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Phase separation, charge ordering, and pairing in layered three-dimensional systems

Yu. G. Pashkevich and A. E. Filippov
A. A. Galkin Donetsk Phystech NASU, 83114 Donetsk, Ukraine

~Received 22 May 2000; revised manuscript received 31 October 2000; published 2 March 2001!

The processes of Coulomb gas ordering in a three-dimensional~3D! layered system are studied by means of
the Brownian dynamics approach. It is found that at different densities of the carriers, a 3D lattice of charges,
as well as new specific structures, are possible in the system. At small densities, the particles inside the layers
can associate into droplets that collectively repel between neighboring layers, creating 3D ordering of the
droplets. These droplets possess local stripe structure that orders spontaneously along an arbitrary direction.
The density of charge within the droplets is not a constant and changes with the average density. At higher
densities, a specific ordering of the charges into the tetragonal-like or hexagonal-like structures is observed
visually and described numerically. Specific ‘‘pairing’’ of the charges from neighboring layers plays an es-
sential role in the formation of all above structures.
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The theory of doped Mott insulators shows a variety
electronic ground states, from charge-stripe order thro
electronic liquid-crystal phases1,2 to the usual metallic state
depending on doping level. The complex character of
phase diagram is caused by the long-range Coulomb inte
tion between electrons placed in an antiferromagnetic ba
ground. Besides, the well-defined layered structure is a c
mon feature of these systems. Both of these features cr
essential difficulties for theory. A common theoretical sim
plification is to solve the two-dimensional problem in diffe
ent models.3–8

Here we present a three-dimensional~3D! model with
very simple suppositions. We study a 3D layered crystal w
Coulomb interaction among spinless charges. The parti
move in a background potential that is periodic along one
the axes. It is shown that this model is sufficient to obt
density stratification~or phase separation! accompanied by
classic phases such as the Wigner crystal or stripe orde

In particular, such a model can describe the charge or
ing in systems without magnetic ions. Very likely, such
situation takes place in Ba0.6K0.4BiO3. There are many hints
of a remnant of charge ordering in Ba0.6K0.4BiO3 above the
temperature of the superconducting phase transition~see, for
example Ref. 9!.

Let us suppose that the equally charged spinless part
move and interact in 3D space with a positive backgrou
that includes a periodic potential along one of the dimensi
~which we choose as thez direction!. For a sufficiently
strong periodic potential, the particles should be localized
equidistant layers. For a single layer, the particles would t
to form an hexagonal~Wigner! crystal; however, this ten
dency can be strongly modified by the interactions betw
layers.

The particles from a particular layer interact with the c
lective potential of the surrounding layers and tend to po
tion themselves in the potential minima. In an ideal~transla-
tionally invariant! case, the particles of one layer have to
found directly under the centers of cells of the neighbor
layer. The particles from a third layer might be expected
sit directly under positions of the particles from the first on
however, the particles in the first and third layers also re
0163-1829/2001/63~11!/113106~4!/$15.00 63 1131
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one another. Hence, the energy minimum should be a n
trivial compromise between the interlayer and intralayer
teractions.

Numerical simulations show that the symmetric positio
ing of the particles over the centers of the cells of the Wig
crystal is unstable. Instead, when the positions of particle
one layer are projected onto the average plane of a neigh
ing layer, each particle in the first layer is found to be d
placed in the direction of one of the particles in the neig
boring layer. In particular, the displacements break
geometric frustration in the collective position of a hexag
nal 2D lattice from one layer to the next.

The situation appears as follows. Moving in the collecti
field of the neighboring layers, the carriers are attracted
the minima of the potential. These minima act as if they w
effective ‘‘positively charged particles.’’ The projections o
real particles from a neighboring layer~attracted to these
minima! onto thexy plane can be treated as the ‘‘images’’
these effective particles. In some sense this behavior is c
to a stripe formation, as in the cuprates and nickelates.1,2 It is
directly analogous to the previously studied process
screening in a system containing two kinds of particles t
bind into ‘‘pairs.’’ These pairs are dipolarly charged an
form, in their turn, chains of dipoles.10

Let us note that the ‘‘pairs’’ are formed by particles fro
different layers. So, this pairing is essentially a 3D pheno
enon. We found that the variation of the density leads
other nontrivial structures, also. In particular, at low dens
the system produces an unusual ‘‘droplet phase.’’ This ph
consists of the charged droplets with an internal structure
is possible that the specific dipolar chain structure or str
turalized droplet phase might have relevance to the prob
of the mechanism of superconductivity in novel superco
ductors.

