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Density-matrix functional method for electronic properties of impurities
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We develop a density-matrix correlation-energy functional suitable for treating impurity sites with strong
electronic correlations. The functional is based on a rigorous theorem about the form of such functionals as
well as an exact inequality for the exchange-correlation energy. It is validated by comparison with exact results
for small clusters, and is used to treat the electronic properties of an Anderson impurity in a random alloy.
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I. INTRODUCTION fgn 1 fpaga
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Most existing methods for calculating the electronic
ground state of molecules and solids, such as Hartree-FoGkherei, j, k, andl are spin-orbital indices anflis a subspace
theory and existing implementations of density-functionalof the Hilbert space. Physically this would correspond to a
theory, have difficulties describing strongly correlated elec-system for which the strongest electron interactions are re-
tronic systems. More complete treatments of correlations argyjcted to the orbitals is5. The energy expectation value for

available but have very unfavorable system-size scalin N- f ionlw ; letel _
These difficulties have sparked recent interest in densitg‘?ln body wave function|¥), (%), is completely deter

matrix functionalst~" in which the exchange and correlation Minéd by the one-body density matrix defined by p;;
energies are given in terms of the electronic density matriF<cich>, and the interaction ener@im:EU”H(cichTc,ck).
rather than jUSt the Charge denSlty. The general theory qf0||owing Levy’s approacﬁ’we defineEim[ﬁ] as the mini-

such methods is given in Refs. 1-3 and some preliminaryyym of E;,, over all wave function$¥) that yield the same
implementations have been given in Refs. 4—7. However, th

specific implementations presented to date either suffer frorﬁensilty_ matrix p. For the ground-state den§|ty ma.trpg
serious inaccuracies in important test cases or have a vefynd p] is the physically correct value of the interaction en-
limited range of applications. ergy. .

In this paper, we develop a density-matrix functional  The first result we prove is th&;,[p] is completely de-
method that treats a broad range of impurity models Withgmineq py the local moments pfin the subspace:
high accuracy. The goal of this method is to obtain accurate
estimates of key ground-state quantities such as on-site E [A]=E< [“ ~(2) ~(3) ] ?)
charges and fluctuations, rather than treating subtle many- ind P17 Eintl P52 Ps " Ps " - - - by
%Ooddyerg‘h%r:gn;?gtﬁos(ﬁg t?;?de gr??v?/g eef)ig‘étt" 'g;ﬁﬁ?ﬂ%?rsv%\?vheref)g”) is the restriction op" to S. This result will mo-
will introduce in Sec. Il. The first concerns the general math—'vate our form for the correlation-energy functional. To

ematical form of the electron interaction energy in terms ofProve I, we |nt.roduce a unitary ma‘.”R th‘fﬂ leaves the
: ; esubspaccS invariant and a corresponding unitary operagor

interaction energy to a simple moment of the density matrix"at acts on the many-body wave functioh). It is defined

The accuracy of the method is evaluated for simple modePY

Hamiltonians by comparison with exact resu({@ec. IlI).

Finally, in Sec. IV we use this approximation to investigate 2Ty = ~f

the combined effects of electron interactions and disorder for RI;I C“’|O> I;I CR“’|O>' ®
Anderson impurities in random alloys.

We emphasize that the present approach is distinct fro
recent applications of density matricesN) implementa-
tions of density-functional theoy*' These implementa- TA -
tions employ standard exchange-correlation functionals and Ein R'pR]=Eind p]. )
attempt to achieve idempotency in the density matrix; th§t s simple to show that the density matrix & W) is given
physical density matriXand that obtained herénas eigen- by RTOR: R|W) also has the same value B, as| V) since
values between zero and one. Our approach is also unrelateéf P ) At it &= )
to density-matrix renormalization-group thebiy®and two- < commutes with ang/,|i) € S. Furthermore, ifR| W) did
particle density matrix theord~26 based on the contracted NOt have the lowest value d;y given the density matrix

here thep are any one-electron basis orbitals. We first note

Schrainger equatiod?*8 R_TpR, one could backtransform to the original density ma-
trix to obtain a lowerE,, for the original problem. Thus Eqg.
Il. DENSITY MATRIX FUNCTIONAL (4) holds. Now consider two density matrices and p, that
We treat systems described by tight-binding Hamiltoniand1ave equal values of all of the momepf$; in other words,
of the form (i1pT]iY=(ilp5lj) for all |i),]j)eS. It is straightforward to
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show?* that p; andp, are then related by a unitary transfor- 05

mation R of the underlying vector space, and this transfor- 0.4 f\\ o

mation leaves allli)eS invariant'® Therefore, E,{ p1]

=E;.[p,], and Eq.(2) follows. L 08 -0.1
We next derive a class of inequalities faf,{ p] for the < 0.2 015

special case of a two-dimensional subsp&cspanned by

orbitals|i) and|j), and show that the tightest inequalities of 0.1 -02

this class are given by the second moments of the density

matrix p{?)=(i|p?[i) and p{?’=(j|p?j). We define U % 0.5 1 0%

=Uy;i; and Ej=UP, whereP=(n;n;). We first note that n

|¥) can always be decomposed into four pieces correspond-

ing to the occupancies of the orbitdls and|j):

|‘I’>:wo|q)o>+wiaiT|q)i>+wja;r|q)j>+wij6;r&;r|q)ij>-

FIG. 1. Graphical representation of the inequality equation
for P=(n;n;) showing the lower bound of the correlatign;n;)
—(n;){n;) as a function of; andp, , for the casen;=n; .

