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First-principles study on structural, dielectric, and dynamical properties for three BN polytypes

Nobuko Ohba, Kazutoshi Miwa, Naoyuki Nagasako, and Atsuo Fukumoto
Toyota Central Research & Development Laboratories, Inc., Nagakute, Aichi 480-1192, Japan

~Received 19 September 2000; published 1 March 2001!

We report the results of first-principles calculations on the structural properties~lattice constants and internal
parameters!, dielectric properties~macroscopic and static dielectric constants, and Born effective charge ten-
sors!, and dynamical properties (G-phonon frequencies! for the three polytypes of BN: the cubic zinc-blende
structure (c-BN!, the wurtzite structure (w-BN!, and the hexagonal structure (h-BN!. Our calculations were
performed with the ultrasoft pseudopotential method and the linear response approach based on density-
functional perturbation theory. By comparing the cohesive energies, we found that thec-BN structure is the
most stable among the three polytypes at zero temperature. The computed equilibrium structural parameters,
bulk moduli, and dielectric properties are in good agreement with the experimental data except for the lattice
constantc of h-BN and the macroscopic dielectric constant along thec axis of h-BN. TheG-phonon frequen-
cies ofc-BN andw-BN are close to each other. In order to distinguishc-BN andw-BN by Raman spectros-
copy, it turns out that we should investigate the two Raman activeE2 modes that exist only inw-BN.

DOI: 10.1103/PhysRevB.63.115207 PACS number~s!: 78.30.Fs, 63.20.2e, 77.22.2d
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I. INTRODUCTION

In recent years, there have been many experiments
theoretical studies on the properties of boron nitride~BN!.
This is due to the fascinating properties of the cubic zi
blende structure BN (c-BN!, such as high bulk modulus
high thermal conductivity, high melting point, large ban
gap, and low dielectric constant. Because of these proper
c-BN is expected to be applicable for protective coating fil
and modern microelectronic devices at high temperature.
known that there are three polytypes in BN. The cubic zi
blende structure BN and the wurtzite structure BN (w-BN!
resemble cubic and hexagonal diamond, respectively.
hexagonal structure of BN (h-BN! is similar to the structure
of graphite. These structures are shown in Fig. 1.

It was suggested by previous experiment1 that h-BN was
the stable phase under ambient conditions, andc-BN and
w-BN were synthesized fromh-BN at high temperature an
high pressure. However, recent experimental results2,3 have
pointed out thatc-BN is the thermodynamically stable pha
under ambient conditions andh-BN becomes stable at tem
peratures of about 900–1500 °C. Another phase,w-BN, is
metastable above a pressure of 10 GPa.4 Although c-BN is
the stable phase under standard conditions, it is very diffi
to produce single crystals by chemical or physical va
deposition or high-pressure synthesis. Furthermore, sev
properties, such as the hardness, differ in the three polyty
of BN, and so quantification of the crystal structures h
become much more important. However, there is a lack
data from infrared reflectivity~IR! or Raman spectroscop
experiments on BN, which would be useful for the quanti
tive analysis of crystal structures.

First-principles calculations based on density-functio
theory in the local-density approximation~LDA ! are widely
performed in these days. These are computational techni
that predict the ground-state properties of materials with s
ficient accuracy using no experimental values. The deve
ment of computational techniques such as ultras
pseudopotentials5 has improved the reliability of the calcula
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tions for materials containing first-row elements in the pe
odic table or transition metals, which have localized ele
trons near the nucleus.

There have been several theoretical investigations of
ground-state properties of BN. However, there are disag
ments among them as to the stable structure and the
modulus. Although the orthogonalized linear combination
atomic orbitals calculation by Xu and Ching6 concludes that
h-BN is more stable thanc-BN, the other calculations per
formed using pseudopotentials and plane waves7–9 agree in
predicting thatc-BN has a lower energy thanh-BN by about
0.06 eV/atom. Concerning the bulk modulus, the calcula
values forc-BN are consistent with each other, but forh-BN
there are various values ranging from 28 GPa to 335 GPa6–9

In spite of the fact that the low dielectric constant is one
the fascinating properties of BN, there are few systema
calculations of the dielectric properties for the three B
polytypes. On the other hand, since the phonon frequen
at theG point are important fundamental properties observ
by Raman or IR spectroscopy, several first-principles cal
lations have been performed. For example, there is a pho
dispersion calculation using theab initio force-constant ap-
proach forc-BN and h-BN,7 and a calculation within the
framework of the self-consistent density-functional perturb
tion theory10,11 ~DFPT! for the lattice dynamical propertie

FIG. 1. The structures of the three BN polytypes. Black a
white spheres denote B and N atoms, respectively.
©2001 The American Physical Society07-1
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of c-BN andw-BN.12 However, as far as we know, no ca
culations comparing theG-phonon frequencies for the thre
polytypes of BN (c-BN, w-BN andh-BN! on the same foot-
ing have been reported yet.