To study the structures appearing in the system of mov
charges placed into 3D compensating background, with
riodically modulated potential along one of the dimensio
we apply the Brownian dynamics~BD! technique. This tech-
nique has been widely applied in recent years11,12~in particu-
lar, by one of the present authors13,14! to simulate the behav
ior of various systems.
©2001 The American Physical Society06-1
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The technique is based on the solution of the system
dynamic equations for the particles with discrete coordina
Rj5(xj ,yj ,zj ), where 1< j <N, and the vectorsRjk5Rj
2Rk5(xj2xk ,yj2yk ,zj2zk) connecting pairs of particles
The choice of appropriate boundary conditions depends
the specific problem.

The equations in such an approach contain some ran
noise sources.12–14 Together with relaxation terms, thes
simulate the effect of finite~nonzero! temperature~in accor-
dance with the well-known fluctuation-dissipation theorem!.
Spatially continuous densities are determineda posterioriby
means of a summation over realizations and averaging ov
sufficiently long time. The necessary length of time for a
eraging is determined numerically for each problem.13,14

In particular, the particle density in real space,%(R)
5@^( jd(R2Rj )&#u t0

, is obtained by a summation( j over

particle coordinates and averaging@^ . . . &#u t0
over character-

istic time t0. This density is used to calculate the correlati
functions of the problem~for example: the two-point corre
lation functionG(R,R8)5^%(R)%(R8)&, where^ . . . & de-
notes an averaging over an ensemble of particles!. The set of
the correlation functions gives complete information ab
the thermodynamic properties of the system.

The set of BD equations can be written in the form

R̈j1gṘj1
]

]Rj
V~Rj !1

]

]Rj
(

k
U~Rjk!5dF~Rj ;t !,

whereg is a relaxation constant. To model a thermal ba
we apply the Gaussian random forcedF(t),

^dF~R;t !&50;

^dF~R;t !dF~R8;t8!&52gTd~R2R8!d~ t2t8!

The periodic one-particle potential is chosen to have
form V(Rj )5V0 cos(2pk•zj /Lz)

The system is supposed to be continued periodically. H
Lz /k is the period of the potential along thez axis, withk an
integer. Along the other two axes the system is quasi-infin
The boundary conditions along all of the axes lead to
interaction of each particle with all other particles inside t
calculation volumeV5Lx•Ly•Lz , as well as with all of
their ‘‘images’’ obtained as a result of the translation of p
ticle coordinates across~beyond! the nearest boundary.12–14

So, the many-body potentialU(Rjk) in the equations con
tains the vectorsxjk5xjk6Lx ,yjk5yjk6Ly ,zjk5zjk6Lz
with all possible permutations. The sign ‘‘1’’ or ‘‘ 2 ’’ is
determined by a direction to the nearest boundary pl
along given axis.

If a particle leaves the volumeV5Lx•Ly•Lz along one of
the axes it is returned to the volume. In the absence o
external field, the particle return can be done by means
mirror reflection, or by cyclic shift. In the second case, t
corresponding projection of the velocity is conserved, a
the coordinate projection is shifted as follows:xj→xj
6Lx ,yj→yj6Ly ,zj→zj6Lz .13
11310
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The many-body potentialU(Rjk)5Uc•Uscr consists of a
long-range Coulomb interactionUc(Rjk)}1/uRjku with a
screening factorUscr(Rjk)} exp(2uRjku/r 0).

