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Density-matrix functional method for electronic properties of impurities
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We develop a density-matrix correlation-energy functional suitable for treating impurity sites with strong
electronic correlations. The functional is based on a rigorous theorem about the form of such functionals as
well as an exact inequality for the exchange-correlation energy. It is validated by comparison with exact results
for small clusters, and is used to treat the electronic properties of an Anderson impurity in a random alloy.
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I. INTRODUCTION

Most existing methods for calculating the electron
ground state of molecules and solids, such as Hartree-F
theory and existing implementations of density-function
theory, have difficulties describing strongly correlated el
tronic systems. More complete treatments of correlations
available but have very unfavorable system-size scal
These difficulties have sparked recent interest in dens
matrix functionals,1–7 in which the exchange and correlatio
energies are given in terms of the electronic density ma
rather than just the charge density. The general theory
such methods is given in Refs. 1–3 and some prelimin
implementations have been given in Refs. 4–7. However,
specific implementations presented to date either suffer f
serious inaccuracies in important test cases or have a
limited range of applications.

In this paper, we develop a density-matrix function
method that treats a broad range of impurity models w
high accuracy. The goal of this method is to obtain accur
estimates of key ground-state quantities such as on
charges and fluctuations, rather than treating subtle ma
body phenomena such as the Kondo effect in the Ander
model.8 The method is based on two exact results that
will introduce in Sec. II. The first concerns the general ma
ematical form of the electron interaction energy in terms
the density matrix. The second is an inequality relating
interaction energy to a simple moment of the density mat
The accuracy of the method is evaluated for simple mo
Hamiltonians by comparison with exact results~Sec. III!.
Finally, in Sec. IV we use this approximation to investiga
the combined effects of electron interactions and disorder
Anderson impurities in random alloys.

We emphasize that the present approach is distinct f
recent applications of density matrices toO(N) implementa-
tions of density-functional theory.9–11 These implementa
tions employ standard exchange-correlation functionals
attempt to achieve idempotency in the density matrix;
physical density matrix~and that obtained here! has eigen-
values between zero and one. Our approach is also unre
to density-matrix renormalization-group theory12,13 and two-
particle density matrix theory,14–16 based on the contracte
Schrödinger equation.17,18

II. DENSITY MATRIX FUNCTIONAL

We treat systems described by tight-binding Hamiltonia
of the form
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H5(
i j

hi j ĉi
†ĉ j1

1

2 (
i , j ,k,l PS

Ui jkl ĉi
†ĉ j

†ĉl ĉk , ~1!

wherei, j, k, andl are spin-orbital indices andS is a subspace
of the Hilbert space. Physically this would correspond to
system for which the strongest electron interactions are
stricted to the orbitals inS. The energy expectation value fo
an N-body wave functionuC&, ^H&, is completely deter-
mined by the one-body density matrixr̂, defined byr i j

5^ĉi
†ĉ j&, and the interaction energyEint5(Ui jkl ^ĉi

†ĉ j
†ĉl ĉk&.

Following Levy’s approach,3 we defineEint@ r̂# as the mini-
mum ofEint over all wave functionsuC& that yield the same
density matrix r̂. For the ground-state density matrixr̂,
Eint@ r̂# is the physically correct value of the interaction e
ergy.

The first result we prove is thatEint@ r̂# is completely de-
termined by the local moments ofr̂ in the subspaceS:

Eint@ r̂#5Eint@ r̂S ,r̂S
(2) ,r̂S

(3) . . . #, ~2!

wherer̂S
(n) is the restriction ofr̂n to S. This result will mo-

tivate our form for the correlation-energy functional. T
prove it, we introduce a unitary matrixR that leaves the
subspaceS invariant and a corresponding unitary operatorR
that acts on the many-body wave functionuC&. It is defined
by

R)
w

ĉw
† u0&5)

w
ĉRw

† u0&, ~3!

where thew are any one-electron basis orbitals. We first no
that

Eint@R†r̂R#5Eint@ r̂#. ~4!

It is simple to show that the density matrix ofRuC& is given
by R†r̂R; RuC& also has the same value ofEint asuC& since
R commutes with anyĉi

† ,u i &PS. Furthermore, ifRuC& did
not have the lowest value ofEint given the density matrix
R†rR, one could backtransform to the original density m
trix to obtain a lowerEint for the original problem. Thus Eq
~4! holds. Now consider two density matricesr̂1 andr̂2 that
have equal values of all of the momentsr̂S

(n); in other words,

^ i ur̂1
nu j &5^ i ur̂2

nu j & for all u i &,u j &PS. It is straightforward to
©2001 The American Physical Society16-1
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show21 that r̂1 and r̂2 are then related by a unitary transfo
mation R of the underlying vector space, and this transf
mation leaves allu i &PS invariant.19 Therefore, Eint@ r̂1#

5Eint@ r̂2#, and Eq.~2! follows.
We next derive a class of inequalities forEint@ r̂# for the

special case of a two-dimensional subspaceS spanned by
orbitalsu i & andu j &, and show that the tightest inequalities
this class are given by the second moments of the den
matrix r i i

(2)5^ i ur̂2u i & and r j j
(2)5^ j ur̂2u j &. We define U

5Ui ji j and Eint5UP, whereP5^n̂i n̂ j&. We first note that
uC& can always be decomposed into four pieces correspo
ing to the occupancies of the orbitalsu i & and u j &:

uC&5v0uF0&1v i ĉi
†uF i&1v j ĉ j

†uF j&1v i j ĉi
†ĉ j

†uF i j &.
~5!