In this paper, we report the results of first-principles c
culations on the structural properties~lattice constants and
internal parameters!, dielectric properties~macroscopic and
static dielectric constants and Born effective charge tenso!,
andG-phonon frequencies for the three polytypes of BN u
ing the ultrasoft pseudopotential method and dens
functional perturbation theory. In Sec. II, we describe t
method of calculation. In Sec. III, we show the results
optimized structural parameters, dielectric properties,
dynamical properties at theG point, for the three polytypes
of BN. We summarize this study in Sec. IV.

II. COMPUTATIONAL METHOD

A. Total energy calculations

We have performed a first-principles calculation of t
three BN polytypes based on density-functional theory w
the local-density approximation13 and the ultrasoft pseudopo
tential technique.5 The exchange-correlation interactions a
described by the Perdew-Wang form.14 In the pseudopoten
tial generation scheme, the pseudo wave functions are
structed using the optimized potential method proposed
Rappe et al.15 A similar scheme is applied to genera
pseudo-charge-augmentation functions.

In solid-state calculations, the cutoff energy of the pla
waves to expand the wave functions is set to be 20 hartr
Although the cutoff energy for the charge densities is gen
ally four times as large as that for wave functions in nor
conserving pseudopotential schemes, the ultrasoft pseud
tential calculations require a larger cutoff than in nor
conserving cases because of the presence of
augmentation charge. Therefore, it is chosen to be 100
trees in order to accurately expand the augmentation cha
We checked that these cutoff energies gave good con
gence of total energy within 0.05 mhartrees/atom. Integ
over the Brillouin zone were approximated by sums on
3838), (83836), and (1031034) Monkhorst-Pack
k-point meshes16 for c-BN, w-BN, and h-BN, respectively.
The method for minimizing the Kohn-Sham energy fun
tional is described in Ref. 17 and the Broyden charge den
mixing technique18 is employed in the present study.

B. Structural optimization

The equilibrium structural properties ofc-BN are ob-
tained by minimization of the total energy with respect to t
unit cell volume. The total energies calculated at several
tice constants are fitted to Murnaghan’s equation of state19 in
order to determine the equilibrium lattice constant and
bulk modulus. Forw-BN, which has lower symmetry tha
c-BN, evaluation of the forces acting on atoms and the m
roscopic stress tensor helps us to find the stable struc
because the atomic forces and the stress tensor must v
in that structure. We have applied the Broyden algorithm
renew the structural parameters with the atomic forces
11520
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the stress tensor during the relaxation process. This pro
is continued until the remaining force and stress become
than 131024 hartrees/bohr and 0.1 GPa, respectively. T
bulk modulus ofw-BN is obtained by fitting the energy
volume data to Murnaghan’s equation of state. At this po
the energy-volume data are calculated by optimizing the
tice constantsa,c and the internal parameter under a suita
external hydrostatic pressure in order to take account of
anisotropy ofw-BN. The procedure to determine the equili
rium lattice constants and bulk modulus ofh-BN is similar to
that forw-BN. However, the relaxation process forh-BN can
be carried out using only the stress tensor as an input,
cause the atomic forces vanish automatically due to the c
tal symmetry.

In utilizing the macroscopic stress tensor for structu
optimization, one should pay attention to the fact that,
general, the stress tensor derived from the total energy d
not coincide with that computed analytically by a stress c
culation. This discrepancy is called Pulay stress20 by analogy
with the Pulay force.21 The Pulay stress is caused by th
constant cutoff energy truncation for the plane-wave ba
set, which causes a variation of the number of plane wa
on varying the size of a unit cell. Although we have chos
a fairly large cutoff energy, the Pulay stress is not negligib
In order to remove the Pulay stress, the modification of
kinetic energy term proposed by Bernasconiet al.22 is
adopted during the relaxation process.

C. Linear response theory

The macroscopic dielectric constant is related to the s
ond derivative of the total energy with respect to exter
electric field, and the dynamical matrix at theG point of the
Brillouin zone is directly linked to the second derivative
the total energy with respect to the atomic displaceme
The Born effective charge tensor is formulated as the mi
second derivative mentioned above. The calculations of s
linear response functions have been made within the fra
work of the self-consistent density-functional perturbati
theory.10,11The computational methods described in Refs.
and 11 are for the norm-conserving pseudopotential sche
Dal Corsoet al.23 generalized DFPT for lattice dynamics i
the ultrasoft pseudopotential scheme. We have extende
further for the response to an electric field.

