y, and However, the disorder-averaged quantitigs(128) and?
scattgrlngnz times off lmpurltyqz, etc., Wherejm are non- [Eqg.(150)], are very simple functions of time. This is readily
negative integers. Ifi, is even then the velocity of the par- nqerstood if we approximate the white-noise potential by
tlgle is gnchangeq by th.e scatte_rlhga., theol)nternal Iln(eo? on taking the impurity strengthg,, in Eq. (167) to be indepen-
either side of the impurity are either bog or bothgzy),  dent, identically distributed random variables with zero
while if n,, is odd then the velocity of the particle is changed means. Then from Eq170 we seer, ;=0 for all m. Thus

by the scatteringi.e., the internal lines on either side of the o only nonvanishing‘kj involves an even number of scat-
impurity are g{? and g%;)). Therefore, from the parity of terings off each impurity, and hence there is oahesingu-

each elemenny, OOf the N-tuple we know which internal  |arity, corresponding to the particle never changing its veloc-
propagators arg$} and which areg$y), and we can define a ity

corresponding arrival tim&@. This arrival time is given by

T=X;1/v+X;5/v,, whereX; is the total distance the particle 1

travels with velocityv;. From these considerations we can 0i;(t,x,0)= §;; . (m)’\‘. a7y
conclude that the general form of the time-ordered and re- 2m(X=X"—vt+ie)

tarded Green'’s function for the case of isolated impurities is )
From Eq.(170 we see thai,, ;<1, and sinceN, the number

of impurities betweerx’ andx, is proportional to]x—x’|,

gij(t,x,x’)zz L{(i ; the last factor in Eq(171) reproduces the exponential decay
k 2m(T—t+ie) present in Eq(128).
(168 We can understand several things from the general form
R N=—ioS Lila(Ti— of the Green'’s functions given in Eg4168). First note that
9ij (tX,x") = =160(t) 2, L o(Tic —1), the fact thag® for the case of isolated-function impurities

B is a sum ofé functions in time[Eq. (168)] is consistent with
where the arrival time¥,! depend on the end pointandx’ the 8(t—t’) factor present ingiRj(t,x,O)gﬁ*(t’,x,O) [Eq.
and the location of all impuritieg,,, located between the end (152)]. One can similarly show that the form of in Eq.
points, and the coefficients)! depend on the impurity (168 is consistent with the 1{(-t') behavior of
strengthsy, . o g (t.x,0)g5 (t' x,0) [Eq. (151)].

In calculatingg;; with N impurities betweenx' and x, Next we suppose that thé impurities betweernx’ andx
these impurities divide the intervak’,x] into N+1 seg- gre evenly spaced. In the limM—co it should not make a
ments. Since we are computirg , the first segment must gifference. In this case, Eq169) still holds but the quanti-
be associated with a factor gf”’ and the last segment with ties il and T are determined by a different set of rules, so
a factor ofg((’. Since on theN— 1 remaining segments we e shall distinguish them by a tilde. The number of arrival
can have eitheg{y’ or g5 depending on the parity of the timesT} is reduced from B~ down toN. This is because
N, there are in general"2 * arrival timesTy , and thus the  the interval|x’ —x| is now divided intoN+1 segments of
number of terms in the sum in ECL68) grows exponentially  equallength. The velocity on the first and last segments is
with the number of intervening impurities. fixed by the indices og;; and theN arrival times can then be

For a given arrival timeTy{ , the parities of then,’s are  gpecified by the numbek of the N—1 remaining segments
determined and the corresponding coefficightin Eq.(168)  that have velocity,. For example, fogy; the arrival times
is given by are

[x=x'|
N+1°

(172

N
i ~ k N+1-k
L¢=c;j mI:Il Fm.ppy (169 Ti'= ( *

U2 U1
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wherek=0,1, ... N—1. The amplitudeL}! is the sum of chiral Majorana fermion. The chiral bosgn ir_1 the nge
(N1 of theLi’s given in Eq.(169). In the limit of largeN  theory, ¢, can be shown to have a compactification radius of
R=1/,/8, the same radius as the charged mode of the 331
state; see I. In addition to the=1/2 primary fields and their
descendents, the operator content of the edge theory includes
the primary fieldd,¢ and the vertex operatoe**®, where

the number of terms that contribute td! is a Gaussian
distribution in k peaked atk=(N—1)/2. The arrival time
corresponding to this amplitude is

