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Edge dynamics in quantum Hall bilayers: Exact results with disorder and parallel fields
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We study edge dynamics in the presence of interlayer tunneling, parallel magnetic field, and various types of
disorder for two infinite sequences of quantum Hall states in symmetric bilayers. These sequences begin with
the 110 and 331 Halperin states and include their fractional descendants at lower filling factors; the former is
easily realized experimentally while the latter is a candidate for the experimentally observed quantum Hall
state at a total filling factor of 1/2 in bilayers. We discuss the experimentally interesting observables that
involve just one chiral edge of the sample and the correlation functions needed for computing them. We
present several methods for obtaining exact results in the presence of interactions and disorder that rely on the
chiral character of the system. Of particular interest are our results on the 331 state, which suggest that a
time-resolved measurement at the edge can be used to discriminate between the 331 and Pfaffian scenarios for
the observed quantum Hall state at filling factor 1/2 in realistic double-layer systems.
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I. INTRODUCTION

The dynamics of the edge modes in quantum Hall syste
has been a subject of great interest for some years.1–3 Its
appeal is multifold. The low-energy excitations of the ide
quantum Hall states that give rise to the plateau in the H
resistance exist only at the edges. There is a deep conne
between the structure of the bulk ground states and the ‘‘
versal content’’ of the edge dynamics that is captured ma
ematically in a relation between (211)-dimensional Chern-
Simons theories and (111)-dimensional conformal field
theories.4,5 This connection in turn implies a nontrivia
charge dynamics at the edge, which is now supported
experiments.6,7 Finally, this connection allows the logic to b
turned around in deducing new quantum Hall states from
analysis of possible conformal field theories.5,8

In this paper we investigate the edge dynamics of t
infinite sequences of quantum Hall states in statistically sy
metric bilayer systems in which we supplement the unive
content by the inclusion of interlayer electron tunneling,
additional magnetic field parallel to the layers and, most
portantly, disorder. The chief interest of this problem is th
interlayer tunneling is strongly affected by the nontriv
charge dynamics and thus serves as an ‘‘internal probe’
the latter. In a previous publication,9 henceforth denoted I
we had studied the problem of the nondisordered system
gives rise to a chiral version of the sine-Gordon theory tha
exactly soluble for the two infinite families of states f
which interlayer tunneling is not irrelevant: these are
mm8n Halperin states withm5m85n11 and m5m85n
12. The second of these families was shown to exhib
remarkabletrifurcation of charged excitations on the edg
with the appearance of two Majorana fermions with dynam
cally generated velocities. In this paper we consider the
ditional effect of disorder and a nonzero temperature on
dynamics as well as the possibilities of modifying the tu
neling by means of an interlayer magnetic field or a ga
transfer of charge between the layers; the latter two pro
dures are essentially equivalent as we will see below.

While the additional complications, especially the diso
0163-1829/2001/63~11!/115301~30!/$15.00 63 1153
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der, do not allow a complete solution in the sense of find
distributions of correlation functions in interlayer fields an
at finite temperatures, the chiral character of the dynam
still allows us to make substantial progress in ways t
should be of considerable interest to readers with a ba
ground in the physics of interacting, disordered syste
Consequently, we have included some amount of techn
detail in the paper. In order not to lose sight of the princip
physical results, especially those on the 331 state and
double-layer Pfaffian state that are experimentally testa
this introduction is followed by a summary of the ‘‘usefu
content’’ of the paper. Readers primarily interested in t
summary may wish to stop their perusal at its end.

Before proceeding to that summary, a brief discussion
the observables and the relevant correlation functions is
order. As we will show in more detail below, we study sy
tems that possess one edge mode per layer so their si
layer analogs are the Laughlin states atn51/m with m odd.
In those cases asingle edge presents three natur
observables.10 The first is the ground-state expectation val
of the edge current, which can, in principle, be significan
the flux through the bulk is varied.11 The second is the tun
neling density of states, computed from the one-elect
Green’s function, and the last is the edge mode velocity m
sured in a time-resolved experiment done at the edge, w
enters the retarded density-density correlation function.
reality, the first is not experimentally relevant, while the thi
is not remarkable when there is one mode that is unaffec
by disorder or temperature. The second has been experim
tally investigated6,7 to great effect if not theoretical satisfac
tion; see Ref. 12 and references therein.

One of our central contentions is that the collective mo
structureis interesting in double-layer systems, even in t
minimal cases where there is only one edge mode per la
This was already clear in the clean cases considered p
ously, as in the trifurcation alluded to above, and is also
case in the more involved and realistic cases studied h
Consequently, the computation of retarded density corr
tors central to time- and layer-resolved measurements a
edges will be a central concern. In addition we will al
©2001 The American Physical Society01-1
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compute one-electron Green’s functions needed for tun
ing measurements, but they will turn out to be essentia
insensitive to the perturbations that we consider. We will
compute edge currents, although our results on parti
functions in I can be easily extended to do so in clean s
tems, and extensions to the cases studied here are also
sible.

We should note that some of this work has technical c
nections to earlier work on single-layer systems13,14 with
multiple-edge modes but the details are different, and on
our sequences, inclusive of the 331 Halperin state relevan
experiments, has no analog in single layer systems.

The outline of the paper is as follows. We begin with
review of the edge theory of clean bilayer systems in
presence of uniform interlayer tunneling at the edge~Sec.
II A !. Next we present our results for the effects of an int
layer magnetic field~Sec. II B!, disorder~Sec. II C!, and a
finite temperature~Sec. II D!. The experimental conse
quences are discussed in Sec. II E, and the details of
calculations are presented in Sec. III and the appendixes

II. SUMMARY OF RESULTS

In this section we present a summary of our results. Re
ers interested in the details of the calculations will find th
in Sec. III, which also contains formal definitions of the p
rameters of the model. We begin with a review of the ed
theory of clean bilayer systems. Next we consider the inc
sion of a parallel magnetic field, disorder, and a finite te
perature. We conclude with an experimental proposal for
edge measurement that could determine the bulk state
sponsible for then51/2 plateau observed in bilayer system

A. Review of clean bilayer edge theory

The system under study consists of two parallel tw
dimensional electron gases~2DEG’s! in a strong perpendicu
lar magnetic field. The geometry is sketched in Fig. 1. S
cifically, we are interested in the edge excitations of
Halperin states described by themmnwave function,

Cm,m,n~$zia%!5 )
a,b

~z1a2z1b!m~z2a2z2b!m

3)
a,b

~z1a2z2b!n expS 2(
i ,a

uziau2/4D ,

~1!

FIG. 1. The overall geometry of the bilayer quantum Hall sy
tem in a magnetic fieldB with edge modes in both layers propaga
ing in the same direction.
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wherezia is the complex coordinate of electrona in layer i.
The integerm determines the correlations within the laye
and the integern specifies the interlayer correlations. The
states are incompressible and thus the gapless excitatio
the system are confined to the droplet edges, which h
lengthL and are parametrized by the coordinatex.

The edge theory contains two chiral Bose fields, a char
modefc and a neutral modef. We denote the velocities o
these modes byvc,n, respectively. Excitations of the charge
mode correspond to charge being added to the edge from
bulk, whereas excitations of the neutral mode correspon
a transfer of charge between the edges of the two layers.
restrict our discussion to states for which both edge mo
move in the same direction, the ‘‘maximally chiral’’ case, b
requiringm.n.

In I it was shown that in the presence of interlayer sing
electron tunneling at the edge, the Hamiltonian of the ed
theory separates into a free chiral boson Hamiltonian for
charged mode and a chiral sine-Gordon Hamiltonian (xSG)
for the neutral mode. The chiral sine-Gordon Hamiltoni
depends on the scaled tunneling strength, denotedl, and the
parameterb̂[A2(m2n), which sets the period of the inter
action term as well as the engineering dimension ofl @see
Eq. ~37!#. Since the neutral-mode Hamiltonian depends o
on m2n, the set of all maximally chiral bilayer states can
divided into sequences labeled by the value of this diff
ence. In particular, we will concentrate on the 110 sequen
which contains all states withm2n51, and the 331 se-
quence, composed of states withm2n52. The tunneling
perturbation is relevant, in a renormalization group~RG!
sense, for the 110 sequence and marginal for the 331
quence.

The 110 and 331 sequences were solved exactly in I
particular the single-electron Green’s function

Gi j ~ t,x![2 i ^T:C i~ t,x!::C j
†~0,0!:& ~2!

and the two-point function of the density-fluctuation opera

iDi j ~ t,x![^Tr i~ t,x!r j~0,0!&2^r i~ t,x!&^r j~0,0!&, ~3!

where C i and r i are the electron annihilation and charg
density operators on the edge of layeri, respectively, were
computed exactly at zero temperature andL→`. We repro-
duce these results here, adopting a self-evident matrix n
tion. For the 110 sequence we have

G~ t,x!5
1 cos~lx/vn!1 isx sin~lx/vn!

@2p~x2vct1 i e t!#
m21/2A2p~x2vnt1 i e t!

,

~4!

2 iD~ t,x!5
1

2~2m21!

~11sx!

@2p~x2vct1 i e t!#
2

1
~12sx!

2

cos~2lx/vn!

@2p~x2vnt1 i e t!#
2

, ~5!

-

1-2
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EDGE DYNAMICS IN QUANTUM HALL BILAYERS : . . . PHYSICAL REVIEW B 63 115301
where 1 is the 232 unit matrix, sx is the standard Paul
matrix ande t[sgn(t)a, wherea is a short distance cutoff o
the order of the magnetic length. For the 331 sequence
find

G~ t,x!5
1

@2p~x2vct1 i e t!#
m21

1

2 F 11sx

2p~x2v1t1 i e t!

1
12sx

2p~x2v2t1 i e t!
G , ~6!

2 iD~ t,x!5
1

4~m21!

~11sx!

@2p~x2vct1 i e t!#
2

1
1

4

~12sx!

2p~x2v1t1 i e t!2p~x2v2t1 i e t!
,

~7!

where we have defined the velocitiesv1,2[vn6l/p.
Each of these functions contains a part arising from
charged mode and a part from the neutral mode. For
single-electron Green’s functions the contributions fro
each mode are combined multiplicatively, while for th
density-density correlation function they are combin
additively.

In addition to these time-ordered correlation functions,
later sections we will be interested in the corresponding
tarded functions that govern physical response measurem
at the edge. The density response function is

D R~ t,x!52
u~ t !

2p F ~11sx!

2~2m21!
d8~x2vct !

1
~12sx!

2
cos~2lx/vn!d8~x2vnt !G ~8!

for the 110 sequence and

D R~ t,x!52
u~ t !

2p F ~11sx!

4~m21!
d8~x2vct !

1
~12sx!

4~v12v2!x
$v2d~x2v2t !2v1d~x2v1t !%G

~9!
11530
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for the 331 sequence, where the prime denotes differentia
with respect to the argument.

We see that for the 110 sequence relevant tunne
produces spatial oscillations in the correlation functio
while for the 331 sequence marginal tunneling leads
two velocities (v1,2) in the neutral-mode sector, and hen
a total ofthreevelocities for the system as a whole. Note th
even at zero temperature and in the absence of diso
the signal from the neutral mode in the density-dens
response function decays with distance because
tunneling. In the following section we shall investiga
how these correlation functions are modified by vario
perturbations.

B. Parallel field

We first discuss the effects of an interlayer magnetic fie
If we take thez axis along the normal to the layers and rec
that thex axis is along the edges, we consider an additio

magnetic field along they axis: B5Bŷ. The edge Hamil-
tonian in the presence of a parallel field depends on the

rameterG[vnBdb̂/2, whered is the layer separation. We
remark that the effect of the interplane magnetic field co
sidered here is distinct from the simple decrease inl caused
by the reduction of the interlayer tunneling matrix eleme
As noted by Chalker and Sondhi, these effects can be dis
guished by studying large-aspect-ratio samples.15 The results
here also apply to the case where we introduce an ele
potential difference between the layers instead of an in
plane magnetic field.

1. 110 sequence

For the states in the 110 sequence we find that the s
trum of the edge theory in the presence of an interlayer m
netic field can be obtained from the spectrum with zero
terlayer field via the replacement

l°l8[Al21G2/2; ~10!

in particular, we see that the number of velocities is u
changed. The two-point function of the density-fluctuati
operator~3! is
it is
ncy and
effect of

q.
2 iD~ t,x!5
1

2~2m21!

~11sx!

@2p~x2vct1 i e t!#
2

1
1

2~l8!2

~12sx!

@2p~x2vnt1 i e t!#
2 H G2

2
1l2 cosS 2l8x

vn
D J . ~11!

Note that in the absence of tunneling (l50), the correlation function is unaffected by the parallel magnetic field, i.e.,
independent ofG, as expected. For nonzero tunneling, the addition of an interlayer magnetic field increases the freque
decreases the amplitude of the spatial oscillations in the density-density correlation function. One can show that the
the parallel field on the single-electron Green’s function is similar to its effect on the density two-point function; see E~59!.
1-3
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2. 331 sequence

For the states in the 331 sequence we find that in
presence of an interlayer magnetic field the spectrum of
neutral-mode portion of the edge theory is

HB5(
k

«~k!:ak
†ak :, ~12!

where

«~k![vnk1sgn~G!A~lk/p!21G2,

where theak are canonical Fermi operators. Note that in t
limit of vanishing parallel magnetic field,G→01, the energy
dispersion~for l.0) becomes«(k)5(vn1l/p)k5v1k for
k.0 and «(k)5(vn2l/p)k5v2k for k,0, which is the
spectrum of two right-moving Majorana fermions with sp
velocities.~In the limit G→02, or for l,0, we get a similar
dispersion withv1 and v2 interchanged, but this does no
alter the excitation spectrum of the Hamiltonian.! For any
nonzero interplane field we find that the dispersion devel
some curvature, which corresponds to the two Majorana s
cies being mixed at distances large compared withl/pG.
The dispersion is sketched in Fig. 2.

The correlation functions for the 331 sequence with a p
allel field can be reduced to quadrature. If we define
quantitiest[sgn(t)(vnX2t),

X[
x

v1v2
, k~v![Av1v2G21~l/p!2v2, ~13!
e

a-
d
n
G
g

th
,
er
ite
m
t
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and the function

P~t,X![E
0

`dv

2p
eivt

sin@k~v!X#

k~v!
, ~14!

then the single-electron Green’s function and the dens
density correlation function can be expressed in terms
P(t,X) and its derivatives. We find

FIG. 2. The solid line is the dispersion«(k) plotted forG.0.
The dashed lines are«5v1k and «5v2k. Note that«(k) asymp-
totically tends tov1k ask→` andv2k ask→2`.
G~ t,x!5
2 i sgn~ t !

v1v2@2p~x2vct1 i e t!#
m21 F S vn12

l

p
sxD PX~t,X!1sgn~ t !S l

p
12vns

xD l

p
Pt~t,X!2 iv1v2GszP~t,X!G , ~15!