According to Bloch’s theorem, a wave functioncnk(r )
can be decomposed into the product of a phase factor a
periodic functionunk(r ),

cnk~r !5
1

AV
eik•runk~r !, ~1!

whereV is the volume of the unit cell, andn andk label the
band and the wave vector of the wave function, respectiv

In the ultrasoft pseudopotential scheme, the second
rivative of the total energy with respect to an electric fie
along directiona(«a) and along directionb(«b) is given by
7-2
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]2Etot

]«a]«b
5

1

~2p!3EBZ
dk(

n

occ

s[ ^unk
«auPc,k* ~Hk,k

(0)2«nk
(0)Sk,k

(0)!Pc,kuunk
«b&1^unk

«buPc,k* ~Hk,k
(0)2«nk

(0)Sk,k
(0)!Pc,kuunk

«a&1^wnk
kbuPc,kuunk

«b&

1^wnk
kbuPc,kuunk

«a&1^unk
«auPc,k* uwnk

kb&1^unk
«buPc,k* uwnk

ka&] 1E E d2EHxc

dr~r1!dr~r2!
ur(0)r«a~r1!r«b~r2!dr1dr2 , ~2!

uwnk
ka&5Sk,k

(0)Pc,ku iunk
ka&1(

I i j
@ upik

I (0)&Qi j
I ^pj k

Ikau iunk
(0)&1upik

I (0)&di j ,a
I ^pj k

I (0)uunk
(0)&], ~3!

Qi j
I 5E q̃i j

I ~r !dr , ~4!

di j ,a
I 5E r aq̃i j

I ~r !dr , ~5!
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with the first derivative of the charge density with respect
«a

r«a~r !5
1

~2p!3EBZ
dk(

n

occ

s@u
nk
«a* ~r !Pc,k* Kk,k

(0)~r !unk
(0)~r !

1unk
(0)* ~r !Kk,k

(0)~r !Pc,kunk
«a~r !#, ~6!

K~r !5ur &^r u1(
I i j

upi
I&q̃i j

I ~r !^pj
I u, ~7!

where the integration is performed over the whole Brillou
zone, the summation runs over the occupied statesn, s is the
spin degeneracy,unk

«a is a shorthand notation for the firs
derivative ofunk with respect to the electric field«a , Pc,k
512(n

occuunk
(0)&^unk

(0)uSk,k
(0) is the projector upon the conduc

tion bands,Pc,k* indicates the Hermitian conjugate ofPc,k ,
the superscript (0) means the unperturbed state, andH (0),
«nk

(0) , and S(0) correspond to the unperturbed Hamiltonia
the eigenvalues ofH (0), and the overlap matrix, respectivel
EHxc is the Hartree and exchange-correlation energy fu
tional of the charge densityr(r ). We have defined for a
generic operatorO that Ok,k85e2 ik•rOeik8•r8. The term
uwnk

ka& which includes the first derivative of the wave functio
with respect to the wave vector originates in treating
electric field as the longitudinal one.10 The projectorspi

I and

the charge augmentation functionsq̃i j
I (r ), for an atom of

speciesI, are the basic ingredients of the ultrasoft pseudo
tential scheme. Here$ i , j % is a composite index labeling th
angular momentum (lm) and radial indices of the projectors

From Eq. ~2! and the generalized orthogonal constra
^unk

«auSk,k
(0)uunk

(0)&1^unk
(0)uSk,k

(0)uunk
«a&50, we deduce the follow-

ing Sternheimer equation:

Pc,k* ~Hk,k
(0)2«nk

(0)Sk,k
(0)!Pc,kuunk

«a&1Pc,k* uqnk
ka&50, ~8!

with
11520
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uqnk
ka&5uwnk

ka&1(
I i j

upik
I (0)&E wHxc

«a ~r !q̃i j
I (0)~r !dr

3^pj k
I (0)uunk

(0)&, ~9!

wHxc
«a ~r !5E d2EHxc

dr~r !dr~r 8!
U

r(0)

r«a~r 8!dr 8. ~10!

The Sternheimer Eq.~8! is solved self-consistently becaus
the perturbed termwHxc

«a (r ) depends on the derivative of th
charge densityr«a, and as Eq.~6! showsr«a is a functional
of Pc,kuunk

«a&. The conjugate-gradient algorithm is employe
to solve the Sternheimer equation and the mixing for upd
ing the first derivative of the charge density is perform
with the Broyden charge mixing technique.

