PHYSICAL REVIEW B, VOLUME 63, 115207

First-principles study on structural, dielectric, and dynamical properties for three BN polytypes
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We report the results of first-principles calculations on the structural propéetiése constants and internal
parameters dielectric propertiesmacroscopic and static dielectric constants, and Born effective charge ten-
sorg, and dynamical propertied ¢phonon frequenciggor the three polytypes of BN: the cubic zinc-blende
structure €-BN), the wurtzite structurew-BN), and the hexagonal structurB-BN). Our calculations were
performed with the ultrasoft pseudopotential method and the linear response approach based on density-
functional perturbation theory. By comparing the cohesive energies, we found thaBiKestructure is the
most stable among the three polytypes at zero temperature. The computed equilibrium structural parameters,
bulk moduli, and dielectric properties are in good agreement with the experimental data except for the lattice
constantc of h-BN and the macroscopic dielectric constant alongdfais of h-BN. TheI'-phonon frequen-
cies ofc-BN andw-BN are close to each other. In order to distinguisBN andw-BN by Raman spectros-
copy, it turns out that we should investigate the two Raman a&jvmodes that exist only im-BN.
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[. INTRODUCTION tions for materials containing first-row elements in the peri-
odic table or transition metals, which have localized elec-
In recent years, there have been many experiments aritcbns near the nucleus.
theoretical studies on the properties of boron nitriB&). There have been several theoretical investigations of the
This is due to the fascinating properties of the cubic zinc-ground-state properties of BN. However, there are disagree-
blende structure BN o-BN), such as high bulk modulus, ments among them as to the stable structure and the bulk
high thermal conductivity, high melting point, large band modulus. Although the orthogonalized linear combination of
gap, and low dielectric constant. Because of these propertiegfomic orbitals calculation by Xu and Chihgoncludes that
c-BN is expected to be applicable for protective coating filmsh-BN is more stable thaw-BN, the other calculations per-
and modern microelectronic devices at high temperature. It iformed using pseudopotentials and plane wéaveagree in
known that there are three polytypes in BN. The cubic zincpredicting thaic-BN has a lower energy thamBN by about
blende structure BN and the wurtzite structure BM-BN)  0.06 eV/atom. Concerning the bulk modulus, the calculated
resemble cubic and hexagonal diamond, respectively. Thealues forc-BN are consistent with each other, but feBN
hexagonal structure of BNh¢BN) is similar to the structure there are various values ranging from 28 GPa to 335 GPa.
of graphite. These structures are shown in Fig. 1. In spite of the fact that the low dielectric constant is one of
It was suggested by previous experinfethiath-BN was  the fascinating properties of BN, there are few systematic
the stable phase under ambient conditions, esBN and  calculations of the dielectric properties for the three BN
w-BN were synthesized frorh-BN at high temperature and polytypes. On the other hand, since the phonon frequencies
high pressure. However, recent experimental restilgve  at thel™ point are important fundamental properties observed
pointed out that-BN is the thermodynamically stable phase by Raman or IR spectroscopy, several first-principles calcu-
under ambient conditions arfdBN becomes stable at tem- lations have been performed. For example, there is a phonon-
peratures of about 900—1500°C. Another phagd®N, is  dispersion calculation using theb initio force-constant ap-
metastable above a pressure of 10 GRdthough c-BN is  proach forc-BN and h-BN,” and a calculation within the
the stable phase under standard conditions, it is very difficufframework of the self-consistent density-functional perturba-
to produce single crystals by chemical or physical vapotion theory®* (DFPT) for the lattice dynamical properties
deposition or high-pressure synthesis. Furthermore, several
properties, such as the hardness, differ in the three polytype< I
of BN, and so quantification of the crystal structures has o
become much more important. However, there is a lack of
data from infrared reflectivitfIR) or Raman spectroscopy
experiments on BN, which would be useful for the quantita- t%’
tive analysis of crystal structures. ( )

First-principles calculations based on density-functional
theory in the local-density approximatighDA) are widely {
performed in these days. These are computational technique.(Q"
that predict the ground-state properties of materials with suf-
ficient accuracy using no experimental values. The develop-
ment of computational techniques such as ultrasoft FIG. 1. The structures of the three BN polytypes. Black and
pseudopotentiatshas improved the reliability of the calcula- white spheres denote B and N atoms, respectively.