2 iD~ t,x!5
1

4~m21!

~11sx!

@2p~x2vct1 i e t!#
2

2
~12sx!

4v1v2
FPX

22
l2

p2 Pt
21v1v2G2P2G , ~16!
er
the
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the
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al

ion
are
av-
we

g

where the subscripts onP denote partial differentiation.
In Fig. 3 we plot the real and imaginary parts of th

neutral-mode part ofG11 at fixed X510 as a function of
2t for vn51, G50.5, andl/p50.1. The corresponding
plot for the neutral mode part ofG12 is given in Fig. 4. The
singularities visible in these plots occur at the pointst
5x/v1 andt5x/v2, corresponding to propagation at the M
jorana velocities. We see that the parallel field does not
stroy the velocity-split structure of the Green’s functio
which is somewhat remarkable. The parallel field is a R
relevant perturbation that modifies the low-energy, lon
wavelength properties of the system; see Fig. 2. Never
less, the singularities atv1 andv2 are completely unchanged
see Eq.~166! below, since they arise from integrations ov
all frequencies. In Appendix B we will discuss the oppos
case: a RG irrelevant perturbation that does modify so
features of the Green’s function. At times corresponding
e-
,

-
e-

e
o

propagation velocities betweenv1 andv2 we find oscillatory
behavior not present atG50.

C. Disorder

We now consider the effects of disorder on the bilay
system. Our primary interest is how the novel features of
correlation functions in the presence of tunneling, i.e., spa
oscillations in the 110 sequence and the splitting of
neutral-mode Majorana velocities in the 331 sequence,
modified by disorder. Note that the quantities of physic
interest are the correlation functions in a typical realizat
of disorder, whereas the readily calculable quantities
disorder-averaged correlation functions. The typical and
erage quantities may have very different behavior, and
will discuss such differences at various points.

In addition to the possibility of disorder in the tunnelin
amplitude,l, we consider random scalar potentials,j i(x),
1-4
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which couple to the edge charge densities in each la
From a perturbative RG analysis we find that disorder inl is
relevant for the 110 sequence and irrelevant for the 331
quence, while the random scalar potentials,j i(x), are rel-
evant for both sequences.

FIG. 3. The real~solid line! and imaginary~dashed line! parts of
the neutral-mode factor inG11 @Eq. ~74!# plotted as a function of
2t for vn51, l/p50.1, X510, andG50.5.
11530
r.

e-

1. 110 sequence

We consider a tunneling amplitude that has meanl and
varianceDl and a disordered scalar potential with zero me
and varianceDj . We find that the disorder-averaged, r
tarded density response function is

FIG. 4. The real~solid line! and imaginary~dashed line! parts of
the neutral-mode factor inG12 @Eq. ~74!# plotted as a function of
2t for vn51, l/p50.1, X510, andG50.5.
f the
s

averaged

urbation.
d,
D R~ t,x,x8!52
u~ t !

2p H ~11sx!

2~2m21!
d8~x2x82vct ! 1

~12sx!

2
d8~x2x82vnt !e

22ux2x8u(Dl1Dj/4)/vn
2

3FcosS 2ux2x8ul̃
vn

D 1
Dj

4vnl̃
sinS 2ux2x8ul̃

vn
D G J , ~17!

where

l̃[Al22S Dj

4vn
D 2

. ~18!

The disorder in the tunneling amplitude (Dl) produces an exponential decay with distance in the neutral-mode part o
disorder-averaged density response function. The random scalar potential (Dj) has a similar effect, and in addition it produce
a shift in the frequency of the spatial oscillations~18!. Using the fact that the neutral-mode part ofD in a given sample can be
expressed in terms of products of single-particle Green’s functions, whose absolute squares are long-ranged~i.e., algebraically
decaying!, we can conclude that in a given sample the density response function has the structure of the disorder-
quantity ~17!, without the exponential decay in space of the neutral-mode piece.

2. 331 sequence

Above we remarked that for the 331 sequence only disorder in the scalar potential terms was a nonirrelevant pert
We therefore consider only a disordered scalar potential with zero mean and varianceDj . We find that the disorder-average
retarded density response function atT50 is

D R~ t,x,x8!52
u~ t !

2p

11sx

4~m21!
d8~x2x82vct !1

12sx

4
DR~ t,x,x8!, ~19!

where the neutral-mode contribution is
1-5
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DR~ t,x,0!5
u~ t !

2p
e2Djx/v1v2H 1

~v12v2!x
$v1d~x2v1t !2v2d~x2v2t !%1

Dj

2v1v2
u~z!PS 1

t02t D
3Fx/v1v2

Az
I 1S Dj

l/p
AzD1

p

l
I 0S Dj

l/p
AzD G J . ~20!
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Here z[(t2x/v1)(x/v22t), I n are Bessel functions o
imaginary argument, andt0[(x/v11x/v2)/25vnx/v1v2 is
the mean arrival time.

Comparing this expression to the result for the neu
mode in a clean system, the second term in Eq.~9!, we find
that thed-function peaks at the velocitiesv1 andv2 remain
sharp in the presence of disorder, but their amplitudes
quire an additional exponential decay. In the disord
averaged result, Eq.~20!, there is also a signal centere
around the mean arrival timet0. If we write t5t02t, then in
the limit of large distancesx/v1v2@1/Dj ; for times near the
mean arrival time, (p/l)t!x/v1v2, the central signal is as
ymptotically

DR~ t,x,0!'ADj

x
PS 1

t DexpF2
Djv1v2

2x~l/p!2
t2G . ~21!

This asymptotic form is similar to a result obtained by W
for the case of twon51 edges with unequal velocities.13 The
reason for this similarity is that both problems are forma
equivalent to a spin in a random magnetic field that und
goes diffusion on the SU~2! group manifold; see Appendix
A. The term in Eq.~21! decays algebraically with distance
Therefore, while the signal inDR at the extremal velocities
(v1,2) is exponentially suppressed by the disorder, there is
additional signal with velocityv1v2 /vn that only falls off
algebraically.

To determine the behavior ofDR in a given realization of
disorder we have adopted several approaches. First, as i
analysis of the 110 sequence, we can use the fact thatDR can
be expressed in terms of single-particle Green’s functi
whose second moments we can evaluate. Second, we
found thatDR(t,x,x8) exhibits an exact antisymmetry abo
the pointt5t0 in each realization of disorder:

DR~ t01t,x,x8!52DR~ t02t,x,x8!. ~22!

This is an interesting result because it is an exact dynam
symmetry~i.e., it is a relation between correlation function
at different times! in a system with an arbitrary potentia
j(x). Finally, we have calculated the behavior of the cor
lation functions for two simple potentials: the case of a u
11530
l

c-
-

r-

n

our

s
ve

al

-
-

form potential j(x)5const, and the case of isolate
d-function impuritiesj(x)5(mqmd(x2ym). All of these re-
sults, discussed in detail in Sec. III C, lead us to the conc
sion thatDR(t,x,x8) in a typical configuration is given by an
expression similar to Eq.~20! for DR(t,x,x8), with the prin-
cipal value factor replaced by a functionf (t,x,x8), which is
a rapidly fluctuating function of time, antisymmetric abo
the pointt5t0, and whose amplitude grows ast approaches
t0. These conclusions about the behavior ofDR in a given
sample have been verified by numerical simulations that
discussed in Sec. II E.

D. Finite-temperature effects

We now briefly consider the effects of a finite temperatu
T51/b. For a single chiral edge mode we know that at ze
temperatureD R(t,x)}u(t)d8(x2vt). A straightforward cal-
culation shows that this form is actually temperature ind
pendent.

Recall that for the 110 sequence the retarded dens
density correlation function is a sum of terms of the for
u(t)d8(x2vt) multiplied by a function independent oft.
This can be seen for the clean system in Eq.~8! and for the
disordered system in Eq.~17!. We can therefore conclud
that D R for the 110 sequence is temperature independ
even in the presence of a nonzero scalar potential.

The situation is different for the 331 sequence. While t
term in D R from the charged mode is temperature indep
dent for the reasons given above, the neutral-mode term
not. At a finite temperature one finds for the neutral-mode
a clean system:

DR~ t,x!52
u~ t !

2bv1v2

1

sinh@p~v12v2!x/bv1v2#

3@v2d~x2v2t !2v1d~x2v1t !#. ~23!

Comparing this with the zero-temperature result, the sec
term in Eq.~9!, we find that the neutral-mode term, whic
decays as 1/x at T50, decays exponentially atT.0.

In the presence of disorder one finds that the fini
temperature form ofDR is
DR~ t,x,0!5
u~ t !

2p
e2Djx/v1v2H ~p/bv1v2!

sinh@p~v12v2!x/bv1v2#
$v1d~x2v1t !2v2d~x2v2t !%1Dju~z!PS ~p/bv1v2!

sinh@2p~ t02t !/b# D
3Fx/v1v2

Az
I 1S Dj

l/p
AzD1

p

l
I 0S Dj

l/p
AzD G J . ~24!
1-6
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This result was obtained using the formalism given in A
pendix A.

Comparing this with the zero-temperature result in E
~20! we see that the amplitudes of thed functions at the
extremal velocities acquire an additional exponential de
because of the finite temperature. However, the replacem

PS 1

t02t D°PS ~2p/b!

sinh@2p~ t02t !/b# D ~25!

indicates that the structure inDR centered on the mean a
rival time sharpensat a finite temperature.

E. Experimental ramifications

One of the primary results of the previous sections is
unusual structure of the retarded density-density correla
function for the 331 sequence. The first state in the 331
quence, the state 331 itself, has a filling factor of 1/4
layer, for a total filling factor of 1/2. A plateau in the Ha
conductance has been experimentally observed atn51/2 in
bilayer systems.16 Another candidate state that has been p
posed to explain this plateau is the Pfaffian state.17 Standard
experimental probes of the edge states, such as the nonl
I -V characteristic, cannot be used to distinguish the 331 fr
the Pfaffian state since both states give the same power
exponent.18 In this section, we argue that the retard
density-density correlation function of the Pfaffian state
sufficiently different from that predicted for the 331 sta
such that, even in the presence of a finite temperature
disorder, a measurement of this correlation function at
edge could distinguish between these two bulk states.

For the Pfaffian edge theory we find that the retard
density response function at a finite temperature and in
presence of disorder is

D Pf
R ~ t,x!52

1

4p
u~ t !d8~x2vwt !. ~26!

We see that there is only a single velocity present.
Recall from Sec. II A, Eq.~9!, that for the 331 edge ther

are three velocities present in the clean system at zero
perature, one for the charged mode (vc) and two for the
neutral mode (v1,2), whose splitting is due to tunneling. Th
signal at the two neutral-mode velocities decays as 1/x at T
50 in the clean system. In Sec. II C we saw that a dis
dered scalar potential suppresses the signal at the extr
velocities by a factor that decays exponentially with distan
However, we found that there is a broad signal in the neu
mode, centered on a velocity distinct from the charged-m
velocity, which decays only algebraically. In Sec. II D w
saw that a finite temperature actually sharpens the signal
tered on the mean arrival time. From the results and disc
sion in Secs. II C and II D, we expect that for the 331 edge
a given realization of disorder, the structure of the retard
finite-temperature density-density correlation function is
11530
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D 331
R ~ t,x,x8!'u~ t !~11sx!d8~x2vct !

1u~ t !~12sx!
f ~ t,x,x8,b!

Al ~x2x8!
expF2

~ t2t0!2

l ~x2x8!
G ,

~27!

where the functionf (t,x,x8,b) is the finite-temperature ver
sion of the function introduced at the end of Sec. II C, anl
is a length scale set by the potential. We expectf (t,x,x8,b)
to have the same properties as the zero-temperature func
and to have its support more strongly concentrated net
5t0 as the temperature increases.

The experiment we propose involves creating a den
disturbance at one point along the edge of the bilayer sys
and measuring the signal some distance downstream.
experimental geometry is sketched in Fig. 5. Basic lin
response theory states that if the density disturbance is
duced in layerj via an external potentialVex(t,x) and mea-
sured in layeri, then the signal is

^r i~ t,x!&ex5E dt8dx8D i j
R~ t2t8,x,x8!Vex~ t8,x8!.

~28!

If the external potential is turned on at a point, i.e
Vex(t8,x8)5d(x8)u(t8), then the measured signal is

^r i~ t,x!&ex5E
2`

t

dt8D i j
R~ t8,x,0!. ~29!

For the Pfaffian state one would see a single sharp sig
see Eq.~26!. In contrast, for the 331 state, in addition to
sharp signal from the charged mode there would be a sec
signal from the neural mode. To illustrate the neutral-mo
signal one would expect in this case we have performed
merical simulations. A typical trace, computed at zero te
perature for vn51, l/p50.1, X510, Dj50.1 with
stepwise-constant disorder potential withNx527 values is
shown in Fig. 6 with a solid line. As expected, it is a rapid
fluctuating function, but it exhibits an exact symmetry abo
the mean arrival time. This symmetry follows from the an
symmetry of DR @Eq. ~22!# and the time integration@Eq.
~29!#. Although the signal is very noisy, a measurement w
finite resolution~dashed line! produces a curve that does n
average to zero. The amplitude of the smoothened sign
maximal at the mean arrival time as was predicted in S
II C. In Fig. 7 we show the result of numerically averagin
over 1600 impurity configurations~solid line!, as well as the
analytic average~dashed line! evaluated using Eq.~20!. The

FIG. 5. The experimental geometry showing the quantum H
bilayer in a magnetic fieldB with two spatially separated contact
A density disturbance is produced at one electrode (Vin) and mea-
sured at the other electrode (Vout).
1-7
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two curves are in excellent agreement. The finite width of
neutral-mode signal is a novel feature of the 331 state; in
110 sequence the neutral mode propagates with only
velocity.

In Fig. 8 we show a similar trace, but with the disord
stronger by an order of magnitude,Dj51.0. Note that the
amplitude of the signal near the extremal arrival timest5
61 is suppressed relative to the case with a smaller diso
strength, but the signal near the mean arrival time (t50) is
not. In Fig. 9 we show the result forDj50.1 at a high tem-
peratureT/Dj52000. The signal in a given realization o
disorder ~thin solid line! is as noisy as in the zero
temperature case~Fig. 6!; however, the amplitude of the
smoothened signal~dashed line! is down by roughly an orde
of magnitude. At this high temperature the disorder-avera
result~thick solid line! is essentially zero everywhere exce
very close to the mean arrival time.