The many-body wave functionsuC& anduF . . . & are taken to
be normalized, and the wave functionsuF . . . & do not contain
the orbitals u i & and u j &. Using this decomposition, th
density-matrix element connecting the one-particle stateu i &
and an arbitrary one-particle stateum& orthogonal toS is
given by

~6!

The matrix elementsuM1u anduM2u are bounded by unity, so
using the Schwartz inequality yields for anyum&

ur imu< f ~P,ni ,nj !, ~7!

with

~8!

where we have expressed thev ’s in terms of the occupation
of statesu i & and u j &, ni5r i i , andnj5r j j , respectively, as
well as in terms ofP5^n̂i n̂ j&. A similar inequality holds for
r j m :

ur j mu< f ~P,nj ,ni !. ~9!

Since the right-hand side of the inequality equation~7! is
independent ofum&, the tightest inequality is obtained if w
choose the stateum& to maximizer im , which occurs for

um&5 (
a5” i , j

r iaua&YA (
a5” i , j

r ia
2 . ~10!

Then

r im5A (
a5” i , j

r ia
2 5Ar i i

(2)2r i i
2 2r i j

2 . ~11!

Thus, the tightest inequality of the type as in Eq.~7! is based
on the second moment of the density matrixr i i

(2) .
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The inequality provides both lower and upper bounds
P. We use the lower bound for theU.0 case of interest
here. Figure 1 plots the lower bound of the correlati
^ninj&2^ni&^nj& as a function ofr im andni for the caseni

5nj . At the upper limit for r im , r im5Ani(122ni), the
correlation is zero corresponding to the Hartree-Fock lim
Decreasing values of the off-diagonal termr im lead to lower
values ofP, i.e., stronger correlations. The effect is mo
evident for half-filling. The largest correlations occur fo
r im50, where in factP50 in the range 0,ni,1/2.

We use the lower bound forP@ r̂# as an approximation to
the exchange-correlation functional and call it the seco
moment approximation.20 It corresponds to keeping only th
first two arguments ofEint on the right-hand side of Eq.~2!.
For a given density matrix and a positive~negative! U, P@ r̂#
is approximated as the smallest~largest! P obeying the con-
straints of the inequalities forr im andr j m @cf. Eqs.~7! and
~9!#. For repulsive interactions (U.0) we thus define the
interaction energyEint as

Eint5UPmin , ~12!

where

Pmin5 inf @Pur im< f ~P,ni ,nj !`

3r j m< f ~P,nj ,ni !`0<P<ninj #, ~13!

and f and r im are given by Eqs.~8! and ~11!, respectively.
For practical implementation we first check if the lowest po
sible value forP, i.e., P50, fulfills the inequalities. In this
casePmin50. OtherwisePmin is given by the larger of the
two solutions forP of the inequalities in Eqs.~7! and ~9!
used as equalities.

III. ACCURACY OF THE FUNCTIONAL

We have shown analytically21 that the second-moment ap
proximation yields the exact ground state for a heteropo
dimer molecule with arbitrary on-site Coulomb interactio
and that for fluctuating-dipole interactions the results are
agreement with second-order perturbation theory, even w
intersite electronic couplings are present.

For more complex models of the form of Eq.~1!, we
implement the second-moment approximation as a va

FIG. 1. Graphical representation of the inequality equation~7!
for P5^ninj& showing the lower bound of the correlation^ninj&
2^ni&^nj& as a function ofni andr im for the caseni5nj .
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tional method. The density matrix is written asr̂5OLO†

using an orthogonal matrixO and a vector of occupation
numbersL. To ensure ensemble N representability2,22 of the
density matrixr̂, the eigenvaluesL i are constrained to be
between zero and one. The energy minimization of the d
sity matrix uses a conjugate gradient routine. The gradien
calculated under the constraint of orthonormal natural or
als following the idea presented in Ref. 23. The total num
of up and down spin electrons is fixed by a penalty functi
The running time of the implemented algorithm isO(N3)
and the memory usageO(N2). Calculations for Anderson
type chains of up to 100 sites have been performed.