) N-1 N+3|[x—x] keZ. The electron creation operatofis
T(N_l)/zz 2U2 2U1 N+1 1 L
W) =5 —x(x)e 0, (174

N:)OCUn|X_X’| . (173 Which has a scaling dimension of 3/2.
V1V, 0 We now determine the electric charge density operator,
p(x), for the Pfaffian edge. One requirement for this operator

Thus we find that the mean arrival tintg emerges in this  j5'tpat the electron operator has a unit charge with respect to
model potential because the number of terms that contributg.

to the singularity aff}} is maximal forT} =t,.
All of the considerations in this section lead us to the [p(x),¥T(x")]=8(x—x")¥T(x). 175
conclusion thaDR(t,x,x") in a typical configuration is given
by DR(t,x,x"), Eq. (146), with the factor of P1/(ty—1t)]
replaced by a functiori(t,x,x"), which is a rapidly fluctu-
ating function of time, antisymmetric about the poirtt,, p(X)= 3, @(X).
and whose amplitude grows asapproached,. The claim 2m\2
that the general structure & in a typical configuration is

One candidate that satisfies this relation is

1

(176

R . The operator on the r.h.s. of this equation has dimension one.
R
captured DyD™ is supported by the relation betwe@ﬁ‘ﬂj The only other dimension-one operators present in the edge

9.9" [Eq. (149], and the fact that the second momefu theory aree™?¢. However, if we were to add to our defi-
and|g'R|2.[Eq. (152)] have the same structure Iaé?,.wnhout nition of p(x) some nonzero multiple of the Hermitian com-
f[he prlnC|pa_I value fgctor. We expect thidt,x,x") is a rap- ination €2¢+e~"2%), we would find that the condition
idly fluctuating function oth|me basRed on the dependence 0{; 75 js violated. Any other higher-dimension operators that
g;;(t,x,0)g7; (t',x,0) and gj;(t,x,0)g;;*(t",x,0) on ¢—t'),  could be added tp(x) would necessarily be multiplied by
Egs.(151) and (152, and the behavior of andg® for the  explicit powers of the short-distance cutatfand will there-
case of isolated-function impurities, Eq(168). However  fore vanish in the continuum limit. The Pfaffian state has no
complicatedf (t,x,x") is, we know it must be antisymmetric interlayer dynamics. Each electron is in a state symmetric
aboutt=t, by Eq. (164). The claim that the amplitude of between the layers, under the assumption that the symmetric-
f(t,x,x") approaches a maximum &tt, is supported by antisymmetric splitting is large. Hence, there is an energy
several results. First, recall thgf in a constant potentidr, gap for any process that excites the layers independently.
Eq. (166), is oscillatory with a frequency that is proportional ~ Having determined the charge density operator for the
to I' and that is minimal at the mean arrival time. This sug-Pfaffian edge theory, we can immediately write down the
gests that in a potential that varies witlthere will be less  retarded density two-point correlation function at zero tem-
cancellation near the mean arrival time than near the experature for the clean system:
tremal arrival times. Second, there is the observation that in
the model of equally spaced isolated impurities the number R ,
of terms that contribute to each singularity is maximal for the Dpft,x)=— A 0(1) 8" (x—v ). 177
singularity at the mean arrival time. Finally, we have the fact
that averaging produces a function that is singular=at. From the results in Sec. Il C we know that the only RG
These conclusions are supported by our numerical simulaionirrelevant disorder is scalar potential disorder. This does
tions; see Sec. Il. not modify D §; at all, just as in the case of the charged mode
for both the 110 and 331 sequences. From the discussion in
D. Pfaffian edge Sec. Il D we know that at a finite temperature this correlation

function is also unchanged. We find tﬁaﬁf(t,x) has a sig-

In this section we consider the edge theory of the Pff"‘ff'arhal at a single velocity even at a finite temperature and in the
state, concentrating on the form of the retarded density r Sresence of a nonzero scalar potential

sponse function in the presence of a finite temperature and
disorder. The edge theory of the Pfaffian state contains a
=1/2 minimal model conformal field theoCFT) in addi-

tion to the usual ¢=1) chiral bosort® Recall that thec Here we briefly discuss the numerics for the neutral-mode
=1/2 minimal model has three primary fields, which we de-contribution to the retarded density response function of the
note ad, y, ando, and whose scaling dimensions are 0, 1/2,331 edge. The matriceS(x,0;w) were computed using a
and 1/16, respectively. Thg field is identical to a single discretized version of Eq154). Using Eq.(153 the single-

E. Numerics
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particle Green’s function was then found by a fast Fourier —iQdyfn(X)=[ wnl— E(X) 7Z]f (%), (A4)
transform(FFT) algorithm. Finally, we used the relation be-
tween the single-particle Green’s functions and the density/here

response functiof148) to calculateDR, and integrated over N A (X)

time to find the neutral-mode contribution to the signal in Eq. — Un & f (x)= n (A5)
/ o BX(x)/

(29). N v, .