FIG. 6. The neutral-mode contribution to the integratedD 12
R

@Eq. ~29!# at T50 for vn51, l/p50.1, X510, andDj50.1. The
horizontal axis is time measured from the mean arrival time. T
solid line is for a given realization of disorder, and the dashed
assumes a measurement with a finite time resolution.

FIG. 7. The neutral-mode contribution to the integratedD 12
R

@Eq. ~29!# at T50 for vn51, l/p50.1, X510, andDj50.1. The
solid line is the numerical average over 1600 impurity configu
tions and the dashed line is the analytical result.
11530
e
e

ne

er

d

There are several requirements that must be met to m
the measurement useful. First, one must be able to separ
~or at least differentially! contact the edges of the bilaye
system. If each electrode used in the measurement cou
identically to both edges, one cannot hope to probe the
namics of the neutral mode. Indeed, the sum of the elem
of the matrix density-density correlation function for the 3
state@Eq. ~19!# is identical in form to that of the Pfaffian
state@Eq. ~26!#. The relative strength of the signal from th
neutral mode, compared to the charged mode, would
maximized by applying a voltage that is antisymmetric b
tween the layers. Second, the experiment must involv
time-resolved measurement in order to distinguish sign
that differ by their propagation velocities. Third, the ele
trodes must be close enough together so that the decay o

e
e

-

FIG. 8. The neutral-mode contribution to the integratedD 12
R

@Eq. ~29!# at T50 for vn51, l/p50.1, X510, andDj51.0. The
thin solid line is for a given realization of disorder, the dashed l
assumes a measurement with a finite time resolution, and the t
solid line is the analytical average.

FIG. 9. The neutral-mode contribution to the integratedD 12
R

@Eq. ~29!# at T/Dj52000 for vn51, l/p50.1, X510, andDj

50.1. The thin solid line is for a given realization of disorder, t
dashed line assumes a measurement with a finite time resolu
and the thick solid line is the result of averaging over 4000 impu
configurations.
1-8
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neutral-mode signal with distance does not cause it to
undetectable, but they must be far enough apart so tha
charged- and neutral-mode signals are well separated in t

We believe that the length and time scales needed
realistic measurement would require a careful choice of f
rication techniques. To give more specific estimates, le
take the drift velocity of the charge mode to bevc;107

cm/s.19,20 In a clean system at a finite temperature t
strength of the neutral-mode signal decays exponenti
with distance; see Eq.~23!. The separation between the ele
trodes here cannot be taken to be much larger than the
perature coherence lengthLT;\v/T, which is 1022 cm at
10 mK. Assuming the neutral-mode velocity is smaller th
the charged-mode velocity by an order of magnitude,
arrival time difference between the two modes is on the or
of 10 ns. In the presence of disorder, the temperature co
ence length loses its importance, as one can see from
second term in Eq.~24!. In this case, let us assume a me
free path ofl;1/Dj;1025 cm, and require that the elec
trodes need to be approximately 100l;10 mm apart for the
neutral-mode signal to be detectable. The arrival time diff
ence between the signals from the neutral and charged m
is then around 1 ns. If an experimental measurement like
one described here detected the neutral-mode signal, it w
conclusively show that then51/2 plateau in bilayer system
is the 331 state rather than the Pfaffian state.

III. DETAILS OF THE CALCULATIONS

In this section we present the detailed calculations of
results summarized in the previous section. We begin wi
review of the clean edge theory~Sec. III A!, and then discuss
the addition of a parallel magnetic field~Sec. III B! and dis-
order~Sec. III C!. Finally we discuss the Pfaffian edge~Sec.
III D ! and the numerical computations performed for the 3
edge~Sec. III E!.

A. Edge theory of clean bilayer systems

In this section we review the edge theory of clean bila
quantum Hall systems with interlayer electron tunneling. F
a more detailed discussion see I. The edge theory co
sponding to the Halperin state~1! contains two chiral Bose
fields, ui(t,x) ( i 51,2), with compactification radiiRi51
~i.e., u'u12p), and equal-time commutation relations:

@ui~ t,x!,uj~ t,x8!#5 ipKi j sgn~x2x8!, ~30!

whereK is a symmetric, integer-valued matrix that chara
terizes the topological properties of the edge and is co
pletely determined by the exponents in the bulk wa
function21

K5S m n

n mD . ~31!

In terms of these fields we can write the charge density
electron creation operators as
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r i~x!5
1

2p
Ki j

21]xuj~x!, C i
†~x!5

1

Lm/2
e2 iui (x), ~32!

and the Hamiltonian as

H05E
2L/2

L/2

dxF 1

4p
Vi j :]xui]xuj :

1l0@ :C1~x!C2
†~x!:1H.c.#G , ~33!

where

V5S v g

g v D ~34!

is a symmetric, positive definite (g2,v2) matrix that in-
cludes the effect of the confining potentials and interactio
at the edge, andl0 is the interlayer electron tunneling am
plitude, which we take to be real without loss of generali
The normal ordering is with respect to the oscillator mod
of the bosonic fields.

The Hamiltonian and commutation relations can be s
plified by the transformation:

S u1

u2
D 5

1

A2
S Am1n 2Am2n

Am1n Am2n
D S fc

fn
D , ~35!

in terms of which we have

@f i~x!,f j~x8!#5 ipd ij sgn~x2x8! ~36!

and

H05E
2L/2

L/2

dxF 1

4p
vc :~]xfc!

2:1
1

4p
vn :~]xfn!

2:

1
2l

~2pa!b̂2/2
cos~ b̂fn!G , ~37!

where inf i , the index i runs over the two values i5c, n,
which denote the charged and neutral modes, respectiv
and we have introduced the parametersb̂[A2(m2n), l
[l0L2n, the velocitiesvc,n5(m6n)(v6g), and the short
distance cutoffa. The Hamiltonian separates into a free ch
ral boson Hamiltonian for the charged mode and a ch
sine-Gordon Hamiltonian for the neutral-mode.

For future reference we record the expression for the e
tron and density operators in terms of the newly introduc
bosons

C1,2~x!5
1

Lm/2
eiA(m1n)/2fc(x)e7 i b̂fn(x)/2, ~38!

r1,2~x!5
1

2pA2~m1n!
]xfc~x!7

1

2pb̂
]xfn~x!, ~39!
1-9



so

A

th
re

e

l
ity

e

u
n

ld
no
p

s
nc
.

m

ee
a

e-
an

l

of

n

e
ag-

us
o-

y

J. D. NAUD, L. P. PRYADKO, AND S. L. SONDHI PHYSICAL REVIEW B63 115301
which follow from Eqs.~32! and ~35!. In the remainder of
the paper we will suppress the subscript on the neutral bo
i.e., f[fn .

The time-ordered correlation functions given in Sec. II
follow from Eqs. ~37!, ~38!, and ~39!; for details see I. To
transform from the time-ordered correlation functions to
retarded response functions we note that if the time-orde
function is expressed as

C~ t !5u~ t !C.~ t !1u~2t !C,~ t !, ~40!

where u(t) is the Heaviside step function, then the corr
sponding retarded correlation function is

CR~ t !5u~ t !@C.~ t !2C,~ t !#. ~41!

B. Parallel field

We consider a parallel magnetic field along they axis:
B5Bŷ. This corresponds to a vector potentialA(z)5Bzx̂,
where we take the origin of thez axis midway between the
layers, whose separation isd. We incorporate this paralle
field into our edge theory by modifying the charge dens
operator via the replacement

r i~x!°r i~x!2
1

2p
Ax~zi !, ~42!

wherez1,256d/2. Using this along with the definition of th
charge density~32!, and the transformation~35! gives a
Hamiltonian

HB[H01E
2L/2

L/2

dxF G

2p
]xf1

G2

4pvn
G , ~43!

whereG[vnBd b̂/2. The second term is a constant, and th
produces only an overall shift in the energy spectrum, a
we will henceforth ignore it. The interlayer magnetic fie
couples only to the neutral mode, and therefore we will
write the terms involving the charged mode explicitly exce
when considering correlation functions.

As remarked in Sec. II B, the analysis here also applie
the case where we introduce an electric potential differe
between the layers instead of an interplane magnetic field
potential differenceVe between the layers adds a ter
Ve„r1(x)2r2(x)…}Ve]xf to the Hamiltonian. This is the
same form as the interplane field perturbation~43!. The only
difference is that in the case of a potential difference betw
the layers the density operators are not modified as they
in the interplane magnetic field case~42!. However, since
Di j (t,x) involves the density fluctuation operator,r i2^r i&,
see Eq.~3!, our results below for the density-density corr
lation function apply for either a parallel magnetic field or
electric potential difference.

1. 110 sequence

The states in the 110 sequence correspond tob̂252. In I
it is shown that at this value ofb̂ the radius of the neutra
11530
n,

e
d

-

s
d

t
t

to
e
A

n
re

boson isRn51/A2 and therefore we can define a triplet
sû(2)1 Kac-Moody ~KM ! currents

Jz~x!5
1

2pA2
]xf~x!,

~44!

J6~x!5Jx6 iJy5
1

2pa
e7 iA2f(x),

in terms of which the Hamiltonian reads

HB5E
2L/2

L/2

dxF2pvn

3
:@J~x!#2:1A2GJz~x!12lJx~x!G ,

~45!

where we have used the identity

E
2L/2

L/2

dx:@Jz~x!#2:ug&5E
2L/2

L/2

dx
1

3
:@J~x!#2:ug&, ~46!

valid for any stateug& in the Hilbert space. Next, we ca
define a new set of currentsJ̃a(x)[RabJb(x), which also
obey an suˆ(2)1 algebra providedRPSO(3). Inparticular if
we choose

R5S cosa 0 2sina

0 1 0

sina 0 cosa
D , ~47!

where sina[l/Al21G2/2, and express the rotated suˆ(2)1

currents in terms of a new radiusR51/A2 chiral boson,
u(x), we then have

HB5E
2L/2

L/2

dx$2pvn :@ J̃z~x!#2:12Al21G2/2J̃z~x!%

~48!

5E
2L/2

L/2

dxF 1

4p
vn :~]xu!2:1

1

pA2
Al21G2/2]xuG .

~49!

Note that this final form of the Hamiltonian is identical to th
neutral-mode Hamiltonian in the absence of a parallel m
netic field with the replacement

l°l8[Al21G2/2. ~50!

The above diagonalization of the Hamiltonian also allows
to find correlation functions. In particular, consider the tw
point function of the density-fluctuation operator,Di j (t,x)
@Eq. ~3!#. Using the minimal coupling prescription~42!, the
transformation~47!, the definitions of the charge densit
~39!, and sû(2)1 currents~44!, we can write
1-10
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r1,2~x!5
1

A8p2~2m21!
]xfc7

1

2p F G

vnA2
1

1

l8
H G

2
]xu2

l

a
cos~A2u!J G . ~51!

Using this expression for the charge density operators in terms of the fieldsfc andu, along with the Hamiltonian~48!, we can
readily find

2 iD~ t,x!5
1

2~2m21!

~11sx!

@2p~x2vct1 i e t!#
2

1
1

2~l8!2

~12sx!

@2p~x2vnt1 i e t!#
2 H G2

2
1l2cosS 2l8

vn
xD J . ~52!
i

t
io

rip
lle

ors

e

The evaluation of the single-electron Green’s function
more involved because the electron operators@C i(x)# can-
not be expressed in terms of the fieldsfc andu. Following
the method used in I, we can use the independence of
charged and neutral modes to write the Green’s funct
Gi j (t,x) @Eq. ~2!#, for all states in the 110 sequence as

Gi j ~ t,x!5G i j
(110)~ t,x!

Gfc

(m)~ t,x!

Gfc

(1)~ t,x!
, ~53!

whereG i j
(110) is the Green’s function for the special casem

51, n50 and

Gfc

(m)~ t,x![
1

Lm21/2
^eiAm21/2fc(t,x)e2 iAm21/2fc(0,0)&

5
1

@2p~x2vct1 i e t!#
m21/2

. ~54!

The decomposition~53! is useful because for theuncorre-
lated integer 110 state there exists a chiral fermion desc
tion of the edge theory including tunneling and a para
field:

H B
(110)5E

2L/2

L/2

dx:F2 ivc i
†]xc i12pgc1

†c1c2
†c2

2l~c2
†c11c1

†c2!2
G

A2
~c1

†c12c2
†c2!G :.

~55!
11530
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Herec i are the original edge electron annihilation operat
given by Eq.~32! with m51 andn50. If we perform the
following canonical transformation

S c1

c2
D 5eiwsyS c1

c2
D , sin~2w!52

l

l8
, ~56!

then the Hamiltonian~55! becomes

H B
(110)5E

2L/2

L/2

dx:@2 iv~c1
† ]xc11c2

† ]xc2!

12pgc1
† c1c2

† c22l8~c1
† c12c2

† c2!#:.

~57!

By transforming into boson form according toc6(x)
5eif6(x)/A2pa, and definingu1[(f11f2)/A2, andu2

[(f12f2)/A22A2l8x/vn , we can exactly evaluate th
single-electron Green’s function

G (110)~ t,x!5
1

2pA~x2vct1 i e t!~x2vnt1 i e t!

3expF i S G

A2
sz1lsxD x

vn
G . ~58!

Combining Eqs.~53!, ~54!, and~58!, we finally arrive at
l

G~ t,x!5
1

@2p~x2vct1 i e t!#
m21/2A2p~x2vnt1 i e t!

F 1 cos~l8x/vn!1
i

l8
S G

A2
sz1lsxD sin~l8x/vn!G . ~59!

2. 331 sequence

The states in the 331 sequence correspond tob̂254. In I it is shown that at this value ofb̂ we can transform the neutra
boson into fermion form using

1

A2pa
eif5c,

1

2p
]xf5:c†c:,

i

2pa2 ei2f5c]xc. ~60!
1-11
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With these identities, the neutral-mode part of the Ham
tonian ~43! becomes

HB5E
2L/2

L/2

dx:F2 ivnc
†]xc2 i

l

2p
~c†]xc

†1c]xc!

1Gc†cG : ~61!

5E
2L/2

L/2

dx:F2
i

2
v1x1]xx12

i

2
v2x2]xx21 iGx1x2G :,

~62!

where we have written the chiral Dirac fermion in terms
its Majorana components:c(x)5@x1(x)1 ix2(x)#/A2,
where x i

†5x i , and recalledv1,25vn6l/p. The tunneling
term splits the velocities of the two Majorana fermions a
the parallel field term couples them.