The first derivative of the wave function with respect
the wave vector can be determined by the following Ste
heimer equation:

Pc,k* ~Hk,k
(0)2«nk

(0)Sk,k
(0)!Pc,kuunk

ka&1Pc,k* ~Hk,k
ka 2«nk

(0)Sk,k
ka !uunk

(0)&

50, ~11!

with

Hk,k
ka 5Tk,k

ka 1vNL,k,k
ka 1(

I i j
F upik

Ika&E Ve f f
(0)~r !q̃i j

I (0)~r !dr

3^pj k
I (0)u1upik

I (0)&E Ve f f
(0)~r !q̃i j

I (0)~r !dr ^pj k
Ikau G ,

~12!

Ve f f
(0)~r !5vL

(0)~r !1vHxc
(0) ~r !, ~13!

whereTk,k
ka , vNL,k,k

ka , andpik
Ika are the first derivative of the

kinetic energy operator, the nonlocal part of the pseudo
tential and the projector with respect to the wave vectorka ,
respectively.Ve f f denotes the sum of the local part of th
pseudopotentialvL and the Hartree and exchange-correlati
7-3
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potentialvHxc . Since Eq.~11! does not include the termrka, Pc,kuunk
ka& can be computed directly.

The dynamical matrix at theG point is separated into the Ewald part and the electronic part. The Ewald part can be
in Ref. 11. The electronic part is expressed by the second derivative of the electronic contribution to the total ener
respect to the atomic displacements as follows:

]2Eel

]RIa]RJb
5

1

~2p!3EBZ
dkH(

n

occ

s@^unk
RIauPc,k* ~Hk,k

(0)2«nk
(0)Sk,k

(0)!Pc,kuunk
RJb&1^unk

RJbuPc,k* ~Hk,k
(0)2«nk

(0)Sk,k
(0)!Pc,kuunk

RIa&

1^unk
(0)u~H8k,k

RIa2«nk
(0)Sk,k

RIa!Pc,kuunk
RJb&1^unk

(0)u~H8k,k
RJb2«nk

(0)Sk,k
RJb!Pc,kuunk

RIa&1^unk
RIauPc,k* ~H8k,k

RJb2«nk
(0)Sk,k

RJb!uunk
(0)&

1^unk
RJbuPc,k* ~H8k,k

RIa2«nk
(0)Sk,k

RIa!uunk
(0)&1^unk

(0)u~H8k,k
RIaRJb2«nk

(0)Sk,k
RIaRJb!uunk

(0)&#2(
mn

occ

s^unk
(0)uSk,k

RIauumk
(0)&^umk

(0)uH8k,k
RJb

2«nk
(0)Sk,k

RJbuunk
(0)&2(

mn

occ

s^unk
(0)uSk,k

RJbuumk
(0)&^umk

(0)uH8k,k
RIa2«nk

(0)Sk,k
RIauunk

(0)&J
1E E d2EHxc

dr~r1!dr~r2!
U

r(0)

rRIa~r1!rRJb~r2!dr1dr21
d2Exc

dRIadRJb
U

r(0)

, ~14!

rRIa~r !5
1

~2p!3EBZ
dkH(

n

occ

s@unk
(0)* ~r !Kk,k

(0)~r !Pc,kunk
RIa~r !1u

nk
RIa* ~r !Pc,k* Kk,k

(0)~r !unk
(0)~r !1unk

(0)* ~r !Kk,k
RIa~r !unk

(0)~r !#

2(
mn

occ

s^unk
(0)uSRIauumk

(0)&umk
(0)* ~r !Kk,k

(0)~r !unk
(0)~r !J , ~15!

H8k,k
RIa5vNL,k,k

RIa 1Ve f f
(0)Kk,k

RIa1V8e f f
RIaKk,k

(0) , ~16!

H8k,k
RIaRJb5vNL,k,k

RIaRJb1Ve f f
(0)Kk,k

RIaRJb1Ve f f
8RIaKk,k

RJb1Ve f f
8RJbKk,k

RIa1vL
RIaRJbKk,k

(0) , ~17!

Ve f f
8RIa~r !5vL

RIa~r !1vHxc
RIa ~r !, ~18!

VK5V~r !1(
I i j

upi
I&E V~r 8!q̃i j

I (0)~r 8!dr 8^pj
I u, ~19!

whereRIa denotes the atomic displacement of atomI along directiona andXRIaRJb is the shorthand notation for the secon
derivative ofX with respect toRIa and RJb . (d2Exc /dRIadRJb)ur(0) is the second derivative of the exchange-correlat
functional, which appears when the partial core correction24 is taken into account.