Note that the HamiltoniafAl) has a particle-hole symmetry
under which ¢ " and &—=—¢. In terms of the two-
We would like to thank A. H. MacDonald for suggesting component wave functiofi,(x), this implies that iff, is a
we consider gated samples, and C. de C. Chamon for bringolution to Eq.(A4) with energy w,, thenT,=o*f* is a
ing Ref. 13 to our attention. We would like to acknowledge solution with energy— w,. Assuming allw,#0, we can
support by the NSHJ.D.N), DOE Grant No. DE-FG02- enumerate the functions,(x) in such a way thatw_,=
90ER40542(L.P.P) as well as NSF grant No. DMR-99- _ , " and ¢,>0 for n>0. This impliesT_,=f,, from
78074, US-Israel BSF grant No. 9600294, and support fronynich we find A,=B_,, an indication that some double

the A. P. Slo_an Foundation and the David and Lucille PaCk‘counting may be present. Indeed, the particle-hole symmetry
ard Foundatlor(S.L.S). _L.P.P. a_nd_S.L.S_. thank the Asp_en only interchanges the two equatiof2); it should not gen-
Center for Physics for its hospitality during the completion grate new solutions. This double counting can be removed if

of part of this work. we definea,+a’ +a,, and write, instead of EA3),

(t,x)
Pr(t,%)
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APPENDIX A: DISORDERED 331 SEQUENCE VIA THE

SPIN ANALOGY ) = En: fo(x) e 'nta, . (AB)

.lr.' this appendlx we present an altern{:\tlve met'hod for ObTo obtain the solutions to EqA4) we define the rescaled
taining exact disorder-averaged correlation functions for th%vave functions
331 sequence. It is similar to the method used in our discus-
sion of the 110 sequence in Sec. Il C, with some technical {n=0Yf (A7)
complications. The procedure is based on the fact that we
can explicitly construct solutions to the Heisenberg equationd terms of which the differential equatidi4) becomes

of motion for each realization of disorder. We shall ignore

the charged mode throughout the discussion. . 0,
The 331 Hamiltonian including a disordered scalar poten- On(x) =1 @nQ \/EU G- (A9
tial (123 expressed in terms of the Dirac field is
We can write the solutions to this equation as
L2 _ Y
Ho= f-ude: —lon =i o (W Y £n(X)=S(%,0;00) £(0), (A9)
with a coordinate-ordered exponential
+EX) YTy, (A1)

X £(y)
S(x,x";w)=Tyexpg i | d -1 21,
where in this appendix we suppress the subscript @nd ( @) =Ty p( fx’ R \/vlvzg D

take periodic boundary conditiong/(x+L)=(x). The (A10)
Heisenberg equations of motion for the field operakfr, x)

! T H !
and its Hermitian conjugate are for x>x’, and the Hermitian conjugateS(x,x";w)

=S'(x’,x;w) for x<x'. The boundary conditions on the

[0+ v dy+1 E)TP(E,X) + (M ) d ' (1,%) =0, Fermi field imply {,(x+L)={,(x), which in turn means
(A2) that the allowed energias,, are determined by finding those
[0+ vndy— i1 EO) T (8, %)+ (N 7) dyp(t,X) =0. energies for which the matri®(L,0;w) has a unit eigenvalue