The Hamiltonian is quadratic and hence readily diagon
izable. If we take antiperiodic boundary conditions for t
Fermi field,c(x1L)52c(x), and expand in Fourier mode
according to

c~x!5
1

AL
(

k
eikxck , ~63!

wherekP(2p/L)(Z11/2), the Hamiltonian~61! becomes

HB5(
k

:Fvnkck
†ck1Gck

†ck1
lk

2p
~ck

†c2k
† 2ckc2k!G :

5 (
k.0

:~ck
† c2k!S vnk1G lk/p

lk/p vnk2G
D S ck

c2k
† D :. ~64!
n

,

11530
-

f

l-

Employing the Bogoliubov transformation

S ck

c2k
† D 5S cosak 2sinak

sinak cosak
D S ak

a2k
† D , ~65!

wherea2k52ak , the Hamiltonian is diagonalized via th
choice

tan~2ak!5
lk

pG
, ~66!

along with the restriction 2akP@2p/2,p/2#, required to
produce the correct spectrum in the limitl→0. This yields

HB5(
k

@vnk1sgn~G!A~lk/p!21G2#:ak
†ak :

[(
k

«~k!:ak
†ak :. ~67!

To calculate correlation functions, we first use the transf
mation~65!, along with the expressions forak @Eq. ~66!# and
c(x) @Eq. ~63!# to express the Fermi field in terms of th
mode operators that diagonalize the Hamiltonian
c~x!5
1

A2L
(

k

eikx

@~lk/p!21G2#1/4
@AA~lk/p!21G21uGu ak2sgn~Glk!AA~lk/p!21G22uGu a2k

† #. ~68!
an
To compute the single-electron Green’s function~2! we use
the transformation~35! and the fermionization prescriptio
~60! to write the electron operators~32! as

:C i :5
1

~2pa!(m21)/2
eiAm21fc~d i1c†1d i2c!. ~69!

Since the charged and neutral-modes are not coupled
find

G~ t,x!5
1

@2p~x2vct1 i e t!#
m21

Gc~ t,x!, ~70!

where we have defined the matrix
we

Gc~ t,x![2 i S ^Tc~ t,x!c†~0,0!& ^Tc~ t,x!c~0,0!&

^Tc†~ t,x!c†~0,0!& ^Tc†~ t,x!c~0,0!&
D .

~71!
The correlation function of the fermionized neutral mode c
be reduced to quadrature. Using Eqs.~67! and~68! we obtain
~in the limit L→`)

Gc~ t,x!5
2 i

4pS 11~ i /t !~]/]G! ~l/pGt !~]2/]x]G!

~l/pGt !~]2/]x]G! 12~ i /t !~]/]G!
D I ,

~72!
where there remains the integral

I[E dk$sgn~ t !cos@kx2«~k!t#

1 i sgn~k2kF!sin@kx2«~k!t#%, ~73!
1-12
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and the ‘‘Fermi momentum,’’ defined by«(kF)50, is given bykF52G/Av1v2. To simplify the result, we first change th
variable of integration tov[«(k) for k.kF andv[2«(k) for k,kF . With these substitutions and some algebra, the ma
Green’s function can be written

Gc~ t,x!5
2 i

v1v2
sgn~ t !F S vn12

l

p
sxD PX~t,X!1sgn~ t !S l

p
12vns

xD l

p
Pt~t,X!2 iv1v2GszP~t,X!G , ~74!
e
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n
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where we have definedX[x/v1v2 , t[sgn(t)(vnX2t), and
the function

P~t,X![E
0

`dv

2p
eivt

sin@k~v!X#

k~v!
, ~75!

wherek(v)[Av1v2G21(l/p)2v2, and the subscripts onP
in Eq. ~74! denote partial differentiation. Although we hav
been unable to evaluateP(t,X) explicitly, the real part of
this function can be calculated in closed form. This is d
cussed below in Sec. III C when we consider the retar
version ofGc .

Turning now to the density-density correlation functio
we can use the fermionization~60! to write the density op-
erators~39! as

r1,25
1

4pAm21
]xfc7

1

2
:c†c:. ~76!

Since the Hamiltonian in terms ofc @Eq. ~61!# is quadratic,
Wick’s theorem holds for this field and the density two-po
function can be expressed in terms of the single-part
Green’s function. Using Eqs.~76! and ~3! one finds

2 iD~ t,x!5
1

4~m21!

~11sx!

@2p~x2vct1 i e t!#
2

1
~12sx!

4
detGc~ t,x!. ~77!

Along with Eq.~74!, this gives an expression for the densit
density correlation function in terms of the single functi
P(t,X) and its derivatives:

2 iD~ t,x!5
1

4~m21!

~11sx!

@2p~x2vct1 i e t!#
2

2
~12sx!

4v1v2
FPX

22
l2

p2 Pt
21v1v2G2P2G .

~78!

C. Disorder

We now consider the effects of adding several types
disorder to the Hamiltonian of the bilayer system~33!. We
begin by considering the relevancy of various random te
within a renormalization group~RG! analysis. We then
present exact results for the 110 and 331 sequences, con
trating on the retarded density response function becaus
its relevancy for experiments. The 110 case is solved
11530
-
d

,

t
le

f

s

en-
of
y

using an SU~2! gauge transformation to separate the Gree
functions into products of clean Green’s functions and ter
involving only the random fields. After this step, the diso
dered problem is shown to be equivalent to a spin-1/2 p
ticle in a random magnetic field and the disorder averagin
performed nonperturbatively. The solution for the 331 s
quence involves an exact summation of the disord
averaged perturbation theory, which is possible becaus
the chirality of the system. In Appendix A we present
alternative method for obtaining disorder-averaged corre
tion functions for the 331 sequence based on the spin a
ogy.

If we consider a general perturbation to the Hamiltoni
of the form

Hd5E
2L/2

L/2

dx z~x!O~x!, ~79!

whereO(x) is an operator of scaling dimensiond andz(x)
is a Gaussian random variable with varianceD, i.e.,
z(x)z(x8)5Dd(x2x8), where the bar denotes disorder a
eraging, then a lowest-order perturbative RG analysis giv22

dD

dl
5~322d!D, ~80!

where the short-distance cutoff increases asl increases.
Consider first the possibility of disorder in the velocit

interaction matrixV in the Hamiltonian~33!. Since theV
matrix multiplies an operator of scaling dimensiond52, we
see from the flow equation~80! that d-correlated disorder is
RG irrelevant. Therefore we can ignore randomness in thV
matrix and interpret the values appearing in Eq.~34! as
disorder-averaged mean values. Note that theV matrix must
be symmetric, since it multiplies a symmetric operator in t
Hamiltonian, and the positive-definiteness ofV is required
for the Hamiltonian to be bounded from below. However, t
assumption thatV115V22 is made for technical reasons an
it can be relaxed toV115V22, a weaker criterion.

Next we turn to the case of disorder in the tunneling a
plitude l in the Hamiltonian~37!. The scaling dimension o
the tunneling operator it multiplies isd5b̂2/2. Using Eq.
~80!, we find that disorder in the tunneling amplitude is re
evant for the 110 sequence~i.e., b̂252), and irrelevant for
1-13
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the 331 sequence~i.e., b̂254). The former case will be dis
cussed later in this section and the latter case in Appendi

Finally we consider adding random scalar potentials t
couple to the edge charge densities in each layer:

Hj5E
2L/2

L/2

dx@j1~x!r1~x!1j2~x!r2~x!#

5E
2L/2

L/2

dxFjc~x!
1

2p
]xfc~x!1jn~x!

1

2p
]xf~x!G ,

~81!

where we have used the definition of the charge density
erators~39!, and
e
en
le

io
en
h
s

at

11530
B.
t

p-

jc[
1

A2~m1n!
~j11j2!, jn[

1

b̂
~j22j1!. ~82!

If we assume thatj1,2(x) are independent Gaussian rando
variables, then so arejc,n(x). Since these terms involve op
erators of scaling dimensiond51 they are relevant pertur
bations for both the 110 and 331 sequences.

1. 110 sequence

In the discussion above we found that for the 110
quence (b̂252), disorder both in the tunneling and in th
scalar potential terms is relevant. We therefore consider
Hamiltonian
HD5E
2L/2

L/2

dxF vc

4p
:~]xfc!

2:1
vn

4p
:~]xf!2:1

1

2pa
@l~x!eiA2f(x)1l* ~x!e2 iA2f(x)#1jc~x!

1

2p
]xfc~x!1jn~x!

1

2p
]xf~x!G ,

~83!
to

the
rs.

l

alar
ill
il-

s-
wherel(x) is a complex random tunneling amplitude. Th
presence of disorder breaks translation invariance and h
the current algebra method used to solve the clean prob
in Sec. III B is inapplicable because the transformat
J̃a(x)5RabJb(x) must be a global rotation to map betwe
sets of KM generators. However, an alternative approac
the problem developed in I is useful in the disordered ca
We add to the Hamiltonian~83! an auxiliary free chiral bo-
son (f̂) with a velocity equal to the velocity off:

HD°HD1E
2L/2

L/2

dx
1

4p
vn :~]xf̂ !2:, ~84!

perform the canonical transformation

S f̂

f
D 5

1

A2
S 1 1

1 21D S u1

u2
D , ~85!

and then transform to fermion form according to

c i~x!5
1

A2pa
eiu i (x). ~86!

The details required to make this mapping rigorous~i.e.,
compactification radii, topological charges, Klein factors! are
discussed in I. The result of this procedure is a quadr
Hamiltonian

HD5E
2L/2

L/2

dxF 1

4p
vc :~]xfc!

2:1jc~x!
1

2p
]xfc~x!

1:@2 ivnC
†]xC1vnB

a~x!C†saC#: G , ~87!

where we have defined
ce
m

n

to
e.

ic

C~x![S c1~x!

c2~x!
D ,

B~x!5
1

vn
„2Re@l~x!#,2Im@l~x!#,jn~x!/A2…, ~88!

and the indexa runs overx,y,z. The fermionic part of this
Hamiltonian describes a pseudo-spin-1/2 fermion coupled
a random SU~2! gauge field.

We now perform a change of variables that absorbs
disordered terms into the definitions of the field operato
For the charged mode we define

h~x!5fc~x!1
1

vc
Ex

dy jc~y!, ~89!

and for the neutral mode we use an SU~2! gauge transforma-
tion

C~x!5S~x!C̃~x!, ~90!

whereS(x)PSU(2) is a solution of the matrix differentia
equation

dS~x!

dx
52 iBa~x!saS~x!. ~91!

With these definitions, the Hamiltonian~87! becomes

HD5E
2L/2

L/2

dxF 1

4p
vc :~]xh!2:2

1

4pvc
jc

22 ivn :C̃†]xC̃: G .
~92!

Since the second term only involves the disordered sc
potential, it does not affect correlation functions and w
henceforth be neglected. Note that in going from Ham
tonian~87! to Hamiltonian~92! we have used a gauge tran
1-14
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formation on a chiral Fermi field~90! without accounting for
the chiral anomaly. This is valid because the gauge field
quenched random variable; in this case the anomaly ass
ated with the chiral gauge transformation~90! cancels in the
average.

Our primary goal is to understand the behavior of t
density-density correlation function in a given sample, i
for a given realization of disorder. We begin by express
the density operators~39! in terms of the fieldsh and C,
with the help of Eqs.~85!, ~86!, and~89!:

r1,2~x!5
1

2pA2~2m21!
S ]xh~x!2

1

vc
jc~x! D

7
1

2
:C†~x!szC~x!:. ~93!

Using this expression in the definition of the density tw
point function~3! we have

2 iD~ t,x,x8!5
1

2~2m21!

~11sx!

@2p~x2x82vct1 i e t!#
2

2
~12sx!

4
tr@szG~ t,x,x8!szG~2t,x8,x!#,

~94!

where we have used the single-particle matrix Green’s fu
tion

Gi j ~ t,x,x8!52 i ^Tc i~ t,x!c j
†~0,x8!&. ~95!

We have explicitly included two spatial arguments in the
correlation functions because of the lack of translation
variance in a given realization of disorder. Note that
though the charged mode,fc , is coupled in Eq.~81! to a
disorder potential,jc , the charged-mode part of the abo
correlation function~94! is identical to the result in the ab
sence of disorder. This result is true for every realization
disorder and is essentially equivalent to the loop-cancella
theorem, which states that for linearly dispersing fermio
@«(k)}k# in 111 dimensions the connectedn-point func-
tion of the density operator vanishes identically forn.2.23

To determine the effect of disorder on the neutral mo
we first note that the differential equation~91! has a solution
in terms of a coordinate-ordered exponential

S~x!5Ty expS 2 i Ex

dy Ba~y!saD , ~96!

whereTy is the y-ordering operator. Since the matrixS(x)
can be taken outside quantum expectation values, we
express the Green’s function of theC field ~95! in terms of

the Green’s function of the~free! C̃ field and thus write

Gi j ~ t,x,x8!5
1

2p~x2x82vnt1 i e t!
Ui j ~x,x8!, ~97!

where
11530
a
ci-

.,
g

-

c-

e
-
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f
n
s

e

an

U~x,x8![S~x!S†~x8!5Ty expS 2 i E
x8

x

dy Ba~y!saD
~98!

is a unitary matrix. Using Eq.~97! we find that the neutral-
mode part of the density-density correlation function is p
portional to

2tr@szG~ t,x,x8!szG~2t,x8,x!#

5
1

@2p~x2x82vnt1 i e t!#
2

tr@szU~x,x8!szU†~x,x8!#,

~99!

where we have used the propertyU†(x,x8)5U(x8,x), which
follows from the definition~98!. In Eq. ~99! we have written
a correlation function in the disordered system as the prod
of the corresponding function in the clean system and a
tor that depends only on the random potential.

If we interpret the coordinatey appearing in the definition
of U as a fictitious time, then the matrixU(x,x8) is exactly
the time evolution operator between timesx and x8 for a
zero-dimensional system with time-dependent Hamilton
Ba(y)sa. This is the Hamiltonian for a spin-1/2 object in
random magnetic fieldBa(y). The quantity appearing in the
trace in Eq.~99! can then be interpreted as the^Sz(x)Sz(x8)&
correlation function for this spin.

To understand the behavior of the density-density co
lation function in a given sample we will first calculate i
disorder average, which involves averaging the quantity
pearing on the right hand side~r.h.s.! of Eq. ~99!. Toward
this end, consider the following vector quantity:

Fa~x;x8!5tr@U†~x,x8!saU~x,x8!sz#. ~100!

By differentiating with respect tox we find that this is a
solution of the differential equation

dFa~x;x8!

dx
5Mab~x!Fb~x;x8!, ~101!

whereMab(x)[22eabcBc(x), subject to the boundary con
dition Fa(x8;x8)5tr(sasz)52daz. The solution of this dif-
ferential equation can also be written as

Fa~x;x8!5FTy expS E
x8

x

dy M~y! D Gab

Fb~x8;x8!.

~102!

We have expressed the quantity we desire,Fz(x;x8), in
terms of a single coordinate-ordered matrix exponent
whose disorder average we now show can be readily ev
ated.