The Sternheimer equation for the derivative of the wave function with respect to the atomic displacements is

Pc,k* ~Hk,k
(0)2«nk

(0)Sk,k
(0)!Pc,kuunk

RIa&1Pc,k* ~Hk,k
RIa2«nk

(0)Sk,k
RIa!uunk

(0)&50, ~20!

with

Hk,k
RIa5vNL,k,k

RIa 1Ve f f
(0)Kk,k

RIa1Ve f f
RIaKk,k

(0) , ~21!

Ve f f
RIa~r !5V8e f f

RIa~r !1E d2EHxc

dr~r !dr~r 8!
U

r(0)

rRIa~r 8!dr 8. ~22!

Finally, the mixed second derivative of the total energy with respect toRIa and«b , which is required for the Born effective
charge tensor, is
115207-4
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]2Etot

]RIa]«b
5

1

~2p!3EBZ
dkH (

n

occ

sF ^unk
RIauPc,k* ~Hk,k

(0)2«nk
(0)Sk,k

(0)!Pc,kuunk
«b&1^unk

«buPc,k* ~Hk,k
(0)2«nk

(0)Sk,k
(0)!Pc,kuunk

RIa&1^unk
(0)u~H8k,k

RIa

2«nk
(0)Sk,k

RIa!Pc,kuunk
«b&1^unk

«buPc,k* ~H8k,k
RIa2«nk

(0)Sk,k
RIa!uunk

(0)&1^wnk
kbuPc,kuunk

RIa&1^unk
RIauPc,k* uwnk

kb&1^wnk
RIa ,kbuunk

(0)&

1^unk
(0)uwnk

RIa ,kb&1dab(
I i j

^unk
(0)upi ,k

I (0)&Qi j
I ^pj ,k

I (0)uunk
(0)&G2(

mn

occ

sF(
I i j

~^unk
(0)upik

IRIa&Qi j
I ^pj k

I (0)uumk
(0)&!^umk

(0)uwnk
kb&

1^wnk
kbuumk

(0)&(
I i j

(^umk
(0)upik

I (0)&Qi j
I ^pj k

IRIauunk
(0)&…G J 1E E d2EHxc

dr~r1!dr~r2!
U

r(0)

rRIa~r1!r«b~r2!dr1dr2 , ~23!

uwnk
RIa ,kb&5(

I i j
@ upik

IRIa&Qi j
I ^pj k

I (0)uPc,ku iunk
kb&1upik

IRIa&Qi j
I ^pj k

Ikbu iunk
(0)&1upik

IRIa&di j ,b
I ^pj k

I (0)uunk
(0)&]. ~24!

In this stationary expression@Eq. ~23!#, the first derivative of the wave functions with respect to atomic displacements
electric field, and the wave vector are required. In the nonstationary expression descrived below, the first derivat
respect to atomic displacements is unnecessary:

]2Etot

]RIa]«b
5

1

~2p!3EBZ
dkH(

n

occ

sF ^unk
(0)u~H8k,k

RIa2«nk
(0)Sk,k

RIa!Pc,kuunk
«b&1^unk

«buPc,k* ~H8k,k
RIa2«nk

(0)Sk,k
RIa!uunk

(0)&1^qnk
RIa ,kbuunk

(0)&

1^unk
(0)uqnk

RIa ,kb&1dab(
I i j

^unk
(0)upik

I (0)&Qi j
I ^pj k

I (0)uunk
(0)&G2(

mn

occ

sF(
I i j

~^unk
(0)upik

IRIa&Qi j
I ^pj k

I (0)uumk
(0)&!^umk

(0)uqnk
kb&

1^qnk
kbuumk

(0)&(
I i j

~^umk
(0)upik

I (0)&Qi j
I ^pj k

IRIauunk
(0)&!G J , ~25!

uqnk
RIa ,kb&5uwnk

RIa ,kb&1(
I i j

upik
IRIa&E wHxc

«b ~r !q̃i j
I (0)~r !dr ^pj k

I (0)uunk
(0)&. ~26!

Another nonstationary form is also possible, in which the first derivative with respect to the wave vector and the
displacements are needed:

]2Etot

]RIa]«b
5

1

~2p!3EBZ
dkH(

n

occ

sF ^wnk
kbuPc,kuunk

RIa&1^unk
RIauPc,k* uwnk

kb&1^wnk
RIa ,kbuunk

(0)&1^unk
(0)uwnk

RIa ,kb&

1dab(
I i j

^unk
(0)upi

I (0)&Qi j
I ^pj

I (0)uunk
(0)&G2(

mn

occ

sF(
I i j

~^unk
(0)upik

IRIa&Qi j
I ^pj k

I (0)uumk
(0)&!^umk

(0)uwnk
kb&

1^wnk
kbuumk

(0)&(
I i j

~^umk
(0)upik

I (0)&Qi j
I ^pj k

IRIauunk
(0)&!G J . ~27!
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We have used Eq.~25! for calculation of the Born effective
charge tensors.

