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Phase separation, charge ordering, and pairing in layered three-dimensional systems
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The processes of Coulomb gas ordering in a three-dimengi@8balayered system are studied by means of
the Brownian dynamics approach. It is found that at different densities of the carriers, a 3D lattice of charges,
as well as new specific structures, are possible in the system. At small densities, the particles inside the layers
can associate into droplets that collectively repel between neighboring layers, creating 3D ordering of the
droplets. These droplets possess local stripe structure that orders spontaneously along an arbitrary direction.
The density of charge within the droplets is not a constant and changes with the average density. At higher
densities, a specific ordering of the charges into the tetragonal-like or hexagonal-like structures is observed
visually and described numerically. Specific “pairing” of the charges from neighboring layers plays an es-
sential role in the formation of all above structures.
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The theory of doped Mott insulators shows a variety ofone another. Hence, the energy minimum should be a non-
electronic ground states, from charge-stripe order througlrivial compromise between the interlayer and intralayer in-
electronic liquid-crystal phask$to the usual metallic state teractions.
depending on doping level. The complex character of the Numerical simulations show that the symmetric position-
phase diagram is caused by the long-range Coulomb interaagig of the particles over the centers of the cells of the Wigner
tion between electrons placed in an antiferromagnetic backerystal is unstable. Instead, when the positions of particles in
ground. Besides, the well-defined layered structure is a consne layer are projected onto the average plane of a neighbor-
mon feature of these systems. Both of these features creaitgy layer, each particle in the first layer is found to be dis-
essential difficulties for theory. A common theoretical sim-placed in the direction of one of the particles in the neigh-
plification is to solve the two-dimensional problem in differ- boring layer. In particular, the displacements break the
ent models™® geometric frustration in the collective position of a hexago-

Here we present a three-dimensiortdD) model with  nal 2D lattice from one layer to the next.
very simple suppositions. We study a 3D layered crystal with The situation appears as follows. Moving in the collective
Coulomb interaction among spinless charges. The particlefield of the neighboring layers, the carriers are attracted to
move in a background potential that is periodic along one othe minima of the potential. These minima act as if they were
the axes. It is shown that this model is sufficient to obtaineffective “positively charged particles.” The projections of
density stratificationor phase separatipraccompanied by real particles from a neighboring layéattracted to these
classic phases such as the Wigner crystal or stripe orderingninima) onto thexy plane can be treated as the “images” of

In particular, such a model can describe the charge ordethese effective particles. In some sense this behavior is close
ing in systems without magnetic ions. Very likely, such ato a stripe formation, as in the cuprates and nickelafdsis
situation takes place in BgKq sBiO5. There are many hints directly analogous to the previously studied process of
of a remnant of charge ordering in §#&, sBiO; above the screening in a system containing two kinds of particles that
temperature of the superconducting phase transfier, for  bind into “pairs.” These pairs are dipolarly charged and
example Ref. form, in their turn, chains of dipole¥.

Let us suppose that the equally charged spinless particles Let us note that the “pairs” are formed by particles from
move and interact in 3D space with a positive backgroundlifferent layers. So, this pairing is essentially a 3D phenom-
that includes a periodic potential along one of the dimensiongnon. We found that the variation of the density leads to
(which we choose as the direction. For a sufficiently other nontrivial structures, also. In particular, at low density,
strong periodic potential, the particles should be localized irthe system produces an unusual “droplet phase.” This phase
equidistant layers. For a single layer, the particles would teng@onsists of the charged droplets with an internal structure. It
to form an hexagonalWignen crystal; however, this ten- is possible that the specific dipolar chain structure or struc-
dency can be strongly modified by the interactions betweeturalized droplet phase might have relevance to the problem
layers. of the mechanism of superconductivity in novel supercon-

The particles from a particular layer interact with the col- ductors.
lective potential of the surrounding layers and tend to posi- To study the structures appearing in the system of moving
tion themselves in the potential minima. In an idéednsla- charges placed into 3D compensating background, with pe-
tionally invarian} case, the particles of one layer have to beriodically modulated potential along one of the dimensions,
found directly under the centers of cells of the neighboringwe apply the Brownian dynamid¢8D) technique. This tech-
layer. The particles from a third layer might be expected tonique has been widely applied in recent yéaté(in particu-
sit directly under positions of the particles from the first one;lar, by one of the present authbts) to simulate the behav-
however, the particles in the first and third layers also repeior of various systems.
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The technique is based on the solution of the system of 13( Y
dynamic equations for the particles with discrete coordinates e e . . !