We assume the tunneling amplitude and scalar poten
are d-correlated Gaussian random variables and denote
mean and variance ofBa(x) by ma and Da, respectively.
Since the exponential appearing in Eq.~102! is ordered iny,
and the elements ofM (y) are independently distributed fo
eachy, we can consider breaking up the interval@x8,x# into
N intervals of lengthe5ux2x8u/N and then taking the limit
N→`. Therefore we can write
1-15
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Ty expS E
x8

x

dy M~y! D 5 lim
N→`

F E dB P~B!esgn(x2x8)eM GN

,

~103!

where the probability distribution is

P~B!dB5A e3

~2p!3DxDyDz

3expF2
1

2 (
a51

3
e

Da ~Ba2ma!2GdB. ~104!
11530
Expanding theesgn(x2x8)eM factor in Eq.~103! and perform-
ing the integration gives

Ty expS E
x8

x

dy M~y! D 5 lim
N→`

F12
2ux2x8u

N
W1OS 1

N2D GN

5exp~22ux2x8uW!, ~105!

where
her
Green’s
W[S Dy1Dz 0 0

0 Dz1Dx 0

0 0 Dx1Dy
D 1sgn~x2x8!S 0 mz 2my

2mz 0 mx

my 2mx 0
D . ~106!

From Eqs.~100!, ~102!, and~105!, we finally arrive at

tr@U†~x,x8!szU~x,x8!sz#52@e22ux2x8uW#zz. ~107!

While it is in principle possible to evaluate the exponential ofW for arbitrary ma and Da, for simplicity we shall restrict
ourselves to the case of a real tunneling amplitude. If the tunneling amplitude has meanl and varianceDl , and the disordered
scalar potential has mean zero and varianceDj , then from the definition ofB(x) @Eq. ~88!# we have

mx52
l

vn
, my50, mz50,

~108!

Dx5
Dl

vn
2

, Dy50, Dz5
Dj

2vn
2

.

In this case thex sector of the matrix~106! is separated,

W5F Dj

2vn
2G % F 1Dl1Dj/4

vn
2

1sz
Dj

4vn
2

2 isy sgn~x2x8!
l

vn
G , ~109!

and from Eqs.~94!, ~99!, and~107! we find

2 iD~ t,x,x8!5
1

2~2m21!

~11sx!

@2p~x2x82vct1 i e t!#
2

1
1

2

~12sx!

@2p~x2x82vnt1 i e t!#
2

expS 2
2ux2x8u

vn
2 ~Dl1Dj/4!D

3FcosS 2ux2x8ul̃
vn

D 1
Dj

4vnl̃
sinS 2ux2x8ul̃

vn
D G , ~110!

where

l̃[Al22S Dj

4vn
D 2

. ~111!

Transforming to the corresponding retarded function using Eqs.~40! and ~41! we arrive at Eq.~17!.
The question remains as to what the behavior ofD(t,x,x8) is in a given sample. Instead of attempting to evaluate hig

moments of this correlation function, we shall exploit the fact that it can be expressed in terms of the single-particle
function, whose second moment we will compute. Writing out the trace in Eq.~94! explicitly we find

tr@szG~ t,x,x8!szG~2t,x8,x!#5G11~ t,x,x8!G11~2t,x8,x!2G12~ t,x,x8!G21~2t,x8,x!2G21~ t,x,x8!G12~2t,x8,x!

1G22~ t,x,x8!G22~2t,x8,x!. ~112!
1-16
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From Eq.~97! and the result

U~x,x8!5expS 2
ux2x8u

2vn
2 ~Dl1Dj/2!D F 1 cosS l

vn
~x2x8! D

1 isx sinS l

vn
~x2x8! D G , ~113!

which can be obtained via the same procedure used to ev
ate the average in Eq.~103!, we find the disorder-average
single-particle Green’s functions are also exponentially
caying in space:

G11~ t,x,x8!5G22~ t,x,x8!5
e2ux2x8u(Dl1Dj/2)/2vn

2

2p~x2x82vnt1 i e t!

3cosS l

vn
~x2x8! D , ~114!

G12~ t,x,x8!5G21~ t,x,x8!

5 i
e2ux2x8u(Dl1Dj/2)/2vn

2

2p~x2x82vnt1 i e t!
sinS l

vn
~x2x8! D .

~115!

To investigate whether this exponential decay is an arti
of the disorder averaging~i.e., it arises from averaging ove
random phases!, or whether we expect it to hold in a give
realization of disorder, we computeuGi j (t,x,x8)u2, which is
clearly insensitive to phase fluctuations. From Eq.~97! we
see that
11530
lu-

-

ct

uGi j ~ t,x,x8!u2

5
1

u2p~x2x82vnt1 i e t!u2
Ui j ~x,x8!U ji

† ~x,x8!. ~116!

By the unitarity ofU(x,x8) we have

U11U11
† 1U12U21

† 51, ~117!

where we have suppressed the spatial arguments. Using
explicit form of U that follows from Eqs.~98!, ~88!, and
Im@l(x)#50, one may showsyUTsy5U†, which implies

U11U11
† 5U22U22

† , U12U21
† 5U21U12

† . ~118!

Finally, from Eq.~107! we have

U11U11
† 2U21U12

† 2U12U21
† 1U22U22

† 52@e22ux2x8uW#zz.
~119!

Equations~117!–~119! are four equations in four unknow
quantities that can be solved to yield

U11U11
† 5U22U22

† 5
1

2
~11@e22ux2x8uW#zz!,

U12U21
† 5U21U12

† 5
1

2
~12@e22ux2x8uW#zz!. ~120!

This result, combined with Eq.~116!, gives the disorder-
averaged absolute magnitudes of the elements of the sin
particle Green’s function
free
nd an
ly

ation of
averaged

otential

r

uGi j ~ t,x,x8!u25
1

2u2p~x2x82vnt1 i e t!u2
H 11~21! i 1 jexpS 2

2ux2x8u

vn
2 ~Dl1Dj/4!D FcosS 2ux2x8ul̃

vn
D

1
Dj

4vnl̃
sinS 2ux2x8ul̃

vn
D G J . ~121!

The structure of this result is interesting. EachuGi j u2 is the sum of two terms, one of which is identical to the square of the
@i.e., l(x)5jn(x)50# Green’s function, and the other of which has spatial oscillations at the shifted frequency a
exponential decay in space from the disorder. The fact thatuGi j u2 has a long-ranged part~i.e., a term that decays algebraical
rather than exponentially! indicates that in a given sampleGi j is not exponentially damped, and thus from Eq.~112! we can
conclude that the neutral-mode portion of the density-density correlation function is also long-ranged for a given realiz
disorder. We therefore expect that in a given sample the density two-point function has the structure of the disorder-
quantity~110!, without the exponential decay in space of the neutral-mode piece. As a function ofDx[x2x8 we expect two
peaks at the pointsDx5vc,nt, with the second peak modulated in space at a frequency that varies with the local scalar p
@see Eq.~111!#.

2. 331 sequence

In the analysis at the beginning of this section we determined that for the 331 sequence (b̂254), only disorder in the scala
potential terms was a nonirrelevant perturbation. We therefore consider the Hamiltonian

HD5E
2L/2

L/2

dxF 1

4p
vc :~]xfc!

2:1
1

4p
vn :~]xf!2:1

l

2pa
~ei2f(x)1e2 i2f(x)!1jc~x!

1

2p
]xfc~x!1jn~x!

1

2p
]xf~x!G ,

~122!
1-17



,

q.
g
cu
o

th
th

el
11
ef
an

lu-
ure
so-
c-
er-
by

ion

of
re
he
d
he
-

J. D. NAUD, L. P. PRYADKO, AND S. L. SONDHI PHYSICAL REVIEW B63 115301
which, with the help of the fermionization~60! for the neu-
tral boson and the transformation~89! for the charged boson
can be written

HD5E
2L/2

L/2

dx:F 1

4p
vc~]xh!22

i

2
v1x1]xx12

i

2
v2x2]xx2

1 i jn~x!x1x2G :, ~123!

where we have dropped the constantjc
2 term. The charged-

mode portion of this Hamiltonian is identical to that of E
~92! for the 110 sequence, and hence all results pertainin
the charged mode can be imported from the previous dis
sion. The Hamiltonian is now quadratic; however, the lack
translation invariance prevents us from employing
method used in Sec. III B, where we essentially solved
special case in whichjc(x) is independent ofx. In addition
we cannot absorb the disorder into the definition of the fi
operators via a gauge transformation as we did for the
sequence, because the Majorana fields are real and ther
neutral. However, we can still separate the disorder
th

he

i-

nc

ac
c
a
th
e

11530
to
s-
f
e
e

d
0
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d

quantum expectation values by explicitly constructing so
tions to the Heisenberg equations of motion. This proced
involves some technical subtleties not present in the 110
lution, and is discussed in detail in Appendix A. In this se
tion we use a different approach; we find the disord
averaged correlation functions of the above Hamiltonian
an exact summation of the disorder-averaged perturbat
theory.

The chirality of the fermions in the neutral-mode part
the Hamiltonian allows a great simplification in the structu
of the diagrammatic perturbation theory in powers of t
disorder potentialjn(x). This was first noted by Chalker an
Sondhi in the context of a single-particle description of t
edge.15 Consider the matrix Green’s function of the Majo
rana fields for the free case, i.e.,jn(x)50:

gi j
(0)~ t,x,x8!52 i ^Tx i~ t,x!x j~0,x8!&

5d i j

1

2p~x2x82v j t1 i e t!
. ~124!

Fourier transforming with respect to time gives
gi j
(0)~v,x,x8!5d i j E dt eivt

1

2p~x2x82v j t1 i e t!
5d i j

i

v j
eiv(x2x8)/v j@u~2v!u~x82x!2u~v!u~x2x8!#. ~125!
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To obtain this result note that the integrand has a pole in
complex t plane att5(x2x8)/v j1O(e). Therefore forx
2x8.0, Ret.0 at the pole and hence the pole lies in t
upper half-plane while forx2x8,0, Ret,0 at the pole and
it is therefore in the lower half-plane. We find that for pos
tive frequencies (v.0) the function vanishes forx2x8,0,
while for negative frequencies (v,0) it vanishes forx
2x8.0.

Next consider the single-particle Majorana Green’s fu
tion with the disorder potential present in Eq.~123!. Working
perturbatively in powers ofjn(x), we have

g11~v,x,x8!5 (
n50

` E dy1•••dy2ng11
(0)~v,x,y1!jn~y1!

3g22
(0)~v,y1 ,y2!jn~y2!•••g11

(0)~v,y2n ,x8!,
~126!

g12~v,x,x8!5 i (
n50

` E dy1•••dy2n11g11
(0)~v,x,y1!

3jn~y1!•••g22
(0)~v,y2n11 ,x8!,

with similar expressions for the remaining components. E
time the particle scatters off the impurity potential its velo
ity changes fromv1 to v2 or vice versa. When we perform
disorder average of the above equations, we must tie toge
insertions ofjn(x) in all possible ways for each term in th
e

-

h
-

er

sum. We first observe that because the scalar potentia
time-independent,v is conserved and hence it has the sa
sign in every propagator. This, along with the chirality
g(0)(v,x,x8) evident in Eq.~125!, implies that any disorder-
averaged diagram in which impurity lines cross vanish
identically. Therefore, for each term in the sum in Eq.~126!
there is a single nonzero disorder-averaged diagram, i.e.
one in which successive insertions ofjn are pairwise con-
tracted. The resulting series can be summed to give

gi j ~v,x,x8!5d i j

i

v j
eiv(x2x8)/v je2Djux2x8u/2v1v2

3@u~2v!u~x82x!2u~v!u~x2x8!#.

~127!

We see that the disorder-averaged Green’s function ret
the chiral structure of the free Green’s function. While t
exponential decay of the function involves the geome
mean of the two Majorana velocities,Av1v2, the frequency
dependence only containsv1(2) for g11(22). This is a direct
consequence of the fact that all terms with crossed impu
lines vanish when we perform a disorder average of the
ral Green’s function. Therefore, for the averaged sing
particle Green’s function, if the particle begins propagati
with velocity v1, it never propagates with velocityv2, and
1-18
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FIG. 10. Ladder sum for the neutral-mode density-density correlation function. The thin solid lines representg11, the thick solid lines
representg22, and the dashed lines represent the disorder potential and carry a factor ofDj .
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the other velocity enters only through the density of sta
when scattering off the potential. Transforming back to
time domain we find

gi j ~ t,x,x8!5d i j

e2Djux2x8u/2v1v2

2p~x2x82v j t1 i e t!
. ~128!

From the relation between the Dirac and Majorana fiel
c5(x11 ix2)/A2, we find that the Green’s function of th
neutral-mode fermion,Gc @Eq. ~71!#, can be obtained fromg
via a unitary transformation

Gc~ t,x,x8!5Og~ t,x,x8!O†, O[
1

A2
S 1 i

1 2 i D .

~129!

Thus from Eqs.~70!, ~127!, and~129! we find, after Fourier
transforming, that the single-electron Green’s function
the 331 sequence in the presence of disorder is

G~ t,x,0![
1

@2p~x2vct1 i e t!#
m21

1

2 F 11sx

2p~x2v1t1 i e t!

1
12sx

2p~x2v2t1 i e t!
Ge2Djuxu/2v1v2. ~130!

We see that for the single-electron Green’s function the
locity split of the neutral mode remains in the presence
disorder, but the function acquires an exponential decay w
distance.

We next consider the calculation of the density-dens
correlation function. As a first step toward understanding
behavior of this correlation function in a given sample, w
will calculate its disorder average. We can use the trans
mation ~89! and the expression for the Fermi density ope
tor in terms of the Majorana fields, :c†cª: ix1x2 :, to write
the density operators~76! as

r1,25
1

4pAm21
S ]xh2

1

vc
jcD7

i

2
:x1x2 :, ~131!
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from which we find

2 iD~ t,x,x8!5
1

4~m21!

~11sx!

@2p~x2x82vct1 i e t!#
2

2 i
~12sx!

4
D~ t,x,x8!, ~132!

where we have denoted the neutral-mode contribution by

2 iD ~ t,x,x8![^T:x1~ t,x!x2~ t,x!::x1~0,x8!x2~0,x8!:&.
~133!

To evaluateD, we first Fourier transform with respect t
time in order to exploit the chirality in the mixed frequenc
space domain. Computing the expectation value in Eq.~133!
using Wick’s theorem and taking the disorder average t
gives

2 iD~v,x,x8!52 i E dt eivtD~ t,x,x8!

[E dv8

4p
FS v81v

2
,
v82v

2
,x,x8D ,

~134!

where we have defined

F~v1 ,v2 ,x,x8!5g11~v1 ,x,x8!g22~2v2 ,x,x8!

2g12~v1 ,x,x8!g21~2v2 ,x,x8!.