(a) ¢-BN (b) w-BN (¢) h-BN
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of c-BN andw-BN.!? However, as far as we know, no cal- the stress tensor during the relaxation process. This process
culations comparing th&€-phonon frequencies for the three is continued until the remaining force and stress become less
polytypes of BN ¢-BN, w-BN andh-BN) on the same foot- than 1x 10”4 hartrees/bohr and 0.1 GPa, respectively. The
ing have been reported yet. bulk modulus ofw-BN is obtained by fitting the energy-

In this paper, we report the results of first-principles cal-yolume data to Murnaghan’s equation of state. At this point,
culations on the structural propertigiattice constants and the energy-volume data are calculated by optimizing the lat-
internal parameteys dielectric propertiesmacroscopic and  tjce constants,c and the internal parameter under a suitable
static dielectric constants and Born effective charge tensorsayiernal hydrostatic pressure in order to take account of the
andT'-phonon frequencies for the three polytypes of BN Us-5nisqtropy ofw-BN. The procedure to determine the equilib-
ing the ultrasoft pseudopotential method and densityyj,y |attice constants and bulk modulusteBN is similar to
functional perturbation theory. In Sec. I, we describe theynat forw-BN. However, the relaxation process foBN can
mefch(.)d of calculation. In Sec. llI, we shqw the res.ults forpe carried out using only the stress tensor as an input, be-
optimized structural parameters, dielectric properties, andgse the atomic forces vanish automatically due to the crys-
dynamical properties at thE point, for the three polytypes 4 symmetry.
of BN. We summarize this study in Sec. IV. In utilizing the macroscopic stress tensor for structural

optimization, one should pay attention to the fact that, in
Il. COMPUTATIONAL METHOD general, the stress tensor derived from the total energy does
not coincide with that computed analytically by a stress cal-
culation. This discrepancy is called Pulay stf&y analogy

We have performed a first-principles calculation of thewith the Pulay forcé! The Pulay stress is caused by the
three BN polytypes based on density-functional theory withconstant cutoff energy truncation for the plane-wave basis
the local-density approximatidhand the ultrasoft pseudopo- set, which causes a variation of the number of plane waves
tential techniqué. The exchange-correlation interactions areon varying the size of a unit cell. Although we have chosen
described by the Perdew-Wang fotfhin the pseudopoten- a fairly large cutoff energy, the Pulay stress is not negligible.
tial generation scheme, the pseudo wave functions are comr order to remove the Pulay stress, the modification of the
structed using the optimized potential method proposed b¥inetic energy term proposed by Bernasceetial® is
Rappeet al'® A similar scheme is applied to generate adopted during the relaxation process.
pseudo-charge-augmentation functions.

In solid-state calculations, the cutoff energy of the plane
waves to expand the wave functions is set to be 20 hartrees. C. Linear response theory
Although .the cutoff energy for the charge den;ities _iS gener- The macroscopic dielectric constant is related to the sec-
ally four times as large as that for wave functions in norm-gnq derivative of the total energy with respect to external
conserving pseudopotential schemes, the ultrasoft pseudopgractric field, and the dynamical matrix at thepoint of the
tential calculations require a larger cutoff than in norm-gyijouin zone is directly linked to the second derivative of
conserving cases because of the presence of th@e total energy with respect to the atomic displacements.
augmentation charge. Therefore, it is chosen to be 100 hafrhe Born effective charge tensor is formulated as the mixed
trees in order to accurately expand the augmentation charggecond derivative mentioned above. The calculations of such
We checked that these cutoff energies gave good convefinear response functions have been made within the frame-
gence of total energy within 0.05 mhartrees/atom. Integralgyork of the self-consistent density-functional perturbation
over the Brillouin zone were approximated by sums on (8theoryl®1The computational methods described in Refs. 10
X8x8), (8x8x6), and (10<10x4) Monkhorst-Pack and 11 are for the norm-conserving pseudopotential scheme.
k-point meshe¥ for c-BN, w-BN, and h-BN, respectively. pa| Corsoet al?® generalized DFPT for lattice dynamics in

The method for minimizing the Kohn-Sham energy func-the uitrasoft pseudopotential scheme. We have extended it
tional is described in Ref. 17 and the Broyden charge densityrther for the response to an electric field.