III. RESULTS

A. Structural properties

The optimized structural properties~lattice constants, in-
ternal parameters, bulk modulus, and cohesive energy! for
the three polytypes of BN are shown in Table I. The coh
sive energy is computed by subtracting the sum of the t
energy of the isolated atoms including the spin-polarizat
energy from that of the solid.
11520
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As is well known, the lattice constants obtained by t
LDA are a little smaller than the experimental values. B
the error is less than 1% except for the lattice constantc of
h-BN, and so it can be said that the calculated lattice c
stants and the experimental values are in good agreem
Previous calculations predicted the lattice constantc of h-BN
in the range 6.439–6.66 Å.6–9 The relatively large error inc
of h-BN is due to its layer structure. The lattice constantc of
h-BN is affected by a weak van der Waals interaction, wh
the lattice constanta is determined by the extremely sho
and strong ionic-covalentsp2 bonding. Therefore, the varia
tion of the cohesive energy with the relative length ofc is
much smaller than that witha, as shown in Figs. 2 and 3
7-5
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When c is lengthened~shortened! by 5% from the equilib-
rium valuec056.4976 Å, the change of the cohesive ener
is only 0.05 (0.09) mhartrees/atom. On the other hand
Fig. 3 shows, the variation of the stress is monotonic a
large enough to allow estimation of the equilibrium latti
constant. Since the macroscopic stress tensor is employ
find the stable structure, we expect that the accuracy of
lattice constantc obtained by the present calculation is bet
than that obtained from the total energy variation. The d
crepancy with the experimental data inc of h-BN may be
remedied by using the generalized gradient approximatio28

for the exchange-correlation functional.
In the present study, the calculated bulk modulus ofc-BN

is 395 GPa and that ofw-BN is 396 GPa. These values a
close to that of diamond, 442 GPa.29 Since the bulk modulus
of h-BN is 26 GPa, it is not as hard asc-BN and w-BN.
Theoretical values for the bulk modulus ofh-BN vary from
28 to 335 GPa.6–9 The reason is considered to be that t
interaction along thec axis direction is so weak. The energ
volume data generated from isotropically compressed or

TABLE I. Calculated and experimental structural properties
the three polytypes of BN: lattice constantsa,c (Å), internal pa-
rameteru, bulk modulusB ~GPa!, and cohesive energyE ~hartrees/
atom!.

a c u B E

c-BN
3.592 395 20.2940 present
3.615 exp.a

3.615 370 calc.b

3.581 398 20.2997 calc.c

3.593 395 20.2379 calc.d

3.576 397 20.2997 calc.e

3.591 397 calc.f

w-BN
2.532 4.188 0.3744 396 20.2934 present
2.553 4.228 exp.g

2.536 4.199 390 calc.b

2.532 4.188 0.374 394 20.2375 calc.d

2.521 4.165 401 20.2990 calc.e

2.531 4.194 0.3751 399 calc.f

h-BN
2.496 6.498 26 20.2919 present

2.504(2) 6.660(8) 36.7 exp.h

2.494 6.66 335 calc.b

2.489 6.481 28 20.2975 calc.c

2.496 6.490 30.1 20.2358 calc.d

2.486 6.439 261 20.2977 calc.e

aReference 25.
bReference 6.
cReference 7.
dReference 8.
eReference 9.
fReference 12.
gReference 26.
hReference 27.
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panded unit cells yield erroneous results for the bulk mo
lus, especially if the structures are strongly anisotrop
When we use the energy-volume data of isotropic comp
sion and expansion, the calculated bulk modulus ofh-BN is
253 GPa. This value differs greatly from the experimen
value of 36.7 GPa obtained by Solozhenkoet al.27 We have
checked the computational accuracy using the following
lation between the bulk modulusB and the elastic constant
Ci j of h-BN:

B5
C33~C111C12!22~C13!

2

C111C1212C3324C13
. ~28!

The elastic constants ofh-BN, C11,C12,C13, andC33, are
shown in Table II, calculated from the elements of the str
tensor by applying several strains corresponding to61% of
the equilibrium lattice constants. The bulk modulus obtain
from Eq. ~28! is 27 GPa. This is in reasonable agreeme
with the value of 26 GPa computed by total energy fitting

By comparing the cohesive energy of the three BN po
types, we predict that thec-BN structure is the most stable a
zero temperature. The difference in cohesive energy betw
c-BN and w-BN is 0.6 mhartrees/atom, and that betwe

r

FIG. 2. Cohesive energy~solid line! and the macroscopic stres
tensor element perpendicular to thec axis sxx ~dashed line! vs
relative length ofa for h-BN. a0 is the equilibrium lattice constant
a052.4959 Å.