~135!

If one uses Eq.~126! to write the single-particle Green’
functions in the above expression in terms of the fr
Green’s function,gi j

(0) , and the disorder potential,jn , one
finds upon disorder averaging that the chirality of Eq.~125!
implies that all nonvanishing diagrams are of the form
ladder diagrams with the legs of the ladder constructed ou
the disorder-averaged propagatorsgi j .

The legs of the ladder are given by
een
h~v1 ,v2 ,k![E dx e2 ikxg11~v1 ,x,0!g22~2v2 ,x,0!5
i

v1v2
F u~v1!u~2v2!

k2v1 /v11v2 /v22 iDj /v1v2

2
u~2v1!u~v2!

k2v1 /v11v2 /v21 iDj /v1v2
G , ~136!

which was evaluated with the help of Eq.~127! for gi j . The segments of the ladder shown in Fig. 10 alternate betw
h(v1 ,v2 ,k) andh(2v2 ,2v1 ,k). Performing the ladder sum gives
1-19
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F~v1 ,v2 ,x,x8!5E dk

2p
eik(x2x8)Fh~v1 ,v2 ,k!2Djh~v1 ,v2 ,k!h~2v2 ,2v1 ,k!

12Dj
2h~v1 ,v2 ,k!h~2v2 ,2v1 ,k!

G . ~137!

Using the result forh(v1 ,v2 ,k) in this expression forF(v1 ,v2 ,x,x8) gives, after some algebra,

F~v1 ,v2 ,x,x8!5
i

v1v2
E dk

2p
eik(x2x8)Fu~v1!u~2v2!

k2w~Dj!

@k2z1~Dj!#@k2z2~Dj!#

2u~2v1!u~v2!
k2w~2Dj!

@k2z1~2Dj!#@k2z2~2Dj!#
G , ~138!

where we have defined the parameters

w~Dj![v1 /v22v2 /v112iDj /v1v2 , ~139!

z6~Dj![
1

v1v2
Fv11v2

2
~v12v2!1 iDj6 iADj

22
~v12v2!2

4
~v11v2!2G . ~140!

From the expression forz6(Dj) we see that in the first term in Eq.~138! both poles are in the upper half-plane while in t
second term both poles are in the lower half-plane. Performing thek integration by the residue theorem and using the resul
expression forF in Eq. ~134! gives

2 iD~v,x,x8!5
1

v1v2
@u~2v!u~x82x!2u~v!u~x2x8!#eivnvX2DjuXu E

2v

v dv8

4p Fcosh@L~v8!X#

1
Dj

L~v8!
sinh@L~v8!uXu#G , ~141!

where we have used the rescaled coordinateX5(x2x8)/v1v2, and defined

L~v![ADj
22

1

4
~v12v2!2v25ADj

22
l2

p2 v2. ~142!

The experimentally measurable quantity is the retarded density-density correlation function. Since Eq.~141! is not in the time
domain, we cannot use Eqs.~40! and ~41! to obtainDR(t,x,x8) directly. However, inv-k space we have the relations

ReDR~v,k!5ReD~v,k!,

Im DR~v,k!5sgn~v!Im D~v,k!, ~143!

which in turn yield

DR~v,x!5u~v!D~v,x!1u~2v!@D~v,2x!#* , ~144!

where the asterisk denotes complex conjugation. Using Eqs.~141! and~144! and Fourier transforming back to the time doma
we find

DR~ t,x,x8!5
u~x2x8!

2p
e2DjXPS 1

vnX2t D E2`

` dv

2p
eiv(vnX2t)Fcosh@L~v!X#1

Dj

L~v!
sinh@L~v!X#G , ~145!

where P denotes the principal value. The remaining integral is computed in Appendix C, and from Eqs.~C7! and~C8! we find
115301-20
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DR~ t,x,0!5
u~ t !

2p
e2Djx/v1v2H 1

~v12v2!x
$v1d~x2v1t !2v2d~x2v2t !%1

Dj

2v1v2
u~z!PS 1

vnx/v1v22t D Fx/v1v2

Az
I 1S Dj

l/p
AzD

1
p

l
I 0S Dj

l/p
AzD G J , ~146!
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wherez[(t2x/v1)(x/v22t), andI n are Bessel functions o
imaginary argument. Note that as expected this function
real. This result can also be found using the formalism
Appendix A.

We have computedDR, but what we are really intereste
in is the behavior ofDR in a given realization of disorder. A
surprising feature ofDR is that it has a~principal value!
singularity at the mean arrival timet05vnx/v1v2. An imme-
diate question is whether this singularity is present in e
sample, and if not, how does it arise in the average.

To investigate the behavior ofDR in a given realization of
disorder we have adopted several approaches. First, as i
analysis of the 110 sequence, we use the fact thatDR can be
expressed in terms of single-particle Green’s functio
whose second moments we evaluate. Second, we show
in a given sampleDR(t,x) exhibits an exact symmetry abou
the pointt5t0. Finally we shall consider the behavior of th
correlation functions in some simple model potentials.

The relation between the time-ordered correlation fu
tions D andgi j follows from the definition~133!:

D~ t,x,x8!5 i detg~ t,x,x8!. ~147!

Using Eq.~40!, we then conclude from the above equati
thatD.5 i detg. andD,5 i detg,. Thus from Eq.~41! we
have

DR~ t,x,x8!5 iu~ t !@detg.~ t,x,x8!2detg,~ t,x,x8!#.
~148!
11530
is
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h
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If we define the advanced correlation functionsgA

5u(2t)(g,2g.), then one can showg,5g2gR and g.

5g2gA, which when substituted into Eq.~148! give

DR5 iu~ t !@~g11g22
R 2g12g21

R !1~g11
R g222g12

R g21!

2~g11
R g22

R 2g12
R g21

R !#. ~149!

We see that the retarded density-density correlation func
in a given sample can be expressed in terms of the ti
ordered and retarded single-particle Green’s functions.

We have already evaluated the average time-orde
single-particle Green’s function; see Eq.~128!. Using Eqs.
~40! and ~41! we find for the corresponding retarded fun
tion:

gi j
R~ t,x,x8!52 id i j u~ t !d~x2x82v i t !e

2Dj(x2x8)/2v1v2.
~150!

Next consider the absolute squares of the single-part
Green’s functions. The disorder average
gi j (t,x,x8)gi j* (t8,x,x8) can be evaluated by the same di
grammatic procedure used to obtain the average den
density correlation function. The disorder average
gi j

R(t,x,x8)gi j
R* (t8,x,x8) can be readily computed using th

formalism presented in Appendix A.
Omitting the details of these calculations we find
e

gi j ~ t,x,0!gi j* ~ t8,x,0!5
1

2p

e2DjuXu

e1 iDt E2`

` dv

2p
eiv(vnX2 t̄ )2(e1 iDt)uvu/2F d i j

v j
2

cosh@L~v!X#1S s i j
z ~2 ivl/p!1s i j

x Dj

v iv jL~v!
D

3sinh@L~v!X#G , ~151!

where t̄[(t1t8)/2 is the average time,Dt[t2t8 is the time difference, ande.0 is an infinitesimal regulator. For th
retarded functions we find

g11
R ~ t,x,0!g11

R* ~ t8,x,0!5
u~ t !

v1
2 d~Dt !e2DjuXuFd~x/v12t !1

pDj

2l
u~z!I 1S Dj

l/p
AzDAx/v22t

t2x/v1
G ,

~152!

g12
R ~ t,x,0!g12

R* ~ t8,x,0!5
u~ t !

v1v2
d~Dt !e2DjuXu pDj

2l
u~z!I 0S Dj

l/p
AzD ,
1-21
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where we have again usedz5(t2x/v1)(x/v22t). Note
g21

R g21
R* 5g12

R g12
R* , andg22

R g22
R* can be obtained fromg11

R g11
R*

by interchangingv1 andv2.
One should first observe the dependence of these qu

ties on the time differenceDt5t2t8. In the time-ordered
case~151! the dependence is approximately 1/Dt, while in
the retarded case~152! it is d(Dt). This suggests that in a
given configuration bothg andgR are rapidly varying func-
tions of time. The remaining integral in the time-order
case~151! can be evaluated for the special case of eq
times Dt50, see Eqs.~C7!, ~C8!, and ~C9!. One finds that
ugi j (t,x,0)u2 is the same asugi j

R(t,x,0)u2, provided one makes
the replacementu(t)d(0)°1/2pe. Comparing Eqs.~146!
and~152! we see that the structure of the equal-time expr
sions,ugi j (t,x,0)u2 and ugi j

R(t,x,0)u2, is similar to the result
for DR(t,x,0), up to an infinite prefactor. In particular, th
diagonal elements ofugu2 and ugRu2 haved functions with
exponentially decaying amplitudes, and all elements hav
term that decays algebraically at largex.

In comparing the expressions forDR ~146! andugRu2 @Eq.
~152!#, one obvious difference is the presence of the fac
P@1/(t02t)# in the density-density correlation function. On
consequence of this factor is that it makesDR(t,x,0) at fixed
x an odd function aboutt5t0. We shall now demonstrat
that this antisymmetry is present in each realization of dis
der, not just in the averaged quantity.

The derivation of this antisymmetry relies on some of t
results derived in Appendix A that allow us to express
Green’s function for the disordered 331 sequence in term
a coordinate-ordered exponential. We begin with an exp
sion for the time-ordered, single-particle matrix Green
function in the presence of an arbitrary scalar potentialj(x),
@Eq. ~A16!#,

Gc~ t,x,x8!5E dv

2p i
e2 ivt@u~ t !n~2v!

2u~2t !n~v!#Q21/2S~x,x8;v!Q21/2,

~153!

wheren(v)[@exp(bv)11#21 is the usual Fermi distribution
function ~with b the inverse temperature!, and from Eqs.
~A5! and ~A10!, Q5vn11(l/p)sx and
11530
ti-
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S~x,x8;v!5Ty expS i E
x8

x

dyFvQ212
j~y!

Av1v2

szG D .

~154!

Equation ~153! is analogous to Eq.~97! for the 110 se-
quence. Both equations express the Green’s function in te
of a coordinate-ordered exponential. The expression for
331 sequence is more complicated because the term in
~154! describing propagation in the absence of disord
vQ21, does not commute with the random field term
j(y)sz.

SinceQ215(1/v1v2)@vn12(l/p)sx#, we can factor out
an overall phase fromS(x,x8; v):

S~x,x8;v!5eivvn(x2x8)/v1v2Ty

3expS 2 i E
x8

x

dyF vl

pv1v2
sx1

j~y!

Av1v2

szG D
[eivt0s~x,x8;v!. ~155!

Using this result and Eq.~129! to transformGc to g, we find

g~ t,x,x8!5@Q21/2O#†E dv

2p i
eiv(t02t)@u~ t !n~2v!

2u~2t !n~v!#s~x,x8;v!@Q21/2O#. ~156!

From this equation we find

g* ~ t01t,x,x8!52@Q21/2O#TE dv

2p i
eivt@u~ t01t !n~2v!

2u~2t02t !n~v!#s* ~x,x8;v!@Q21/2O#* .

~157!

From the form of the matrixs @Eq. ~155!#, one can show

s* ~x,x8;v!5sys~x,x8;v!sy. ~158!

Combining this with the fact that forutu,ut0u,

u~ t01t !n~2v!2u~2t02t !n~v!

5u~ t02t !n~2v!2u~2t01t !n~v!, ~159!

implies that Eq.~157! can be rewritten
g* ~ t01t,x,x8!52@Q21/2O#TsyE dv

2p i
eivt@u~ t02t !n~2v!2u~2t01t !n~v!#s~x,x8;v!sy@Q21/2O#*

52@Q21/2O#Tsy~@Q21/2O#†!21g~ t02t,x,x8!@Q21/2O#21sy@Q21/2O#* . ~160!

Therefore, if we define the matrix

C[@Q21/2O#Tsy~@Q21/2O#†!215S 0 2Av2 /v1

Av1 /v2 0
D , ~161!

we have the final result that

g~ t01t,x,x8!52Cg* ~ t02t,x,x8!CT, for utu,ut0u. ~162!
1-22



rr ion
ival
f
de

n-

for
a
la-
an
alar

he e

EDGE DYNAMICS IN QUANTUM HALL BILAYERS : . . . PHYSICAL REVIEW B 63 115301
One can show by an analogous derivation that the co
sponding retarded function,gR(t,x,x8), obeys exactly the
same relation.

Using the relation betweenD and g @Eq. ~147!# and the
fact that detC51, Eq. ~162! implies for utu,ut0u

ReD~ t01t,x,x8!52ReD~ t02t,x,x8!,

Im D~ t01t,x,x8!5Im D~ t02t,x,x8!. ~163!

Similarly, using the expression forDR in terms ofg andgR

@Eq. ~149!#, Eq. ~162! and the corresponding relation forgR

gives

DR~ t01t,x,x8!52DR~ t02t,x,x8!, ~164!

where we can drop the restrictionutu,t0 since outside this
interval DR is identically zero from Eq.~146!. We have

FIG. 11. The imaginary part ofg11
R plotted for vn51, x510,

l/p50.1, andG53. The horizontal axis is time measured from t
mean arrival time.
e-

i-
ll

11530
e-found that the retarded density-density correlation funct
in a given sample is antisymmetric about the mean arr
time, indicating that the pointt5t0 is special, independent o
jn(x). This result is true at any temperature. If we inclu
disorder in the velocity so thatvn is a function ofx, the
symmetry~164! would be absent and the principal value si
gularity in DR would be rounded out; cf. Appendix B.

Next we consider the behavior of correlation functions
some simple potentialsjn(x). We first consider the case of
uniform potential. As we remarked in Sec. II B, the corre
tion functions in the presence of a parallel magnetic field c
be reinterpreted as those in the presence of a uniform sc
potential difference between the layersjn(x)5G. Using Eqs.
~40! and ~41! to go from the result in Sec. III B for the
time-ordered single-particle Green’s function,Gc @Eq. ~74!#,
to the corresponding retarded function, and Eq.~129! to
transform this to the Majorana basis, we find

FIG. 12. The imaginary part ofg12
R plotted for vn51, x510,

l/p50.1, andG53. The horizontal axis is time measured from th
mean arrival time.
gR~ t,x!52
2iu~ t !

v1v2
F S vn12

l

p
szDRePX~t,X!1S l

p
12vns

zD l

p
RePt~t,X!1 iv1v2Gsy ReP~t,X!G . ~165!