A. Total energy calculations

mixing techniqué® is employed in the present study. According to Bloch's theorem, a wave functiof(r)
can be decomposed into the product of a phase factor and a
B. Structural optimization periodic functionup(r),

The equilibrium structural properties a-BN are ob-
tained by minimization of the total energy with respect to the
unit cell volume. The total energies calculated at several lat-
tice constants are fitted to Murnaghan’s equation of State
order to determine the equilibrium lattice constant and the
bulk modulus. Fow-BN, which has lower symmetry than
c-BN, evaluation of the forces acting on atoms and the macwhere(} is the volume of the unit cell, andandk label the
roscopic stress tensor helps us to find the stable structurband and the wave vector of the wave function, respectively.
because the atomic forces and the stress tensor must vanishin the ultrasoft pseudopotential scheme, the second de-
in that structure. We have applied the Broyden algorithm taivative of the total energy with respect to an electric field
renew the structural parameters with the atomic forces anelong directiona(e,) and along directiorB(e ) is given by

1
wnk(r)=\/—5e'k"unk(r), (0]
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_ The Sternheimer Eq8) is solved self-consistently because
K(r)=[r)(r| +|Z [HEHEIE (7). the perturbed terw; (r) depends on the derivative of the
! charge density®e, and as Eq(6) showsp®« is a functional
where the integration is performed over the whole Brillouinof P¢ |u; ). The conjugate-gradient algorithm is employed
zone, the summation runs over the occupied statess the  to solve the Sternheimer equation and the mixing for updat-
Spm degeneracwnﬁ is a shorthand notation for the first |ng the first derivative of the Charge den5|ty is performed

derivative ofu,, with respect to the electric field,,, P,  With the Broyden charge mixing technique.
—1— Eocc|u(0)><u(0)| |s the projector upon the conduc The first derivative of the wave function with respect to

tion bands P:k |nd|cates the Hermitian conjugate B , the wave vector can be determined by the following Stern-

the superscript (0) means the unperturbed state, HY heimer equation:
(0) and St correspond to the unperturbed Hamiltonian
€nk " p* (0) _ .(0)g(0) Ka N (%) (0)

the eigenvalues dfi(®), and the overlap matrix, respectively. PEx(Hick ™ enicSici) e Un) + P k(Hk k™ Enk )|u“">

Enxc is the Hartree and exchange-correlation energy func- =0, (11)

tional of the charge densitp(r) We have defined for a

genenc operatoiO that Oy v =€ *'0e¥ "', The term With

|(pnk> which includes the first derlvatlve of the wave function

with respect to the wave vector originates in treating the — H 4 =T, +uNka+E [|p )J VE(ralO(r)dr

electric field as the longitudinal ort& The projectorg! and

the charge augmentation functioﬁﬁ(r), for an atom of 10 . 0 0

specied, are the basic ingredients of the ultrasoft pseudopo- X (P01 + | pif )>f VNl )(r)dr<p it

tential scheme. Herfl,j} is a composite index labeling the

angular momentumlfn) and radial indices of the projectors. (12

From Eq.(2) and the generalized orthogonal constraint V()= 4 © ) 13
(U S + (US| utey=0, we deduce the follow- ert(N =007+ opxe(r), (13

ing Sternheimer equation: whereTk . UEL wx» and pi't“ are the first derivative of the

kinetic energy operator, the nonlocal part of the pseudopo-
P (HQ— RSP lurs) +Ph k|1‘}nk> 0, (8 tential and the projector with respect to the wave vekjor
respectively.V¢¢s denotes the sum of the local part of the
with pseudopotential, and the Hartree and exchange-correlation
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potentialv ... Since Eq.(11) does not include the terpie, Pcykluﬁﬁ) can be computed directly.