The inequality provides both lower and upper bounds for

The many-body wave functiod¥’) and|® ) are takento P. We use the lower bound for thed>0 case of interest
be normalized, and the wave functidds ) do not contain  here. Figure 1 plots the lower bound of the correlation

the orbitals |[i) and |j). Using this decomposition,

the (njn;)—(n;){n;) as a function ofp;,, andn; for the case,

density-matrix element connecting the one-particle sigte =n;. At the upper limit forp;,, p;,=ni(1-2n;), the

and an arbitrary one-particle statg) orthogonal toS
given by

is  correlation is zero corresponding to the Hartree-Fock limit.
Decreasing values of the off-diagonal tepm, lead to lower
values ofP, i.e., stronger correlations. The effect is most
evident for half-filing. The largest correlations occur for

= w;00{ D] ¢ .| Do)+ w;;0 (D] ¢, | D). (6)  pi=0, where in factP=0 in the range €n;<1/2.
P T’ We use the lower bound f(ﬁ’[;)] as an approximation to

The matrix elementiM 4| and|M,| are bounded by unity, so

using the Schwartz inequality yields for aty)

the exchange-correlation functional and call it the second-
moment approximatiof It corresponds to keeping only the
first two arguments oE;,; on the right-hand side of E¢2).

For a given density matrix and a positiygegative U, P[f)]

lpiu|<f(P.ni,ny), (7)  is approximated as the smalldfirges} P obeying the con-

it
with
f(P,n;,n;)= \/(n,-—P)(l—n,-—nj+P)+ \/P(nj_P) 5

v~ ~

| ;o] \“’i_,'“’_,'\

straints of the inequalities fq;,, and p;, [cf. Egs.(7) and
(9)]. For repulsive interactionsU>0) we thus define the
interaction energ¥;,; as

Einte=UPnmin, (12

(8  where

where we have expressed thés in terms of the occupations
of states|i) and|j), n;=p;, andn;=pj;, respectively, as
well as in terms oP=(n;n;). A similar inequality holds for X p;,<f(P,n

Pip-

Pmin=inf[P|pm$f(P,ni ,nj)/\
i ,NDAO<P=nn;], (13
andf and p;,, are given by Eqs(8) and (11), respectively.

pj|<f(P.n;,n)). (9)  For practical implementation we first check if the lowest pos-

sible value forP, i.e., P=0, fulfills the inequalities. In this

Since the right-hand side of the inequality equati@is  caseP,,=0. OtherwiseP,,, is given by the larger of the
independent of), the tightest inequality is obtained if we two solutions forP of the inequalities in Eqs(7) and (9)

choose the statf) to maximizep;,, , which occurs for

used as equalities.

|M>: 2 Pi |a> A/ E pi2 (10 1ll. ACCURACY OF THE FUNCTIONAL
a ar
i, a#i,j

a#i,j

We have shown analyticaflythat the second-moment ap-

Then proximation yields the exact ground state for a heteropolar
dimer molecule with arbitrary on-site Coulomb interactions
2 \/—(ﬁ and that for fluctuating-dipole interactions the results are in
Pin= a;j Pia™ NPii "~ Pii — Pij- (12) agreement with second-order perturbation theory, even when
' intersite electronic couplings are present.
Thus, the tightest inequality of the type as in Ef.is based For more complex models of the form of E(l), we

on the second moment of the density mafg’.

implement the second-moment approximation as a varia-
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FIG. 2. Error in the total energy of a six-site Anderson chain
with six electrons and spin zero in different approximations: re-
stricted Hartree-FocKeft), unrestricted Hartree-Fodkentey, and

1 1 1
second-moment approximatigright). The energy unit i, cf. Eq. 0015 5 0 5 10
. 1.0 T T L P
tional method. The density matrix is written as=OAO" F Ae=0 I
using an orthogonal matriX0 and a vector of occupation === ) _
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numbersA. To ensure ensemble N representab’ilﬁ%of the .,.,/4 Second-moment approx.

density matrixp, the eigenvalues\; are constrained to be 08I ,/, Exact solution ]
between zero and one. The energy minimization of the den- I / /

sity matrix uses a conjugate gradient routine. The gradient is o 1
calculated under the constraint of orthonormal natural orbit- o i/UHF

als following the idea presented in Ref. 23. The total number 0.6 7 RHF iy

Spin Fluctuation {((n,—n, ¢)2>

o
(4,1
AN

of up and down spin electrons is fixed by a penalty function.
The running time of the implemented algorithm N?®)
and the memory usag@(N?). Calculations for Anderson- U
type chains of up to 100 sites have been performed.