The quantity ReP(t,X) and its derivatives are evaluated in Appendix C, and from Eqs.~C10!, ~C11!, and~C12! we find

g11
R ~ t,x!52 iu~ t !Fd~x2v1t !2

pG

2l
u~z!J1S G

l/p
Av1v2zDAx2v2t

v1t2xG ,
~166!

g12
R ~ t,x!52 iu~ t !

pG

2l
u~z!J0S G

l/p
Av1v2zD ,
ap-
t in

up
where theJn are standard Bessel functions. Noteg21
R 5

2g12
R andg22

R can be obtained fromg11
R by interchangingv1

andv2. These functions are plotted in Figs. 11 and 12.
We see that thed functions present in the diagonal el

ments ofgR in the case of zero potential@Eq. ~150! evaluated
at Dj50# remain in the case of a uniform potential. In add
tion to thesed functions we find oscillatory terms in a
elements ofgR(t,x) considered as functions oft at fixed x.
Since the quantityz5(t2x/v1)(x/v22t) is maximal att
5t0, we see that the frequency of the oscillations ingi j

R is
minimal at the mean arrival time and increases as we
proach the extremal arrival times. This feature is eviden
Figs. 11 and 12.

Finally, we consider the case of a scalar potential made
of isolated impurities located at the points$ym% with
strengths$qm%, i.e., we take the potential to be
1-23
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jn~x!5(
m

qmd~x2ym!. ~167!

Note that the white-noise potential used in the previous
culations can be approached by the form given in Eq.~167!
if we take the number of impurities to infinity and theqm to
be random variables. Using Eq.~126!, one can computeg for
this potential by an exact summation of the perturbation
pansion. Once again, it is the chirality ofg(0) that makes the
calculation tractable.

If there areN impurities betweenx andx8, then the non-
vanishing terms in the perturbation expansion ofgi j are in
one-to-one correspondence with the set of allN-tuples of
nonnegative integers. For example, ifx8,y1,y2,•••

,yN,x, then fort.0 the nonvanishing terms correspond
propagation fromx8 to y1 followed by scatteringn1 times
off impurity q1, followed by propagation fromy1 to y2 and
scatteringn2 times off impurityq2, etc., wherenm are non-
negative integers. Ifnm is even then the velocity of the pa
ticle is unchanged by the scattering~i.e., the internal lines on
either side of the impurity are either bothg11

(0) or bothg22
(0)),

while if nm is odd then the velocity of the particle is chang
by the scattering~i.e., the internal lines on either side of th
impurity are g11

(0) and g22
(0)). Therefore, from the parity o

each elementnm of the N-tuple we know which interna
propagators areg11

(0) and which areg22
(0) , and we can define a

corresponding arrival timeT. This arrival time is given by
T5X1 /v11X2 /v2, whereXi is the total distance the particl
travels with velocityv i . From these considerations we ca
conclude that the general form of the time-ordered and
tarded Green’s function for the case of isolated impurities

gi j ~ t,x,x8!5(
k

Lk
i j 1

2p~Tk
i j 2t1 i e t!

,

~168!

gi j
R~ t,x,x8!52 iu~ t !(

k
Lk

i j d~Tk
i j 2t !,

where the arrival timesTk
i j depend on the end pointsx andx8

and the location of all impuritiesym located between the en
points, and the coefficientsLk

i j depend on the impurity
strengthsqm .

In calculatinggi j with N impurities betweenx8 and x,
these impurities divide the interval@x8,x# into N11 seg-
ments. Since we are computinggi j , the first segment mus
be associated with a factor ofgii

(0) and the last segment wit
a factor ofgj j

(0) . Since on theN21 remaining segments w
can have eitherg11

(0) or g22
(0) depending on the parity of th

nm , there are in general 2N21 arrival timesTk
i j , and thus the

number of terms in the sum in Eq.~168! grows exponentially
with the number of intervening impurities.

For a given arrival timeTk
i j , the parities of thenm’s are

determined and the corresponding coefficientLk
i j in Eq. ~168!

is given by

Lk
i j 5ci j )

m51

N

r m,pm
, ~169!
11530
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where cii [1/v i , c12[ i /Av1v2[2c21 are overall coeffi-
cients,pm5nmmod 2 is the parity ofnm , and

r m,0[ (
n50

` S iqm

Av1v2
D 2n

5
1

11qm
2 /v1v2

,

~170!

r m,1[ (
n50

` S iqm

Av1v2
D 2n11

5
iqm /Av1v2

11qm
2 /v1v2

,

where we have assumeduqm
2 /v1v2u,1 for all m. The coeffi-

cient r m,0(1) is the sum of the amplitudes for scattering o
the mth impurity an even~odd! number of times.

For a given realization of the potential in Eq.~167!, the
Green’s functions in Eq.~168!, considered as functions o
time, have an exponentially large number of singulariti
However, the disorder-averaged quantities,g ~128! and gR

@Eq. ~150!#, are very simple functions of time. This is readi
understood if we approximate the white-noise potential
taking the impurity strengthsqm in Eq. ~167! to be indepen-
dent, identically distributed random variables with ze
means. Then from Eq.~170! we seer m,150 for all m. Thus
the only nonvanishingLk

i j involves an even number of sca
terings off each impurity, and hence there is onlyonesingu-
larity, corresponding to the particle never changing its vel
ity:

gi j ~ t,x,0!5d i j

1

2p~x2x82v j t1 i e t!
~r m,0!

N. ~171!

From Eq.~170! we see thatr m,0,1, and sinceN, the number
of impurities betweenx8 and x, is proportional toux2x8u,
the last factor in Eq.~171! reproduces the exponential deca
present in Eq.~128!.

We can understand several things from the general fo
of the Green’s functions given in Eq.~168!. First note that
the fact thatgR for the case of isolatedd-function impurities
is a sum ofd functions in time@Eq. ~168!# is consistent with
the d(t2t8) factor present ingi j

R(t,x,0)gi j
R* (t8,x,0) @Eq.

~152!#. One can similarly show that the form ofg in Eq.
~168! is consistent with the 1/(t2t8) behavior of
gi j (t,x,0)gi j* (t8,x,0) @Eq. ~151!#.

Next we suppose that theN impurities betweenx8 andx
are evenly spaced. In the limitN→` it should not make a
difference. In this case, Eq.~168! still holds but the quanti-
ties Lk

i j andTk
i j are determined by a different set of rules,

we shall distinguish them by a tilde. The number of arriv
times T̃k

i j is reduced from 2N21 down toN. This is because
the intervalux82xu is now divided intoN11 segments of
equal length. The velocity on the first and last segments
fixed by the indices ongi j and theN arrival times can then be
specified by the numberk of the N21 remaining segments
that have velocityv2. For example, forg11 the arrival times
are

T̃k
115S k

v2
1

N112k

v1
D ux2x8u

N11
, ~172!
1-24
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where k50,1, . . . ,N21. The amplitudeL̃k
i j is the sum of

( k
N21) of the Lk

i j ’s given in Eq.~169!. In the limit of largeN

the number of terms that contribute toL̃k
i j is a Gaussian

distribution in k peaked atk5(N21)/2. The arrival time
corresponding to this amplitude is

T̃(N21)/2
11 5S N21

2v2
1

N13

2v1
D ux2x8u

N11

→
N→`vnux2x8u

v1v2
5t0 . ~173!

Thus we find that the mean arrival timet0 emerges in this
model potential because the number of terms that contrib
to the singularity atT̃k

i j is maximal forT̃k
i j 5t0.

All of the considerations in this section lead us to t
conclusion thatDR(t,x,x8) in a typical configuration is given
by DR(t,x,x8), Eq. ~146!, with the factor of P@1/(t02t)#
replaced by a functionf (t,x,x8), which is a rapidly fluctu-
ating function of time, antisymmetric about the pointt5t0,
and whose amplitude grows ast approachest0. The claim
that the general structure ofDR in a typical configuration is
captured byDR is supported by the relation betweenDR and
g,gR @Eq. ~149!#, and the fact that the second momentsugu2

andugRu2 @Eq. ~152!# have the same structure asDR, without
the principal value factor. We expect thatf (t,x,x8) is a rap-
idly fluctuating function of time based on the dependence
gi j (t,x,0)gi j* (t8,x,0) and gi j

R(t,x,0)gi j
R* (t8,x,0) on (t2t8),

Eqs. ~151! and ~152!, and the behavior ofg and gR for the
case of isolatedd-function impurities, Eq.~168!. However
complicatedf (t,x,x8) is, we know it must be antisymmetri
about t5t0 by Eq. ~164!. The claim that the amplitude o
f (t,x,x8) approaches a maximum att5t0 is supported by
several results. First, recall thatgR in a constant potentialG,
Eq. ~166!, is oscillatory with a frequency that is proportion
to G and that is minimal at the mean arrival time. This su
gests that in a potential that varies withx there will be less
cancellation near the mean arrival time than near the
tremal arrival times. Second, there is the observation tha
the model of equally spaced isolated impurities the num
of terms that contribute to each singularity is maximal for t
singularity at the mean arrival time. Finally, we have the f
that averaging produces a function that is singular att5t0.
These conclusions are supported by our numerical sim
tions; see Sec. II.

D. Pfaffian edge

In this section we consider the edge theory of the Pfaffi
state, concentrating on the form of the retarded density
sponse function in the presence of a finite temperature
disorder. The edge theory of the Pfaffian state containsc
51/2 minimal model conformal field theory~CFT! in addi-
tion to the usual (c51) chiral boson.18 Recall that thec
51/2 minimal model has three primary fields, which we d
note asI, x, ands, and whose scaling dimensions are 0, 1
and 1/16, respectively. Thex field is identical to a single
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chiral Majorana fermion. The chiral boson in the ed
theory,w, can be shown to have a compactification radius
R51/A8, the same radius as the charged mode of the
state; see I. In addition to thec51/2 primary fields and their
descendents, the operator content of the edge theory incl
the primary field]xw and the vertex operatorseikw/A8, where
kPZ. The electron creation operator is24

:C†~x!ª
1

2pa
x~x!e2 iA2w(x), ~174!

which has a scaling dimension of 3/2.
We now determine the electric charge density opera

r(x), for the Pfaffian edge. One requirement for this opera
is that the electron operator has a unit charge with respe
it:

@r~x!,C†~x8!#5d~x2x8!C†~x8!. ~175!

One candidate that satisfies this relation is

r~x!5
1

2pA2
]xw~x!. ~176!

The operator on the r.h.s. of this equation has dimension
The only other dimension-one operators present in the e
theory aree6 iA2w. However, if we were to add to our defi
nition of r(x) some nonzero multiple of the Hermitian com
bination (eiA2w1e2 iA2w), we would find that the condition
~175! is violated. Any other higher-dimension operators th
could be added tor(x) would necessarily be multiplied by
explicit powers of the short-distance cutoffa, and will there-
fore vanish in the continuum limit. The Pfaffian state has
interlayer dynamics. Each electron is in a state symme
between the layers, under the assumption that the symme
antisymmetric splitting is large. Hence, there is an ene
gap for any process that excites the layers independentl

Having determined the charge density operator for
Pfaffian edge theory, we can immediately write down t
retarded density two-point correlation function at zero te
perature for the clean system:

D Pf
R ~ t,x!52

1

4p
u~ t !d8~x2vwt !. ~177!

From the results in Sec. III C we know that the only R
nonirrelevant disorder is scalar potential disorder. This d
not modifyD Pf

R at all, just as in the case of the charged mo
for both the 110 and 331 sequences. From the discussio
Sec. II D we know that at a finite temperature this correlat
function is also unchanged. We find thatD Pf

R (t,x) has a sig-
nal at a single velocity even at a finite temperature and in
presence of a nonzero scalar potential.

E. Numerics

Here we briefly discuss the numerics for the neutral-mo
contribution to the retarded density response function of
331 edge. The matricesS(x,0;v) were computed using a
discretized version of Eq.~154!. Using Eq.~153! the single-
1-25
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particle Green’s function was then found by a fast Four
transform~FFT! algorithm. Finally, we used the relation be
tween the single-particle Green’s functions and the den
response function~148! to calculateDR, and integrated ove
time to find the neutral-mode contribution to the signal in E
~29!.
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APPENDIX A: DISORDERED 331 SEQUENCE VIA THE
SPIN ANALOGY

In this appendix we present an alternative method for
taining exact disorder-averaged correlation functions for
331 sequence. It is similar to the method used in our disc
sion of the 110 sequence in Sec. III C, with some techn
complications. The procedure is based on the fact that
can explicitly construct solutions to the Heisenberg equati
of motion for each realization of disorder. We shall igno
the charged mode throughout the discussion.

The 331 Hamiltonian including a disordered scalar pot
tial ~123! expressed in terms of the Dirac field is

HD5E
2L/2

L/2

dx:F2 ivnc
†]xc2 i

l

2p
~c†]xc

†1c]xc!

1j~x!c†cG :, ~A1!

where in this appendix we suppress the subscript onj and
take periodic boundary conditionsc(x1L)5c(x). The
Heisenberg equations of motion for the field operatorc(t,x)
and its Hermitian conjugate are

@] t1vn]x1 i j~x!#c~ t,x!1~l/p!]xc
†~ t,x!50,

~A2!
@] t1vn]x2 i j~x!#c†~ t,x!1~l/p!]xc~ t,x!50.

The anomalous~i.e., fermion-number nonconserving! terms
in HD couple the equations of motion forc and c† and
therefore we must expand the field in terms of both crea
and annihilation operators,

c~ t,x!5(
n

@An~x!e2 ivntan1Bn~x!eivntan
†#, ~A3!

where by assumptionan
† are canonical Fermi operators th

create exact single-particle eigenstates ofHD with energies
vn . Substituting this expansion into the equations of mot
leads to the following matrix differential equation:
11530
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n

2 iQ]xf n~x!5@vn12j~x!sz# f n~x!, ~A4!

where

Q[S vn l/p

l/p vn
D , f n~x![S An~x!

Bn* ~x!
D . ~A5!

Note that the Hamiltonian~A1! has a particle-hole symmetr
under which c↔c† and j°2j. In terms of the two-
component wave functionf n(x), this implies that iff n is a
solution to Eq.~A4! with energyvn , then f̃ n5sxf n* is a
solution with energy2vn . Assuming allvnÞ0, we can
enumerate the functionsf n(x) in such a way thatv2n5

2vn and vn.0 for n.0. This implies f̃ 2n5 f n , from
which we find An5B2n , an indication that some doubl
counting may be present. Indeed, the particle-hole symm
only interchanges the two equations~A2!; it should not gen-
erate new solutions. This double counting can be remove
we definean1a2n

† °an , and write, instead of Eq.~A3!,

S c~ t,x!

c†~ t,x!
D 5(

n
f n~x! e2 ivntan . ~A6!

To obtain the solutions to Eq.~A4! we define the rescaled
wave functions

zn5Q1/2f n , ~A7!

in terms of which the differential equation~A4! becomes

]xzn~x!5 i FvnQ212
j~x!

Av1v2

szGzn~x!. ~A8!