The dynamical matrix at thE point is separated into the Ewald part and the electronic part. The Ewald part can be found
in Ref. 11. The electronic part is expressed by the second derivative of the electronic contribution to the total energy with
respect to the atomic displacements as follows:

occ

A= 1 f R
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occ
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VI Ra(r)=p(r) + o (), (189
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whereR,, denotes the atomic displacement of atbaiong directiona and XRi«Rys is the shorthand notation for the second
derivative of X with respect toR,, and R;,. (d’E,./dR, d Ryp)|,0 is the second derivative of the exchange-correlation
functional, which appears when the partlal core corre&flﬁntaken into account.

The Sternheimer equation for the derivative of the wave function with respect to the atomic displacements is

R R
PE(HQ = 2SO Pe Uy + PE (e — e RS0 lufP) =0, (20)
with
Rd_ Rll Rﬂ/ Rll
H o= UNIka"'V(e%)fK ! +Ve|ffK(k0|Z’ (21)

VRa(ry=v'Ria(r)+

T Ria(r’ d /. 29
Yerfn =Y i) Jép(r)épu') o 2

Finally, the mixed second derivative of the total energy with respeRt f@nde 5, which is required for the Born effective
charge tensor, is
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In this stationary expressidiq. (23)], the first derivative of the wave functions with respect to atomic displacements, the
electric field, and the wave vector are required. In the nonstationary expression descrived below, the first derivative with
respect to atomic displacements is unnecessary:
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Another nonstationary form is also possible, in which the first derivative with respect to the wave vector and the atomic
displacements are needed:
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IR Ies  (27)% B2 n

+5a32 (uipi ) Qi (P @ ufid)

R R R k R
S| (@reIPclulley + (Ul P ] ok8) + (@Rl 8| ul®) + (U] e )

occ

-2s

E (U@ Ql (Pl U (uQ o6

IS (i) '<°>>Q.J<p'R'a|u$,i>>>“' @

We have used Ed25) for calculation of the Born effective As is well known, the lattice constants obtained by the
charge tensors. LDA are a little smaller than the experimental values. But
the error is less than 1% except for the lattice constaoit
h-BN, and so it can be said that the calculated lattice con-
lll. RESULTS stants and the experimental values are in good agreement.
Previous calculations predicted the lattice constasfth-BN
in the range 6.439-6.66 A-° The relatively large error ig
The optimized structural properti€kttice constants, in- of h-BN is due to its layer structure. The lattice constaof
ternal parameters, bulk modulus, and cohesive enei@gy h-BN is affected by a weak van der Waals interaction, while
the three polytypes of BN are shown in Table I. The cohe+the lattice constana is determined by the extremely short
sive energy is computed by subtracting the sum of the totahnd strong ionic-covalerstp? bonding. Therefore, the varia-
energy of the isolated atoms including the spin-polarizatiortion of the cohesive energy with the relative lengthcos
energy from that of the solid. much smaller than that with, as shown in Figs. 2 and 3.