Numerical results for the caseLx5Ly5L, Lz55, T51,
g53, andr 05103 are summarized in Figs. 1–3. For de
niteness, all instantaneous configurations shown were
tained in the frames of uniform motion. Random distrib
tions of the charges have been taken as the initial conditio
which is the standard choice used in a search for an en
minimum by the relaxation technique and by simulat
annealing.7

The same fixed number of particles,N5256, has been
used in all cases. The charge density is varied by chang
the cross sectionLx•Ly of the calculation volumeV
5Lx•Ly•Lz . To check for finite-size effects, the calculation

FIG. 1. Instantaneous configurations of the particles at the fi
stage of evolution are shown for the three characteristic densi
~a! at L59; ~b! at L512; ~c! at L550 (N5256). The projections
of the particles from neighboring layers are shown by black a
white circles, respectively. Two-point correlation functionG(R
2R8)5^%(R)%(R8)& is presented for following three typica
cases:~d! well-pronounced tetragonal lattice~at L57); ~e! for hex-
agonal ordering of the particles inside the layers (L510.5); ~f! for
droplet phase with an internal stripe structure appearing at ph
separation~at small densityL550). The length of arrows indicate
the value of the averaged minimal distance between particles.
6-2
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were reproduced at some densities for other numbers of
ticles (N5128 andN5512, with a respectively chosen cro
section of the boxLx•Ly).

Instantaneous particle configurations at the final~but not
equilibrium! stages of structure formation are shown in Fig
1~a!–1~c! for three specific densities. The particle coord
nates for two adjacent layers are shown by means of diffe
symbols in a projection onto thexy plane~all other particles
are not shown!. The case~a! corresponds to high densit
(L59). The configuration~b! corresponds at long time to
density close to a critical value (L512). At small density
(L550) a kind of clusterization into ‘‘droplets’’ occurs in
the system. These droplets contain segments of charge c
and, therefore, possess some kind of fine structure. The d
lets from different layers repulse mutually. The state o
tained looks similar to the concentration stratification~or

FIG. 2. Time dependence of averaged minimal distance betw
the projections of particles from the same layer~black circles! and
nearest layers~white circles!: ~a! at L59; ~b! L510.5; ~c! at L
511; ~d! at L570 (N5256).

FIG. 3. A dependence of equilibrium averaged minimal dista
between the particlesb5^ min$uRjku%& from density ~shown as a
function from box sizeL at a fixed number of particlesN5256).
Two kinds of circles denote the values ofb corresponding to the
particles from the same layers~black circles! or different layers
~white circles!.
11310
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phase separation! found in a system with two kinds o
particles.10 For brevity we will use ‘‘phase separation’’ to
describe our droplet state.

In the initial stage of the evolution, the particles spon
neously group to the vicinities of the planes corr
sponding to the minima of the periodic potentialV(Rj )
5V0 cos(2pk•zj /Lz). These minima define the ‘‘layers.’’ Fo
definiteness, we denote a particle as belonging to a gi
layer if its z coordinate differs from that of the layer by n
more than 0.1 of distance between the layers, i.e.,uz2zku
,0.1uzk112zku. It is interesting to note that typical for thi
stage is a tendency to ‘‘pairing’’~in projection onto thexy
plane! of the particles from neighboring layers.

Below, this tendency will be characterized numerical
Such a state survives for the majority of particles only
some high densities. A tetragonal 3D structure is found to
natural for this case in the final equilibrium state. Neverth
less, a remnant pairing plays an important role in the form
tion of the droplet phase at low densities.

One can use the time dependence of the averaged min
distance between particlesb5^ min$uRjku%& as a numerical
characteristic to distinguish different scenarios that occu
a function of density%. This value corresponds to the mea
distance between nearest neighbors. Different mutual r
tions and a sign of inequality between values ofb inside a
layer and for pairs of neighboring layers reflects a differen
between visually observed structures.

Four qualitatively different scenarios of evolution of th
distance between nearest particles are shown in Fig. 2~a!
high density (L59); ~b! a density close, but slightly higher
than a critical one (L510.5); ~c! a density close to, bu
lower than, the critical one (L511); and finally~d! a very
low density (L570). The averaged projections of the di
tances within a layer and between layers are indicated
black and white circles, respectively.