We can write the solutions to this equation as

zn~x![S~x,0;vn!zn~0!, ~A9!

with a coordinate-ordered exponential

S~x,x8;v!5Ty expS i E
x8

x

dyFvQ212
j~y!

Av1v2

szG D ,

~A10!

for x.x8, and the Hermitian conjugateS(x,x8;v)
5S†(x8,x;v) for x,x8. The boundary conditions on th
Fermi field imply zn(x1L)5zn(x), which in turn means
that the allowed energiesvn are determined by finding thos
energies for which the matrixS(L,0;v) has a unit eigenvalue
with the corresponding eigenvector taken to bezn(0),

@S~L,0;v!21#zn~0!50. ~A11!

The orthogonality of solutionsf n(x) for different values
of vn is guaranteed by the fact that the differential equat
~A4! is self-conjugate, while their normalization must be d
manded explicitly,

E
2L/2

L/2

dx fn
†~x! f n~x!51. ~A12!

This can be rewritten with the help of Eqs.~A7! and~A9! as
1-26
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L
vn

v1v2
z†~0!N~v,j!z~0!51,

~A13!

N~v,j!512
l

pvnL
E

2L/2

L/2

dx S†~x,0;v!sxS~x,0;v!.

Usually it is the wave-function normalization that makes t
disorder calculations so difficult. Note, however, that the
tegration in the second term of the normalization mat
N(v,j) is extended over the entire length of the samp
which makes it a self-averaging object. As in Sec. III C, t
matrix S(x,x8;v) @Eq. ~A10!# can be interpreted as the ev
lution operator in a fictitious timey, for a spin precessing
under the influence of a constant magnetic field in thex
direction ~due to the off-diagonal terms of the matrixQ21),
and a random field;j(x) along thez direction. The integral
in Eq. ~A13! is thex component of the spin averaged over
‘‘time’’ L. In the presence of a nonvanishing disorder,
,

a
in

t

d
-

uc

sin

-
e

11530
-

,

e

initial orientation is forgotten after a finite distance, and t
second term in the normalization matrix~A13! disappears in
the thermodynamic limit,L→`. This happens with probabil
ity 1 for any realization of disorder. Physically, this simp
fication is related to the fact that in a chiral system localiz
tion does not happen; each particle explores the en
circumference of the sample.

Let us now consider the single-particle Green’s functi
of the neutral-mode fermion,Gc @Eq. ~71!#. Using Eq.~A6!,
this can be written

Gc~ t,x,x8!52 i(
n

f n~x! f n
†~x8!e2 ivnt@u~ t ! n~2vn!

2u~2t ! n~vn!#, ~A14!

wheren(v)[@exp(bv)11#21 is the usual Fermi distribution
function. Using Eqs.~A7!, ~A9!, and ~A13!, with N(v,j)
51, we obtain
Gc~ t,x,x8!52 i S v1v2

Lvn
D(

n
e2 ivnt@u~ t !n~2vn!2u~2t !n~vn!#Q21/2FS~x,0,vn!

zn~0!zn
†~0!

zn
†~0!zn~0!

S†~x8,0,vn!GQ21/2,

~A15!
er
is

.

tion
can
pen-

l-
of

ing
where zn(0) obey the eigenvalue equation~A11!. To take
the thermodynamic limit, we need to set the system size
infinity, keeping other parameters~temperature, disorder
distanceux2x8u, etc.! finite. Effectively, this implies that we
can select an energy intervalDE, ‘‘infinitesimal’’ on a scale
defined by these finite quantities, and yet containing a m
roscopic number of energy levels, such that the averag
over the states within this interval gives

^znzn
†&vnPDE5

1

2
1.

The value of the average and the existence of such an in
val follows from the fact that for anyv1Þv2, the spin-
rotation matricesS(L,0;v1,2) become entirely uncorrelate
for a sufficiently largeL, or, equivalently, the relative rota
tion matrix S†(L,0;v1)S(L,0;v2) entirely forgets the initial
direction.

Performing the averaging over the eigenstates within s
an interval, we obtain for the correlation function~A15!,

Gc~ t,x,x8!52 i E dv

2p
e2 ivt@u~ t !n~2v!

2u~2t !n~v!#Q21/2S~x,x8;v!Q21/2,

~A16!

where the summation was replaced by an integration u
the ‘‘clean’’ single-particle total density of statesr̄5(v1

21

1v2
21)L52Lvn /v1v2, which cannot be modified by disor

der. Note that Eq.~A16! does not contain a disorder averag
to

c-
g

er-

h

g

;

it is an expression valid for any given realization of disord
~or even in the limit of no disorder, as long as this limit
taken after the thermodynamic limit!. For example, we
checked that Eq.~A16! with j(x)5const reproduces Eq
~74!, which was derived by more conventional methods.

From the definition ofS(x,x8;v), Eq. ~A10!, and the
disorder-averaging procedure used previously, see Eq.~113!,
we find

S~x,x8;v!5e2Djux2x8u/2v1v2eiv(x2x8)Q21
. ~A17!

With the help of Eqs.~70! and~A16! this gives, in the zero-
temperature limit,

G~ t,x,0![
1

@2p~x2vct1 i e t!#
m21

1

2 F 11sx

2p~x2v1t1 i e t!

1
12sx

2p~x2v2t1 i e t!
Ge2Djuxu/2v1v2. ~A18!

This is in exact agreement with Eq.~130! of Sec. III C. We
have checked that the other disorder-averaged correla
functions for the 331 sequence discussed in Sec. III C
also be reproduced using the method described in this ap
dix.

APPENDIX B: RANDOM TUNNELING FOR THE 331
SEQUENCE

In this appendix we illustrate the effect of an RG irre
evant random perturbation by analyzing the neutral mode
the 331 bilayer in the presence of velocity and tunnel
1-27



od

st

ly

it

o

y
n
e
-

d
fte

e

der
ire

is-

e

-

as-
n,

e

-

331
ted

of

J. D. NAUD, L. P. PRYADKO, AND S. L. SONDHI PHYSICAL REVIEW B63 115301
disorder. Specifically, we assume that both the neutral-m
velocity vn(x) and the tunneling amplitudel(x) in Eq. ~A1!
are coordinate-dependent, in such a fashion that the sy
remains chiral,v1,2(x)5vn(x)6l(x)/p.0 for all x. The
introduction of such a coordinate dependence requires on
slight modification of the Hamiltonian~A1!. Specifically, the
first term in the Hamiltonian density must be replaced as

2 ivnc
†]xc→2

i

2
$vn~x!c†]xc1c†]x@vn~x!c#%.

The arguments in Appendix A can then be repeated w
little modification and we obtain, in place of Eqs.~A15! and
~A10!,

Gc~ t,x,x8!5E dv

2p i
e2 ivt@u~ t !n~2v!

2u~2t !n~v!#Q21/2~x!S~x,x8;v!Q21/2~x8!,

~B1!

S~x,x8;v!5Ty expS i E
x8

x

dy@vQ21~y!2u~y!sz# D ,

u~y![
j~y!

v1
1/2~y!v2

1/2~y!
. ~B2!

Again, this expression is valid for any given configuration
disorderedvn(x), l(x), andj(x).

The requirementv1,2(x).0 is equivalent to essentiall
non-Gaussian disorder, and the disorder averaging is ge
ally nontrivial. This, however, is greatly simplified in th
absence of potential disorder,j(x)50. In this case the re
maining matricesQ21(y) in the exponential commute with
one another for ally, the coordinate ordering (Ty) can be
omitted, and the disorder averaging can be performed
rectly. The structure of the expression is most evident a
the unitary transformation~129! to the Majorana fermion
representation,

gi j ~ t,x,x8!5O†Gc~ t,x,x8!O

5E dv

2p i
e2 ivt@u~ t !n~2v!

2u~2t !n~v!#
d i j exp@ ivt i~x,x8!#

v i
1/2~x!v i

1/2~x8!
,

~B3!

wheret i(x,x8)[*x8
x dy/v i(y) is the time it takes for theith

mode to travel fromx8 to x. Clearly, the structure of the
correlation function in a given configuration of disorder do
not change; at zero temperature we obtain@cf. Eqs.~6! and
~130!#
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Gc~ t,x,x8!5
1

4p F 11sx

v1
1/2~x!v1

1/2~x8!@t1~x,x8!2t#

1
12sx

v2
1/2~x!v2

1/2~x8!@t2~x,x8!2t#
G .

The disorder averaging can be performed for weak disor
if we notice that the velocity fluctuations along the ent
path contribute to the arrival timest i(x,x8); these quantities
acquire nearly Gaussian distributions at sufficiently large d
tances~compared to the disorder correlation length,l c!ux
2x8u). If we ignore small multiplicative corrections near th
ends of the interval, we then find

Gc~ t,x,0!5
1

4p F ~v1
21/2!2

11sx

D1
1/2

F~T1 /D1
1/2!

1~v2
21/2!2

12sx

D2
1/2

F~T2 /D2
1/2!G ,

whereTi5Ti(x)[t̄ i(x)2t is the time elapsed from the ar
rival of the i th peak,Di5Di(x)[t2(x)2t2(x) is the corre-
sponding dispersion, and

F~T![E
0

` dv

2p i
eivT2v2/2, ~B4!

where we have assumedt.0. As illustrated in Fig. 13, at
large values of the argument, this function approaches
ymptotically the clean single-particle Green’s functio
F(T)5(2pT)21, uTu@1. Although the perturbation is RG
irrelevant, the form of the Green’s function is modified in th
vicinity of the singularities.

For a weak (w!vn) Gaussian disorder with a finite cor
relation length,

FIG. 13. The real~solid line! and imaginary~dashed line! parts
of the universal functionF(T) @Eq. ~B4!#, which describes the
shape of the peaks of the averaged Green’s function for the
double layer with disorder in the tunneling amplitude. The dot
line shows the real part of the Green’s function in the absence
disorder.
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l~x!5l̄1dl~x!, ^dl~x!dl~y!&5w2f ~x2y!,

f ~0!51,

assumingw2!l̄2, we obtain, to leading order in the wea
disorder expansion,

t i~x!5~x/ v̄ !@11w2/p2v̄ i
21O~w4/ v̄ i

4!#,

and Di(x)5w2xlc /v i
41•••, where the disorder correlatio

length

l c5E
0

`

dx f~x!

was assumed to be short compared with the overall dista
l c!uxu.

APPENDIX C: EVALUATION OF INTEGRALS

In this appendix we evaluate the integrals needed in
main text. The basic integral is of the form

A~t,X!5E
2`

` dv

2p
eivt

sinh@L~v!X#

L~v!
, ~C1!

whereL(v)5Aa22b2v2, and t, X, a, and b are real pa-
rameters. At large frequencies the integrand is of the fo
1/v times an oscillatory function and therefore converg
without a regulator. Also, since the expansion of the in
grand in powers ofL(v) contains only even powers, n
branch cut is needed and the integrand is therefore an
lytic function for finitev. For largev the integrand contains
the factorseiv(t6bX). Thus for ubXu,utu, the integrand is
exponentially small on one side of the real axis and we
therefore close the contour on that side and findA50; hence

A~t,X!}u„~bX!22t2
…. ~C2!

To evaluate the integral in the region for which it is nonze
we break up the integral into two terms:

A~t,X!5E
C1

dv

2p
eivt

eL(v)X

2L~v!
2E

C2

dv

2p
eivt

e2L(v)X

2L~v!
,

~C3!

where now we must introduce a branch cut, which we tak
run along the realv axis from 2a/b to a/b. The contours
C1 andC2 are shown in Fig. 14. AssumingX.0, the con-
tours have been chosen so that the integrals in Eq.~C3! are
11530
e,

e

s
-

a-

n

,

to

separately convergent. The integrand in theC2 integral is
exponentially small in the upper half-plane and thus can
closed there to give zero. The integrand in theC1 integral is
exponentially small in the lower half-plane and can be clos
there and contracted to run around the branch cut. We use
change of variablesv5(a/b)sinw in the integral around the
cut to arrive at

A~t,X!5u„~bX!22t2
…

1

2bE0

2p dw

2p
ea[ i (t/b)sin w1X cosw] .

~C4!

We next note that we can write

i
t

b
sinw1X cosw5AX22S t

bD 2

cos~w2 iw0!, ~C5!

where the real parameterw0 is defined by coshw0

5X/AX22(t/b)2. After performing this substitution in Eq
~C4! and noting that the integrand is a periodic function inw
with period 2p, we can perform a final change of variable
u5w2 iw0 to find

A~t,X!5u„~bX!22t2
…

1

2b E0

2p du

2p
eaAX22(t/b)2 cosu

5
1

2b
u@~bX!22t2#I 0S a

b
A~bX!22t2D , ~C6!

whereI 0 is a Bessel function of imaginary argument.
Using a5Dj , b5l/p, t5vnX2t and differentiating

Eq. ~C6! with respect tot andX give the following results:

E
2`

` dv

2p
eiv(vnX2t)

sinh@L~v!X#

L~v!

5
1

2~l/p!
u~z!I 0S Dj

l/p
AzD , ~C7!

FIG. 14. The complexv plane showing the branch cut along th
real v axis and the contoursC1 andC2.
E
2`

` dv

2p
eiv(vnX2t)cosh@L~v!X#5

1

2
sgn~ t !@d~x/v12t !1d~x/v22t !# 1

Dj

2v1v2
u~z!

x

Az
I 1S Dj

l/p
AzD , ~C8!

E
2`

` dv

2p
eiv(vnX2t)iv

sinh@L~v!X#

L~v!
52

1

2l/p
sgn~ t !@d~x/v12t !2d~x/v22t !#2

Dj

2~l/p!2
u~z!

~vnx/v1v22t !

Az
I 1S Dj

l/p
AzD ,

~C9!
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wherez[(t2x/v1)(x/v22t).
Finally, if we analytically continue the above results to the case ofDj5 iAv1v2G, where G is real, and writek(v)

5Av1v2G21(l/p)2v2, we find

E
2`

` dv

2p
eiv(vnX2t)

sin@k~v!X#

k~v!
5

1

2~l/p!
u~z!J0S G

l/p
Av1v2zD , ~C10!

E
2`

` dv

2p
eiv(vnX2t) cos@k~v!X#5

1

2
sgn~ t !@d~x/v12t !1d~x/v22t !#2

G

2
u~z!

x

Av1v2z
J1S G

l/p
Av1v2zD , ~C11!

E
2`

` dv

2p
eiv(vnX2t)iv

sin@k~v!X#

k~v!
52

1

2l/p
sgn~ t !@d~x/v12t !2d~x/v22t !#1

Gu~z!

2~l/p!2

~vnx2v1v2t !

Av1v2z
J1S GAv1v2z

l/p D .

~C12!
ni

-
a

.

b

6

l
c-

.
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