To test the accuracy of the second-moment approxi
tion, we perform calculations for short Anderson chain mo
els using the Hamiltonian

H5~De2U/2!(
s

ĉ0s
† ĉ0s2h (

( i j )s
ĉis

† ĉ j s1Un̂0↑n̂0↓ ,

~14!

where the second sum is over nearest neighbor sites o
The results for a six-site Anderson chain are compared
exact diagonalization of the many-body Hamiltonian as w
as to restricted Hartree-Fock~RHF! and unrestricted Hartree
Fock ~UHF! theory. Figure 2 shows the error in the tot
energy. The absence of correlation in RHF leads to a s
stantial overestimate of the energy. The UHF approximat
recovers part of the correlation energy by developing a p
manent local moment on the interaction site for largeU and
small uDeu. For smaller U and away from half-filling, i.e.
large uDeu, no moment is formed and thus no correlati
energy is obtained by UHF. The second moment approxi
tion, on the other hand, is in close overall agreement with
exact results. It slightly overestimates the correlation ene
with a maximum error of 20% for intermediateU and half-
filled sites.

Figure 3~a! shows the impurity site occupancyn0 vs De
for a strongly interacting case in the second-moment
proximation, RHF, and UHF, compared to exact results. T
impurity occupancy decreases stepwise with increasingDe.
The steps become sharper asU increases. RHF obtains n
stepwise behavior at all. The UHF approximation improv
on this by formation of a local moment, but shows a cu
The second-moment approximation, on the other hand,
scribes the charge of the impurity very accurately. Sim
accuracy is obtained for the spin fluctuations of the impur

FIG. 2. Error in the total energy of a six-site Anderson cha
with six electrons and spin zero in different approximations:
stricted Hartree-Fock~left!, unrestricted Hartree-Fock~center!, and
second-moment approximation~right!. The energy unit ish, cf. Eq.
~14!.
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Figure 3~b! shows results for these fluctuations in the sy
metric case (De50). In agreement with the exact result, th
spin fluctuations in the second-moment approximation
crease gradually from 1/2 to 1 with increasingU. The UHF
results show no enhancement at all for smallU, but ‘‘catch
up’’ for larger U. RHF gives no enhancement whatsoeve

For Hubbard chain models with on-site interactions on
sites, our numerical studies21 show that the second-momen
approximation is less accurate. The magnitude of the erro
energy is comparable to the error of the unrestricted Hart
Fock approximation. This result is not surprising since t
approximation was derived using the assumption of only t
interacting orbitals.

Altogether the second-moment approximation provides
accurate treatment of on-site correlations on isolated im
rity sites and at the same time has adequate computati
efficiency to treat realistic electronic structures.

IV. ANDERSON IMPURITY IN A RANDOM ALLOY

We now demonstrate the utility of our method by addre
ing the problem of an Anderson impurity in a random allo
The heart of this problem is the competition or cooperat
between the electron-electron interactions and the disor
and to our knowledge this physics has not been addresse
calculations to date. We expect that the coupling of the
purity to the host will be reduced by both disorder and el
tron interactions. However, the disorder and interaction
fects on spin fluctuations should oppose each other.

-

FIG. 3. Site occupancy~a! and spin fluctuations~b! on the in-
teraction site for a six-site Anderson chain with six electrons a
spin zero.
6-3
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disorder tends to favor either zero or double occupan
whereas the interactions favor single occupancy and thus
hance spin fluctuations.

We use a simple cubic underlying lattice with rando
on-site potentialse i56De/2 ~except at the impurity site! at
half-filling. We employ the recursion method24 to transform

FIG. 4. Anderson impurity in a disordered alloy: coupling be
tween the impurity and the bulk~a! and spin fluctuations on the
impurity site ~b!.
11511
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the one-body Hamiltonian to a chain of length 20 and av
age over 50 alloy configurations. We evaluate the proper
of the impurity as a function of the Coulomb interactionU
for different disorder potentialsDe50, 5h, 10h. The cou-
pling between the impurity and the bulk is reduced by bo
disorder and Coulomb interactions as seen in Fig. 4~a!. The
spin fluctuations at smallU are reduced by the disorder@cf.
Fig. 4~b!#, as expected from the above arguments based
site occupancy. However, for larger values ofU, the disorder
enhances the spin fluctuations. The crossover value ofU de-
pends onDe and is about 5h for De510h. At large U, the
impurity is essentially always half-filled, and the reduce
couplings between the impurity and the environment lead
the enhancement.

V. CONCLUSION

In summary, we have shown that for a large class of i
purity model Hamiltonians the exchange-correlation ener
is determined entirely by the local moments of the dens
matrix. An exact inequality relates the second moment of
density matrix with the correlation energy. This inequalit
used as an approximation to the correlation energy, gi
very accurate results for the energy, one-electron proper
and charge and spin fluctuations of Anderson impurities. A
plication of the method to an Anderson impurity in a rando
alloy has revealed an unexpected crossover behavior in
effects of disorder and electron interactions on the spin flu
tuations. Future work should aim at the extension of the a
proximation to systems with more interacting orbitals, so th
a broader range of systems can be treated.
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