FIG. 3. Cohesive energy~solid line! and the macroscopic stres
tensor element parallel to thec axis szz ~dashed line! vs relative
length of c for h-BN. c0 is the equilibrium lattice constant:c0

56.4976 Å.
7-6
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c-BN and h-BN is 2.1 mhartrees/atom. These results ag
with other calculations using plane waves a
pseudopotentials.7–9,12

B. Dielectric properties

The macroscopic dielectric constant«` is observed as a
response to a uniform electric field, and the Born effect
charge tensorZ* is defined as the proportionality coefficie
relating the macroscopic polarization and the displacem
of atoms from their equilibrium positions. Knowledge of th
macroscopic dielectric constant and the Born effect
charge tensor is essential for describing the long-range d
lar contribution to the lattice dynamics of a polar crystal. T
static dielectric constant«0 is calculated by adding the ef
fects of the dipole interactions represented by the follow
two contributions to the macroscopic dielectric constan11

One is the Born effective charge tensor, and the other is
set of eigenvalues and eigenvectors of the dynamical ma
that determines the frequencies of the transverse optical~TO!
mode. These calculated values for the three BN polytypes
shown in Table III. Here the Born effective charge tens
are given as absolute values and the acoustic sum ru
satisfied with an error of less than 1% in our calculation

TABLE II. Calculated elastic constants~in GPa! of h-BN.

C11 C12 C13 C33

951.5 169.2 2.5 28.2

TABLE III. The dielectric properties for the three polytypes
BN: macroscopic dielectric constant«` , static dielectric constan
«0, and Born effective charge tensorZ* .

«` «0 uZ* u

c-BN
4.54 6.74 1.89 present
4.5 7.1 exp.a

4.46 6.8 exp.b

3.86 calc.c

4.54 1.93 calc.d

«`
'c «`

ic «0
'c «0

ic uZ*'cu uZ* icu

w-BN
4.50 4.64 6.50 6.99 1.83 1.92 presen
4.16 4.18 calc.c

4.50 4.67 1.86 1.96 calc.d

h-BN
4.85 2.84 6.61 3.38 2.71 0.82 presen
4.95 4.1 6.85 5.06 exp.e

4.32 2.21 calc.c

aReference 30.
bReference 31.
cReference 6.
dReference 12.
eReference 32.
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The average values of the macroscopic dielectric cons
and the Born effective charge tensor are defined by«̄`

5 1
3 Tr«` and Z̄* 5 1

3 TrZ* , respectively, because their of
diagonal elements are equal to zero. Forw-BN, the average
values «̄`54.55 andZ̄* 51.86 are close to the values fo
c-BN. The degree of anisotropy of«` and Z* can be esti-
mated from the difference between the components par
and perpendicular to thec axis: D«`5@«`

ic2«`
'c#/ «̄` and

DZ* 5@Z* ic2Z*'c#/Z̄* . The calculated anisotropies fo
w-BN are D«`50.03 andDZ* 50.05, and those forh-BN
are D«`50.48 andDZ* 50.91. The anisotropy ofh-BN is
much larger than that ofw-BN.

The calculated macroscopic dielectric constant along thc
axis «`

ic and the static dielectric constant«0
ic for h-BN are

2.84 and 3.38, respectively. Xu and Ching6 also reported a
similar value,«`

ic52.21. These values differ greatly from th
experimental values«`

ic54.1 and«0
ic55.06 in Ref. 32. Al-

though we repeated the calculation using the experime
lattice constants, the results«`

ic52.72 and«0
ic53.17 were

not improved significantly. In connection with this discre
ancy, more detailed investigation is desirable. For the ot
dielectric properties of the three BN polytypes, the agr
ment of the values obtained by the present calculation,
periment, and other computations is good.

C. Dynamical properties at theG point

The G-phonon frequencies for the three polytypes of B
were calculated by solving the eigenvalue problem of
dynamical matrix at the wave vectorq50. The calculated
results for theG-phonon frequencies are shown in Tables I
V, and VI. There is a triply degenerate optical phonon mo
expressed with the symmetryT2 at theG point of c-BN. This
mode is active in both Raman and IR spectroscopy. T
G-phonon modes ofw-BN can be classified into the Rama

TABLE IV. The TO and LO phonon frequencies~in cm21) at
the G point of c-BN.

T2~TO! T2~LO!

1062 1295 present
1055.7 1304.8 exp.a

1056 1303 exp.b

1040 1285 calc.c

aReference 31.
bReference 33.
cReference 12.