R;=(x;.y; ), where I<j<N, and the vectorRj, =R, Bl s oed b m s e '

—Ry=(Xj—Xk,¥;— Y«,Z;— Z) connecting pairs of particles. A " .' . .
The choice of appropriate boundary conditions depends on L i R W
the specific problem. L I R S . S e .

The equations in such an approach contain some random | *° %" " """ ¢ ° 1 »
noise source¥* Together with relaxation terms, these e E B ety £
simulate the effect of finiténonzero temperaturdin accor- 0 -« (@) 1 (d),
dance with the well-known fluctuation-dissipation theoyem o 2 4 6 & 10 ' '

Spatially continuous densities are determiagabsterioriby

means of a summation over realizations and averaging over a ,, - ee e, . .
sufficiently long time. The necessary length of time for av- R S e p'
eraging is determined numerically for each probfer fro et o eyt b~ T .

In particular, the particle density in real spaq(R) ® ERERn g e | ." .- .
=[(2;8(R=R))1|;,, is obtained by a summatioli; over N °.°‘ . o ":0 " .
particle coordinates and averaging . . )]|;, over character- 2 0y . 1~ 0 ! -
istic timety. This density is used to calculate the correlation z ot Tres e 2o 2 s
functions of the problentfor example: the two-point corre- R .(b), , Lo ® > I(e)
lation functionG(R,R’)=(e(R)e(R’)), where( . ..) de- ¢ 2 A E 8 N2
notes an averaging over an ensemble of particlHse set of
the correlation functions gives complete information about so{ .. o .. - »
the thermodynamic properties of the system. . o :{-: 1 1. ph

The set of BD equations can be written in the form " T e s o A . d

) _ P P 2] 1.0, " i - ’/ '

Rj+7Rj+ﬁ—RjV(Rj)+a—Rj§k: U(Rj) = oF(R;;1), o] 1 Y e :

SIS ¢ ‘_r(f)
where vy is a relaxation constant. To model a thermal bath, 0 10 20 30 40 50 '
we apply the Gaussian random for8E(t), X X
FIG. 1. Instantaneous configurations of the particles at the final
(SF(R;1))=0; stage of evolution are shown for the three characteristic densities:
(@) atL=9; (b) atL=12; (c) atL=50 (N=256). The projections
(SF(R;t)SF(R';t"))=2yTS(R—R")8(t—t") of the particles from neighboring layers are shown by black and

white circles, respectively. Two-point correlation functi@yR
- ) . s —R")=(e(R)e(R’)) is presented for following three typical
;I'he E/e;odfvone p;r;[ll(cle/Lpotentlal is chosen to have th%ases(d) well-pronounced tetragonal latti¢et L=7); (e) for hex-
orm V(R;) =V, cos(2rk-z/L,) _ o agonal ordering of the particles inside the laydrs=(10.5); (f) for

Thg SyStem_'s supposed to b_e continued pgnodmally. Herﬂroplet phase with an internal stripe structure appearing at phase
L./k is the period of the potential along tkeaxis, withk an  genaratiorat small density =50). The length of arrows indicate

integer. Along the other two axes the system is quasi-infiniteihe value of the averaged minimal distance between particles.
The boundary conditions along all of the axes lead to the

interaction of each particle with all other particles inside the ] )
calculation volumeQ =L, -L,-L,, as well as with all of The many-body potentidl (Rj) =U.- U, consists of a
their “images” obtained as a result of the translation of par-long-range Coulomb interactiot) o(Rji) < 1/R;| with a
ticle coordinates acrosbeyond the nearest boundaly:4  screening factot s (Rjc) = exp(—|Rj|/ro).