For a fixed distance between the layers, the average in
action between the layers is proportional to the dens
When the density is high enough, this interaction is stro
enough to order particles in a 3D structure. Figure 1~d! pre-
sents the correlation function of a typical tetragonal crys
structure that is obtained at high density (L57). However,
long wavelengthz displacements of the particles inside ea
of the layers caused by strong interactions along thez axis
prevent the formation of an ideal 3D tetragonal lattice.

When the density goes to through the critical val
(10.5,L,11), the force binding of the particles in the lay
ers prevails over thez component of the interaction betwee
layers. The particles are locked strongly in the layers a
ordered hexagonally. Naturally, the mean distance betw
nearest neighbors stabilizes with time. However, the dista
between the projections of particles from different laye
does not tend to zero now~as it does for the 3D tetragona
lattice!. This fact is reflected by the difference in behavior
the lower lines in Figs. 2~a!–2~c!.

Finally, when the density is extremely low, the repulsi
between the particles from different layers is notable for s
ficiently big groups of particles. Phase separation occ
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e

6-3



fill

nc

se

e
ge
e

o
n
,
o

al
w
it
c

nc

is

f
r

f the

c-
to

a
tion
nal

tal
en-

alue
ith
ect
ing
les
een
ays
ical
of
ne

.

ork
nd

BRIEF REPORTS PHYSICAL REVIEW B 63 113106
now. The particles combine into clusters~or droplets!. The
projections of the clusters from different layers mutually
in free spaces for each other.

All these structures are reflected by the correlation fu
tion G(R,R8)5^%(R)%(R8)& shown in Figs. 1~d!–1~f!. The
function G(R,R8)5^%(R)%(R8)& is calculated for a single
layer and shown for the following three typical cases:~d! a
well-pronounced tetragonal lattice~at L57); ~e! hexagonal
ordering (L510.5); ~f! droplet phase appearing at pha
separation into charge-rich and charge-poor domains~at
small densityL550). The filament structure formed by th
scraps of charge chains is visible. In all figures the avera
minimal distance between particles within a layer is mark
by the arrows.

These results have been checked for different~rectangu-
lar! forms of the boundary. A tendency to form stripes
chains of charge along one of the spontaneously chose
rection is observed in all cases. As is seen, for instance
Fig. 1~c!, the local direction of the stripes does not depend
the boundary orientation. The stripes form local groups~do-
mains! with common but arbitrary orientation, so, the loc
structure is not an artifact of the system boundaries. Ho
ever, the numerically found global structure correlates w
the periodic boundaries. The difference between the lo
and global orientations is reflected by the correlation fu
tion shown in Fig. 1~f!.

The dependence of the equilibrium averaged minimal d
tance between the particlesb on density is summarized in
Fig. 3. As before, two kinds of circles denote the values ob
corresponding to particles from the same or different laye
a,

.

a

N.
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The slopping dash-dotted line gives the slope of theb(L)
function for the ideal tetragonal lattice.

This plot can be treated as a phase diagram in terms o
mean density%}1/LxLy at fixedLz . The vertical dashed line
~at L'11) denotes a transition between two different stru
tures. Just to the right of the line, the ratio of the in-plane
interplanar distance passes throughA3, whose relation cor-
responds to ideal 3D hexagonal ordering.

The dotted vertical line corresponds to a transition from
charge-order-like Wigner crystal to the phase-separa
structure that contains charge-rich droplets with an inter
fine structure. It should be noted that the curvesb(L) do not
reach horizontal asymptote.

To conclude, we found a transition from a Wigner crys
phase to a droplet phase with an internal structure. The d
sity of the charges inside the droplets depends on the v
of mean density in the system. In spite of some analogy w
liquid droplets, this result occurs in the absence of a dir
attraction among the particles. The particles in an insulat
layer cannot collect in compact droplets; rather, the partic
close to the droplet boundaries essentially attract betw
different layers. As a result, the size of the droplets is alw
comparable with the distance between them. From a phys
point of view, the dependence of the internal density
charge in the droplets as a function of the doping level is o
of the most important features of this new droplet phase
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