A. Structural properties
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TABLE I. Calculated and experimental structural properties for - -0.2910 —— —— 15
the three polytypes of BN: lattice constartx (A), internal pa- S /
rameteru, bulk modulusB (GP3g, and cohesive enerdy (hartrees/ o
atom. g -0.2915 | - 10 =
a c u B E 3 02020 {5 &
@ N 2
c-BN H o
3.592 395 —0.2940 present 2 0o &
3.615 expf? 8
3.615 370 calé. 3 I I
3.581 398 —0.2997  cal. 096 098 10 102 104
3.593 395 -0.2379 cald alay
3.576 397 —0.2997 calé
3.591 397 calé. FIG. 2. Cohesive ene_rg@solid line) an_d the macroscopic stress
W-BN tensor element perpendicular to tleeaxis oy, (dashed ling vs
2532 4.188 0.3744 396 —0.2934 present relitgliéégg/t&h ofa for h-BN. a, is the equilibrium lattice constant:
2553 4.228 exf.  0T° ‘
2.536 4.199 390 caft. panded unit cells yield erroneous results for the bulk modu-
2.532 4.188 0.374 394 -0.2375  cal¢ lus, especially if the structures are strongly anisotropic.
2.521 4.165 401 —0.2990  calc When we use the energy-volume data of isotropic compres-
2.531 4.194 03751 399 cdic.  sjon and expansion, the calculated bulk modulus-8N is
h-BN 253 GPa. This value differs greatly from the experimental
2.496 6.498 26  —0.2919 present  yalue of 36.7 GPa obtained by Solozherdtal?’ We have
2.504(2)  6.660(8) 36.7 exb. checked the computational accuracy using the following re-
2.494 6.66 335 calt. lation between the bulk modulu® and the elastic constants
2.489 6.481 28 —0.2975 calé Cij of h-BN:
2.496 6.490 30.1 —-0.2358 cald
2.486 6.439 261 —0.2977 calé¢ . C33(C11+ ClZ) - 2(C13)2

8Reference 25.
bReference 6.
‘Reference 7.
dreference 8.
®Reference 9.
fReference 12.
9Reference 26.
PReference 27.

Whenc is lengthenedshortenegl by 5% from the equilib- :
rium valuec,=6.4976 A, the change of the cohesive energyc-BN and w-BN is 0.6 mhartrees/atom, and that between

~ Cp+Cyp+2C55-4Cy3 9

The elastic constants ¢fBN, C;;,C;5,C3, andCs3, are
shown in Table Il, calculated from the elements of the stress
tensor by applying several strains corresponding: o of
the equilibrium lattice constants. The bulk modulus obtained
from Eq. (28) is 27 GPa. This is in reasonable agreement
with the value of 26 GPa computed by total energy fitting.

By comparing the cohesive energy of the three BN poly-
types, we predict that the BN structure is the most stable at
zero temperature. The difference in cohesive energy between

is only 0.05 (0.09) mhartrees/atom. On the other hand, as
Fig. 3 shows, the variation of the stress is monotonic and
large enough to allow estimation of the equilibrium lattice
constant. Since the macroscopic stress tensor is employed to
find the stable structure, we expect that the accuracy of the
lattice constant obtained by the present calculation is better
than that obtained from the total energy variation. The dis-
crepancy with the experimental data énof h-BN may be
remedied by using the generalized gradient approxim&tion
for the exchange-correlation functional.

In the present study, the calculated bulk modulus-8N
is 395 GPa and that of-BN is 396 GPa. These values are
close to that of diamond, 442 GP&Since the bulk modulus
of h-BN is 26 GPa, it is not as hard asBN and w-BN.
Theoretical values for the bulk modulus BN vary from

—  0.2910 —————— —— 15
E

[=]

s

g 02015} 110 =
T o
2 R R
5 02920 f — 15 &
g a
@ —_— | g
2 o 0o @
[7]

Q

£

[=]

© -5

096 098 1.0 102 1.04
clecop

FIG. 3. Cohesive energisolid line) and the macroscopic stress

28 to 335 GP&™° The reason is considered to be that thetensor element parallel to theaxis o, (dashed ling vs relative
interaction along the axis direction is so weak. The energy- length of c for h-BN. ¢, is the equilibrium lattice constant,
volume data generated from isotropically compressed or ex=6.4976 A.
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TABLE II. Calculated elastic constan{g GPa of h-BN. TABLE IV. The TO and LO phonon frequencigs cm 1) at
theI" point of c-BN.
C11 c:12 C13 C33
951.5 169.2 25 28.2 T=(T9) T2(L0)
1062 1295 present
1055.7 1304.8 exp.
c-BN and h-BN is 2.1 mhartrees/atom. These results agree 1056 1303 exp.
with  other calculations using plane waves and 1040 1285 cal€.

pseudopotentials;®1?

3Reference 31.
, , , bReference 33.
B. Dielectric properties ‘Reference 12.