TABLE V. The TO and LO phonon frequencies~in cm21) at
the G point of w-BN.

E2 E2 B1 A1~TO! A1~LO! E1~TO! E1~LO! B1

475 979 982 1043 1280 1075 1293 1134 pres
1006 1258 1053 1281 calc.a

aReference 12.
7-7
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TABLE VI. The TO and LO phonon frequencies~in cm21) at theG point of h-BN.

E2g B1g A2u~TO! A2u~LO! B1g E2g E1u~TO! E1u~LO!

50 113 754 823 815 1382 1382 1614 prese
52 783 828 1366 1367 1610 exp.a

aReference 32 forA2u~TO,LO! andE1u~TO,LO! modes, and Ref. 34 forE2g modes.
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active and infrared activeA1 andE1 modes, the two Raman
active E2 modes, and the two silentB1 modes. Forh-BN,
there are the infrared activeA2u and E1u modes, the two
Raman activeE2g modes, and the two silentB1g modes.
Among these, eachE1 , E2 , E1u , andE2g mode is doubly
degenerate. The infrared active mode is divided into
transverse optical mode and the longitudinal optical~LO!
mode, because BN is an ionic crystal and reflects the ef
of Coulomb interactions~dipole-dipole interactions!. We cal-
culated the frequencies of the LO phonon mode by solv
the eigenvalue problem for the dynamical matrix correspo
ing to the LO phonon mode as follows. Since the mac
scopic dielectric constant and the Born effective charge
sor are related to the macroscopic electric field induced
the dipole-dipole interactions, the dynamical matrix for t
LO phonon modeDIa,Jb

LO can be expressed as11

DIa,Jb
LO 5DIa,Jb

TO 1
4p

V

S (a8 q̂a8ZIa8a
* D S (b8 q̂b8ZJb8b

* D
AMIMJ (ab q̂a«ab

` q̂b

,

~29!

where DIa,Jb
TO is the dynamical matrix for the TO phono

mode, which is directly obtained from the linear respon
calculation,«ab

` and ZIa8a
* are the elements of the macro

scopic dielectric constant and the Born effective charge
sor, q̂a is the direction of the wave vector of the phonon,MI
is the atomic mass of theI th atom, and$a,b,a8,b8% denotes
the direction in a Cartesian coordinate system.

The calculated optical frequencies at theG point of the
three BN polytypes agree very well with the experimen
data from first-order Raman or IR spectroscopy in Refs. 3
34. The agreement of our results with other first-princip
calculations for theG-phonon frequencies is reasonable, ta
ing into account the variation of frequencies due to the d
ferences of the computational methods and the equilibr
structural parameters.

The G-phonon frequencies of theT2~TO,LO! mode of
c-BN and theA1~TO,LO! and E1~TO,LO! modes ofw-BN
are close to each other. It is difficult to identify the crys
.
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structure with these modes by Raman or IR spectrosco
However, since the two Raman activeE2 modes exist only in
w-BN, it is possible to distinguishw-BN from c-BN. On the
other hand, it is easy to tell the crystal structure ofh-BN
from the others using Raman or IR spectroscopy, because
frequencies of the infrared or Raman active modes ofh-BN
differ from those ofc-BN or w-BN.

IV. SUMMARY

We have performed a first-principles calculation on t
structural, dielectric, and lattice-dynamical properties for
three polytypes of BN. In our calculation, the ultraso
pseudopotential technique and density-functional pertur
tion theory are used. The calculated lattice constants and
experimental values are well in agreement except forc of
h-BN. Each bulk modulus ofw-BN andc-BN is close to the
value for diamond, buth-BN is not so hard. From the calcu
lated results of the cohesive energy, it is predicted thatc-BN
is the most stable structure at zero temperature. For the
electric properties, the computed values are in reason
agreement with experimental data except for the mac
scopic dielectric constant along thec axis for h-BN. The
average values of the macroscopic dielectric constant and
Born effective charge tensor ofw-BN are close to those o
c-BN. The calculated anisotropy forh-BN is much larger
than that for w-BN. The phonon frequencies of th
T2~TO,LO! mode of c-BN and the A1~TO,LO! and
E1~TO,LO! modes ofw-BN are close to each other, but th
two Raman activeE2 modes exist only inw-BN. Therefore,
when crystal structural analysis is performed by the Ram
spectroscopy, it is possible to distinguishw-BN from c-BN
by investigating the twoE2 modes ofw-BN. On the other
hand, the frequencies of the infrared or Raman active mo
of h-BN differ from those ofc-BN and w-BN, and so it is
easy to tell the crystal structure ofh-BN from that ofc-BN
andw-BN by Raman spectroscopy or infrared reflectivity.
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