So, the many-body potentidl (R;) in the equations con- Numerical results for the cadg=L,=L, L,=5, T=1,
tains the vectorsxj,=Xjx*Ly.Yjx=Yjx*Ly.Zx=zx*L, ¥=3, andro,=10° are summarized in Figs. 1-3. For defi-

with all possible permutations. The sign+* or * —" is niteness, all instantaneous configurations shown were ob-
determined by a direction to the nearest boundary plangined in the frames of uniform motion. Random distribu-
along given axis. tions of the charges have been taken as the initial conditions,

If a particle leaves the volum@=L,-L,-L, along one of which is the standard choice used in a search for an energy
the axes it is returned to the volume. In the absence of aminimum by the relaxation technique and by simulated
external field, the particle return can be done by means cénnealing.
mirror reflection, or by cyclic shift. In the second case, the The same fixed number of particled,=256, has been
corresponding projection of the velocity is conserved, andised in all cases. The charge density is varied by changing
the coordinate projection is shifted as followg;—x; the cross sectionL,-L, of the calculation volume()
*Leyj—Yi*Lly,zj—zxL, .10 =Ly Ly-L,. To check for finite-size effects, the calculations
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phase separatipnfound in a system with two kinds of
particlest® For brevity we will use “phase separation” to
describe our droplet state.

In the initial stage of the evolution, the particles sponta-
neously group to the vicinities of the planes corre-
sponding to the minima of the periodic potentd(R;))
=Vj cos(27k-z/L,). These minima define the “layers.” For
definiteness, we denote a particle as belonging to a given
layer if its z coordinate differs from that of the layer by no
more than 0.1 of distance between the layers, j25z(
<0.1z,,—2z]. Itis interesting to note that typical for this
stage is a tendency to “pairing{in projection onto thexy
plang of the particles from neighboring layers.

Below, this tendency will be characterized numerically.
Such a state survives for the majority of particles only for

FIG. 2. Time dependence of averaged minimal distance betweeOMe high densities. A tetragonal 3D structure is found to be
the projections of particles from the same layielack circles and natural for this case in the final equilibrium state. Neverthe-
nearest layergwhite circles: (a) at L=9; (b) L=10.5; (c) at L less, a remnant pairing plays an important role in the forma-
=11; (d) atL=70 (N=256). tion of the droplet phase at low densities.

One can use the time dependence of the averaged minimal
were reproduced at some densities for other numbers of padlistance between particlds=( min{|R;,|}) as a numerical
ticles (N=128 andN =512, with a respectively chosen cross characteristic to distinguish different scenarios that occur as
section of the box.,-L,). a function of density. This value corresponds to the mean

Instantaneous particle configurations at the fifmit not  distance between nearest neighbors. Different mutual rela-
equilibrium) stages of structure formation are shown in Figs.tions and a sign of inequality between valueshohside a
1(a)-1(c) for three specific densities. The particle coordi- layer and for pairs of neighboring layers reflects a difference
nates for two adjacent layers are shown by means of differerfetween visually observed structures.
symbols in a projection onto they plane(all other particles Four qualitatively different scenarios of evolution of the
are not showh The case(a corresponds to high density distance between nearest particles are shown in Figa)2;
(L=9). The configuratior{b) corresponds at long time to a high density {=9); (b) a density close, but slightly higher,
density close to a critical valueL&12). At small density  inan a critical one I(=10.5); (c) a density close to, but
(L=50) a kind of clusterization into “droplets” occurs in lower than, the critical onel(=11); and finally(d) a very

the system. These droplets contain segments of charge cha%%\, density L=70). The averaged projections of the dis-
and, therefore, possess some kind of fine structure. The dro ances within a layer and between layers are indicated by

lets from different layers repulse mutually. The state ob-bIaCk and white circles, respectively.