The macroscopic dielectric constatt is observed as a
response to a uniform electric field, and the Born effective  The average values of the macroscopic dielectric constant
charge tensoZ* is defined as the proportionality coefficient 4 the Born effective charge tensor are defineds_gy

relating the macroscopic polarization and the displacement , Sk Lo . .

of atoms from their equilibrium positions. Knowledge of the ; §Tr8°°| a?d % IgTrZ ’ re;s;;ectwely',ﬁ;gﬁattﬁe their off-
macroscopic dielectric constant and the Born effective lagonal elements are equal {o zero. » the average
charge tensor is essential for describing the long-range dipd/aluese..=4.55 andZ* =1.86 are close to the values for
lar contribution to the lattice dynamics of a polar crystal. The¢-BN. The degree of anisotropy af. andZ* can be esti-
static dielectric constant, is calculated by adding the ef- mated from the difference between the components parallel
fects of the dipole interactions represented by the followingand perpendicular to the axis: Asm=[sﬂ§—s§;°]/sm and

two contributions to the macroscopic dielectric constant. Az*=[Zz*Ic—z*1c)jz* The calculated anisotropies for
One is t_he Born effective_ charge tensor, and the o_ther is th_@,_BN are As,=0.03 andAZ* =0.05, and those foh-BN

set of eigenvalues and eigenvectors of the dynamical matriyre A¢,, =0.48 andAZ* =0.91. The anisotropy ofi-BN is

that determines the frequencies of the transverse ofi€l  much larger than that of-BN.

mode. These calculated values for the three BN polytypes are The calculated macroscopic dielectric constant along the
shown in Table Ill. Here the Born effective charge tensorsyyis ¢lI¢ and the static dielectric constasf® for h-BN are

are given as absolute values and the acoustic sum rule i$g4 and 3.38 respectively. Xu and CHirgso reported a

satisfied with an error of less than 1% in our calculation.  gijar valuezl°=2.21. These values differ greatly from the

experimental valuesﬂf=4.1 ands‘(‘)°=5.06 in Ref. 32. Al-
though we repeated the calculation using the experimental
lattice constants, the resultd®=2.72 andeﬂf=3.17 were
not improved significantly. In connection with this discrep-

TABLE lll. The dielectric properties for the three polytypes of
BN: macroscopic dielectric constant,, static dielectric constant
&g, and Born effective charge tensaf .

e, €0 |Z*| ancy, more detai!ed investigation is desirable. For the other
dielectric properties of the three BN polytypes, the agree-
c-BN ment of the values obtained by the present calculation, ex-
4.54 6.74 1.89 present  periment, and other computations is good.
45 7.1 exg:
4.46 6.8 exp. . . _
3.86 calc C. Dynamical properties at theI" point

4.54 1.93 cald The I'-phonon frequencies for the three polytypes of BN

were calculated by solving the eigenvalue problem of the

dynamical matrix at the wave vectg=0. The calculated
W-BN results for thd™-phonon frequencies are shown in Tables IV,

450 464 650 699 183 1.92 present V, and VI. There is a triply degenerate optlcal phonon .mode

expressed with the symmetfy at thel” point of c-BN. This
4.16 4.18 calé. . . .
calt. mode is active in both Raman and IR spectroscopy. The

S;c Sﬂcc séc eﬂ)c |Z*J_C| |Z*HC|

4.50 4.67 h-BN 1.86 1.96 I'-phonon modes ofv-BN can be classified into the Raman
4.85 2.84 6.61 3.38 2.71 0.82 t

presen TABLE V. The TO and LO phonon frequenciém cm ) at
4.95 4.1 6.85 5.06 exp. .

theI" point of w-BN.

4.32 2.21 calé.
ERefefence 31 475 979 982 1043 1280 1075 1293 1134 present
Reference 6. 1006 1258 1053 1281 cafc.
dReference 12.
‘Reference 32. %Reference 12.
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TABLE VI. The TO and LO phonon frequencié® cm 1) at thel" point of h-BN.