To test the accuracy of the second-moment approxima- FIG. 3. Site occupancya) and spin fluctuationgb) on the in-
tion, we perform calculations for short Anderson chain mod-teraction site for a six-site Anderson chain with six electrons and

o
(3]
—_
o
-
[3,]
N
o

els using the Hamiltonian spin zero.
H=(A5—U/2)E (‘;g &0 —h 2 et e +Uﬁ01ﬁop Figure 3b) shows results for these fluctuations in the sym-
s 0T e metric case & e=0). In agreement with the exact result, the

(14)  spin fluctuations in the second-moment approximation in-

where the second sum is over nearest neighbor sites onlgréase gradually from 1/2 to 1 with increasibg The UHF
The results for a six-site Anderson chain are compared téeS”U“S show no enhancement at all for smallbut “catch
exact diagonalization of the many-body Hamiltonian as wellUP” for larger U. RHF gives no enhancement whatsoever.

as to restricted Hartree-Fo¢RHF) and unrestricted Hartree- ~ FOr Hubbard chain models with on-site interactions on all
Fock (UHF) theory. Figure 2 shows the error in the total Site€s, our numerical studi@sshow that the second-moment

energy. The absence of correlation in RHF leads to a sukPproximation is less accurate. The magnitude of the error in
stantial overestimate of the energy. The UHF approximatiorfn€rgy is comparable to the error of the unrestricted Hartree-
recovers part of the correlation energy by developing a perF0Ck approximation. This result is not surprising since the
manent local moment on the interaction site for latjand ~ @PProximation was derived using the assumption of only two

small |Ae|. For smaller U and away from half-filling, i.e., interacting orbitals. o _
large |A €|, no moment is formed and thus no correlation Altogether the second-moment approximation provides an

energy is obtained by UHF. The second moment approxima‘i}ccur_ate treatment of on—sit_e correlations on isolated impu—
tion, on the other hand, is in close overall agreement with th&'tY Sites and at the same time has adequate computational
exact results. It slightly overestimates the correlation energ§fficiency to treat realistic electronic structures.
with a maximum error of 20% for intermediaté and half-
filled sites. o IV. ANDERSON IMPURITY IN A RANDOM ALLOY

Figure 3a) shows the impurity site occupaney; vs Ae
for a strongly interacting case in the second-moment ap- We now demonstrate the utility of our method by address-
proximation, RHF, and UHF, compared to exact results. Theng the problem of an Anderson impurity in a random alloy.
impurity occupancy decreases stepwise with increadiag  The heart of this problem is the competition or cooperation
The steps become sharper @dsincreases. RHF obtains no between the electron-electron interactions and the disorder,
stepwise behavior at all. The UHF approximation improvesand to our knowledge this physics has not been addressed by
on this by formation of a local moment, but shows a cuspcalculations to date. We expect that the coupling of the im-
The second-moment approximation, on the other hand, depurity to the host will be reduced by both disorder and elec-
scribes the charge of the impurity very accurately. Similartron interactions. However, the disorder and interaction ef-
accuracy is obtained for the spin fluctuations of the impurity.fects on spin fluctuations should oppose each other. The
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0.5 - T - T - T , the one-body Hamiltonian to a chain of length 20 and aver-
- Ae=0 1 age over 50 alloy configurations. We evaluate the properties
0.4 of the impurity as a function of the Coulomb interaction
s for different disorder potentiald e=0, 5h, 10h. The cou-
g 0.3 pling between the impurity and the bulk is reduced by both
£ : disorder and Coulomb interactions as seen in Fig).rhe
S 02 spin fluctuations at smalll are reduced by the disordpf.
3 Fig. 4b)], as expected from the above arguments based on
0.1F 4 site occupancy. However, for larger valued hfthe disorder
I enhances the spin fluctuations. The crossover valué adé-
0.0 I | | pends omA e and is about & for Ae=10h. At large U, the
0 5 10 15 20 impurity is essentially always half-filled, and the reduced
U couplings between the impurity and the environment lead to
1.0 : : : the enhancement.

V. CONCLUSION

o
=)

In summary, we have shown that for a large class of im-
purity model Hamiltonians the exchange-correlation energy
is determined entirely by the local moments of the density
matrix. An exact inequality relates the second moment of the

Spin fluctuation {(n —n, ¢)2>
o
(2]

/
04r Ae=10 7 density matrix with the correlation energy. This inequality,
Y : used as an approximation to the correlation energy, gives
02— L . L . L . very accurate results for the energy, one-electron properties
0 5 ‘lj) 15 20 and charge and spin fluctuations of Anderson impurities. Ap-

plication of the method to an Anderson impurity in a random
FIG. 4. Anderson impurity in a disordered alloy: coupling be- alloy has revealed an unexpected crossover behavior in the
tween the impurity and the bulke) and spin fluctuations on the €ffects of disorder and electron interactions on the spin fluc-
impurity site (b). tuations. Future work should aim at the extension of the ap-
proximation to systems with more interacting orbitals, so that
disorder tends to favor either zero or double occupancy@ broader range of systems can be treated.
whereas the interactions favor single occupancy and thus en-

hance spin qucFuations. ' _ . . ACKNOWLEDGMENTS
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