) ) with the corresponding eigenvector taken toh€0),
The anomalousi.e., fermion-number nonconservinterms

in Hp couple the equations of motion fay and ' and [S(L,0;w)—1]¢,(0)=0. (A11)
therefore we must expand the field in terms of both creation
and annihilation operators, The orthogonality of solution$,(x) for different values

of w, is guaranteed by the fact that the differential equation
_ —iwpt PR (A4) is self-conjugate, while their normalization must be de-
Y(t.x) ; [AnC0e ™ an T Ba(x)eran],  (A3) manded explicitly,

where by assumptioaﬁ are canonical Fermi operators that 2 N

create exact single-particle eigenstatesf with energies fﬁuzdx fa)fa(x)=1. (A12)
w, . Substituting this expansion into the equations of motion

leads to the following matrix differential equation: This can be rewritten with the help of Eq#&\7) and(A9) as
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Un initial orientation is forgotten after a finite distance, and the
L {MOMw,£)2(0)=1, second term in the normalization matfik13) disappears in
12 the thermodynamic limit,.— . This happens with probabil-
L2 (AL3) ity 1 for any realization of disorder. Physically, this simpli-
Mo,&)=1- p— Lf Llzdx S (x,0;0)0*S(x,0;w). fication is related to the fact that in a chiral system localiza-
AL

tion does not happen; each particle explores the entire
Usually it is the wave-function normalization that makes thecircumference of the sample. _ , .
disorder calculations so difficult. Note, however, that the in- Let us now consider the single-particle Green's function
tegration in the second term of the normalization matrixOf the neutral-mode fermiorgj, [Eq. (71)]. Using Eq.(A6),
Mo, €) is extended over the entire length of the sample this can be written

which makes it a self-averaging object. As in Sec. lll C, the

ma}trix S(x,x’;w)_ [Eq..(A_l.O)] can be interpretgd as the evo- Gyt x,x")= —i> f,O)FT(x)e ' n 6(t) n(— wp)

lution operator in a fictitious timey, for a spin precessing n

under the influence of a constant magnetic field in xhe o
direction (due to the off-diagonal terms of the mat@Qx 1), (=t n(en)], (AL4)
and a random field- £(x) along thez direction. The integral wheren(w)=[exp(Bw)+1] ! is the usual Fermi distribution
in Eq. (A13) is thex component of the spin averaged over afunction. Using Eqs(A7), (A9), and (A13), with M, §&)
“time” L. In the presence of a nonvanishing disorder, the=1, we obtain

U1U2
Lu,

£n(0)21(0)
¢10)2,(0)

gw(t,x,x'>=—i( )2 e [ o(t)N(— w,) — B(—)N(w)1Q ] S(x,00,) S'(x',000) [Q 12

(A15)

where £,(0) obey the eigenvalue equatidAll). To take it is an expression valid for any given realization of disorder
the thermodynamic limit, we need to set the system size tgor even in the limit of no disorder, as long as this limit is
infinity, keeping other parameter@emperature, disorder, taken after the thermodynamic limjt For example, we
distancex—x'|, etc) finite. Effectively, this implies that we checked that Eq(A16) with £(x)=const reproduces Eq.
can select an energy intervAE, “infinitesimal” on a scale  (74), which was derived by more conventional methods.
defined by these finite quantities, and yet containing a mac- From the definition ofS(x,x’;w), Eq. (A10), and the
roscopic number of energy levels, such that the averagindisorder-averaging procedure used previously, seéH®),
over the states within this interval gives we find

S(X,X, : (1)) — e—Ag‘X—X'|/2vlvzeiw(X—X')Q71. (Al?)
With the help of Eqs(70) and(A16) this gives, in the zero-

The value of the average and the existence of such an intefemperature limit,
val follows from the fact that for anyw,# w,, the spin-

) 1
<§n§n>wneAE_ 51-

X
rotation matricesS(L,0;w; ) become entirely uncorrelated mE 1 }[ Ito i
for a sufficiently largel, or, equivalently, the relative rota- T [2m(x—vgtie) ™ 2 2m(X—vgttie)
tion matrix S'(L,0;w,)S(L,0;w,) entirely forgets the initial «
direction. n -0 o Aglxli2o10 (A18)
Performing the averaging over the eigenstates within such 2m(X—vyt+ie) '

an interval, we obtain for the correlation functi¢Al5), This is in exact agreement with E6L30) of Sec. 11l C. We

have checked that the other disorder-averaged correlation

Gyt x,x")=—i f g_:e—iwt[ 6(t)n(— w) functions for the 331 sequence discussed.in S_ec. I_II C can
also be reproduced using the method described in this appen-
—0(=HN(©)]Q S(x,x;0)Q 1 dix.
(A16) APPENDIX B: RANDOM TUNNELING FOR THE 331
where the summation was replaced by an integration using SEQUENCE
the “clean” single-particle total density of state%(v{l In this appendix we illustrate the effect of an RG irrel-