EZQ Blg AZU(TO) AZU(LO) Blg E29 Elu(TO) Elu(LO)
50 113 754 823 815 1382 1382 1614 present
52 783 828 1366 1367 1610 exp.

®Reference 32 foA,,(TO,LO) andE,,(TO,LO) modes, and Ref. 34 fdE,; modes.

active and infrared activd,; andE; modes, the two Raman
active E, modes, and the two silerB; modes. Forh-BN,
there are the infrared activ&,, and E;, modes, the two
Raman activeE,; modes, and the two sile®;; modes.
Among these, eackq, E,, Ey,, andE,y mode is doubly

structure with these modes by Raman or IR spectroscopy.
However, since the two Raman actilzg modes exist only in
w-BN, it is possible to distinguisiv-BN from ¢-BN. On the
other hand, it is easy to tell the crystal structureheBN

from the others using Raman or IR spectroscopy, because the

degenerate. The infrared active mode is divided into thdrequencies of the infrared or Raman active modeb-BN

transverse optical mode and the longitudinal optidaD)

differ from those ofc-BN or w-BN.

mode, because BN is an ionic crystal and reflects the effect

of Coulomb interactiongdipole-dipole interactions We cal-

IV. SUMMARY

culated the frequencies of the LO phonon mode by solving

the eigenvalue problem for the dynamical matrix correspond- We have performed a first-principles calculation on the
ing to the LO phonon mode as follows. Since the macro-structural, dielectric, and lattice-dynamical properties for the
scopic dielectric constant and the Born effective charge tenthree polytypes of BN. In our calculation, the ultrasoft
sor are related to the macroscopic electric field induced byseudopotential technique and density-functional perturba-
the dipole-dipole interactions, the dynamical matrix for thetion theory are used. The calculated lattice constants and the

LO phonon modéD; ), ; can be expressed ‘s

FERRID PR
Lo _n~To 47
Dias=Diasst ,

Q .
VMlMJEaﬂ qasaﬁqﬁ

(29

where D[, is the dynamical matrix for the TO phonon
mode, which is directly obtained from the linear respons
calculation, e,z and zy , . are the elements of the macro-

la'a

e

experimental values are well in agreement exceptcfaf
h-BN. Each bulk modulus ofv-BN andc-BN is close to the
value for diamond, bult-BN is not so hard. From the calcu-
lated results of the cohesive energy, it is predicted ¢HaN

is the most stable structure at zero temperature. For the di-
electric properties, the computed values are in reasonable
agreement with experimental data except for the macro-
scopic dielectric constant along tleeaxis for h-BN. The
average values of the macroscopic dielectric constant and the
Born effective charge tensor @¥-BN are close to those of
¢c-BN. The calculated anisotropy fdr-BN is much larger
than that for w-BN. The phonon frequencies of the

scopic dielectric constant and the Born effective charge tent,(10,L0O) mode of ¢-BN and the A,(TO,LO) and

sor, q,, is the direction of the wave vector of the phondh,
is the atomic mass of tHeh atom, and «,8,a’,8'} denotes
the direction in a Cartesian coordinate system.

The calculated optical frequencies at thepoint of the

E,(TO,LO) modes ofw-BN are close to each other, but the
two Raman activée, modes exist only iw-BN. Therefore,
when crystal structural analysis is performed by the Raman
spectroscopy, it is possible to distinguighBN from c-BN

three BN polytypes agree very well with the experimentalby investigating the twdE, modes ofw-BN. On the other
data from first-order Raman or IR spectroscopy in Refs. 31-hand, the frequencies of the infrared or Raman active modes
34. The agreement of our results with other first-principlesof h-BN differ from those ofc-BN andw-BN, and so it is

calculations for thd"-phonon frequencies is reasonable, tak-

easy to tell the crystal structure bfBN from that of c-BN

ing into account the variation of frequencies due to the dif-andw-BN by Raman spectroscopy or infrared reflectivity.
ferences of the computational methods and the equilibrium

structural parameters.
The I'-phonon frequencies of th&,(TO,LO) mode of
c-BN and theA;(TO,LO) and E{(TO,LO) modes ofw-BN
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