tained looks similar to the concentration stratificati@r For a fixed distance between the layers, the average inter-
action between the layers is proportional to the density.
When the density is high enough, this interaction is strong
enough to order particles in a 3D structure. Figu(d) pre-
sents the correlation function of a typical tetragonal crystal
structure that is obtained at high density=7). However,
long wavelengtlz displacements of the particles inside each
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922% of the layers caused by strong interactions alongzlagis
20] §> ot prevent the formation of an ideal 3D tetragonal lattice.
1513 ;g; 8 oy When the density goes _to through th_e cri_tical value
101 3 L E2 (10.5<L<11), the force binding of the particles in the lay-
05] / %y %E & ers prevails over the component of the interaction between
00} % 2% R layers. The particles are locked strongly in the layers and
S S A ordered hexagonally. Naturally, the mean distance between
L~ 1" nearest neighbors stabilizes with time. However, the distance

between the projections of particles from different layers

FIG. 3. A dependence of equilibrium averaged minimal distanced0€s not tend to zero nogas it does for the 3D tetragonal
between the particleb=( min{|R;[}) from density (shown as a lattice). Thl_s facfc is r_eflected by the difference in behavior of
function from box sizel at a fixed number of particled=256).  the lower lines in Figs. @)—2(c).

Two kinds of circles denote the values bfcorresponding to the Finally, when the density is extremely low, the repulsion
particles from the same laye(black circles or different layers between the particles from different layers is notable for suf-
(white circles. ficiently big groups of particles. Phase separation occurs
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now. The particles combine into clusteia droplet3. The  The slopping dash-dotted line gives the slope of lifg)
projections of the clusters from different layers mutually fill function for the ideal tetragonal lattice.
in free spaces for each other. This plot can be treated as a phase diagram in terms of the
All these structures are reflected by the correlation funcmean density «1/L,L at fixedL,. The vertical dashed line
tion G(R,R')=(e(R)o(R’)) shown in Figs. td)-1(f). The  (atL~11) denotes a transition between two different struc-
function G(R,R")=(o(R)@(R’)) is calculated for a single tures. Just to the right of the line, the ratio of the in-plane to
layer and shown for the following three typical cas@b:a interplanar distance passes throug®, whose relation cor-
well-pronounced tetragonal lattidat L=7); (e) hexagonal responds to ideal 3D hexagonal ordering.
ordering L=10.5); (f) droplet phase appearing at phase The dotted vertical line corresponds to a transition from a
separation into charge-rich and charge-poor domdats charge-order-like Wigner crystal to the phase-separation
small densityL =50). The filament structure formed by the structure that contains charge-rich droplets with an internal
scraps of charge chains is visible. In all figures the averagefine structure. It should be noted that the curlaék) do not
minimal distance between particles within a layer is markedeach horizontal asymptote.
by the arrows. To conclude, we found a transition from a Wigner crystal
These results have been checked for diffefgattangu- phase to a droplet phase with an internal structure. The den-
lar) forms of the boundary. A tendency to form stripes orsity of the charges inside the droplets depends on the value
chains of charge along one of the spontaneously chosen dif mean density in the system. In spite of some analogy with
rection is observed in all cases. As is seen, for instance, itiquid droplets, this result occurs in the absence of a direct
Fig. 1(c), the local direction of the stripes does not depend orattraction among the particles. The particles in an insulating
the boundary orientation. The stripes form local gro(gs-  layer cannot collect in compact droplets; rather, the particles
maing with common but arbitrary orientation, so, the local close to the droplet boundaries essentially attract between
structure is not an artifact of the system boundaries. Howsdlifferent layers. As a result, the size of the droplets is always
ever, the numerically found global structure correlates withcomparable with the distance between them. From a physical
the periodic boundaries. The difference between the locgboint of view, the dependence of the internal density of
and global orientations is reflected by the correlation funccharge in the droplets as a function of the doping level is one
tion shown in Fig. 1f). of the most important features of this new droplet phase.
The dependence of the equilibrium averaged minimal dis-
tance between the particldson density is summarized in We appreciate discussions with J. Tranquada. This work
Fig. 3. As before, two kinds of circles denote the valueb of is supported in part by the INTAS Grant No 96-0410 and
corresponding to particles from the same or different layersSFFR research Grant No. 2.4/199 of Ukraine.
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