+v§1)L=2Lvn/v 102, Which cannot be modified by disor- evant random perturbation by analyzing the neutral mode of
der. Note that Eq(A16) does not contain a disorder average;the 331 bilayer in the presence of velocity and tunneling
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disorder. Specifically, we assume that both the neutral-mode 02 f
velocity v,(x) and the tunneling amplitude(x) in Eq. (Al)

are coordinate-dependent, in such a fashion that the systel
remains chiral,v; x) =v,(X)=\(X)/7>0 for all x. The o1 |
introduction of such a coordinate dependence requires only :
slight modification of the HamiltoniafA1). Specifically, the
first term in the Hamiltonian density must be replaced as § 0

Re[F(T)] —— ]
m{FT) ——- |
(21‘77-1 -------

0.16 |

0.05 |

. -0.05 |
—iooxp— 'z{vn<x) Wloxp+ plalvn(x) ¥} o1

-0.15

The arguments in Appendix A can then be repeated with
little modification and we obtain, in place of Eq#15) and
(A10),

-20 -15 -10 5 15 20

N of
o |
-~
o

q FIG. 13. The realsolid line) and imaginary(dashed ling parts
o X . : .
" it _ of the universal functionF(T) [Eq. (B4)], which describes the
Gyt x.X") J 2i e 1oOn(~o) shape of the peaks of the averaged Green’s function for the 331
1 , T double layer with disorder in the tunneling amplitude. The dotted
—0(—)n(w)]Q TA(X)S(X,X";0) Q™ FAx"), line shows the real part of the Green’s function in the absence of
(B1) disorder.

X o 1 1+ o*
S(X’X';‘"):Tyex"(ifxrdy[“’Q1(”‘“(””2] ’ A | B0 PR T maxox' 1)
N 1—o*
5( ) / 12,1 "o '
u(y)zm. B2) ¥ ¥2X ) ma(xx )~ 1]

The disorder averaging can be performed for weak disorder
if we notice that the velocity fluctuations along the entire
path contribute to the arrival times(x,x"); these quantities
acquire nearly Gaussian distributions at sufficiently large dis-
nces(compared to the disorder correlation lengthsg|x
x']). If we ignore small multiplicative corrections near the
ends of the interval, we then find

Again, this expression is valid for any given configuration of
disorderedv,(x), A(X), and (x).

The requirement ; ,(x)>0 is equivalent to essentially i
non-Gaussian disorder, and the disorder averaging is genef’}
ally nontrivial. This, however, is greatly simplified in the _
absence of potential disordef(x)=0. In this case the re-
maining matrice®Q " 1(y) in the exponential commute with «
one another for ally, the coordinate orderingT() can be mzi —_1/2)21+U F(T,/DY?
omitted, and the disorder averaging can be performed di- PR 4o |7t Di/Z e
rectly. The structure of the expression is most evident after

the unitary transformatiori129) to the Majorana fermion 15> —o* 72
representation, +(v; T F(T2/Dz9) |,
2
gij(t,X,X')=OT9¢(LX,X')O whereTi=Ti(x)E7i(x)—t is the time elapsed from the ar-
d rival of theith peak,D;=D;(x)= 7°(x) — 72(x) is the corre-
I e P _ sponding dispersion, and
f 27Tie [et)n(—w)
“do o
8 exior(x,x")] FM=| 5e“ “% (B4)
—6(—t)n(w)] 0 &l

vill2(x)vil/2(x/) - - .

where we have assumed-0. As illustrated in Fig. 13, at
large values of the argument, this function approaches as-
ymptotically the clean single-particle Green’s function,
whereri(x,x’)zfﬁ, dy/v;(y) is the time it takes for théh F(T)=(2=T) %, |T|>1. Although the perturbation is RG
mode to travel fromx’ to x. Clearly, the structure of the irrelevant, the form of the Green'’s function is modified in the
correlation function in a given configuration of disorder doesvicinity of the singularities.

not change; at zero temperature we obfaifh Egs.(6) and For a weak (w<v,) Gaussian disorder with a finite cor-
(130] relation length,

(B3)
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AX)=N+ON(X),  (SN(X)SN(Y))=WF(x—Y),

f(0)=1,

assumingw2<f2, we obtain, to leading order in the weak
disorder expansion,

- _ 0, o5 A2 FIG. 14. The complex plane showing the branch cut along the
7(X) = (X/v)[ 1+ w70+ O(W"/vi) ], real w axis and the contour§; andC,.

and Di(x)=w2xIC/vi“+ .-+, where the disorder correlation

length separately convergent. The integrand in tbg integral is

exponentially small in the upper half-plane and thus can be
o closed there to give zero. The integrand in @gintegral is
l.= f dx f(x) exponentially small in the lower half-plane and can be closed
0 there and contracted to run around the branch cut. We use the

was assumed to be short compared with the overall distancehange of variables = (a/b)sin¢ in the integral around the
l<|X]. cut to arrive at

27
APPENDIX C: EVALUATION OF INTEGRALS A(7.X) = 0((bX)2— Tz)%f s_:ea[i(fxb)sin¢+xc05¢]_
In this appendix we evaluate the integrals needed in the 0 (Ca)

main text. The basic integral is of the form
We next note that we can write

* dow . sSinNfA(w)X]
A(T,X):f o€ (C1)
e Aw) 7 -
i—sing+ X cose= Xz—(—) cog¢p—igg), (C5
where A (w) = a?—b%w?, and 7, X, a, andb are real pa- b>"¥ ¢ p) CoXe~igo), (CY

rameters. At large frequencies the integrand is of the form h th | ¢ is defined b
1l/w times an oscillatory function and therefore convergesW ere the real paramelelpo IS define y costyq

without a regulator. Also, since the expansion of the inte-_ < VX"~ (7/b). After performing this substitution in Eq.
grand in powers ofA(w) contains only even powers, no (Q4) anq noting that the integrand is a periodic functlo.npln
branch cut is needed and the integrand is therefore an anith period 2m, we can perform a final change of variables
lytic function for finite ». For largew the integrand contains = ® 1o 0 find

the factorse'®("*PX_ Thus for |bX|<|7|, the integrand is

exponentially small on one side of the real axis and we can A(7,X)=6((bX)2— Tz)% 2 %ea\/XZ:(-r/b)Z'cosﬂ

therefore close the contour on that side and Ms€0; hence 2m
A(7,X) 0((bX)%—72). C2 1 a
(nX)=6(bX)"~7) (€ = S OL(bX)?= 2l VX 7|,  (Co
To evaluate the integral in the region for which it is nonzero,
we break up the integral into two terms: wherel, is a Bessel function of imaginary argument.
do  eM@X do = e AX Using a=Ag, b=N\/m, T=vX—1 and diff_erentiating
A( T'X):f —aior _f — el Eq. (C6) with respect tor and X give the following results:
c, 2™ 2A(w) c, 2™ 2N (w)
(€3 foc do by SINHA(@)X]
where now we must introduce a branch cut, which we take to —w Zwe A w)
run along the real axis from —a/b to a/b. The contours
C, andC, are shown in Fig. 14. Assuming>0, the con- _ 1 0(2)] i\/E C7)
tours have been chosen so that the integrals in(Eg) are 2(N/ ) N7

fx g_ieiw(an—t)cosf[A(w)X]:%Sgr(t)[5(X/Ul_t)+5()(/”2_0] + Ag 0(Z)LI1(A_;‘/E)' (C8)

2U1U2 JE

— o0

SO wX—1):
— 27Te ' A(w)

> dw sinfA(0)X] 1 L .Y (vpxlvvo—t A )
f =~ oxj SIMOLIXNvy=1) = 6(x/vy—1)] 2N 6(2) 7z |1(m\/2 :
(C9
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wherez=(t—x/vq)(X/v,—t).
Finally, if we analytically continue the above results to the case\ pfivqv,l", wherel is real, and writex(w)
=vw,I'?+(\/7)%w?, we find

* dw oo X— Sil’[K(w)X]_ 1 r
f_mﬂe e 20 H(Z)J"(W“”lvzz)’ (€10

= do r r
f —we'w<vnx—t>cogx(w)x1:;sgr(t)[a(x/ul—t)+5(x/vz—t)]—Eo(z)Lh(m\/vlvzz), (C1)

—» 27T \ UleZ
* do . o SiMk(w)X 1 Ire(zy (vpx—vqst)  [I'Jvivaez
f 40 ox-tj, l__ Sgt)[ 8(x/v,—t)— S(xlv,—t)]+ 2y, 27,
o 2T Kk(w) 2N 2(N/m) Voqv,2 N
(C12
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